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We study the minimal degree d(m) of a polynomial with all coef-
ficients in {—1,0, 1} and a zero of order m at 1. We determine
d(m) for m < 10 and compute all the extremal polynomials.
We also determine the minimal degree form = 11 and m = 12
among certain symmetric polynomials, and we find explicit ex-
amples with small degree for m < 21. Each of the extremal
examples is a pure product polynomial. The method uses alge-
braic number theory and combinatorial computations and relies
on showing that a polynomial with bounded degree, restricted
coefficients, and a zero of high order at 1 automatically vanishes
at several roots of unity.

1. INTRODUCTION

In this paper we study polynomials having all their
coefficients in {—1,0, 1} and having a zero of speci-
fied multiplicity at 2 = 1. For a polynomial f(z) =
S axzk, let H(f) denote the height of f,

H(f)= max |ag].

0<k<d

Let L(f) denote the length of f,

L(f) :Z|ak|7

k=0
so if f has height 1, L(f) is simply the number of
monomials of f. For a positive integer m, let

d(m) = min{deg(f) : (z—1)™ | f(z) and H(f) = 1}.
Certainly d(m) < 2™ — 1, since the polynomial

1" -1) (1-1)

has height 1. In fact, d(m) satisfies the much better
bounds

m? < d(m) < m?>logm. (1-2)
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The upper bound is proved by Bloch and Pdlya
[1932] using a combinatorial argument. The lower
bound is a recent result of Borwein, Erdélyi, and
Kés [Borwein et al. 1999]. It improves the previous
lower bound of m?/log m, which follows from a the-
orem of Schur [1933] on the number of real zeros of
a polynomial. This is a small but very interesting
gap: closing it would have considerable ramification
in Diophantine approximation. The quantity d(m)
is also studied by Mignotte [1982] and by Bombieri
and Vaaler [1987] in the more general context of
bounding the height of an integer polynomial with
given degree and prescribed vanishing at particular
algebraic numbers. In this paper, we determine the
exact value of d(m) for several m, and determine the
extremal polynomials.

Finding a polynomial with height 1 and a zero of
multiplicity m at £ = 1 is equivalent to determining
two disjoint sets of nonnegative integers

R={ry,re,...,Tn}, S ={s1,82,...,8,}

satisfying

S

k=1 k=1

for every ¢ with 0 < ¢ < m: given such a pair
of sets, the polynomial Y ;_, (2" — z**) has the re-
quired properties. The problem of determining d(m)
then is equivalent to finding such a pair of sets where
max{t : t € RUS} is as small as possible. This
problem is similar to the problem of Prouhet, Tarry,
and Escott regarding equal sums of like powers (see
[Borwein and Ingalls 1994], for instance), but in this
latter problem the objective is to minimize n—more
precisely, to find a solution with n = m.

This question is also related to a conjecture of
Erdés and Szekeres regarding the supremum norm
of pure product polynomials on the unit circle. A
pure product is a polynomial of the form

|JECRE))

where the e;, are positive integers. We denote such a
polynomial by [eq, €s,...,€,]. Let || f||,, denote the
supremum of the function f(x) on the unit circle.
Erdés and Szekeres [1959] define

A(m) =

min ||[es, ..., en]||

oo
€14.:49€m

and prove that lim,, ;. A(m)*™ = 1. They have
conjectured that A(m) > m° for any constant c.
The best known upper bound on A(m), due to Belov
and Konyagin [1996], states that log A(m) < log* m.
If f(x) is a polynomial with height 1, then easily
I fll, < L(f) < deg(f)+1, so the Erdés—Szekeres
conjecture and (1-2) together imply that the poly-
nomials we seek cannot be pure products for m suf-
ficiently large. It is interesting that for several small
m the best known polynomials are in fact pure prod-
ucts.

In contrast with the cases m < 6 and m = 8§,
Maltby [1997] shows that pure products cannot solve
the Prouhet—Tarry—Escott problem for

m € {7,9,10,11}.

