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We review a number of ways of “visualizing” the elements of

the Shafarevich–Tate group of an elliptic curve E over a number

field K. We are specifically interested in cases where the elliptic

curves are defined over the rationals, and are subabelian vari-

eties of the new part of the jacobian of a modular curve (specif-

ically, of X0(N), where N is the conductor of the elliptic curve).

For a given such E with nontrivial Shafarevich–Tate group, we

pose the question:

Are all the curves of genus one representing elements

of the Shafarevich–Tate group of E isomorphic (over the

rationals) to curves contained in a (single) abelian surface

A, itself defined over the rationals, containing E as a sub-

elliptic curve, and contained in turn in the new part of

the jacobian of a modular curve X0(N)?

At first view, one might imagine that there are few E with nontriv-

ial Shafarevich–Tate group for which the answer is yes. Indeed

we have a small number of examples where the answer is no,

and it is very likely that the answer will be no if the order of the

Shafarevich–Tate group is large enough. Nonetheless, among all

(modular) elliptic curves E as above, with conductors up to 5500

and with no rational point of order 2, we have found the answer

to the question to be yes in the vast majority of cases. We are

puzzled by this and wonder whether there is some conceptual

reason for it. We present a substantial amount of data relating to

the curves investigated.

INTRODUCTIONTwo basic arithmetic invariants of an elliptic curveE over a number �eld K are� the Mordell{Weil group E(K), whose elementsare the K-rational points of E, and� the Shafarevich{Tate group X(E=K), whose el-ements are de�ned to be isomorphism classes ofpairs (T , �) where T is a smooth projective curveof genus 1 over K possessing a Kv-rational point
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14 Experimental Mathematics, Vol. 9 (2000), No. 1for every place v of K (where Kv is the comple-tion of K at v), and where� : E ! jac Tis an isomorphism over K between E and thejacobian of T .As is well known, E(K) andX(E=K) are somehowlinked in the sense that it is often easier to comeby information about the Selmer group of E over Kwhich is built out of both E(K) andX(E=K) thanit is to get information about either of these groupsseparately. It occurred to us that, although thesetwo groups (Mordell{Weil and X) are partners, soto speak, in the arithmetic analysis of the ellipticcurve E, there seems to be a slight discrepancy intheir treatment in the existent mathematical litera-ture, for this literature does a much more thoroughjob of helping one (at least in speci�c instances) tocompute rational points, i.e., to exhibit elements ofMordell{Weil, than it does in helping one to �nd (inan explicit way) the curves of genus one which repre-sent elements ofX (especially if one is interested inelements ofX of order greater than 2). This is per-haps understandable in that it is usually quite clearhow to present a rational point (e.g., if E is givenin Weierstrass form, giving just its x-coordinate de-termines the rational point up to sign) but it is lessclear what manner one should choose to exhibit thecurves of genus 1 representing the elements of X.Of course (for a �xed integer n) an element in Xannihilated by multiplication by n can always be ob-tained by push-out, starting with an appropriate 1-cocycle on the Galois group GK = Gal(K=K) withcoe�cients in the �nite Galois module E[n] � E,the kernel of multiplication by n in E, (the 1-cocyclebeing unrami�ed outside the primes dividing n andthe places of bad reduction for E) and so there-fore, there is indeed, a \�nitistic" way of represent-ing these elements ofX. Our aim here is rather todevelop strategies that might enable us to \visual-ize" the underlying curves more concretely. Thereare, for example, two standard ways of representingelements of X, both of which we will briey re-view below, and we will also suggest a third (wherethe curves of genus 1 in question are sought as sub-curves of abelian varieties). It is this third mode ofvisualizing elements of the Shafarevich{Tate group

together with data regarding it (see Tables 1 and 2on pages 25 and 26) that is the principal theme ofour article.The data we tabulate strike us as surprising, andas deserving of some explanation. However, we haveno hypothesis to o�er that would explain it, andtherefore our article is not genuinely experimentalin the classical sense (despite the name of the jour-nal in which it appears), since experiments are usu-ally expected to be the testing-grounds of explicitlyarticulated hypotheses.Explicit equations for curves of genus 1 and fortheir jacobians, together with results regarding vis-ibility and related matters, were the subject of aWinter School at the University of Arizona in March1999. See http://www.math.arizona.edu/~swcenter/aws99/ for more details.
1. ELEMENTS OF X(E/ K) REPRESENTED AS ÉTALE

COVERINGS OF ELet n be a positive integer. Given T a curve ofgenus 1 over K with a speci�c identi�cation of itsjacobian with E, there is a natural action of E onT which allows us to view T as a principal homo-geneous space (equivalent terminology: torsor) forE over K. If T represents an element of order nin X(E=K) (or more generally, an element of the\Weil{Châtelet" group WC(E=K) �= H1(GK ; E), ofisomorphism classes of E-torsors over K) the quo-tient of T under the action of the �nite subgroupE[n] � E has a K-rational point, and is thereforeK-isomorphic to E. That is, we may view T as an�etale �nite covering of E, of degree n2.
2. ELEMENTS OFX(E/ K) REPRESENTED AS CURVES OF

DEGREE n IN PROJECTIVE (n�1)-SPACENow let us give ourselves T , a curve of genus 1over K, with an identi�cation of its jacobian withE, representing an element � of order n > 1 inX(E=K), and note that for any integer k 2 Z thecurve T k := Pick(T ) of linear equivalence classes ofdivisors of degree k on T is again a torsor for E overK representing the element k�� 2X(E=K). In par-ticular, since T n �= E (over K) we see that there ex-ists a linear equivalence class of divisors of degree non T which is K-rational. Choose such a K-rational



Cremona and Mazur: Visualizing Elements in the Shafarevich–Tate Group 15divisor class D, and consider the (Chow) variety V(over K) consisting of divisors on T which are in thelinear equivalence class D. Over K the variety V isa projective space, and V is therefore a (Brauer{Severi) twist of projective space over K. But since� 2 X(E=K), it follows that V has a Kv-rationalpoint for all completions Kv of K and therefore, byGlobal Class Field Theory (more speci�cally, by theHasse Principle for Brauer{Severi varieties) V has aK-rational point; i.e., there is a K-rational divisoron T of degree n. Choose such a divisor D, andconsider the mapping (of degree n) rD of T to the(n�1)-dimensional projective spacePn�1 := P(H0(T;O(D)));de�ned over K by the linear system of D. This rep-resentation of T is independent of the rational divi-sor D chosen, in the sense that given another choice,D0, the representation rD0 may be obtained fromrD by composition of appropriate K-isomorphismsof domain and range. We might remark that thismethod of representing elements of X, in contrastwith the �rst method we described, works as formu-lated speci�cally for elements of the Shafarevich{Tate group but if one were to try to extend it toa method of describing curves T representing ele-ments of order n in the larger Weil{Châtelet groupone would be required, in general, to replace theambient projective (n�1)-space by an appropriateBrauer{Severi variety of dimension n� 1 over K.Returning to the case at hand, i.e., representingelements of X, when n = 2 the above method rep-resents T as double cover of P1. When n � 3 we getT as a curve, de�ned over K, of degree n in Pn�1.In particular, when n = 3, T is represented, in thisway, as a plane cubic. There is a large body of clas-sical literature (but, nevertheless, many still-openproblems) regarding this case and the case n = 4;we will review some of this literature below. Whenn = 4, T is represented as a curve of degree 4 in P3which is also the subject of signi�cant classical work(the legacy of Jacobi). Also in more recent times,the legacy of Jacobi has been expressed in termsof the theory of theta functions via the Heisenbergrepresentation [Mumford 1966]. If appropriately de-veloped, this approach might yield, we believe, a �neformat for presenting the equations of curves of de-gree n in Pn�1 representing elements ofX.

