The Volume Spectrum of Hyperbolic 4-Manifolds

John G. Ratcliffe and Steven T. Tschantz

CONTENTS

- 1. Introduction
- 2. Integral, Congruence Two, Hyperbolic Surfaces
- 3. Integral, Congruence Two, Hyperbolic 3-Manifolds
- 4. Integral, Congruence Two, Hyperbolic 4-Manifolds
- 5. Side-Pairing Coding

6. Tables

Electronic Availability

References

Keywords: hyperbolic manifolds, 4-manifolds, volume, 24-cell AMS Classification: Primary 30F40, 51M10, 53C25 We construct complete, open, hyperbolic 4-manifolds of smallest volume by gluing together the sides of a regular ideal 24-cell in hyperbolic 4-space. We also show that the volume spectrum of hyperbolic 4-manifolds is the set of all positive integral multiples of $4\pi^2/3$.

1. INTRODUCTION

A hyperbolic manifold is a Riemannian manifold of constant sectional curvature -1. The set of all volumes of complete hyperbolic *n*-manifolds of finite volume is called the volume spectrum of hyperbolic *n*-manifolds. It has been known for over a hundred years that the volume spectrum of hyperbolic 2manifolds is the set of all positive integral multiples of 2π . In contrast to dimension two, Jørgensen and Thurston [Thurston 1979] have shown that the volume spectrum of hyperbolic 3-manifolds is a closed, non-discrete, well-ordered subset of the positive real numbers, having order type ω^{ω} . In particular, there is a smallest positive number that is the volume of a complete hyperbolic 3-manifold. This number is at present unknown.

In this paper, we geometrically construct examples of complete, open, hyperbolic 4-manifolds of smallest volume and show that the volume spectrum of complete, open, hyperbolic 4-manifolds is the set of all positive integral multiples of $4\pi^2/3$. This implies that the volume spectrum of hyperbolic 4-manifolds is also the set of all positive integral multiples of $4\pi^2/3$, since the volume of a closed hyperbolic 4-manifold is also a multiple of $4\pi^2/3$. All the manifolds constructed in this paper are open, so this paper sheds no light on the volume spectrum of closed hyperbolic 4-manifolds.

The first explicit example of a hyperbolic 4-manifold of finite volume in the literature is the closed hyperbolic 4-manifold constructed by Davis [1985] by gluing together the opposite sides of a regular 120cell in hyperbolic 4-space. Ratcliffe and Tschantz [1994] constructed an explicit example of a complete, open, hyperbolic 4-manifold of finite volume by gluing together the sides of a regular ideal 24-cell in hyperbolic 4-space. The examples of hyperbolic 4-manifolds of smallest volume in this paper are also obtained by gluing together the sides of a regular ideal 24-cell in hyperbolic 4-space.

Hyperbolic 4-manifolds of small volume are currently of interest in cosmology in the theory of quantum gravity. See [Gibbons 1996] where the examples in this paper are considered in the theory of quantum gravity. More examples of hyperbolic 4-manifolds of small volume that are considered in the theory of quantum gravity are given in [Ratcliffe and Tschantz 1998].

We now set up notation in order to describe our examples and further results. A real $(n+1) \times (n+1)$ matrix A is said to be *Lorentzian* if A preserves the *Lorentzian inner product*

$$x \circ y = x_1 y_1 + x_2 y_2 + \dots + x_n y_n - x_{n+1} y_{n+1}.$$

The *hyperboloid model* of hyperbolic n-space is the metric space

$$H^{n} = \{x \in \mathbb{R}^{n+1} : x \circ x = -1 \text{ and } x_{n+1} > 0\}$$

with metric d defined by

$$\cosh d(x, y) = -x \circ y$$

A Lorentzian $(n+1) \times (n+1)$ matrix A is said to be either *positive* or *negative* according as A maps H^n to H^n or $-H^n$. The isometries of H^n correspond to the positive Lorentzian $(n+1) \times (n+1)$ matrices.

Let Γ^n be the group of positive Lorentzian $(n + 1) \times (n + 1)$ matrices with integer entries. The group Γ^n is an infinite discrete subgroup of the group O(n, 1) of Lorentzian $(n+1) \times (n+1)$ matrices. The principal congruence two subgroup of Γ^n is the group Γ_2^n of all matrices in Γ^n that are congruence two subgroup Γ_2^n is not torsion-free, but it only has 2-torsion [Newman 1972, Theorem IX.7].

In this paper, we construct and classify all the hyperbolic space-forms H^n/Γ where Γ is a torsion-free subgroup of minimal index in the congruence two subgroup Γ_2^n for n = 2, 3, 4. We call such a space-form an *integral, congruence two, hyperbolic n-manifold of minimum volume*. We show that there

are 2, 13, 1171 isometry classes of integral, congruence two, hyperbolic *n*-manifolds of minimum volume for n = 2, 3, 4, respectively. These hyperbolic manifolds have smallest volume among all complete hyperbolic *n*-manifolds for n = 2, 4. Thus there are at least 1171 different complete hyperbolic 4-manifolds of smallest volume. By a theorem of Wang [1972], there are only finitely many complete hyperbolic 4-manifolds, up to isometry, with the same finite volume.

The 1171 integral, congruence two, hyperbolic 4manifolds of minimum volume are the simplest complete hyperbolic 4-manifolds of finite volume. They are all constructed by gluing together the sides of a regular ideal 24-cell in hyperbolic 4-space in a particularly simple way. A complete hyperbolic 4-manifold that is obtained by gluing together the sides of a regular ideal 24-cell is called a 24-cell manifold. We shall call an integral, congruence two, hyperbolic 4-manifold of minimum volume a congruence two 24-cell manifold. All but 22 of the 1171 congruence two 24-cell manifolds are nonorientable.

The nonorientable congruence two 24-cell manifolds are far more interesting than the few orientable ones. The first 24-cell manifold we constructed is the nonorientable manifold referred to as the *hyperbolic* 24-cell space in [Ratcliffe 1994]. It has a symmetry group of order 128 all of whose elements are induced by symmetries of the 24-cell. Of all the congruence two 24-cell manifolds, the hyperbolic 24-cell space is constructed by the most symmetric side-pairing of the 24-cell.

Quite surprisingly, there is a congruence two 24cell manifold with an even larger symmetry group of order 320. This manifold has the largest symmetry group among all the congruence two 24-cell manifolds. If one equates beauty with symmetry, then this manifold is the most beautiful congruence two 24-cell manifold. It has a symmetry of order 5 that cyclically permutes its 5 cusps. This manifold is one of only two congruence two 24-cell manifolds with the property that all of their cusps have the same type. Both of these manifolds are nonorientable.

A nonorientable manifold is double covered by an orientable manifold, and one should think of a nonorientable manifold as an orientable manifold together with an orientation reversing fixed point free involution. In fact, the orientable double covers of our nonorientable manifolds are of interest in cosmology [Ratcliffe and Tschantz 1998].

By the Gauss–Bonnet theorem (see [Gromov 1982; Hopf 1926]), the volume of a complete hyperbolic 4manifold M of finite volume is given by

$$\operatorname{Vol}(M) = \frac{4\pi^2}{3}\chi(M),$$

where $\chi(M)$ is the Euler characteristic of M. We prove that there are complete, open, orientable, hyperbolic 4-manifolds of finite volume whose Euler characteristic is any given positive integer. Therefore the volume spectrum of hyperbolic 4-manifolds is the set of all positive integral multiples of $4\pi^2/3$.

We also determine the structure of the congruence two subgroup Γ_2^n for n = 2, 3, 4. In particular, we show that Γ_2^n is a reflection group with respect to a noncompact right-angled polytope P^n in hyperbolic *n*-space for n = 2, 3, 4. This implies that H^n/Γ_2^n is isometric to P^n for n=2,3,4. We prove that Γ_2^n has a torsion-free subgroup of finite index *i* if and only if *i* is divisible by 2^n for n = 2, 3, 4. We classify, up to isomorphism, all the torsion-free subgroups of Γ_2^n of index 2^n for n = 2, 3, 4. These are the groups whose orbit spaces are the integral, congruence two, hyperbolic *n*-manifolds of minimum volume for n = 2, 3, 4. Thus the integral, congruence two, hyperbolic *n*-manifolds of minimum volume are the minimal, nonsingular, covering spaces of the orbifold P^n for n = 2, 3, 4. The classification of these manifolds in dimension n will play a role in the classification in dimension n + 1 for n = 2, 3.

This paper is organized as follows: In Sections 2, 3, and 4, we determine the structure of the congruence two subgroup Γ_2^n and construct and classify all the congruence two hyperbolic *n*-manifolds of minimum volume for n = 2, 3, 4, respectively. In Section 5, we describe our coding for the side-pairings of a fundamental domain for all these manifolds. In Section 6, we give tables that list side-pairings and isometry invariants of all 1171 congruence two 24cell manifolds.