In all other cases, the only known lower bound is
the trivial one, L([e1, ..., ey]) > 2m.

Boyd [1997a; 1997b] investigates the similar prob-
lem of determining the smallest degree d;(m) of a
polynomial having all coefficients in {—1,1} and a
zero of order m at x = 1. In view of (1-1), Byrnes
asked if d;(m) is ever smaller than 2™ —1. Boyd
proves that the answer is yes precisely when m > 6,
determines the value of d;(m) for m < 7, and shows
that d;(m) > exp(y/m(1+0(1))). Some of Boyd’s
methods are adapted here for investigating the prob-
lem of height 1 polynomials.

In Section 2, we describe some searches for poly-
nomials having the desired properties and determine
upper bounds for d(m) for m < 21. In Section 3, we
show that the extremal polynomials we seek must
satisfy a number of divisibility conditions, and we
use these requirements in Section 4 to construct an
algorithm for finding these polynomials and deter-
mining d(m). We discuss the results of our searches
in Section 5.

2. UPPER BOUNDS

We employ two search strategies to determine upper
bounds for d(m) for several values of m.

2A. Lattice Reduction

We say a polynomial f(z) of degree d is reciprocal if
f(z) = x£2f(1/z). Let f(x) be a reciprocal polyno-
mial, and suppose we wish to determine a reciprocal
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multiple of f(z) of low height. Select a positive in-
teger n, and set

go(x) = 2°" + 1,
gr(z) =2+ kb 1 for 1 <k < n,
gn(x) = 2*" + 2" +1,

so that {gr(x)}}_, is a linearly independent set of
reciprocal polynomials. Let

hi(x) = f(x)gr(x)
for each k, and write
2n+d
hi(z) = Z Crit’.
=0
Let a; be the integer vector consisting of half the
coefficients of hy(z),

a; = (Ck,Oa Cr1y--- ,Ck,nﬂd/QJ) .

Then {ap, a,...
lattice in Znﬂﬂdm, and we may use a lattice re-
duction algorithm to find a reduced basis for this
lattice. The reduced basis encodes linear combi-
nations of the hy(z), hence reciprocal multiples of
f(x), with low height.

We use the LLL algorithm [Lenstra et al. 1982]
in Maple to perform the lattice reduction. Because
our multipliers gi(z) have even degree, we try this
method using both f(z) = (zx—1)™ and f(z) =
(x —1)™(x+ 1), using several different values for n
for each m attempted. If no multiples with height 1
are found, we employ a greedy algorithm to attempt
to construct one. We first use lattice reduction to
construct a few multiples of (z —1)™ of moderately
small height using a modest value for n, then use the
method again to search for multiples of these poly-
nomials with smaller height. After a few iterations
(at most three in practice), we hope to discover a
multiple of (z —1)™ with height 1.

We find height 1 multiples of (z —1)™ for every
m < 18 using this method. It is interesting that
the best example found using this method is a pure
product for every m except m = 15 (in this case,
the best example is the pure product

[1,2,3,4,5,6,7,7,8,9,10,11, 13,17, 19]

,@,} spans an (n + 1)-dimensional

multiplied by the noncyclotomic polynomial 228 +
o+ e 4 M et 202" 2t 4 1),
This suggests a second method of searching.

2B. Pure Product Search

In this search, we look for a height 1 multiple of
(z —1)™ by testing various pure products of length
m. Given m, let

A={1}U{p:pis prime and p < m+1}

and

B=({b:4<b<m+1}\max{a:a € A})
U{b:b=1mod 2 and m+2 < b < 2(m+1)}.

We found considerable success testing all pure prod-
ucts having the form

[T -1 [ -,

acA ceC
where C' is a subset of B of cardinality m —|A|. The
sets A and B were selected through experimentation
after studying the polynomials produced by lattice
reduction.