The Case n = 3By the height of a plane cubic over K (i.e., a cu-bic in the standard projective plane, given with ho-mogeneous coordinates X0;X1;X2) let us mean thelogarithmic height of the point in projective 9-spaceof the (ten) homogeneous coordinates of the de�ningequation of the cubic. To get a notion of height thatis independent of the coordinatization of the projec-tive plane, call the minimal height of a plane cubicover K the greatest lower bound of these heightsunder projective general linear changes of the homo-geneous coordinates X0;X1;X2 de�ned over K; toactually compute this minimal height would involveunderstanding the classical reduction theory regard-ing the symmetric cube representation of GL3, andimplementing algorithms for it. But given this, wehave a well-de�ned notion of the minimal heighth(�) of an element � of order 3 inX(E=K): one de-�nes h(�) to be the minimal height of a plane cubicrepresenting �.
Problem. When K = Q , �nd an upper bound asa function of N = conductor(E) for the minimalheights of all elements of order 3 inX(E=Q ).
Some Literature and Current Work on the Explicit

Representation of Curves of Genus 1 and Their JacobiansIn search of explicit formulas, there are two direc-tions in which it is important to go. One can startwith a curve of genus 1, given by an equation, ora system of equations, and ask for the equation(s)of its jacobian. Or, and this is the more speci�cthrust of this article, one can try go the other way:given an elliptic curve, and a Selmer class, �nd theexplicit equations of the curve of genus 1 represent-ing that class. There is a wealth of material whichgoes in the �rst direction (e.g., typical of such is theresult of Cassels about plane diagonal cubics: fornonzero constants a; b; c in a �eld of characteristicdi�erent from 3, the plane cubic curve whose equa-tion is aX3 + bY 3 + cZ3 = 0 has jacobian isomor-phic to the locus of zeroes of X3+Y 3+abcZ3). Forthe jacobian of curves of genus 1 where the curvesare of order n in their Weil{Châtelet groups and forthe equations of the n-fold map to the jacobian, see[Weil 1954] or [Cremona 2000] for n = 2, [Salmon1879] for n = 3, and, when n = 4 and we havegiven the curve in question as an intersection of two



16 Experimental Mathematics, Vol. 9 (2000), No. 1quadrics in P3, see [Salmon 1928] or [Merriman et al.1996]. For the formulas for the jacobians of curves ofgenus 1 given as hypersurfaces of bihomogenous de-gree (2; 2) in P1�P1 see the Harvard Ph.D. thesis ofCatherine O'Neil [1999], who has found families C2,C3, and C5 of curves of genus one in P1�P1, P2, andP4 respectively such that (1) A map Ci �! jac(Ci)is explicitly written as a linear automorphism ofthe ambient projective space, and (2) every curveof genus one over a �eld F of characteristic 0 em-beddable over F in one of the projective or multi-projective spaces above, and whose jacobian has asubgroup of i-torsion isomorphic (over F ) to �i is amember of Ci.The general formula in the cases n � 4 is thesubject of a paper [An et al. 1999] being presentlywritten by McCallum, Minhyong Kim and some ofthe graduate students at the University of Arizona(Sang Yook An, Susan Hammond, Seog Young Kim,David Marshall, and Alex Perlis).For n = 5, as Nicholas Shepherd-Barron pointedout to one of us, the equations for a smooth curveof genus 1 of degree 5 in P4 can be given as thedeterminants of minors of a 5 � 5 Pfa�an matrix.The search for elliptic curves over Q with large 5-Selmer group is the subject of current work beingdone by Tom Fisher, a student of Shepherd-Barron,who does this by writing down genus 1 curves of de-gree 5 in P4, with an action of �5, the correspondingjacobians being isogenous to the quotients of theseby �5 [Fisher 2000].There are fewer results of an explicit nature go-ing \the other way". Available numerical data (suchas listings of equations of minimal height represent-ing the elements of order 3 in the Shafarevich{Tategroups of elliptic curves of low conductor) are stillfragmentary at best.
3. ELEMENTS OFX(E/ K) REPRESENTED AS CURVES IN

ABELIAN VARIETIESLet � be an element in WC(E=K) �= H1(GK ; E),the Weil{Châtelet group of isomorphism classes oftorsors for E over K. Suppose that we are given anembedding over K of E into an abelian variety J .Form the exact sequence of abelian varieties0! E ! J ! B ! 0: (�)

Definition. We say that � is visible in J if � is in thekernel of the natural homomorphismWC(E=K)! WC(J=K):
Remark 1. The element � is visible in J if and onlyif there is an element � 2 B(K) such that � is rep-resented by a curve T of genus 1 de�ned over Kcontained in the variety J and such that T is the in-verse image of the point � 2 B under the projectionJ ! B. Equivalently, T is a translation of E by apoint P 2 J(K), the point P projecting to � underthe natural mapping J ! B. ThusT := E + P � J:(Of course, if � 6= 0, the point P is not rationalover K despite the fact that the translate E + P isde�ned over K.)
Proof. This follows immediately upon considerationof the exact sequence (�) and the induced long exactsequence of GK-cohomology:J(K)! B(K)! H1(GK ; E)! H1(GK; J): �
Definition. If the situation above occurs, we shallsay that the element � is explained by the element� 2 B(K) of the Mordell{Weil group of B, not-ing that the element � playing the role required inthe statement of the theorem is uniquely determinedmodulo the image of J(K) in B(K).Since the curve T representing � is the inverse imageof an element � 2 B(K) explaining �, the size ofthe coe�cients of the equations for T , as, say, acurve in some projective space, is bounded by datacoming from a choice of projective embedding of J ,the nature of the projection mapping J ! B, and,�nally, the height of the point �.
Remark 2. Suppose that our elliptic curve E doesnot have complex multiplication by p�1 or p�3,and we have an embedding of E into an abelianvariety J (over K) such that there are no nontrivialhomomorphisms of E to B = J=E over K. Then anelement � 2 WC(E=K) is visible in J if and onlyif the curve T of genus 1 (over K) representing �is isomorphic over K to a curve contained in thevariety J .
Proof. By Remark 1, if � is visible in J , then T occursas a subvariety (in fact, it is a translate of E) in J .



Cremona and Mazur: Visualizing Elements in the Shafarevich–Tate Group 17Suppose that T is isomorphic to a subvariety T 0 �J . The projection J ! B must be constant whenrestricted to T 0, for T 0 is isomorphic over K to Eand, by assumption, there are no nonconstant mapsfrom E to B over K. So T 0 is a translate of E. Wemust show that the structure that T 0 inherits fromT as torsor over E coincides, up to sign, with theE-torsor structure on T 0 given by addition (in J).But by our assumption on E, we have that the onlyautomorphisms of E are the scalar multiplicationsby �1, and therefore, up to sign, there is only oneE-torsor structure on T 0, which concludes the proofof this remark. �
Remark 3. As Johan de Jong explained to one of us(in the Castle pub on Castle Hill in Cambridge, Eng-land), for any element � 2WC(E=K) there is someabelian variety J over K containing E as abeliansubvariety, such that � is visible in J . One can seethis as follows. Let n be the order of �, and repre-sent � as an Azumaya algebra AF of rank n2 overthe �eld F of rational functions on the K-variety E.There is a maximal commutative sub-algebra L inA of rank n over F such that, if � : C ! E is themapping of degree n of projective smooth curves as-sociated to the �eld extension L=F , then � is totallyrami�ed at (at least) one point of E. It follows thatthe associated morphism of jacobians E = JE ! JCis injective. Moreover, by construction, the inducedAzumaya algebra AL = AF 
F L splits; i.e. � isvisible in JC . Here are the details:
Proposition. Let K be a number �eld, E an ellip-tic curve over K and � 2 WC(E=K). Then thereis some abelian variety J over K containing E asabelian subvariety, such that � is visible in J .
Proof. Consider the natural homomorphismH1(K;E)!av H1(Kv; E)where v runs through all non-archimedean places ofK, and where Kv is the completion of K at v. Let Vdenote the �nite set of these places which have theproperty that the element � 2 H1(K;E) does not goto zero under the mapping H1(K;E) ! H1(Kv; E).To have a nice geometric model to work with, letO = OK [1=m] � K be a Dedekind subdomain ofthe ring of integers OK of K where we have invertedthe non-zero integer m; the integer m is assumed