2. INTEGRAL, CONGRUENCE TWO, HYPERBOLIC SURFACES

In this section, we determine the structure of the congruence two subgroup Γ_2^2 of the group Γ^2 of integral, positive, Lorentzian 3×3 matrices and classify

all the congruence two hyperbolic surfaces of minimum area.

According to Fricke [1891, § 3], the group Γ^2 is a reflection group with respect to a noncompact triangle Δ^2 in H^2 whose Coxeter diagram is

$$4 \quad \infty$$

Vertices for Δ^2 are $(0, 0, 1), (\sqrt{2}/2, \sqrt{2}/2, \sqrt{2})$, and (1, 0, 1) (at infinity).

The group Γ^2 is generated by the matrices

$$\left(\begin{array}{rrrr} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right), \ \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right), \ \left(\begin{array}{rrrr} -1 & -2 & 2 \\ -2 & -1 & 2 \\ -2 & -2 & 3 \end{array}\right),$$

which represent the reflections in the sides of Δ^2 . By mapping these matrices into $\text{GL}(3, \mathbb{Z}/2\mathbb{Z})$, we see that the index of Γ_2^2 in Γ^2 is two.

Let Σ^2 be the group of order two generated by the first matrix in the above list of matrices. Then Σ^2 is a set of coset representatives for Γ_2^2 in Γ^2 . We therefore have a natural, split, short, exact sequence of groups

$$1 \to \Gamma_2^2 \to \Gamma^2 \to \Sigma^2 \to 1.$$

We now pass to the conformal disk model B^2 of the hyperbolic plane. The vertices of Δ^2 are now $(0,0), (1-\sqrt{2}/2, 1-\sqrt{2}/2), (1,0)$. The triangle Δ^2 is a triangle of the barycentric subdivision of the ideal square Q^2 whose vertices are $(\pm 1,0), (0,\pm 1)$. See Figure 1. Let P^2 be the intersection of Q^2 with the first quadrant of \mathbb{R}^2 . Then P^2 is a noncompact right-triangle with vertices (0,0), (1,0), (0,1).

FIGURE 1. The triangle Δ^2 .

Observe that $P^2 = \Sigma^2 \Delta^2$ and Σ^2 is the group of symmetries of P^2 . The Lorentzian matrices that represent the reflections in the sides of P^2 are

$$\left(\begin{array}{rrrr} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right), \ \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right), \ \left(\begin{array}{rrrr} -1 & -2 & 2 \\ -2 & -1 & 2 \\ -2 & -2 & 3 \end{array}\right)$$

These matrices are all in Γ_2^2 . Now since Σ^2 is a set of coset representatives for Γ_2^2 in Γ^2 , we have that $P^2 = \Sigma^2 \Delta^2$ is a fundamental polygon for Γ_2^2 . We therefore have the following theorem.

Theorem 1. The congruence two subgroup Γ_2^2 of the group Γ^2 of integral, positive, Lorentzian 3×3 matrices is a reflection group with respect to a noncompact triangle P^2 whose Coxeter diagram is

$$\infty$$
 ∞

Let K^2 be the Klein four group generated by the reflections in the vertical and horizontal sides of P^2 . The next corollary follows immediately from Theorem 1.

Corollary 1. Every nonidentity element of Γ_2^2 of finite order has order two and every finite subgroup of Γ_2^2 is conjugate in Γ_2^2 to a subgroup of the Klein four group K^2 .

Let Γ be a torsion-free subgroup of Γ_2^2 of finite index *i*. Then $M = H^2/\Gamma$ is a hyperbolic surface of finite area. By the Gauss–Bonnet theorem, we have

$$\operatorname{Area}(M) = -2\pi\chi(M)$$

where $\chi(M)$ is the Euler characteristic of M. Therefore the area of M is a multiple of 2π . As the area of P^2 is $\pi/2$, we deduce that i is divisible by 4.

Now suppose that i = 4. Then K^2 forms a set of coset representatives of Γ in Γ_2^2 and so the ideal square $Q^2 = K^2 P^2$ is a fundamental polygon for Γ . Let S be a side of Q^2 . Then there is a nonidentity element g of Γ that pairs a side S' of Q^2 to S. Let k be the element of K^2 that maps S' to S, and let r be the reflection in the side S. Then gkr leaves S invariant. The only elements of Γ_2^2 that leave Sinvariant are the identity and r. We cannot have gkr = r, since g has infinite order. Therefore gkr =1. Thus the side-pairing transformations of Q^2 are of the form rk where k is in K^2 and r is the reflection in a side of Q^2 . Now Γ is generated by the side-pairing transformations of Q^2 , and so Γ is determined by the sidepairing of Q^2 . There are only three side-pairings for Q^2 of the above form. Two of these pairings are equivalent by a symmetry of Q^2 and yield the hyperbolic thrice-punctured sphere M_1^2 and the third pairing yields the symmetric, hyperbolic, twice-punctured, projective plane M_2^2 . See Figure 2. Thus we have the following theorem.

Theorem 2. There are, up to isometry, exactly two hyperbolic space-forms H^2/Γ where Γ is a torsionfree subgroup of minimal index in the congruence two subgroup Γ_2^2 of the group Γ^2 of integral, positive, Lorentzian 3×3 matrices.

Theorem 3. The congruence two group Γ_2^2 has a torsion-free subgroup of index *i* if and only if *i* is divisible by 4.

Proof. We have already shown that every torsion-free subgroup of Γ_2^2 has index divisible by 4. Let Γ be a torsion-free subgroup of Γ_2^2 of index four. Then Γ is a free group of rank two. Therefore Γ maps homomorphically onto \mathbb{Z} . Hence Γ has a subgroup of index *i* for each positive integer *i*. Therefore Γ_2^2 has a torsion-free subgroup of index 4j for each positive integer *j*.

3. INTEGRAL, CONGRUENCE TWO, HYPERBOLIC 3-MANIFOLDS

In this section, we determine the structure of the congruence two subgroup Γ_2^3 of the group Γ^3 of integral, positive, Lorentzian 4×4 matrices and classify all integral, congruence two, hyperbolic 3-manifolds of minimum volume. Coxeter [1950] proved that the group Γ^3 is a reflection group with respect to a non-compact tetrahedron Δ^3 in H^3 (see Figure 3) whose Coxeter diagram is

Vertices for Δ^3 are

$$(0, 0, 0, 1), (\sqrt{6}/6, \sqrt{6}/6, \sqrt{6}/2), (\sqrt{2}/2, \sqrt{2}/2, 0, \sqrt{2}), \text{ and } (1, 0, 0, 1) \text{ (at infinity)}.$$

FIGURE 2. The 3-punctured sphere and the 2-punctured projective plane.

The group Γ^3 is generated by the four matrices

$\left(\begin{array}{rrrrr} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right)$	$\left. \begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array} \right),$	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{array} \right),$
$\begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \\ -1 & -1 & -1 \end{pmatrix}$	$\left. \begin{array}{c} 1\\1\\1\\2 \end{array} \right),$	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \\ -1 & 0 \\ 0 & 1 \right) $

which represent the reflections in the sides of Δ^3 . By mapping these matrices into $\operatorname{GL}(4, \mathbb{Z}/2\mathbb{Z})$ and computing the order of the group that their images generate, we deduce that the index of Γ_2^3 in Γ^3 is 12.

Let Σ^3 be the group generated by the first three matrices in the above list of matrices. These are the generators of Γ^3 that project to nonzero elements of $GL(4, \mathbb{Z}/2\mathbb{Z})$. Then Σ^3 is the group generated by the reflections in the three sides of Δ^3 incident with the vertex $(\sqrt{6}/6, \sqrt{6}/6, \sqrt{6}/6, \sqrt{6}/2)$. Therefore Σ^3 is isomorphic to a spherical triangle reflection group whose Coxeter diagram is obtained from the Coxeter diagram of Γ_2^3 by deleting its third vertex and its adjoining edges. Hence, the Coxeter diagram of Σ^3 is the disjoint union of an edge labeled by 3 and a vertex. Therefore Σ^3 is the direct product of the dihedral group D^3 of order six generated by the first two matrices and the group of order two generated by the third matrix in the above list of matrices. Thus Σ^3 has order 12.