This search finds new polynomials for m = 15 and
m = 16 with degree smaller than the best examples
found using lattice reduction, new examples for m =
8 and m = 13 with the same degree as those found
using the previous method, and new examples for
m = 19 and m = 21. Despite several variations
on the sets A and B, no examples were found for
m = 20 or m > 21.

Table 1 lists the best examples found for each m.
Each one is a pure product. Figure 1 displays a plot
of d/m? versus m for these polynomials.

3. DIVISIBILITY CONDITIONS

Bombieri and Vaaler [1987] determine a lower bound
on the degree of a polynomial having low height and
prescribed vanishing at 1. They show that

4dlog H(f) > m*(1+o0(1)),

provided d — oo and m — oo in such a way that
m/d — 0 and /dlogd/m — 0. They prove this
by showing that such a polynomial must be divis-
ible by certain cyclotomic polynomials ®,(z) with
p prime. Amoroso improves this bound, replacing
the constant 4 in (3—1) with approximately 1.44, by
showing that certain @, (x) with n composite are
also required divisors [Amoroso 1995].

In this section, we derive some explicit divisibil-
ity conditions on polynomials having height 1 and a
zero of high order at 1. Let (, = exp(2mi/n), and

-1
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m  dL(f) f(z) m  dL(f) f(z)
1 1 2 [1 12 93 52 [1,2,3,4,5,6,7,9,11,13,15,17]
2 3 4 [12] 13 112 50 [1,2,3,4,5,6,7,9,11,13,15,17,19]
3 6 6 [1,23] 112 60 [1,2,3,5,6,7,8,9,11,11,13,17,19]
4 11 8 [1,2,3,5] 112 74 [1,2,3,5,5,7,8,9,11,12,13,17,19]
5 15 12 [1,2,3,4,5] 14 120 64 [1,2,3,4,5,6,7,8,9,11,13,15,17,19]
6 22 12 [1,2,3,4,5,7] 15 141 72 [1,2,3,4,5,6,7,9,10,11,13,14,16,17,23]
730 20 [1,2,345,78] 16 159 84 [1,2,3,4,5,7,7,9,10,11,12,13,16,17,19,23]
8 jﬂ gg Hgggg;gé}“ 17 185 100 [1,2,3,4,5,6,7,9,10,11,13,14,16,17,19,23,25]
9 48 28 [1,2,3.4,5,6,7.9.11] 18 207 104 [1,2,3,4,5,6,7,9,10,11,13,15,16,17,19,21,23,25]
10 61 32 [1,2,3,4,5,6,7,9,11,13] 19 245 112 [1,2,3,4,5,6,7,8,9,11,13,15,17,19,21,23,25,27,29]
11 69 44 [1,2,3,4,5,6,7,8,9,11,13] | 21 294 130 [1,2,3,4,5,6,7,9,10,11,13,15,16,17,19,21,23,25,27,29,31]

TABLE 1. Height 1 multiples of (z —1)™

0 5 10 15 20
FIGURE 1.

(z—1)™

let N(«) denote the norm of the algebraic number
«. The first result is essentially the same as [Boyd
1997a, Theorem 1], and appears in essence in the
proof of [Bombieri and Vaaler 1987, Theorem 6.

d/m? versus m for height 1 multiples of
of smallest known degree.

Theorem 3.1. If (z—1)™| f(x) and p is a prime num-
ber satisfying

log p
p—1
then ®,(x)| f(z).

Proof. Since N((, —1) = p, we have p™|N(f((,)), so
if f(¢,) # 0, then |[N(f((,))| > p™. By the triangle

_ log L(f)

m

with smallest known degree.

inequality, |N(f(¢,))| < L(f)P !, so f(¢,) # 0 im-
plies that log(p)/(p—1) < log(L(f))/m. This proves
the theorem. O
Using the formulas N ((x —1) =p and N (@i ((pr)) =
p?®) for 1 < i < k, one may prove more generally

that
log L(f)
m—+pk-1—1

killogp -
pFip—1)
implies that ®,«(z)| f(x).
We require two well-known facts from algebraic
number theory.