to be divisible by all primes of bad reduction for Eand by the residual characteristics of all v 2 V andby the order of �. It follows that the cohomologyclass � comes by restriction from a class (which wedenote by the same letter) � 2 H1(SpecO;E), wheref : E ! SpecO is the N�eron model of E=K overthe base SpecO, and the cohomology in question is�etale cohomology. Alternatively, we may view � asan element of the kernel ofH1(K;E)!av=2VH1(Kv; E);i.e., the group denotedX(V;A) in [Tate 1968, Sec-tion 3] for V = O and A = E. We may apply[Tate 1968, Theorem 3.1] to the proper morphismf : E ! SpecO (its �bers are of dimension 1 and Eis regular of dimension 2) to get the exact sequence0! Br(Spec(O))! Br(E)!X(O;E)! 0:By surjectivity of Br(E)!X(E), we may (and do)choose an element � in the Brauer group of E whichprojects to �. We now \shrink" Spec(O) further,so as to guarantee that the order (call it N) of theelement � is not divisible by any of the residual char-acteristics of Spec(O), and therefore � is the imageof some element � 2 H2(E; �N ) under the mappingH2(E; �N )! H2(E;Gm) = Br(E):We now modify our choice of lifting �. Let Ê de-note the completion of (the abelian scheme) E alongits zero-section, and letz : Spec(O) ,! Êdenote that zero-section. Let �̂ 2 H2(Ê; �N) be thepullback of the cohomology class � to Ê. The mor-phism z above induces an isomorphism on �etale co-homology,z : H2(Ê; �N ) �= H2(Spec(O); �N );and let let us denote by �� 2 H2(Spec(O); �N ) theimage of �̂ under the isomorphism z. Let �� 2H2(Spec(O);Gm) = Br(Spec(O)) be the image of�� under the mappingH2(Spec(O); �N )! H2(Spec(O);Gm):Put �0 := � � image of �� in Br(E):Then �0 is also a lifting of �, but has the addedproperty that its pullback to Br(Ê) vanishes. Let n



18 Experimental Mathematics, Vol. 9 (2000), No. 1denote its order, and let AE denote an Azumayaalgebra of rank n2 over E representing �0. Suchan Azumaya algebra exists by [Grothendieck 1968,Corollary 2.2]. Moreover, the Azumaya algebra AÊis a \trivial" Azumaya algebra over Ê.We now retract to the associated function �elds:let F denote the �eld of rational functions on theK-variety E which we view as a discretely valued�eld, with the valuation given by the order of zero(or pole) at the origin of the elliptic curve E. LetF� denote the completion of F with respect to thisvaluation. Thus, F� �= K((t)) is isomorphic to the�eld of Laurent power series in a uniformizer t. LetAF be the central simple algebra (of rank n2) overF which is obtained by change of scalars from theAzumaya algebra AÊ. The central simple algebraAF� obtained from AF by base change is trivial; thatis, it is a total matrix algebra Matn(F�) of all n�nmatrices with entries in F� �= K((t))). Here is howwe may view this total matrix algebra. IdentifyingF� with K((t)), let L�=F� be the totally rami�edextension of degree n given by L� := K((s)) wheresn = t; i.e., L� := K((t1=n)). Viewing L� as (n-dimensional) vector space over F�, we may �nd anisomorphism, then, between F�-algebras:AF� �= EndF�(L�) �= Matn(F�);and since L� is a maximal commutative algebra (ofrank n) in EndF�(L�), its action on the F�-vectorspace given by multiplication, so we have an imbed-ding of L� into AF� .Our next task is to approximate the uniformizers 2 L� � AF�by an element s0 2 AF . Since AF is dense in thetopological vector space AF� , given any positive in-teger �, we can �nd such an element s0 with theproperty thats0 � s = t� � w 2 AF� �= Matn(K((t)));where w 2 Matn(K[[t]]). If � is taken large enough,we get that the characteristic polynomial for the ac-tion of s0 is a monic polynomial of degree n which iscongruent modulo a high power of t to the polyno-mial Xn � t, and therefore s0 generates a maximalcommutative sub�eld L of AF (an extension of F ofdegree n) which is totally rami�ed over F�.

We now have only to repeat the brief sketch givenimmediately before the statement of this proposi-tion. Namely, let C be the smooth projective curvewhose �eld of rational functions is L (i.e., the nor-malization of L over the K-scheme E) and note thatsince the natural projection mapping C ! E is to-tally rami�ed at the origin in E, it induces an in-jection on jacobians 0 ! E ! J := jac(C) and,moreover we see, by the construction of C, that theAzumaya algebra A splits when pulled back to C.That is, � is visible in J = jacC. �This construction, however, does not allow us easyviewing of the curves of genus 1 that are generated.To get a sharper image we are led to imposing verystrong restrictions on the types of abelian varieties Jthat we wish to use, to visualize torsors over ellipticcurves. For the rest of this article, we concentratein the question of visualizing elements of X ratherthan the corresponding more general question forarbitrary E-torsors. Moreover, we will be interestedin �ve special situations.
1. The �eld K = Q , the elliptic curve E a abeliansubvariety of J0(N) := jac(X0(N)) the jacobianof the modular curve X0(N) for some level N ,and we want to know which elements ofX(E=Q )are visible in J0(N).
2. We are over any number �eld K and we want theelements ofX visible in abelian surfaces.
3. Same as item 1 above, but considering only el-liptic curves E � J0(N) where N is speci�callythe conductor of E, and we want to know theelements ofX visible in J0(N).
4. The combination of items 1, 2, 3 above. That is,we are over K = Q and are seeking elements ofX visible in abelian surfaces contained in J0(N)where N is the conductor of E.
5. As in item 4 above, but with one more speci�crequirement. As in item 4, we are dealing withelliptic curves E over K = Q and are seeking el-ements ofX(E=Q ) visible in abelian surfaces J ,E � J � J0(N)where N is the conductor of E, but also requestthat the complementary elliptic curve A � J toE in the abelian surface J be of conductor Nas well (equivalently: that J be contained in thenew part of J0(N)).