Now Σ^3 injects into $\operatorname{GL}(4, \mathbb{Z}/2\mathbb{Z})$, since it has the same order as its image. Hence Σ^3 is a set of coset representatives for Γ_2^3 in Γ^3 . We therefore have a natural, split, short, exact sequence of groups

$$1 \to \Gamma_2^3 \to \Gamma^3 \to \Sigma^3 \to 1$$

We now pass to the conformal ball model B^3 of hyperbolic 3-space. The vertices of Δ^3 are now

$$(0,0,0), \quad (1-\sqrt{6}/3, 1-\sqrt{6}/3, 1-\sqrt{6}/3), \\ (1-\sqrt{2}/2, 1-\sqrt{2}/2, 0), \quad (1,0,0),$$

and Δ^3 is a tetrahedron of the barycentric subdivision of the ideal octahedron O^3 whose vertices are $(\pm 1, 0, 0), (0, \pm 1, 0), (0, 0, \pm 1)$.

Let T^3 be the intersection of O^3 with the positive octant of \mathbb{R}^3 . Then T^3 is a noncompact tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1). The dihedral angles of T^3 along the edges joining the ideal vertices of T^3 are all $\pi/4$. The barycentric subdivision of O^3 subdivides T^3 into six copies of Δ^3 that are the images of Δ^3 under the elements of the dihedral group D^3 . See Figure 3.

Let P^3 be the union of T^3 and the tetrahedron $(T^3)'$ obtained by reflecting T^3 in the side of T^3 spanned by its ideal vertices, that is, the front face of T^3 in Figure 3. Then P^3 is a noncompact polyhedron with six sides and five vertices, two actual, (0,0,0) and (1/3, 1/3, 1/3), and three ideal. See Figure 4. The dihedral angles of P^3 are all $\pi/2$. Observe that $P^3 = \Sigma^3 \Delta^3$ and Σ^3 is the group of symmetries of P^3 .

FIGURE 3. The subdivision of T^3 into six copies of Δ^3 .

FIGURE 4. The polyhedron P^3 .

The Lorentzian matrices that represent the reflections in the sides of P^3 are

$$\begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & -2 & 2 \\ 0 & -2 & -1 & 2 \\ 0 & -2 & -2 & 3 \end{pmatrix}, \quad \begin{pmatrix} -1 & -2 & 0 & 2 \\ 0 & -2 & -1 & 0 & 2 \\ 0 & -2 & -2 & 0 & 3 \end{pmatrix}.$$

All are in Γ_2^3 . Since Σ^3 is a set of coset representatives for Γ_2^3 in Γ^3 , we see that $P^3 = \Sigma^3 \Delta^3$ is a fundamental polyhedron for Γ_2^3 . Therefore:

Theorem 4. The congruence two subgroup Γ_2^3 of the group Γ^3 of integral, positive, Lorentzian 4×4 matrices is a reflection group with respect to the non-compact polyhedron P^3 .

Let K^3 be the elementary 2-group of order 8 generated by the three reflections in the coordinate planes of \mathbb{R}^3 . We shall identify K^3 with the corresponding subgroup of Γ^3 generated by the first three matrices in last displayed list of matrices. The next corollary follows immediately from Theorem 4.

Corollary 2. Every nonidentity element of Γ_2^3 of finite order has order two, every finite subgroup of Γ_2^3 is conjugate in Γ^3 to a subgroup of the elementary 2group K^3 , and there are two conjugacy classes of maximal finite subgroups of Γ_2^3 in Γ_2^3 corresponding to the two actual vertices of P^3 .

Let Γ be a torsion-free subgroup of Γ_2^3 of finite index. Then K^3 acts freely on the set of cosets of Γ in Γ_2^3 by $g\Gamma \mapsto kg\Gamma$, since Γ is torsion-free. Therefore $|K^3| = 8$ divides $[\Gamma_2^3 : \Gamma]$. Now suppose that $[\Gamma_2^3 : \Gamma] = 8$. Then the set $Q^3 = K^3P^3$ is a fundamental polyhedron for Γ (Figure 5). It is a rhombic dodecahedron with 14 vertices, 8 actual $(\pm \frac{1}{3}, \pm \frac{1}{3}, \pm \frac{1}{3})$, and 6 ideal $(\pm 1, 0, 0)$, $(0, \pm 1, 0)$, $(0, 0, \pm 1)$. It has the same group of symmetries as the cube with vertices $(\pm \frac{1}{3}, \pm \frac{1}{3}, \pm \frac{1}{3})$. All its dihedral angles are $\pi/2$.

FIGURE 5. The polyhedron Q^3 .

Let S be a side of Q^3 . Then there is a nonidentity element g of Γ that pairs a side S' of Q^3 to S. Let k be the element of K^3 that maps S' to S, and let r be the reflection in the side S. Then gkr leaves S invariant. The only elements of Γ_2^3 that leave S invariant are the identity, the reflection r, the reflection s in the coordinate plane P perpendicular to S, and the 180° rotation rs = sr about the line $P \cap S$. Note that s is in K^3 . We cannot have gkr = ror gkr = sr, since g has infinite order. Therefore gkr = 1 or gkr = s. Hence, the side-pairing transformations of Q^3 are of the form rk where k is in K^3 and r is the reflection in a side of Q^3 .

Now Γ is generated by the side-pairing transformations for Q^3 , and so Γ is determined by the sidepairing of Q^3 . The side-pairing for Q^3 restricts to a side-pairing for each of the three copies of Q^2 obtained from Q^3 by intersecting Q^3 with a coordinate plane. Extending the 3 possible side-pairings for Q^2 that yield an integral, congruence two, hyperbolic surface on each of the 3 copies of Q^2 in Q^3 yields 1728 side-pairings for Q^3 of the above form. Only 107 of these satisfy the conditions of Poincaré's fundamental polyhedron theorem [Ratcliffe 1994] for the gluing of a complete hyperbolic 3-manifold. These 107 side-pairings for Q^3 fall into 20 equivalence classes under equivalence by a symmetry of Q^3 . The classification of the hyperbolic 3-manifolds that correspond to these side-pairings of Q^3 is summarized in our next theorem.

Theorem 5. There are, up to isometry, exactly 13 hyperbolic space-forms H^3/Γ where Γ is a torsionfree subgroup of minimal index in the congruence two subgroup Γ_2^3 of the group Γ^3 of integral, positive, Lorentzian 4×4 matrices. Only three of these manifolds are orientable.

Proof. All the 107 side-pairings for Q^3 identify the 8 vertices $(\pm 1/3, \pm 1/3, \pm 1/3)$ of Q^3 to one point.

Notice that each of the vertices $(\pm 1/3, \pm 1/3, \pm 1/3)$ is the corner vertex of a right-angled corner (like the corner of a room). This suggests a cut and paste operation on Q^3 . Cut Q^3 along the three coordinate planes into 8 copies of the polyhedron P^3 , turn around each of the 8 copies of P^3 , and reassemble the polyhedron Q^3 according to the gluing pattern of the side-pairing of Q^3 so that the vertices $(\pm 1/3, \pm 1/3, \pm 1/3)$ are all glued together at (0,0,0). We call this an *inside-out operation* on Q^3 . Each of the 107 side-pairings of Q^3 induces a new side-pairing on Q^3 after an inside-out operation on Q^3 that yields the same manifold. After comparing the new side-pairings with the old ones, up to symmetry of Q^3 , the number of manifolds is reduced to 13. Table 1 lists side-pairings and isometric invariants for the 13 manifolds.

We denote the manifolds in Table 1 by M_1^3, \ldots, M_{13}^3 indexed by the row number in the column that says N. The column headed by SP describes the side-pairing of Q^3 in a coded form that will be explained in Section 5. The column headed by O indicates the orientability of the manifolds with 1 for orientable and 0 for nonorientable. A manifold in Table 1 is orientable if and only if all the side-pairing transformations of the corresponding side-pairing of Q^3 are orientation preserving.

The column of Table 1 headed by C lists the number of cusps of the manifolds. The link of each cusp is either a torus or a Klein bottle. The column headed by LT indicates the link type of each cusp with T representing a torus and K a Klein bottle. The column headed by S lists the number of symmetries of the manifold. The column headed by H_1 lists the first homology groups of the manifolds with the 3 digit number abc representing $\mathbb{Z}^a \oplus \mathbb{Z}_2^b \oplus \mathbb{Z}_4^c$. The column headed by H_2 lists the second homology groups of the manifolds with the entry a representing \mathbb{Z}^a . Notice that the 4-cusped manifolds are classified by their first homology groups.

N	SP	0	C	S	H_1	H_2	LT	N	SP	0	C	S	H_1	H_2	LT	Ν	S) ()	C	S	H_1	H_2	LT
1	142	1	3	48	300	2	TTT	5	357	0	3	16	220	1	KKT	10	17	4	1	4	64	400	3	TTTT
2	147	1	3	16	300	2	TTT	6	136	0	3	8	220	1	KKT	11	13	4 (С	4	16	310	2	KKTT
3	143	0	3	8	300	2	KTT	7	153	0	3	16	201	1	KKT	12	16	5 (С	4	8	220	1	KKKT
4	156	0	3	8	300	2	KTT	8	157	0	3	8	201	1	KKT	13	13	5 (С	4	16	121	0	KKKK
								9	367	0	3	8	102	0	KKK									

TABLE 1. Minimal volume, integral, congruence 2, hyperbolic 3-manifolds.