Lemma 3.2. Let m be a positive integer and p a prime
number, and let ¢ = |m/(p—1)|. Thenp?|({,—1)™
in the ring Z[(,).

Lemma 3.3. If f(z) is a polynomial with integer coef-
ficients and p is a prime number, then N(f((,))
f(1)P~! mod p.

The proof of Lemma 3.2 may be found for exam-
ple in [Boyd 1997b|. Lemma 3.3 is immediate from
the proof of [Edwards 1977, Exercise 4.2.6]. We use
these results to prove the following theorems con-
cerning required cyclotomic divisors.

Theorem 3.4. Suppose f(x) is a polynomial having
degree d, height 1, and a zero of order m at x = 1.
Let p < m+1 be an odd prime number, and let

q=|m/(p-1)].

(i) Ifg=1 and d < (p* —5)/2 then ®,(x)|f(z).
(i) Ifg > 1 and d < p(p?+1)/2—2 then ®,(z)| f(x).
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Proof. Suppose ¢ = 1. Write f(z) = ZZ:O apz®, and

Ai = Z a;.

j=imodp

p—1
F(G) =D A, (3-2)
=0

Since H(f) = 1 and d+1 < (p*>—3)/2, it follows
that

1 . .
S(p+1) f0<i<
|Aq] < { ?(p ) 1
2 2
Using the fact that (?~! = — f:_OQ ¢, we write f(Cp)
in terms of the standard integral basis:

p—2

f(&) = Z BiCIi)a B =A4;— A

i=0

(3-3)

By Lemma 3.2, we have p|B; for each i. If |4,_4| <
(p—1)/2, then |B;| < |A4;|+|A,-1] < p, hence B; =0
for each ¢, and f((,) = 0. Suppose then without loss
of generality that A, ; = —(p—1)/2. Then A; €
{(p+1)/2,—(p—1)/2} for each i. Since f(1) =0,
we have Y7 A; = 0, and therefore exactly (p—1)/2
of the A; must equal (p+1)/2, and the remaining
(p+1)/2 must be —(p—1)/2. This is impossible,
since at most (p—3)/2 of the A; may equal (p+1)/2.

Now suppose g > 1, and let A; and B; be as above.
We have |4;| < (p?+1)/2 for 0 < i < p—2, and
|A, 1| < (p?—1)/2. Since p?|B; for each i, we de-
duce in the same way that |4, ;| < (p?—1)/2 im-
plies B; = 0 for each i. On the other hand, if 4, ; =
—(p?—1)/2, then A; € {(p?+1)/2, —(p?—1)/2} for
each i, and clearly Zf:_ol A; # 0, a contradiction. [

By strengthening the condition on p slightly, we can
weaken the condition on the degree and obtain a
stronger result.

Theorem 3.5. Suppose f(x) is a polynomial having
degree d, height 1, and a zero of order m at r =
1. Let p < m be a prime number, and let r =

[(m—=1)/(p—1)]. Ifd < p"*' —p then &,(z)| f(z).
Proof. Let

F(G) =D A=Y B
1=0 1=0

as in (3-2) and (3-3). Suppose first that d<p"*! —p.
Then |A;| < p”—1 for each i, and we may assume
without loss of generality that A, ; < 0. Then the
definition of the B; and Lemma 3.2 imply that B;

lies in {0,p"} for each i. Let b; = B;/p", and define
w(@) =17 bia'. Then N(£((,)=p"® VN (w((,)),
but p™ |N(f({p)), so p|N(w(¢,)). Using Lemma 3.3,
we conclude p|w(1). Since deg(w) < p—2 and w(zx)
has {0, 1} coeflicients, we must have that w(z) = 0.
Thus ®,(x)| f(z).