Cremona and Mazur: Visualizing Elements in the Shafarevich–Tate Group 19You might imagine that we are stacking the deckagainst ourselves by asking for something as strin-gent as item 5, but we are getting ahead of our story.
Visibility and Congruence ModuliLet 0 ! E ! J ! B ! 0 be an exact sequenceof abelian varieties over K, where E is an ellipticcurve. Denote by A � J a complementary abelianvariety to E in J , so that we have the exact sequenceover K, 0! A \E ! A�E ! J ! 0;with A\E a �nite subgroup of the abelian varietiesA and E; we embed it \anti-"diagonally in A � E.Let m be the exponent of the �nite group(A \E)(K):We can call the integer m the congruence modulusof E and A in J . One immediately sees that if � 2X(E=K) is visible in J then its order divides thecongruence modulusm, and, more speci�cally, thereis an element h 2 H1(GK ; E \A) that maps to� 2X(E=K) � H1(GK ; E)under the homomorphism induced from the inclu-sion E \ A ,! E, and to 0 2 H1(GK ; A) under thehomomorphism induced from the inclusion E\A ,!A. The set of elements of X(E=K) visible in Jis a subgroup of X(E=K), and is a subgroup ofX(E=K)[m]. Denote the subgroup of elements ofX(E=K) visible in J byX(E=K)(J) �X(E=K)[m] �X(E=K):There is a converse to this description. We giveourselves the following data:
(i) an abelian variety A over K,
(ii) �nite, GK-stable, subgroups �E � E and �A �A, and
(iii) a GK-equivariant isomorphism � : �E �= �A,these data satisfying these properties:
(a) � 2 X(E=K) � H1(GK ; E) is the image of anelement h 2 H1(GK ;�E);
(b) � � h 2 H1(GK ;�A) maps to zero in H1(GK ; A)under the homomorphism induced from the in-clusion �A ,! A.

Then, forming J by requiring the sequence0! �E ! A�E ! J ! 0to be exact, where we have embedded�E ,! A�Eby the injection � � �1, the element � is visible inJ , A is a complementary abelian variety to E in J ,and the congruence modulus is the exponent of the�nite group �E �= �A.Referring to our list of cases above, Case 2 oc-curs when the abelian variety A is an elliptic curve.Note, therefore, that one would expect there to beserious impediments to �nding visible elements ofX of large order (for �xed K) in abelian surfaces.For example we would not even expect to �nd pairsof non-isogenous elliptic curves E, A over Q with Q -stable �nite subgroups �E � E and �A � A whichare GQ-equivariantly isomorphic and are of large ex-ponent m (let alone with the properties requisite forvisibility).Speci�cally, one of us (Cremona) has conducteda search for non-isogenous pairs of elliptic curves Eand A for which there are �nite subgroups �E � Eand �A � A which are GQ-equivariantly isomorphicof exponent m. This search has so far covered all(modular) elliptic curves of conductor N � 5500and all prime moduli m � 97. It has yielded alarge number of examples for m � 7, quite a num-ber for m = 11, but has so far yielded only twoexamples for m � 13 , both of these being for m =13. Namely, there is an elliptic curve of conduc-tor 988, labelled 988B1 in [Cremona 1997], satisfy-ing a 13-congruence (see below for the de�nition ofm-congruence) with the elliptic curve 52A1 of con-ductor 52; and the elliptic curve 3952C1 satis�esa 13-congruence with the curve 208C1. Neither ofthese congruences involve issues of visibility. Thesecurves all have trivial X and rank 0, except for988B1 which has rank 1.This systematic search shows that there are nom-congruences for pairs of non-isogenous (modular)elliptic curves of conductors both � 5500, where mis a prime number in the range 17 � m � 97. Thequestion of \high congruences" satis�ed by pairs ofnon-isogenous elliptic curves is a topic of some cur-rent interest. See, for example, [Kani and Schanz1997; 1998; Carlton 1998].
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Optimal (or “Strong Weil”) Modular Elliptic CurvesA natural case to consider is where K = Q , andE is a modular elliptic curve over Q of conductorN , contained in the jacobian of the modular curveJ = J0(N) := jac(X0(N)). The requirement that Ebe contained in J0(N) is, in e�ect, the requirementthat E be the optimal (or equivalently, in somewhatolder terminology, the \strong Weil") elliptic curvein its Q -isogeny class. It is equivalent to requestthat the modular parametrization� : X0(N)! Eof smallest degree among all possible nonconstantmappings from X0(N) to E have the property thatthe kernel of the homomorphism induced from �on jacobians, J0(N) ! E, be (geometrically) irre-ducible. By de�nition, the modular degree of E,denoted mE, is the degree of the �nite mapping �.Denoting its kernel A � J := J0(N), we have thatA is an abelian variety over K which �ts into theexact sequence0! A! J ! E ! 0whose dual we identify with0! E ! J ! B ! 0:The appropriate compositions of the mappings inthe exact sequences above give us isogenies E ! Eand A ! B, the �rst being multiplication by themodular degree, mE, from which we deduce thatthe (common) kernel of these isogenies is the �nitesubgroup A \ E = E[mE ]. In particular, the con-gruence modulus of E and A in J is equal to themodular degree of E.In studying the Shafarevich{Tate groups of ellip-tic curves, the optimal curve is a good choice ofcurve to concentrate on, in that, at least as far asmost of the available numerical data shows, the or-der of the Shafarevich{Tate group, if it varies at allwithin a given isogeny class, will tend to be smallestfor the optimal curve in the class. The phrase \willtend" is perhaps a bit too weak to describe the stateof a�airs here: of the data so far analyzed by the �rstauthor (going up to level 1000), there are only twocounter-examples, both at level 960, to the state-ment that the minimal order of the Shafarevich{Tate group is attained by the optimal member ofthe Q -isogeny class of modular elliptic curves. The

exceptions are the isogeny classes 960D and 960N(in the labelling of [Cremona 1997]), where the op-timal curves 960D1 and 960N1 both have X of or-der 4, while in each case the three other curves in theisogeny class have trivial X. (See [Cremona 1993]for more details of this investigation.)It would be interesting to determine whether thesecounter-examples remain\optimal"when consideredas quotients of X1(N), following the ideas regard-ing optimality suggested in [Stevens 1989]. We havenot yet answered this question, but we suspect thatthe answer in each case is \yes", for the followingreason. Stevens proves in [Stevens 1989] that eachisogeny class of elliptic curves of conductor N overQ contains a unique curve whose Faltings{Parshinheight is minimal, or equivalently whose period lat-tice is strictly contained in the period lattices of theother curves in the class. He also conjectures thatthe curve of minimal height is always the X1(N)-optimal curve in the class, and proves (by explicitcomputation) that this holds for N � 200. Forboth the classes 960D and 960N, the X0(N)-optimalcurves have minimal height, so by Stevens' conjec-ture one would expect that they are also X1(N)-optimal.In any event, once one knows the Shafarevich{Tate group of one member of a Q -isogeny class ofelliptic curves, it is often not that hard to work outthe Shafarevich{Tate group of any other member.In the above situation, denoting as above by B thequotient abelian variety J=E, we have most of thehypothesis requested in Remark 2 above (that thereare no nontrivial homomorphisms from E to B) bythe \multiplicity one" theorem.Denote the subgroup of elements of the Shafarev-ich{Tate group of a modular elliptic curve E of con-ductor N which are visible in the modular jacobianJ = J0(N) with a superscript �, so we have the in-clusion of subgroupsX(E=Q )� �X(E=Q )[mE] �X(E=Q );and note also the evident fact that whenever themodular degree of E is prime to the order of thetorsion group of B(K), any� 2X(E=Q )�is \explained by" an element � 2 B(K) of in�niteorder.
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The Relation of m-CongruenceLet E and F be elliptic curves over a �eldK, and letm > 0 be a positive integer. We will say that E andF are m-congruent over K if there exists an iso-morphism E[m] �= F [m] as (Z=mZ)[GK ]-modules.Suppose E and F , now, are optimal elliptic curvesover Q of the same conductor N and denote byfE(q) = q + a2(E)q2 + a3(E)q3 + � � �the Fourier expansion of the cuspidal modular new-form of weight two on �0(N) corresponding to E,and by fF (q) the Fourier expansion of the newformcorresponding to F . The newforms fE and fF areeigenforms for the full Hecke algebra T = T0(N)which acts faithfully on the space of cuspidal mod-ular forms of weight two on �0(N) (and also on thejacobian, J0(N), of the modular curve X0(N)) andwhich is generated by the Tl's for prime numbers lnot dividing the level N together with the Uq's forprimes q dividingN . Our elliptic curves E and F areboth abelian subvarieties of the new part of J0(N).To simplify our discussion, suppose that m = p is aprime number. Consider these �ve conditions.
(1) The \prime to pN" Fourier coe�cients of fE andfF \satisfy a p-congruence", i.e., an(E) � an(F )mod p for all n such that (n; pN) = 1.
(2) The GQ-representations E[p] and F [p] have iso-morphic semisimpli�cations.
(3) The GQ-representations E[p] and F [p] are iso-morphic (equivalently, E and F are p-congruent).
(4) All the Fourier coe�cients an(E) � an(F ) mod pfor all n (\p-congruence").
(5) The �nite subgroups E[p] and F [p] are equal inJ0(N). That is, the abelian subvarieties E �J0(N) and F � J0(N) have the property thattheir intersection contains E[p] = F [p].There are some evident implications between these�ve conditions. But also, (1) and (2) are equiva-lent, and when the Galois representation E[p] is irre-ducible (or, what amounts to the same thing, whenE does not admit a rational p-isogeny) (1), (2), and(3) are equivalent. Moreover, if N is relatively primeto p, p is odd, and E[p] irreducible, then (4) and (5)are equivalent (by [Ribet 1990, Theorem 5.2]). Wealso have the equivalence of (4) and (5) when p di-vides N provided that p is odd, p2 doesn't divide N ,and the Galois representation on E[p] is irreducible