The side-pairings of Q^3 for the 3-cusped manifolds have the property that opposite ideal vertices of Q^3 are identified. Consequently, each boundary of a maximum open cusp of a 3-cusped manifold is tangent to itself in the two points represented by (0,0,0) and $(\pm 1/3, \pm 1/3, \pm 1/3)$. Therefore these two points are canonical points of the manifold.

The ball centered at (0,0,0) inscribed in Q^3 meets the boundary of Q^3 in the centers of the 12 sides of Q^3 . Let M be one of the 3-cusped manifolds and let c be the point of M represented by (0,0,0). Then the boundary of the maximum open ball centered at c in M is tangent to itself in the six point c_1, \ldots, c_6 represented by the centers of the sides of Q^3 .

Let $\varphi : M \to M'$ be an isometry from M to the 3-cusped manifold M'. Let c' be the point of M'represented by (0,0,0). By applying an inside-out operation to Q^3 if $\varphi(c) \neq c'$, we may assume that $\varphi(c) = c'$. Let c'_1, \ldots, c'_6 be the six points of M' represented by the centers of the sides of Q^3 . Then φ must map the set $\{c_1, \ldots, c_6\}$ to the set $\{c'_1, \ldots, c'_6\}$. Consequently φ lifts to a symmetry of Q^3 . Thus, an isometry between two 3-cusped manifolds is induced either by a symmetry of Q^3 or by an inside-out operation on Q^3 followed by a symmetry of Q^3 . As the 13 manifolds are already classified up to such an isometry, the classification is complete. \Box

We next show that the three orientable manifolds M_1^3 , M_2^3 , M_{10}^3 are homeomorphic to complements of links in the 3-sphere. When we pass to the upper half space model U^3 of hyperbolic 3-space, the vertices of Q^3 become (0, 0, 0), $(\pm 1, 0, 0)$, $(0, \pm 1, 0)$, $(\pm 1/3, \pm 1/3, 1/3)$, $(\pm 1, \pm 1, 1)$, and ∞ . We identify the boundary plane of U^3 with the complex plane \mathbb{C} . Then the orientation preserving isometries of U^3 correspond to the elements of the group PSL $(2, \mathbb{C})$ and the side-pairing transformations for the manifolds M_1^3 , M_2^3 , M_{10}^3 in Table 1 correspond to elements of the Picard group PSL $(2, \mathbb{Z}[i])$. Consequently, the manifolds M_1^3 , M_2^3 , M_{10}^3 correspond to torsion-free subgroups of the Picard group.

The hyperbolic manifolds M_1^3, \ldots, M_{13}^3 all have the same volume as Q^3 . The polyhedron Q^3 is built up from 96 copies of the tetrahedron Δ^3 , so its volume equals 96 Vol(Δ^3). According to Bianchi [1892, § 12], the Picard group has a natural extension, by the Klein four group $\{\pm 1, \pm i\}$, that is isomorphic to Γ^3 . Therefore, we have

$$\operatorname{Vol}(U^3/\operatorname{PSL}(2,\mathbb{Z}[i])) = 4\operatorname{Vol}(\Delta^3).$$

Hence, we have

$$\operatorname{Vol}(Q^3) = 24 \operatorname{Vol}(U^3/\operatorname{PSL}(2, \mathbb{Z}[i])).$$

Therefore, the manifolds M_1^3 , M_2^3 , M_{10}^3 correspond to torsion-free subgroups of the Picard group of index 24. Milnor [1982] has shown that

$$\operatorname{Vol}(U^3/\operatorname{PSL}(2,\mathbb{Z}[i])) = \frac{2}{3}\mathcal{L}(\pi/4),$$

where \mathcal{L} is the Lobachevsky function [Milnor 1982]. Therefore, we have

$$\operatorname{Vol}(Q^3) = 16\mathcal{L}(\pi/4) = 7.3277247\dots$$

From the classification of all the index 24 torsionfree subgroups of the Picard group given by Brunner, Frame, Lee, and Wielenberg [Brunner et al. 1984], we deduce that the 4-cusped manifold M_{10}^3 is homeomorphic to the link complement 8_2^4 . One can also derive a presentation for the fundamental group of M_{10}^3 from the side-pairing for M_{10}^3 in Table 1 and transform the presentation into the presentation for the group of the link complement 8_2^4 given by Wielenberg [1978]. It then follows from Mostow's rigidity theorem that M_{10}^3 is homeomorphic to the link complement 8_2^4 .

Cutting off the top half $(T^3)'$ of each of the 8 copies of P^3 in Q^3 leaves a regular ideal octahedron. The eight copies of the tetrahedron $(T^3)'$ can be assembled around their corner points to form a regular ideal octahedron. Therefore each of the manifolds M_1^3, \ldots, M_{13}^3 can be obtained by gluing together two regular ideal octahedrons along their sides. The manifold M_2^3 has an inside-out symmetry that interchanges the two octahedrons and has no fixed points. The quotient space under the action of this inside-out symmetry of M_2^3 is the Whitehead link complement obtained by gluing together the sides of a regular octahedron as in Thurston 1997]. From the classification of all the index 24 torsion-free subgroups of the Picard group [Brunner et al. 1984], we deduce that M_2^3 is homeomorphic to the link complement 8^3_9 . One can also derive a presentation for the fundamental group of M_2^3 from the side-pairing for M_2^3 in Table 1 and transform the presentation into the presentation for the group of the link complement 8^3_9 given by Wielenberg [1978].

It then follows from Mostow's rigidity theorem that M_2^3 is homeomorphic to the link complement 8_9^3 .

The manifold M_1^3 is homeomorphic to the link complement 6_2^3 (Borromean rings), since the corresponding side-pairing of two regular ideal octahedrons is the one given by Thurston [1997]. The sidepairing of Q^3 in Table 1 for the Borromean rings has also been described by Hilden, Lozano, and Montesinos [Hilden et al. 1992].

Theorem 6. The congruence two group Γ_2^3 has a torsion-free subgroup of index *i* if and only if *i* is divisible by 8.

Proof. We have already shown that every torsionfree subgroup of Γ_2^3 has index divisible by 8. From Table 2 we see that Γ_2^3 has a torsion-free subgroup Γ whose first homology group has an infinite cyclic summand. Therefore Γ maps homomorphically onto \mathbb{Z} . Hence Γ has a subgroup of index *i* for each positive integer *i*. Therefore Γ_2^3 has a torsion-free subgroup of index 8j for each positive integer *j*. \Box

4. INTEGRAL, CONGRUENCE TWO, HYPERBOLIC 4-MANIFOLDS

In this section, we determine the structure of the congruence two subgroup Γ_2^4 of the group Γ^4 of integral, positive, Lorentzian 5×5 matrices and classify all the integral, congruence two, hyperbolic 4-manifolds of minimum volume. Vinberg [1967] has proved that the group Γ^4 is a reflection group with respect to a noncompact 4-simplex Δ^4 in H^4 whose Coxeter diagram is

Vertices for Δ^4 are

$$(0, 0, 0, 0, 1),$$

 $(\sqrt{6}/6, \sqrt{6}/6, \sqrt{6}/6, 0, \sqrt{6}/2),$
 $(\sqrt{2}/2, \sqrt{2}/2, 0, 0, \sqrt{2}),$
 $(\sqrt{5}/5, \sqrt{5}/5, \sqrt{5}/5, \sqrt{5}/5, 3\sqrt{5}/5),$
 $(1, 0, 0, 0, 1)$ (at infinity).

The group Γ^4 is generated by the five matrices

$\left(\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right),$	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\left(\begin{array}{rrrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right)$	$\left(\begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{array} \right),$
$\left(\begin{array}{ccccc} 0 & -1 & -1 & 0 & 1 \\ -1 & 0 & -1 & 0 & 1 \\ -1 & -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ -1 & -1 & -1 & 0 & 2 \end{array}\right),$	$\left(\begin{array}{cccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right),$

which represent the reflections in the sides of Δ^4 . By mapping these matrices into $\operatorname{GL}(5, \mathbb{Z}/2\mathbb{Z})$ and computing the order of the group that their images generate, we deduce that the index of Γ_2^4 in Γ^4 is 120.