If d = p"™ —p, we need only consider the case
|Ag| = p". Because |A4;| < p" for i > 0 and p"|B;
for each 7, we must have A; = 0 for 7 > 0. But then
(W) =p". O

We remark that using Theorem 3.5 and the prime
number theorem it is straightforward to prove that
d(m) > (3 —e)m?/logm for m > mq(e), for arbi-
trary positive €. Of course, the lower bound (1-2)
is substantially stronger.

Next, we obtain a condition for the fourth cyclo-

tomic polynomial.

Theorem 3.6. Let f(z) and m be as in the previ-
ous theorem. If m > 2 and d < 2L0m+3)/21 _ 9 then

B4 (2)] f ().

Proof. Suppose m > 2 and d < 2Lm+3)/2] _ 2 Then
L(f) < 2™, s0 ®5(z)| f(z) by Theorem 3.1. Because
(i—1)?=—2iand (i—1)(i+1) = —2, we conclude
that 2Lm+D/2]| £(3) in Z[i]. But

max{|Re f(i)[, [Im f (i)} < [(d+1)/2],

so 2Lm+1/2] > d/2 4+ 1 implies that f(i) = 0.

Suppose that d = 2Lm+3)/2] _2 and f(i) # 0.
Then |Re f(i)| = 2L0"*D/2 and Im f(i) = 0. As-
suming f to be monic, we have

/2

fl@)=> 2™ +azg(a?),

where g(z) has {—1,0,1} coefficients and deg(g) <
d/2—1, so |g(1)| < d/2. But f(1) = 0 implies that
g(1) = —d/2 — 1, a contradiction. O

The next theorem summarizes the required cyclo-
tomic divisors of the polynomials we seek for several
m, when the polynomial has degree bounded by that
of the best known examples from Table 1.

Theorem 3.7. For each m in the following table, if
f(x) is a polynomial with height 1, a zero of order
m at x =1, and degree d < dy(m), then ®,(x)| f(z)
for each n in the set R(m).
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m  do(m) R(m)

3 6 {23

4 11 {2,5}

5 15  {2,3,5)

6 22 {2,3,57}
730 {2,3,4,5,7)

8 41  {2,3,5,7}

9 48 {2,3,4,5,7)
10 61 {2,3,4,5,7,11}
11 69 {2,3,4,5,7,11}
12 92 {2,3,4,5,7,11,13}

Proof. Theorem 3.1 guarantees n = 2 for each m
in the table, n = 3 for 6 < m < 12, and n = 5
for m = 11 and 12. Theorem 3.4 yields n = 5 for
m = 8,9, and 10, and n = 7 for m = 6 and 12.
Theorem 3.5 supplies n = 3 for m = 3, n = 5 for
m =25, n=7form =7and 8 and n = 11 for
m = 11 and 12. Theorem 3.6 adds n =4 for m =7
and 9 <m < 12.

For m = 5 and n = 3, Theorem 3.1 covers every
case except d = 15 and L(f) = 16. We may discard
this case, since [Boyd 1997a] shows that a polyno-
mial with {—1,1} coefficients and a zero of order 5
at £ = 1 must have degree at least 31.

Three cases remain for n = 5. Using (3-2) and
(3-3) again, write f(C;) = Yio AiCi = Yo, Bi(i,
and assume A; < 0. For m =4 and d < 11, we have
that |4;] <3 for i =0or 1 and |4;| < 2 for ¢ = 2,
3, or 4. Since 5| B; for each i, either A; = 0 for each
i,or Ag = A, =3 and A, = A3 = A, = —2. In the
latter case, f(z) = 1+z—2?—2*—2*+2°+2°—2"—
28 —2%+ 2%+ 2! and this polynomial does not have
a zero of order 4 at x = 1. For m = 6 and d < 22,
we have |4;] < 5 for i € {0,1,2} and |4;| < 4
for i € {3,4}, so B, € {-5,0,5} for ¢ € {0,1,2}
and B; € {0,5} for i € {3,4}. Let b; = B;/5,
and write w(z) = Y ._ biat. Since 55| N(f(Cs)), we
have 25| N(w((s)), and testing the 108 possibilities
for w(z) reveals that only two have this property:
w(z) =0 and w(z) = 1 -z — 2?4 23, In the latter
case, Ay = Z?:o b; = 0, so A; = 5, which is not
allowed. Hence ®5(x)| f(x). The analysis for m =7
is similar: we determine that B; € {—5,0,5,10} for
each i, and 5"| N(f({s)) implies that f((5) = 0.