and not �nite at p [Mazur and Ribet 1991]. Thecondition that E be not �nite at p is equivalent,if p2 does not divide N , to the requirement thatordp(�E) not be congruent to zero modulo p, where�E is the discriminant of E.We will refer to condition (5) as providing amodu-lar p-congruence between E and F . So, we have (atleast) two possible notions: modular p-congruence,and (the a priori weaker notion of) p-congruence.There are two possible computational strategiesfor checking, for a given positive integer m, thatE[m] = F [m] (e.g., when m = p is a prime number,for checking a \modular p-congruence" ).
First strategy: Computing m-congruences of period lattices.The better of the two ways is to explicitly deter-mine a basis for the integral homology of E and ofF in H1(X0(N);Z), and then to demonstrate thatcorresponding basis elements are linearly dependentmodulo m. This has the virtue of actually demon-strating that E[m] = F [m]. It is by this methodthat we establish most of the modular p-congruenceslisted in our table, using the modular symbol meth-ods of [Cremona 1997].
Second strategy: Computing congruences of Fourier co-

efficients, and order of vanishing of �. Another possi-ble computational strategy to establish modular p-congruences is suggested by the following proposi-tion, whose proof follows from the results alreadyquoted in [Ribet 1990; Mazur and Ribet 1991].
Proposition. Let N be an integer, and p an odd primenumber such that p2 does not divideN . Let E and Fbe elliptic curves de�ned over Q both (of conductorN , and) contained as abelian subvarieties of the newpart of J0(N). Suppose that the GQ-representationon E[p] is irreducible.Then E[p] = F [p] as subgroups of J0(N) (and, inparticular, conditions (1){(5) all hold) if
(i) an(E) � an(F ) mod p for all n, and
(ii) if p divides N , ordp(�E) is not congruent to 0mod p.To implement this strategy for m = p, we mustcheck (i) and (ii). Of course, (ii) only requires a �-nite number of di�erent computations and thereforeit is feasible, and very easy in the cases of interestto us, to make such a check. But (i) involves an



22 Experimental Mathematics, Vol. 9 (2000), No. 1in�nite number of distinct computations. Here wemake the following convention: if we have checkedthat al(E) � al(F ) mod p for all prime numbersl < 1000, and if, in the few cases where there areprime divisors l of pN which are greater than 1000,we also have checked the p-congruence for these l'sas well, we will say that the pair E and F seem tosatisfy a p-congruence. If, further, the hypotheses ofthe proposition, together with (ii) also hold, we willthen also say that such a pair E and F seem to sat-isfy a modular p-congruence. In any such instance,if one wanted to actually prove the existence of a p-congruence or modular p-congruence, further workwould be necessary: for example, one could use theresults of [Sturm 1987] to reduce the checking of (i)to the checking of a �nite number of congruences.However, as we have mentioned, for most of thecases tabulated below (including all those in Table1, where m is odd) we have been able to follow the�rst strategy and therefore we will have shown thatthe congruence an(E) � an(F ) mod m does in facthold for all n. When we have only established thata p-congruence, or modular p-congruence, seems tobe the case we explicitly indicate this in the tables.
Remark. Assume the Birch{Swinnerton-Dyer Con-jecture and the Shafarevich{Tate Conjecture. If Eand F are optimal, of the same conductor N , andare modular p-congruent one to another (p > 2)then the parity of the Mordell{Weil ranks of E andF are the same.To see this, just note that the parity of the Mordell{Weil ranks is determined by the sign of the eigen-value �1 of the operator wN on E and F as they sitin J0(N), and since p > 2 this sign can be read o�by the action of wN on E[p] = F [p].
4. EXPERIMENTAL DATA

The First Two ExamplesIt may very well be that \asymptotically" for highvalues of the conductor N , the subgroupX(E=K)�of visible elements does not account for a large por-tion ofX(E=K) or even ofX(E=K)[mE ]. Nonethe-less, we began to examine the issue by consideringthe \�rst" two instances of nontrivial Shafarevich{Tate group for optimal semi-stable elliptic curves(i.e. the two lowest conductors N for which this