Let Σ^4 be the group generated the first four matrices in the above list of matrices. These are the generators of Γ^4 that project to nonzero elements of GL(5, $\mathbb{Z}/2\mathbb{Z}$). Then Σ^4 is the group generated by the reflections in the sides of Δ^4 incident with the vertex ($\sqrt{5}/5$, $\sqrt{5}/5$, $\sqrt{5}/5$, $\sqrt{5}/5$, $3\sqrt{5}/5$). Thus Σ^4 is isomorphic to a spherical tetrahedral reflection group whose Coxeter diagram is obtained from the Coxeter diagram of Γ_2^4 by deleting its right most vertex and its adjoining edge. Hence Σ^4 has the Coxeter diagram

Therefore Σ^4 is isomorphic to the group of symmetries of a regular 4-simplex and so Σ^4 is isomorphic to the symmetric group S_5 . Thus Σ^4 has order 120.

Now Σ^4 injects into $\operatorname{GL}(5, \mathbb{Z}/2\mathbb{Z})$, since it has the same order as its image. Hence Σ^4 is a set of coset representatives for Γ_2^4 in Γ^4 . We therefore have a natural, split, short, exact sequence of groups

$$1 \to \Gamma_2^4 \to \Gamma^4 \to \Sigma^4 \to 1.$$

We now pass to the conformal ball model B^4 of hyperbolic 4-space. The vertices of the simplex Δ^4 are now (0,0,0,0), $(1-\sqrt{6}/3,1-\sqrt{6}/3,1-\sqrt{6}/3,0)$, $(1-\sqrt{2}/2,1-\sqrt{2}/2,0,0)$, $((3-\sqrt{5})/4,(3-\sqrt{5})/4,(3-\sqrt{5})/4)$, and (1,0,0,0).

Let Q^4 be the regular ideal 24-cell in B^4 with vertices $(\pm 1,0,0,0)$, $(0,\pm 1,0,0)$, $(0,0,\pm 1,0)$, $(0,0,0,\pm 1)$, and $(\pm 1/2,\pm 1/2,\pm 1/2,\pm 1/2)$. The dihedral angles of Q^4 are all $\pi/2$. Let P^4 be the intersection of Q^4 with the positive hexadecant of \mathbb{R}^4 . Then P^4 is a noncompact convex polytope with actual vertices (0,0,0,0), (0,1/3,1/3,1/3), (1/3,0,1/3,1/3), (1/3,1/3,0,1/3), (1/3,1/3,1/3,0) and ideal vertices (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), and (1/2,1/2,1/2,1/2). Let T^4 be the 4-simplex with vertices (0,0,0,0), (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1). Call T^4 a 4-dimensional corner simplex, with (0,0,0,0) the corner vertex of T^4 , and each side of T^4 incident with (0,0,0,0) a corner side of T^4 .

The ideal vertices of P^4 are the vertices of a regular 4-simplex S^4 in B^4 . The polytope P^4 is obtained from S^4 by gluing on to each side of S^4 a 4-dimensional corner simplex whose corner vertex is an actual vertex of P^4 . Each corner simplex has 4 corner sides and each corner side matches up with a corner side of an adjacent corner simplex to give a total of $4 \cdot 5/2 = 10$ sides of P^4 . The dihedral angles of P^4 are all $\pi/2$. Observe that $P^4 = \Sigma^4 \Delta^4$ and Σ^4 is the group of symmetries of S^4 and of P^4 .

The Lorentzian matrices that represent the reflections in the sides of P^4 are

$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\left(\begin{array}{c}0\\0\\0\\0\\1\end{array}\right),$	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array} \right),$	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\left(\begin{array}{c}0\\0\\2\\2\\3\end{array}\right),$	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{array}$	$\left(\begin{array}{c}0\\2\\2\\0\\3\end{array}\right),$	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array} $	$\left(\begin{array}{c}2\\0\\2\\0\\3\end{array}\right),$	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

These matrices are all in Γ_2^4 . Now since Σ^4 is a set of coset representatives for Γ_2^4 in Γ^4 , we have that $P^4 = \Sigma^4 \Delta^4$ is a fundamental polytope for Γ_2^4 . We therefore have the following theorem.

Theorem 7. The congruence two subgroup Γ_2^4 of the group Γ^4 of integral, positive, Lorentzian 5×5 matrices is a reflection group with respect to the polytope P^4 .

Let K^4 be the elementary 2-group of order 16 generated by the 4 reflections in the coordinate hyperplanes of \mathbb{R}^4 . We shall identify K^4 with the corresponding subgroup of Γ^4 generated by the first 4 matrices in last displayed list of matrices. The next corollary follows immediately from Theorem 7.

Corollary 3. Every nonidentity element of Γ_2^4 of finite order has order two, every finite subgroup of Γ_2^4 is conjugate in Γ^4 to a subgroup of the elementary 2-group K^4 , and there are 5 conjugacy classes of maximal finite subgroups of Γ_2^4 in Γ_2^4 corresponding to the 5 actual vertices of P^4 .

Let Γ be a torsion-free subgroup of Γ_2^4 of finite index. Then the group K^4 acts freely on the set of cosets of Γ in Γ_2^4 by $g\Gamma \mapsto kg\Gamma$, since Γ is torsion-free. Therefore $|K^4| = 16$ divides $[\Gamma_2^4 : \Gamma]$.

Now suppose that $[\Gamma_2^4 : \Gamma] = 16$. Then the regular ideal 24-cell $Q^4 = K^4 P^3$ is a fundamental polytope for Γ . The polytope Q^4 has 24 sides each of which is a regular ideal octahedron.

Let S be a side of Q^4 . Then there is a nonidentity element g of Γ that pairs a side S' of Q^4 to S. Let k be the element of K^4 that maps S' to S, and let r be the reflection in the side S. Then gkr leaves S invariant. The elements of Γ_2^4 that leave S invariant are the identity, the reflection r, the reflections s and t in the two coordinate hyperplanes perpendicular to S, the 180° rotations rs = sr, rt = tr, and st = ts, and the involution rst. Note that both s and t are in K^4 . We cannot have gkr equal to r or sr or tr or str, since g has infinite order. Therefore gkr equals 1 or s or t or st. Hence, the side-pairing transformations of Q^4 in Γ are of the form rk where k is in K^4 and r is the reflection in a side of Q^4 .

Now Γ is generated by the side-pairing transformations for Q^4 , and so Γ is determined by the sidepairing of Q^4 . The side-pairing for Q^4 restricts to a side-pairing for each of the 4 copies of Q^3 obtained from Q^4 by intersecting Q^4 with a coordinate hyperplane. Extending the 107 possible side-pairings for Q^3 that yield an integral, congruence two, hyperbolic 3-manifold on each of the 4 copies of Q^3 in Q^4 , in a consistent fashion, yields 179625 sidepairings for Q^4 of the above form. Exactly 137075 of these satisfy the conditions of Poincaré's fundamental polyhedron theorem [Ratcliffe 1994] for the gluing of a complete hyperbolic 4-manifold. These 137075 side-pairings for Q^4 fall into 5757 equivalence classes under equivalence by a symmetry of Q^4 . The classification of these hyperbolic 4-manifolds is summarized in our next theorem.

Theorem 8. There are, up to isometry, exactly 1171 hyperbolic space-forms H^4/Γ where Γ is a torsionfree subgroup of minimal index in the congruence two subgroup Γ_2^4 of the group Γ^4 of integral, positive, Lorentzian 5×5 matrices. Only 22 of these manifolds are orientable.

Proof. We pass to the conformal ball model B^4 of hyperbolic 4-space and consider the 137075 sidepairings of the 24-cell Q^4 that yield an integral, congruence two, hyperbolic 4-manifold. Let e_1, e_2, e_3, e_4 be the standard basis vectors of \mathbb{R}^4 . Each sidepairing of Q^4 induces an equivalence relation on the 24 ideal vertices of Q^4 . The equivalence classes are called cycles. The cycle of an ideal vertex $v = \pm e_i$ of Q^4 is either just itself or itself and its antipodal vertex, since an element of K^4 either fixes v or maps v to -v. It turns out that the eight vertices $\pm e_1, \pm e_2, \pm e_3, \pm e_4$ fall into either four or five cycles of the form 2, 2, 2, 2 or 1, 1, 2, 2, 2. The remaining 16 ideal vertices of Q^4 either form one cycle or divide into two cycles of 8 vertices. The possible vertex cycle structures are 2, 2, 2, 2, 16 or 1, 1, 2, 2, 2, 16 or 2, 2, 2, 2, 8, 8. Thus all the

integral, congruence two, hyperbolic 4-manifolds of minimum volume have 5 or 6 cusps. All the orientable manifolds have 5 cusps.