A similar argument yields n = 7 for m = 10
and m = 11. The case n = 7 for m = 9 is some-
what more complicated. As above, we find we must

determine all polynomials w(z) = 3.._ bz’ with
b; € {—1,0,1,2} having 343|N(w((7)). There are
exactly eight such polynomials, and this implies that
F(Gr) = 0 o1 TG (14+Cr— (4G — =) for some i,
In the latter case, for a given 4 all of the coefficients
ap of f(z) are determined except for those with
k =i+6 (mod 7), and these coefficients must sum to
zero. Therefore, there are 72320 (273) (2;) = 2751
possibilities for f(x) with f({;) # 0. Using Maple,
we verify that none of these polynomials has a zero
of order 9 at z = 1.

A different argument is required for the remaining
two cases. For n = 11 and m = 10, Theorem 3.4
guarantees ®q;(z)|f(x) for d < 58. Suppose 59 <
d <61, and let j = d—59. Proceeding as above, we
find that f(y11) # 0 implies that A;p = —5 and A; €
{=5,6} for 0 < i < 9, so five of the A; are 6, and
the other six are —5. This yields (5}”' )6j exceptional
polynomials for each j, a total of 793 polynomials.
None has a zero at = 1 of order greater than 2.

Finally, for n = 13, m = 12, and d < 92, we
have |[A;] < 8 fori =0 or 1, and |A;] < 7 for 2 <
i < 12. As above, we find that f({i3) # 0 implies
that six of the A; are —7 and the remaining seven
are 6. A simple counting argument shows that there
are 145233 455 136 such polynomials, and a program
checking each one determines that none has a zero
at © = 1 with order greater than 6. U

Last, the following conditions on f(x) are occasion-
ally useful.

Theorem 3.8. Let f(x) and m be as above.

(i) L(f) = 2m.
(i) If @o(w)@y(w)| () then 2 /41| £(Cy).
(iii) If @3()| f(x) then 31=3ST| £(C).

Proof. Part (i) is an elementary result in the Prouhet—
Tarry—Escott problem [Borwein and Ingalls 1994].
Part (ii) is proved by noting that 2|(¢s —1)* and
¢s—1 = —2, and part (iii) follows from observing
that 3](¢; — 1)° and 3] (¢ — 1)*(¢E — 1). .

4. THE ALGORITHM

Given positive integers m and d, our algorithm de-
termines all polynomials f(x) having deg(f) = d,
H(f)=1,and (z—1)"|f(z). Our method has two

principal steps.
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Step 1. Compute the product of the required factors
of any such f(z), reduced modulo 2. For m < 12,
use Theorem 3.7 to calculate

r(z) = (z—1)™ H P, (x) mod 2.
neR(m)

Step 2. For each g(z) having {0,1} coefficients with
deg(g) = d —deg(r) and g(0) = 1, let

h(z) = g(z)r(z) mod 2.
Search for polynomials f(z) with {—1,0,1} coeffi-
cients satisfying f(z) = h(z) mod 2 and

(z—=1)"[f().