occurs). These are tabulated in [Cremona 1997]and are the curves labelled 571A1 and 681B1 there.The curve 571A1 has trivial Mordell{Weil group,and the Mordell{Weil group of 681B1 consists of 2-torsion; their Shafarevich{Tate groups are isomor-phic to Z=2Z � Z=2Z and to Z=3Z � Z=3Z, re-spectively. Checking [Cremona 1997] one immedi-ately �nds the happy \accident" that 571A1 admitsa 2-congruence with the optimal elliptic curve fac-tor 571B1, whose Mordell{Weil rank is 2 and whose2-part of X is trivial. And with 681B1, a simi-lar \accident" happens: 681B1 seems to admit a3-congruence with the optimal elliptic curve factor681C1, whose Mordell{Weil rank is 2 and whose 3-part ofX is trivial. Further computation, using the\�rst strategy" given above, shows that these con-gruences do hold fully in both cases, in the sensethat condition (5) of the previous page holds: the2-torsion of 571A1 and 571B1 coincide in J0(571),and the 3-torsion of 681B1 and 681C1 coincide inJ0(681).The values of the orders ofX given in [Cremona1997] and [Cremona 1993] are in all cases the so-called \analytic order" of X, which is the order aspredicted from the value of the L-series at s = 1 bythe conjecture of Birch and Swinnerton-Dyer; hencethese data and the data that will be tabulated belowshould be taken as conditional on this conjecture.We therefore o�cially assume the truth of theBirch and Swinnerton-Dyer conjecture for therest of this article.It follows that all of X(571A1=Q ) is visible in theabelian surface J := (571A1 � 571B1)=�, where �is isomorphic to the kernel of multiplication by 2 ineither 571A1 or 571B1, and is embedded diagonally.Moreover, the two independent generators of theMordell{Weil group of 571B1 explain the two inde-pendent generators modulo 2 ofX(571A1=Q ). Sim-ilarly, all of X(681B1=Q ) is visible in the abeliansurface J := (681B1 � 681C1)=� where � is iso-morphic to the kernel of multiplication by 3 in ei-ther 681B1 or 681C1, and, again, the two inde-pendent generators of the Mordell{Weil group of681C1 explain the two independent generators mod-ulo 3 ofX(681B1=Q ). Moreover the abelian surfaceJ = (681B1 � 681C1)=� is an abelian subvariety ofJ0(681).
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About the DataTo make some further tests to see whether thesewere two extremely lucky, but singular, occurrences,Adam Logan examined squarefree conductors N <3000 with the help of data and programs of the �rstauthor [Cremona 1999]. Logan showed that all ele-ments of odd order in the Shafarevich{Tate groupsof optimal semi-stable elliptic curves over Q of con-ductor N < 2849 are visible in abelian surfacescontained in the jacobian J0(N) (these computa-tions being again conditional upon the conjectureof Birch and Swinnerton-Dyer, and on the assump-tion that certain \apparent" m-congruences are ac-tual m-congruences). In this regard, one should alsomention the surprising computations done by AmodAgash�e [1999] (a Ph.D. student of Lo��c Merel) who,along with Merel, has been independently investi-gating the order of the Shafarevich{Tate group ofthe winding quotients of J0(N) for N prime. They�nd thatX(J0(N)) vanishes surprisingly often (butnot always; for example, there is an element of order7 inX(J0(1091))).The �rst author has since continued Logan's in-vestigation to all levels up to 5500. In the rest of thispaper we will present and discuss the data obtained.
The Data in DetailIt appears that all of the elliptic curves with nontriv-ial Shafarevich{Tate group with conductor at most5500 have Mordell{Weil rank 0. Two caveats arenecessary here, however: �rst, we have not yet madesystematic tables of the (analytic) order of X fornon-optimal curves in the higher range 1000 < N �5500 which was not already covered in [Cremona1993]. Second, for optimal curves of positive rank r,our claim that the analytic order of X is trivial isbased upon the assumption that the r independentpoints we have (as listed in [Cremona 1997] and sup-plementary computer �les in [Cremona 1999]) dogenerate the full Mordell{Weil group modulo tor-sion, rather than a subgroup of index greater than1. We have only checked this in some cases.The nontrivial Shafarevich{Tate groups for N inthis range are either of order p2 for p = 2, 3, 5or 7 or else of order 16. Speci�cally, there are 153occurrences of order 4, 37 of order 9, 11 of order 16,13 of order 25 and one of order 49. In discussing the

data, it is useful to distinguish between instanceswhere the Shafarevich{Tate group is of odd order orof order a power of two, these being the only casesthat arise in the range tabulated. We remark thatfor all the cases whereX has order 16, a 2-descentusing mwrank [Cremona 1998] shows that the 2-rankofX is 2.
The Kernel of Multiplication by the Modular DegreeRecall the inclusion of subgroups of the Shafarevich{Tate group of E,X(E=Q )� �X(E=Q )[mE ] �X(E=Q ):We �nd only three cases, where the modular de-gree mE does not annihilate all of X(E=Q ), i.e.,where X(E=Q )[mE] di�ers from X(E=Q ). The�rst, found by Logan, is given by the curve E =2849A1 which has X(E=Q ) of order 9, but mod-ular degree not divisible by 3. In particular, noneof X(2849A1=Q ) is visible in J0(2849). Similarly,4343B1 and 5389A1 have X of order 9 but degreenot divisible by 3.But for all other cases examined,X(E=Q )[mE] =X(E=Q ) and we �nd much the same pattern as wasexhibited by the examples given above, of conduc-tors 571 and 681. For convenience, we divide theresults into, �rst, the cases whereX has odd ordergreater than 1, and second, the cases of even order.
The Shafarevich–Tate Groups of Odd OrderFor all but two of the optimal elliptic curve factorsE of squarefree conductor N � 5500 withX of oddorder p2, other than the \invisible" cases 2849A1,4343B1 and 5389A1, we �nd another optimal ellipticcurve factor F which satis�es anm-congruence withE and such that F has trivialX but Mordell{Weilrank 2. The exceptions are 4229A1 (which is theonly optimal curve of conductor 4229) and 5073D1(where none of the other optimal curves of conduc-tor 5073 has rank 2). A similar phenomenon occursfor all but four the curves E whose conductor is inthis range but is not squarefree, withX of order p2.There are exceptions at levels 2392, 3364, 4914, and5054 where we did not �nd any suitable congruentcurve.In most cases, F has the same conductor as E,but for E = 3306B1 and E = 5136B1, which bothhave X of order 9, the conductor of F is a proper



24 Experimental Mathematics, Vol. 9 (2000), No. 1divisor of that of E (and there is no suitable curve Fat the same level). The curve E = 3306B1 satis�esa 3-congruence with F = 1102A1 which has rank 2,and E = 5136B1 is 3-congruent to F = 1712D1 ofrank 2.It would then follow that, with the exception ofthe exceptional cases listed above, all ofX(E=Q ) isvisible in the abelian surface J := E � F=� where� �= E[p] �= F [p] and J is a abelian subvariety ofJ0(M) for some M . Usually, M = N , and J is evenin the \new" part of J0(N), but there are exceptionsto this as we have just seen.In one case (conductor 2534) three optimal ellipticcurve factors are all 3-congruent. Two of these ellip-tic curves (2534E1 and 2534F1) have Mordell{Weilrank zero andX of order 9, and the third (2534G1)is the \explanatory" optimal factor: it has trivialX but Mordell{Weil rank equal to 2. The curve4592G1 of rank 2 explains both the elements of or-der 5 in 4592D1, to which it is 5-congruent, andalso the elements of order 3 in 4592F, to which it is3-congruent.There is only one example here whereX has or-der 49, namely 3364C1. However, this curve sat-is�es no congruence modulo 7 to any curve in therange studied, though its degree is a multiple of 7,and neither of the other two curves at that levelhas rank 2. (These curves are the 29-twists of thecurves 116ABC listed in [Cremona 1997], and allhave rank 0.)
The “Invisible” ExamplesSince 2849A1 is our �rst invisible example, it maybe worth looking a bit more closely at it. Lo��c Mereland Richard Taylor have suggested that one test tosee if its Shafarevich{Tate group becomes visible inJ1(2849). We have not yet made this test. The in-visibility of this example in J0(2849) is the reasonfor the capitalization of the word \NONE" whichappears in the \F -column" of its entry in the ta-ble. Similar remarks apply to the invisible examples4343B1 and 5389A1.
Examples Where X is of Even Order and E Has No