Let M^4 be a 5-cusped manifold. Its side-pairing has a vertex cycle structure 2, 2, 2, 2, 16. Consider a maximum open cusp of M^4 of vertex cycle order 2. Its boundary is tangent to itself at the point represented by the origin. Let $\pm e_i$ be the corresponding two vertices of Q^4 . The horospheres based at $\pm e_i$ passing through the origin are also tangent to 24 edges of Q^4 at their Euclidean midpoints, and these points represent 3 more self-tangency points of the boundary of the cusp. Thus, the boundary of a maximum open cusp of M^4 of vertex cycle order 2 is tangent to itself at 4 points. The boundary of a maximum open cusp of M^4 of vertex cycle order 16 is also tangent to itself at 4 points. It turns out that all the self-tangency points of the maximal cusps of M^4 consist of only 5 points. Each of these 5 points is a self-tangency point of the boundary of only 4 of the maximal cusps. Thus M^4 has a set of 5 canonical points. The 5 canonical points of M^4 are represented by the 5 actual vertices of the polytope P^4 .

Each actual vertex of P^4 is the vertex of a rightangled corner. This suggests a cut and paste operation on Q^4 . Cut Q^4 along the 4 coordinate hyperplanes into 16 copies of the polytope P^4 . By reassembling a 24-cell around a different corner of P^4 than the origin, we get possibly 5 different ways to glue up M^4 . We call such a cut and paste operation an *inside-out operation* on M^4 .

The 5757 equivalence classes of side-pairings of Q^4 under equivalence by symmetry of Q^4 split up into 5378 classes with 5 vertex cycles and 379 classes with 6 vertex cycles. By considering canonical points and inside-out operations as in the classification of the 3-cusped 3-manifolds in the proof of Theorem 5, the 5378 classes of side-pairings, with 5 vertex cycles, represent exactly 1090 isometry classes of 5-cusped hyperbolic 4-manifolds. Table 2 on page 117 lists side-pairings and isometric invariants for the 22 orientable 5-cusped manifolds. Table 3, starting on page 117, lists side-pairings and isometric invariants for the 1068 nonorientable 5-cusped manifolds.

Now let M^4 be a 6-cusped manifold. Assume first that it is glued up by a side-pairing of Q^4 with vertex cycle structure 1, 1, 2, 2, 2, 16. Take a maximum

open cusp of M^4 of vertex cycle order 1. Its boundary is tangent to itself at 12 points. The maximum open cusps of vertex cycle order 2 or 16 are tangent to themselves in 4 points as before. Thus, the cusps of vertex cycle order 1 are intrinsically different from the cusps of vertex cycle order 2 or 16. In fact, the volume of a maximum cusp of vertex cycle order 1 is $16\sqrt{2}/3$ whereas the volume of a maximum cusp of vertex cycle order 2 or 16 is 16/3.

Only one of the five self-tangency points of the boundaries of the maximum open cusps of vertex cycle order 2 or 16 is a self-tangency point of the boundaries of all 4 maximum open cusps of vertex cycle order 2 or 16. Thus M^4 has a single canonical point represented by one of the actual vertices of P^4 other than the origin. It turns out that by performing an inside-out operation, M^4 can also be glued up by a side-pairing of Q^4 that has the vertex cycle structure 2, 2, 2, 2, 8, 8. Here the cusps of vertex cycle order 1 correspond to the cusps of vertex cycle order 8 and the canonical point of M^4 is represented by the origin. The 12 self-tangency points of a maximum open cusp of vertex cycle order 8 are represented by the centers of the 24 sides of Q^4 .

The 379 equivalence classes of side-pairings of Q^4 with 6 vertex cycles split up into 298 classes with vertex cycle structure 1, 1, 2, 2, 2, 16 and 81 classes with vertex cycle structure 2, 2, 2, 2, 8, 8. These 379 classes of side-pairings of Q^4 represent exactly 81 isometry classes of 6-cusped hyperbolic 4-manifolds corresponding to the 81 classes of side-pairings with vertex cycle structure 2, 2, 2, 2, 8, 8 by the same argument as before. This completes the classification of the integral, congruence two, hyperbolic 4-manifolds of minimum volume. Table 4 on page 124 lists side-pairings and isometric invariants for the 81 nonorientable 6-cusped manifolds.

Theorem 9. The congruence two group Γ_2^4 has a torsion-free subgroup of index *i* if and only if *i* is divisible by 16.

Proof. We have already shown that every torsionfree subgroup of Γ_2^4 has index divisible by 16. From Table 2 we see that Γ_2^3 has a torsion-free subgroup Γ whose first homology group has an infinite cyclic summand. Therefore Γ maps homomorphically onto \mathbb{Z} . Hence Γ has a subgroup of index *i* for each positive integer *i*. Therefore Γ_2^4 has a torsion-free subgroup of index 16*j* for each positive integer *j*.

By the Gauss–Bonnet theorem [Gromov 1982; Hopf 1926], the volume of a complete hyperbolic 4-manifold M of finite volume is given by

$$\operatorname{Vol}(M) = \frac{4\pi^2}{3}\chi(M),$$

where $\chi(M)$ is the Euler characteristic of M. All the 4-manifolds in Theorem 8 have Euler characteristic 1. Therefore all the hyperbolic 4-manifolds in Theorem 8 have minimum volume among all complete hyperbolic 4-manifolds. More generally, the volume spectrum of complete hyperbolic 4-manifolds is given by our last theorem.

Theorem 10. There are complete, orientable, arithmetic, hyperbolic 4-manifolds of finite volume whose Euler characteristic is any given positive integer. Therefore, the volume spectrum of complete hyperbolic 4-manifolds of finite volume is the set of all positive integral multiples of $4\pi^2/3$.

Proof. The first manifold in Table 2 has a positive first Betti number. Therefore it has an m-fold covering for each positive integer m. Thus, there are complete, orientable, arithmetic, hyperbolic 4-manifolds of finite volume whose Euler characteristic is any given positive integer m.

All the hyperbolic 4-manifolds used to prove Theorem 10 are open. The volume spectrum of closed hyperbolic 4-manifolds is unknown. The closed orientable hyperbolic 4-manifold of smallest known volume is the Davis 120-cell space [Davis 1985] whose Euler characteristic is 26. We have constructed a closed nonorientable hyperbolic 4-manifold whose Euler characteristic is 17. This example will be discussed in a future paper.

5. SIDE-PAIRING CODING

In this section, we describe the coding that we use to list all the side-pairings of Q^n for the integral, congruence two, hyperbolic *n*-manifolds of minimum volume for n = 2, 3, 4. Reading this section is necessary only if the reader wants to reconstruct the manifolds in Tables 1, 2, 3, and 4.

We know that a minimal index torsion-free subgroup of Γ_2^n has as a fundamental domain Q^n which is an ideal square in dimension 2, a semi-ideal rhombic dodecahedron in dimension 3, or an ideal 24cell in dimension 4. In each case, the side-pairing maps must be of the form rk, where k is in the group K^n generated by the reflections in the coordinate hyperplanes, and r is a reflection in a side of Q^n . Let r_1, r_2, \ldots, r_m be the reflections in the sides of Q^n (in a fixed ordering to be specified below). Then to specify one of our manifolds it suffices to list the corresponding sequence k_1, k_2, \ldots, k_m of elements of K^n such that the side-pairing maps are $r_i k_i$ for $i = 1, 2, \ldots, m$. It will turn out that we don't have to specify quite this much, and that in fact to get a manifold we must have

$$k_{4j+1} = k_{4j+2} = k_{4j+3} = k_{4j+4}$$
 for $j = 0, \dots, (m/4) - 1$

for a particular ordering of the sides. Thus in the end we will write out only every fourth k_i but internally we compute with the complete list of the k_i .

The elements of K^n are given by diagonal $(n+1) \times (n+1)$ matrices of the form

 $k = \operatorname{diag}(a_1, \dots, a_n, 1)$ for $a_i = \pm 1$.

We encode this k as a single (binary) number

$$\sum_{i=1}^{n} \frac{(1-a_i)}{2} 2^{i-1}$$

so that a 1 entry in the matrix is a 0 bit and a -1 entry in the matrix is a 1 bit in the corresponding position in the binary number. Matrix multiplication then corresponds to bitwise mod 2 addition and the binary representation of the number corresponds to an element of \mathbb{Z}_2^n . The action of k in the first coordinate thus corresponds to the least significant bit of the code for k. We write the code numbers as a single hexadecimal digit with $A = 10, B = 11, \ldots, F = 15$ in dimension 4.

In each dimension, in the conformal ball model, each side of the fundamental domain Q^n will have ideal vertices on just two of the coordinate axes. Conversely, every pair of ideal vertices of the form $\pm e_i$ that are not antipodal to each other will determine a side of Q^n . We can express this in another way in $\mathbb{R}^{n,1}$ by noting that the sides of Q^n correspond to the vectors of the form $s = (a_1, \ldots, a_n, 1)$ such that exactly two of the a_i are ± 1 and the others (if any) are 0. Such a vector s is a unit normal vector of the corresponding side with respect to the Lorentzian inner product in $\mathbb{R}^{n,1}$. Note that two sides with unit normal vectors s and s' are adjacent if and only if $s \circ s' = 0$, since the dihedral angle between adjacent sides is $\pi/2$. Moreover, two sides with unit normal vectors s and s' are tangent at infinity if and only if $s \circ s' = -1$.