The required factors of f(x) = ZZ:O arz"® enforce
several relations on the coefficients. The zero of or-
der m at z = 1 implies

d

2
Z<i>ak:0, 0<i<m,

k=0

(4-1)

and for each prime p for which ®,(z) must divide
f(z), we have

Z akZO,

k=imod p

0<i<p. (4-2)

In fact, we also obtain (4-2) with p = 4 for several
m.
In Step 2, suppose h(z) = EZ:O apz®. We use the
conditions (4-1) and (4-2) in two ways to reduce the
number of polynomials f(z) we must test for this
h(z). Both of these techniques are adapted from
methods used in [Boyd 1997a; 1997b]. First, let po
be the largest prime p for which ®,(z) is a required
divisor of f(x), define S; = {k: ap #0and k = j
mod po} for 0 < j < p, and let n; = |S;|. By (4-2),
half the coefficients of f(z) indexed by the elements
of a set S; must be 1 and the other half must be —1.
Thus, assuming that the leading coefficient of f(x)
is 1, the number of polynomials to test is

172
z J)

We use the revolving door algorithm [Nijenhuis and
Wilf 1978] to enumerate all subsets of cardinality
n;/2 of the S;. To minimize the overhead associ-
ated with nesting up to py levels of revolving door
routines, we arrange the S; so that the smallest sets

are used in the outermost levels and the largest in
the innermost levels.

Second, we use these equations to solve for some
of the unknown coefficients. Let [ be a nonnegative
integer to be chosen later, and select [ integers ky, ko,
..., kp with 0 < k; < d and [ equations from (4-1)
and (4-2) according to the following constraints.

1. For each i, o, = 1, and the coeflicient of ay, in
the ith equation selected is nonzero.

2. If | < m, then select the equations 0 < ¢ < [
from (4-1); otherwise, select all the equations
from (4-1) and | — m equations from (4-2).

3. When choosing the k;, first select every element
from the set S; of largest cardinality, then select
from sets of successively smaller cardinality. This
greatly reduces the number of sign combinations
we must test for h(z), while allowing us to use the
revolving door algorithm to test a reduced num-
ber of sign combinations in all but at most one of
the remaining congruence classes. If only a por-
tion of some set S; is selected, we use a Gray code
[Nijenhuis and Wilf 1978] to enumerate sign com-
binations for the remaining coefficients in this set.

4. Use at most p — 1 equations for each p for which
(4-2) is valid. (Using p equations yields a linear
dependency with the equation ¢ = 0 of (4-1).)

Let C be the [ x (d+1) coefficient matrix associated
with the selected equations, and let M be the [ x [
matrix consisting of columns ki, ks, ..., k; of C. If
M 1is nonsingular, compute

M=,
q
where () is an integer matrix and ¢ is a positive inte-
ger. If M is singular, then discard a redundant rela-
tion and repeat the computation. Since any m x m
submatrix of the coeflicient matrix of the equations
in (4-1) is nonsingular, we are assured of finding
an invertible matrix eventually. Finally, compute
B = QC and write B = (b;).
Now set a, = 0 if a, = 0 or k = k; for some ¢,
and set a; = 1. For each tested assignment of £1
on the remaining coefficients, compute

d
B = Zakbjk (4-3)
k=0
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for 1 < j < m/, where m' is a integer to be selected
later satisfying 1 < m’ < m. By using the revolving
door method, the value of each (3; for the current
polynomial being tested differs from that of the pre-
vious polynomial in a simple way: if a, was changed
from —1 to +1 and a, from +1 to —1, then we may
update the value of 3; using

Bj < Bj +2(bjr — bjs).

The updating operation is similar for those coeffi-
cients enumerated using a Gray code: if a, changes
sign, then we perform 3; < [; £2b,, for each j,
where the sign is given by the new value of a,.

If B; = £qfor 1 < j < m’, compute (4-3) and test
if B; = £q for m' < j < m. If all of these conditions
are satisfied, set a;;, = 3;/q for 1 < j <1, and f(x)
is a solution.