Rational Point of Order 2Here a similar pattern is found. In Table 2, the con-gruences listed between curves with the same con-ductor are in most cases true modular 2-congruences

proved using our �rst computational strategy. In afew such cases, and in all cases where the conductorsare not equal, the �rst strategy failed and so we onlyclaim that the curves \seem to" satisfy a congruencemodulo 2, in the sense de�ned earlier. The excep-tions, which are marked in the table, are: 3664J (forall three curves F listed), 4528C and 4528A (but thecongruence between 4528C and 4528B is proved),4776C and 5296C.One feature peculiar to the prime p = 2 is that itis possible for a \switch of parity" to occur; that is,it is possible for two optimal factors of J0(N) to ad-mit a congruence modulo p = 2 and have the prop-erty that they have di�erent sign in their functionalequations. Among the elliptic curves not possess-ing a rational point of order 2, and of conductor atmost 5500 withX of even order there are only twosuch cases which have a \parity switch". The �rstis E = 3431B1 for which the 2-congruent curve Fhas rank one. The order of X(E=Q ) is 4; E ad-mits a 2-congruence to both of the other optimalelliptic curves 3431A1 and 3431C1 of its conductor,which both have rank 1 and no 2-torsion. Simi-larly, 3995A1 has X of order 4 and is 2-congruentto 3995D1 which has rank 1 and no 2-torsion. In theremaining cases where a corresponding F exists, Fhas Mordell{Weil rank 2.There are cases where there is more than one con-gruent curve of rank 2 to explain the nontrivial el-ements of X. At level 5302, there are two curves,5302B1 and 5302J1, whose X has order 4 and 16respectively, and which satisfy a congruence mod-ulo 2 with each other and also with the four curves5302C1{D1{F1{I1, all of which have rank 2.As with the cases of odd orderX, there are sev-eral examples where we �nd a suitable explainingcongruence with an optimal curve at a di�erent level.For example, X(2045B1) is \explained" by curve4090B1 of rank 2, to which 2045B1 \seems to be"2-congruent.
Examples WhereX is of Even Order and E Has a Rational

Point of Order TwoThere are 90 such elliptic curves E. All but threeof these haveX of order 4 and the remaining three,2742B, 3800D, and 5335A, have X of order 16.For all but eight of these 90 examples, there is an-other elliptic curve F of the same conductor as E



Cremona and Mazur: Visualizing Elements in the Shafarevich–Tate Group 25which also possesses a rational point of order 2, andwith positive Mordell{Weil rank. We have not yetchecked which of these 82 F 's are (or even \seemto be") modular 2-congruent to their correspond-ing E's. The eight E's which do not possess acorresponding F are 1105A, 2145D, 2145G, 3069A,4901C, 5135B, 5185A, and 5335A.
The TablesTables 1 and 2 reproduce the data we have com-piled. The 128 curves E occurring in these tablescomprise all optimal elliptic curves E of conductorN � 5500 with nontrivial X except for the ninetyoptimal curves which have X of even order and arational point of order 2. Each of these 128 ellipticcurves E is listed together with the correspondingelliptic curve F of positive Mordell{Weil rank which

\explains" X(E=Q ) (except in the cases where Fdoesn't exist). If there is no indication to the con-trary, the congruence modulus linkingX(E=Q ) andF is pjXj. The modular degrees mE and mF arealso tabulated: these were computed by the methodof [Cremona 1995]. To save space, we do not givehere the coe�cients of a minimal Weierstrass equa-tion for the curves; they may be obtained electroni-cally [Cremona 1999].
5. ASYMPTOTIC QUESTIONSWe feel that these issues deserve to be investigatedfurther. Is the prevalence of \visibility" a phenom-enon occurring only in this modest range of con-ductors? Is most of X invisible? Or is most ofX visible? It is relatively easy to �nd other exam-ples whereX(E=Q ) is not annihilated by mE (andE pjXE j mE F mF681B 3 3�53 681C 25 �31058D 5 23 �3�5�7�23 1058C 24 �51246B 5 26 �34 �5 1246C 26 �51664K 5 27 �5�7 1664N 26 �51913B 3 3�103 1913A 22 �3�522006E 3 26 �3�5�7�23 2006D 27 �31 2366D 3 24 �32 �13 2366E 25 �32 �52366F 5 24 �3�5�13�19 2366E 25 �32 �52429B 3 2�3�73 2429D 23 �3�132534E 3 22 �32 �53 �11 2534G 25 �32 �132534F 3 22 �32 �5�7 2534G 25 �32 �132541D 3 26 �32 �7�11 2541C 25 �322574D 5 27 �32 �5�72 2574G 28 �52601H 3 28 �3�17 2601L 28 �32674B 3 24 �33 �13 2674A 24 �322710C 3 25 �33 �7 2710B 25 �322718D 3 26 �3�5�7�29 2718F 26 �3�52768C 3 22 �3�41 2768B 25 �3�72834D 5 22 �3�5�109 2834C 26 �32 �52849A 3 25 �5�61 NONE �2900D 5 25 �34 �5 2900C 26 �3�52 2932A 3 3�277 1466B 24 �5�132955B 3 23 �35 �5 2955C 26 �333054A 3 2�3�52�11 3054C 24 �3�5�73185C 5 24 �3�5�7�112 3185B 24 �3�52 3306B 3 24 �33 �52 1102A 25 �32

E pjXE j mE F mF3364C 7 26 �32 �52 �7 none �3384A 5 210 �3�5�11 3384C 28 �53536H 3 29 �32 �5�11 3536G 27 �323555E 3 23 �3�5�17 3555D 27 �3�53712J 3 26 �3�13 3712I 26 �33879E 3 26 �34 �5 3879D 25 �333933A 3 25 �3�5�13 3933B 26 �3�53952C 5 24 �3�5�13�17 3952E 25 �3�53954C 3 24 �3�53 �72 3954D 25 �3�54092A 5 27 �3�5�19 4092B 26 �3�54229A 3 23 �3�7�13 none �4343B 3 24 �1583 NONE �4592D 5 28 �32 �5�17 4592G 26 �32 �54592F 3 26 �33 �72 4592C 26 �334592F 3 26 �33 �72 4592G 26 �32 �54606B 3 28 �33 �5�7 4606C 27 �334675J 3 22 �33 �53 4675I 26 �331 4914N 3 24 �35 none �4963C 3 22 �3�71 4963D 29 �35046H 3 24 �3�52�7 5046J 24 �3�5�113 5054C 3 23 �33 �11 none �5073D 3 25 �3�5�7�23 none �5082C 5 24 �32 �5�7�11�13 5082D 28 �3�52 5136B 3 24 �3�59 1712D 25 �75389A 3 22 �2333 NONE �5499E 3 27 �34 �5 5499F 27 �33
TABLE 1. Curves with odd jXE j > 1, for all N � 5500. Notes keyed to the superscripted numbers to the leftof the �rst column: 1 E has rational 3-torsion. 2 Curve F is congruent to curve E and has rank 2, but has adi�erent level. If there is more than one such curve F , all are listed (on separate lines). 3 The curve 5054C isthe (�19)-twist of the curve 14A; it has a rational 3-isogeny but no rational torsion.