If r is the reflection in the side S, and rk is a side-pairing map, then the side mapped to side Sby rk is kS. One of the conditions for a valid sidepairing must be that if rk is part of the side-pairing, r being the reflection in side S and r' is the reflection in the side S' = kS, then $S' \neq S$ and r'k is also in the side-pairing, since it is the inverse of rk. Each side can only be paired to one of three others (those given by a unit normal vector s with the same zero coordinates) and, whichever one it is paired to, the other two of these sides will then be paired to each other, since the ideal vertices $\pm e_i$ can only be mapped to $\pm e_i$ by an element of K^n . This implies that each 2-dimensional coordinate cross-section of the 3-dimensional manifolds will be one of the 2dimensional manifolds and each 3-dimensional coordinate cross-section of the 4-dimensional manifolds will be one of the 3-dimensional manifolds.

It remains to choose a particular sequence of the sides. We list on the next page (bottom left) the vectors s_1, s_2, \ldots, s_m corresponding to the sides of Q^n . Then the reflections r_1, r_2, \ldots, r_m in these sides are determined and a sequence k_1, k_2, \ldots, k_m of elements of K^n (encoded as hexadecimal digits) will define side-pairing maps $r_i k_i$ giving a manifold. Each of the sets of four sides that must be paired with each other will be taken as a block of consecutive sides in our ordering. The blocks are determined by the nonzero coordinates in the s_i and we proceed starting with the first two coordinates nonzero and end with those pairs involving the last 3 coordinates nonzero in a lexicographic fashion.

The reflection r_1 in the side corresponding to s_1 is given by

$$\begin{pmatrix} -1 & -2 & 2 \\ -2 & -1 & 2 \\ -2 & -2 & 3 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} -1 & -2 & 0 & 2 \\ -2 & -1 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ -2 & -2 & 0 & 3 \end{pmatrix}$$

in dimensions 2 and 3, respectively, and by

1	-1	-2	0	0	2	
	-2	-1	0	0	2	
	0	0	1	0	0	in dimension 4.
	0	0	0	1	0	
l	-2	-2	0	0	3 /	

The other r_i can be obtained as $g^{-1}r_1g$ for some matrix $g \in \bar{K}^n$ with $gs_i = s_1$, where \bar{K}^n is the group of order $2^n n!$ generated by K^n and all the permutation matrices that fix the last coordinate.

Starting with dimension 2 (and using the codes for the elements of K^2), we have $s_1 = (1, 1, 1)$, k_1 is not the identity (coded by 0) but can be any of 1, 2, or 3. If $k_1 = 1$, then $k_1s_1 = (-1, 1, 1) = s_2$, and $k_2 = 1$, leaving s_3 and s_4 to be paired so $k_3 = k_4 = 1$ also. If $k_1 = 2$, then $k_1s_1 = (1, -1, 1) = s_3$, and $k_3 = 2$, leaving s_2 and s_4 to be paired so $k_2 = k_4 = 2$ as well. If $k_1 = 3$, then $k_1s_1 = (-1, -1, 1) = s_4$, and

Dimension 2	Dimension 4
$s_1 = (1, 1, 1)$	$s_1 = (1, 1, 0, 0, 1)$
	$s_2 = (-1, 1, 0, 0, 1)$
$s_2 = (-1, -1, 1)$	$s_3 = (1, -1, 0, 0, 1)$
$s_3 = (-1, -1, 1)$	$s_4 = (-1, -1, 0, 0, 1)$
$s_{A} = (-1, -1, 1)$	$s_5 = (1, 0, 1, 0, 1)$
-4 (-, -, -, -)	$s_6 = (-1, 0, 1, 0, 1)$
	$s_7 = (1, 0, -1, 0, 1)$
Dimension 3	$s_8 = (-1, 0, -1, 0, 1)$
	$s_9 = (0, 1, 1, 0, 1)$
$s_1 = (1, 1, 0, 1)$	$s_{10} = (0, -1, 1, 0, 1)$
$s_2 = (-1, 1, 0, 1)$	$s_{11} = (0, 1, -1, 0, 1)$
$s_3 = (1, -1, 0, 1)$	$s_{12} = (0, -1, -1, 0, 1)$
- (1101)	$s_{13} = (1, 0, 0, 1, 1)$
$s_4 = (-1, -1, 0, 1)$	$s_{14} = (-1, 0, 0, 1, 1)$
$s_5 = (1, 0, 1, 1)$	$s_{15} = (1, 0, 0, -1, 1)$
$s_6 = (-1, 0, 1, 1)$	$s_{16} = (-1, 0, 0, -1, 1)$
$e = (1 \ 0 \ -1 \ 1)$	$s_{17} = (0, 1, 0, 1, 1)$
$5_7 - (1, 0, 1, 1)$	$s_{18} = (0, -1, 0, 1, 1)$
$s_8 = (-1, 0, -1, 1)$	$s_{19} = (0, 1, 0, -1, 1)$
$s_9 = (0, 1, 1, 1)$	$s_{20} = (0, -1, 0, -1, 1)$
$s_{10} = (0, -1, 1, 1)$	$s_{21} = (0, 0, 1, 1, 1)$
	$s_{22} = (0, 0, -1, 1, 1)$
$s_{11} = (0, 1, -1, 1)$	$s_{23} = (0, 0, 1, -1, 1)$
$s_{12} = (0, -1, -1, 1)$	$s_{24} = (0, 0, -1, -1, 1)$

The vectors s_1, s_2, \ldots, s_m corresponding to the sides of Q^n (see preceding page).

 $k_4 = 3$, and as before $k_2 = k_3 = 3$ also. Thus the complete codes for the three possible side-pairings of the ideal square Q^2 are 1111, 2222, and 3333, which we can abbreviate to just 1, 2, and 3. Now it turns out that side-pairings 1 and 2 are equivalent under a symmetry of Q^2 and we have two manifolds, 1 being the thrice-punctured sphere and 3 being the twice-punctured projective plane.

In dimension 3, each two-dimensional coordinate plane cross-section reduces to the two-dimensional case. In the xy-plane, $s_1 = (1, 1, 0, 1)$ cannot be fixed by k_1 so $k_1 \neq 0, 4$ but k_1 can be 1, 2, 3, 5, 6, or 7. Restricting to the 2-dimensional cross-section, the above reasoning tells us that if k_1 is 1 or 5 then $k_2 = k_1$ and $k_3 = k_4$ are also either 1 or 5. If k_1 is 2 or 6 then $k_1 = k_3$ and $k_2 = k_4$ are also 2 or 6, and if k_1 is 3 or 7 then $k_1 = k_4$ and $k_2 = k_3$ is 3 or 7. Note that maps 5, 6, and 7 reflect the z coordinate whereas the corresponding maps 1, 2, and 3 do not. Similar reasoning applies in the xz- and yz-planes. We build a table of the possible side-pairing maps for each block of four sides. In the xz case s_5 would be fixed by $k_5 = 0$ or 2, and in the yz case s_9 would be fixed by $k_9 = 0$ or 1.

k_1 – k_4	$k_{5}-k_{8}$	$k_9 - k_{12}$
1111	1111	2222
1155	1133	2233
2222	3311	3322
2626	3333	3333
3333	4444	4444
3773	4646	4545
5511	5555	5454
5555	5775	5555
6262	6464	6666
6666	6666	6776
7337	7557	7667
7777	7777	7777

There are 3 choices to be made with 12 alternatives each. We need to check which of the $12^3 =$ 1728 combinations give manifolds. Since sides of the rhombic dodecahedron Q^3 are at right angles along edges, we need a side-pairing to give cycles of 4 edges. There are 8 actual vertices and these have to form a single cycle under the side-pairing. It turns out that these conditions imply that

 $k_1 = k_2 = k_3 = k_4, \ k_5 = k_6 = k_7 = k_8, \ k_9 = k_{10} = k_{11} = k_{12},$

and that k_1, k_5, k_9 are linearly independent in the \mathbb{Z}_2 -vector space K^3 . Thus a list of only k_1, k_5, k_9 will suffice to determine the manifold.

There are then 107 possibilities left for k_1, k_5, k_9 : 134 153 174 237 267 345 375 542 576 645 712 746 135 156 175 243 273 346 376 543 612 647 713 753 136 157 214 245 274 352 512 546 613 652 714 754 137 162 215 247 276 354 513 547 614 654 715 756 142 163 216 253 214 257 516 569 615 657 732 762

 142
 163
 216
 253
 314
 357
 516
 562
 615
 657
 732
 762

 143
 164
 217
 254
 315
 362
 517
 564
 632
 672
 735
 763

 146
 165
 234
 256
 316
 364
 532
 567
 634
 673
 736
 764

 147
 172
 235
 263
 317
 367
 534
 573
 637
 674
 742
 765

 152
 173
 236
 265
 342
 372
 537
 574
 643
 675
 745

This list includes side-pairings that are equivalent under symmetries of Q^3 as well as different sidepairings yielding isometric manifolds.