We find that choosing m’ = 2 and [ = [(h) =
max{0, L(h)—22} minimizes the total computation
time. Choosing m’ to be this small discards most
f(z) after only a small amount of computation, and
choosing [ this way appears to strike the right bal-
ance between solving for some coefficients and enu-
merating the possibilities for others.

Finally, our algorithm uses Theorem 3.8 to avoid
degenerate cases and to avoid testing h(z) under
other special circumstances. Also, for m > 11 we
avoid testing h(z) if L(g) is odd and L(h') < 2™~ 1
since in this case (z +1)?| f(z) by Theorem 3.1.

We implement our algorithm in C++, using the
NTL library [Shoup 1998] for big integer arithmetic
in the computation of the matrices to avoid overflow.

5. RESULTS

We use our algorithm to compute d(m) and deter-
mine all of the extremal polynomials for m < 10.
For m < 3, it is clear that Table 1 lists the best
polynomials.

For m = 4, we use Step 1 of our algorithm to com-
pute r(z) = 2° + 2% + z* + 1. By Theorem 3.8, any
solution must have at least eight terms, so d = 9 is
impossible. For d = 10, there is only one candidate
polynomial modulo 2 in Step 2, h(z) = (x+ 1)r(z)
mod 2. We discard this possibility because L(h) =
6. For d = 11, there are only two choices for g(x):
z?+1 and 22+ + 1. Both yield polynomials with
length 8. Thus, by Theorem 3.1, if f(z) is a solution

congruent to one of these polynomials modulo 2,
then ®3(x)| f(z). Therefore, the only possibility for
d=111s (x—1)*®y(z)P3(z)P5(x). This is precisely
the pure product for m = 4 listed in Table 1.

For 5 < m < 10, our algorithm finds that Ta-
ble 1 again contains all of the extremal polynomials.
Table 2 summarizes our computations, listing for
each m the total number of polynomials h(z) con-
sidered having degree d, with d(m —1) < d < d(m),
the number of height 1 polynomials f(x) tested by
changing signs of coefficients of the h(z), and the
approximate time required to perform the computa-
tions on a Silicon Graphics MIPS R10000 computer.

m  d(m) #h(z) #f(z) Time
) 15 2 12 <1s
6 22 3 4  <1s
7 30 216 8824 < 1s
8 41 507 180 603212632 1h
9 48 16502311 39597473936 60 h

10 61 4944018 25387052272 70h

TABLE 2. Summary of complete search.

Computing d(m) for m > 10 appears to be too dif-
ficult using our method, but we can obtain some par-
tial information by searching a restricted set of poly-
nomials. We say a polynomial f(x) = ZZ:O apz® is
weakly symmetric if |ay| = |aq—x| for each k. We use
our program to search for weakly symmetric multi-
ples of (zx —1)™ for m = 11 and m = 12 by amend-
ing Step 2 of our algorithm to test only symmetric
polynomials g(z). We verify that there is exactly
one weakly symmetric monic polynomial of degree
d < 69 having height 1 and a zero of order 11 at
x = 1, and we determine that there are no weakly
symmetric multiples of (z —1)'? with height 1 and
degree less than 93. A summary of the computations
required to verify these facts appears in Table 3.

The preponderance of pure product polynomials
as extremal examples in our results might lead one

m #h(x) #f(x) Time
11 82835 686706480 2.5 hours
12 5491989 213959621 244 4 weeks

TABLE 3. Summary of weakly symmetric search.
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to suspect that the Erdés—Szekeres conjecture is not
true. While we hesitate to make this speculation
based on the limited data obtained here, it would
be interesting to gather additional data on this con-
jecture. To this end, we mention a few natural prob-
lems suggested by this research.

1. Determine if d(20) < 294.

2. Find an m so that at least one polynomial with
height 1, a zero of order m at 1, and degree d(m)
is not a pure product.

3. Prove or disprove that for each m there exists
a reciprocal polynomial with height 1, a zero of
order m at 1, and degree d(m).
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