26 Experimental Mathematics, Vol. 9 (2000), No. 1E pjXE j mE F mF571A 2 23 �3�5 571B 24 �31058B 2 24 �5�23 1058C 24 �51 1309A 4 27 �32 �17 1309B 281325D 2 23 �33 �5 1325E 23 �331613B 2 24 �19 1613A 24 �51 1701I 2 24 �34 1701J 24 �331717A 2 23 �41 1717B 23 �131 1738B 2 211 �33 �7 1738A 281849D 2 24 �3�7�11 1849A 23 �3�111 1856G 2 28 �3�5 1856D 281862C 2 24 �33 �7 1862A 24 �331888B 2 28 �3 1888A 271917E 2 23 �34 1917C 23 �332023A 2 24 �33 �17 2023B 24 �332 2045B 4 23 �3�5�7�17 2045C 23 �33 �133 2045B 4 23 �3�5�7�17 4090B 26 �72089D 2 25 �3�5 2089E 25 �111 2224E 2 27 �17 2224F 27 �31 2265A 2 25 �32 �52 �7 2265B 25 �5�72409B 2 29 �52 2409D 25 �722541A 2 25 �34 �11 2541C 25 �322554B 2 25 �13 2554C 24 �32 �72563C 2 26 �3�7 2563D 24 �3�52619C 2 24 �32 �5 2619D 24 �3�52678A 4 29 �32 �23 2678B 27 �32 2678A 4 29 �32 �23 2678I 25 �3�112710A 2 25 �3�52 2710B 25 �322710A 2 25 �3�52 2710D 25 �5�112738C 4 26 �32 �37 2738D 26 �323017A 2 23 �35 none1 3370D 2 25 �5�7 3370E 25 �341 3380A 2 26 �33 �13 3380D 26 �324 3431B 2 23 �33 �5 none �3479D 2 26 �7�13 3479E 26 �133509B 2 24 �32 �112 3509A 24 �3�53555C 2 27 �33 �5�11 3555D 27 �3�53575E 2 24 �3�52 �7 3575F 24 �3�5�75 3664J 2 24 �32 �239 3664D 26 �55 3664J 2 24 �32 �239 3664E 26 �135 3664J 2 24 �32 �239 3664G 293686D 4 210 �3�72 3686E 2113718H 4 28 �3�5�7�13 3718K 28 �33742A 2 24 �32 �5 3742B 24 �5�71 3774G 2 210 �5�7 3774D 210 �33883B 2 23 �33 �37 3883A 23 �3�73886B 2 26 �3�5 3886G 25 �333975B 2 25 �3�7�17 3975E 25 �3�526 3995A 2 26 �5�7�653 none �4046F 2 26 �32 �7�17 4046D 26 �32 �74396A 2 23 �3�97 4396C 23 �344428F 2 23 �35 4428B 23 �34

E pjXE j mE F mF5 4528C 2 27 �3 4528A 26 �54528C 2 27 �3 4528B 26 �31 4544M 2 28 �35 4544L 28 �54544M 2 28 �35 4544G 27 �54564C 2 24 �32 �52 4564A 24 �3�114617F 2 24 �34 4617H 24 �334630A 2 29 �3�5 4630B 26 �324630A 2 29 �3�5 4630C 27 �324630D 2 26 �3�5�13 4630B 26 �324630D 2 26 �3�5�13 4630C 27 �321 4655G 2 25 �3�5�7�19 4655F 25 �3�54655G 2 25 �3�5�7�19 4655C 25 �33 �74749A 2 23 �3�19�23 4749B 23 �7�234761A 2 26 �5�23 4761B 26 �55 4776C 2 26 �32 �5�11 4776B 25 �524878A 2 25 �17�79 4878C 26 �194941B 2 23 �32 �11 4941C 23 �344975C 2 26 �5�17 4975B 26 �334975C 2 26 �5�17 4975D 26 �175046C 2 24 �3�52 �7�29 5046J 24 �3�5�111 5049A 2 26 �33 �5 5049B 26 �3�523 5067C 2 23 �3�5�13 563A 22 �133 5067C 2 23 �3�5�13 1126A 24 �113 5067C 2 23 �3�5�13 4504A 26 �53 5067C 2 23 �3�5�13 4504B 25 �133 5067C 2 23 �3�5�13 4504C 25 �172 5117C 4 26 �3�7�37 5117D 26 �55133C 2 25 �31 5133B 25 �3�75133C 2 25 �31 5133D 27 �5�115150C 2 24 �34 �52 5150D 24 �32 �521 5244A 2 27 �32 �5�7 5244B 27 �335 5296C 2 24 �3�37 5296B 27 �35300C 2 24 �32 �5�23 5300G 24 �32 �235302B 2 25 �3�52 5302C 27 �55302B 2 25 �3�52 5302D 26 �325302B 2 25 �3�52 5302F 28 �135302B 2 25 �3�52 5302I 26 �522 5302J 4 26 �101 5302C 27 �52 5302J 4 26 �101 5302D 26 �322 5302J 4 26 �101 5302F 28 �135302J 4 26 �101 5302I 26 �525312K 2 28 �3�5 5312F 291 5312K 2 28 �3�5 5312J 28 �35390E 2 25 �3�5�7�19 5390L 25 �3�5�195427A 2 27 �32 5427B 27 �325427A 2 27 �32 5427F 26 �325427E 2 26 �33 5427B 27 �325427E 2 26 �33 5427F 26 �325445A 2 26 �3�5�11 5445B 26 �3�53 5456A 2 26 �3�5�19 2728C 25 �3�113 5456A 2 26 �3�5�19 2728D 25 �11
TABLE 2. Curves with even jXE j > 1, for all N � 5500. Notes keyed to the superscripted numbers to the left ofthe �rst column: 1 Congruent modulo 4. 2 Congruent modulo 2. 3 Curve F is congruent to curve E and hasrank 2, but has a di�erent level. If there is more than one such curve F , all are listed (on separate lines). 4 Thecurve 3431B1 is 2-congruent to both 3431A1 and 3431C1, which have rank 1. 5 For these pairs, as well as allthose for which E and F have di�erent conductors, we only claim that E and F \seem to" satisfy a 2-congruence.6 The curve 3995A1 is 2-congruent to 3995D1, which has rank 1.



Cremona and Mazur: Visualizing Elements in the Shafarevich–Tate Group 27hence examples of invisible elements of X(E=Q )in J0(N) where N is the conductor of E), if onesearches among all twists (e.g., by quadratic Dirich-let characters) of a given modular elliptic curve.To discuss asymptotics more speci�cally, if we aregiven a non-negative function f(E) where E rangesthrough all, or a class of, (modular) elliptic curvesde�ned over Q , let us de�ne the upper conductor ex-ponent of f to be the minimal real number � havingthe property that for all " > 0 there is a �nite N(")such that f(E) < N�+"if conductor(E) = N � N(") (putting � = 1 ifthere is no such real number). Thus, as Ram Murty[1999] has shown, the ABC conjecture is equiva-lent to the statement that the upper conductor ex-ponent of the modular degree (f(E) = mE) forsemistable elliptic curves is at most 2. See alsocurrent publications of A. Granville in this regard.Also, Goldfeld and Szpiro [1995] have conjecturedthat the upper conductor exponent of the order ofthe Shafarevich{Tate group (f(E) = jX(E=Q )j) isat most 12 . See also [de Weger 1998], where it isshown (conditional on the Birch{Swinnerton-Dyerconjecture and the Riemann hypothesis for Rankin{Selberg zeta functions associated to certain modularforms of weight 32) that the upper conductor expo-nent of f(E) = jX(E=Q )j is at least 12 .
Problem. What are the upper conductor exponentsof orders of jX(E=Q )�j and of jX(E=Q )[mE]j as Eranges through all optimal elliptic curves over Q ?What are they (i.e., are they any di�erent) whenE ranges through all semi-stable optimal ellipticcurves over Q ?If it turns out that these upper conductor exponentsare small it would be especially interesting to under-stand why so much of X for conductors � 5500 isvisible, and is already visible in abelian surfaces, asour data shows.
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ELECTRONIC AVAILABILITYMost of the data used in these investigations, in-cluding the coe�cients of minimal equations of allthe elliptic curves mentioned here, their modular de-grees and traces of Frobenius, may be obtained elec-tronically [Cremona 1999].
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