The 4-dimensional case is simplified by looking at the four coordinate hyperplane cross-sections. Each cross-section must reduce to one of the above 107 cases. We also have that the choices of side-pairings for the 3-dimensional cross-sections must give the same pairs of sides, that is, the common 2-dimensional cross-sections must be the same. Once we have chosen consistent cross-section side-pairings, the side-pairings of the ideal 24-cell will be determined. Then it becomes a matter of filtering the possible side-pairings according to the 3-face, 2-face, and 1-face cycle conditions of Poincaré's fundamental polyhedron theorem, and then reducing the list by symmetries of the 24-cell and hidden isometries between the resulting manifolds. Since each threedimensional cross-section has equal k_i for each of the sides s_i intersecting a 2-dimensional cross-section, the blocks of 4 sides intersecting each 2-dimensional cross-section will also have equal k_i in the 4-dimensional case. Thus a list of only

$$k_1, k_5, k_9, k_{13}, k_{17}, k_{21}$$

will suffice to determine the manifold, since

 $k_{4i+1} = k_{4i+2} = k_{4i+3} = k_{4i+4}$ for i = 0, 1, 2, 3, 4, 5.

We now describe in detail how to extract a sidepairing of our fundamental domain Q^n from a coded side-pairing. Consider the coded side-pairing for the Borromean rings complement 142 on line 1 of Table 1. It represents the side-pairing

111144442222

for the 12 sides of the rhombic dode cahedron Q^3 . Here

- 1 represents diag(-1, 1, 1, 1), 2 represents diag(1, -1, 1, 1),
- 2 representes diag(1, 1,1,1),
- 4 represents $\operatorname{diag}(1, 1, -1, 1)$.

The set S_i of vertices of the side of Q^3 in \mathbb{R}^3 whose normal vector in $\mathbb{R}^{3,1}$ is s_i is given by

$$\begin{split} S_1 &= \{(1,0,0), (\frac{1}{3},\frac{1}{3},\frac{1}{3}), (\frac{1}{3},\frac{1}{3},-\frac{1}{3}), (0,1,0)\}\\ S_2 &= \{(-1,0,0), (-\frac{1}{3},\frac{1}{3},\frac{1}{3}), (-\frac{1}{3},\frac{1}{3},-\frac{1}{3}), (0,1,0)\}\\ S_3 &= \{(1,0,0), (\frac{1}{3},-\frac{1}{3},\frac{1}{3}), (\frac{1}{3},-\frac{1}{3},-\frac{1}{3}), (0,-1,0)\}\\ S_4 &= \{(-1,0,0), (-\frac{1}{3},-\frac{1}{3},\frac{1}{3}), (-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}), (0,-1,0)\}\\ S_5 &= \{(1,0,0), (\frac{1}{3},\frac{1}{3},\frac{1}{3}), (\frac{1}{3},-\frac{1}{3},\frac{1}{3}), (0,0,1)\}\\ S_6 &= \{(-1,0,0), (-\frac{1}{3},\frac{1}{3},\frac{1}{3}), (-\frac{1}{3},-\frac{1}{3},\frac{1}{3}), (0,0,1)\}\\ S_7 &= \{(1,0,0), (\frac{1}{3},\frac{1}{3},-\frac{1}{3}), (-\frac{1}{3},-\frac{1}{3},\frac{1}{3}), (0,0,-1)\}\\ S_8 &= \{(-1,0,0), (-\frac{1}{3},\frac{1}{3},-\frac{1}{3}), (-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}), (0,0,-1)\}\\ S_9 &= \{(0,1,0), (\frac{1}{3},\frac{1}{3},\frac{1}{3}), (-\frac{1}{3},\frac{1}{3},\frac{1}{3}), (0,0,1)\}\\ S_{10} &= \{(0,-1,0), (\frac{1}{3},-\frac{1}{3},\frac{1}{3}), (-\frac{1}{3},-\frac{1}{3},\frac{1}{3}), (0,0,-1)\}\\ S_{11} &= \{(0,1,0), (\frac{1}{3},-\frac{1}{3},-\frac{1}{3}), (-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}), (0,0,-1)\}\\ S_{12} &= \{(0,-1,0), (\frac{1}{3},-\frac{1}{3},-\frac{1}{3}), (-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}), (0,0,-1)\} \end{split}$$

The corresponding ordered sets of vertices of the paired sides are given by

$$\begin{split} S_1' &= \{(-1,0,0), (-\frac{1}{3},\frac{1}{3},\frac{1}{3}), (-\frac{1}{3},\frac{1}{3},-\frac{1}{3}), (0,1,0)\}\\ S_2' &= \{(1,0,0), (\frac{1}{3},\frac{1}{3},\frac{1}{3}), (\frac{1}{3},\frac{1}{3},-\frac{1}{3}), (0,1,0)\}\\ S_3' &= \{(-1,0,0), (-\frac{1}{3},-\frac{1}{3},\frac{1}{3}), (-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}), (0,-1,0)\}\\ S_4' &= \{(1,0,0), (\frac{1}{3},-\frac{1}{3},\frac{1}{3}), (\frac{1}{3},-\frac{1}{3},-\frac{1}{3}), (0,-1,0)\}\\ S_5' &= \{(1,0,0), (\frac{1}{3},\frac{1}{3},-\frac{1}{3}), (\frac{1}{3},-\frac{1}{3},-\frac{1}{3}), (0,0,-1)\}\\ S_6' &= \{(-1,0,0), (-\frac{1}{3},\frac{1}{3},-\frac{1}{3}), (-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}), (0,0,-1)\}\\ S_7' &= \{(1,0,0), (-\frac{1}{3},\frac{1}{3},-\frac{1}{3}), (-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}), (0,0,-1)\}\\ S_8' &= \{(-1,0,0), (-\frac{1}{3},\frac{1}{3},\frac{1}{3}), (-\frac{1}{3},-\frac{1}{3},\frac{1}{3}), (0,0,1)\}\\ S_9' &= \{(0,-1,0), (\frac{1}{3},-\frac{1}{3},\frac{1}{3}), (-\frac{1}{3},-\frac{1}{3},\frac{1}{3}), (0,0,1)\}\\ S_{10}' &= \{(0,1,0), (\frac{1}{3},-\frac{1}{3},-\frac{1}{3}), (-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}), (0,0,-1)\}\\ S_{11}' &= \{(0,-1,0), (\frac{1}{3},-\frac{1}{3},-\frac{1}{3}), (-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}), (0,0,-1)\}\\ S_{12}' &= \{(0,1,0), (\frac{1}{3},-\frac{1}{3},-\frac{1}{3}), (-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}), (0,0,-1)\} \end{split}$$

Here we have $S'_i = k_i S_i$ where $k_i = \text{diag}(a_1, a_2, a_3, 1)$ acts on S_i as a 3×3 matrix $\text{diag}(a_1, a_2, a_3)$. $S_1 = \{(1,0,0,0), (1,1,1,1)/2, (1,1,-1,1)/2, (1,1,1,-1)/2, (1,1,-1,-1)/2, (0,1,0,0)\}$ $S_2 = \{(-1, 0, 0, 0), (-1, 1, 1, 1)/2, (-1, 1, -1, 1)/2, (-1, 1, 1, -1)/2, (-1, 1, -1, -1)/2, (0, 1, 0, 0)\}$ $S_3 = \{(1,0,0,0), (1,-1,1,1)/2, (1,-1,-1,1)/2, (1,-1,1,-1)/2, (1,-1,-1,-1)/2, (0,-1,0,0)\}$ $S_4 = \{(-1, 0, 0, 0), (-1, -1, 1, 1)/2, (-1, -1, -1, 1)/2, (-1, -1, 1, -1)/2, (-1, -1, -1, -1)/2, (0, -1, 0, 0)\}$ $S_5 = \{(1, 0, 0, 0), (1, 1, 1, 1)/2, (1, -1, 1, 1)/2, (1, 1, 1, -1)/2, (1, -1, 1, -1)/2, (0, 0, 1, 0)\}$ $S_6 = \{(-1, 0, 0, 0), (-1, 1, 1, 1)/2, (-1, -1, 1, 1)/2, (-1, 1, 1, -1)/2, (-1, -1, 1, -1)/2, (0, 0, 1, 0)\}$ $S_7 = \{(1, 0, 0, 0), (1, 1, -1, 1)/2, (1, -1, -1, 1)/2, (1, 1, -1, -1)/2, (1, -1, -1, -1)/2, (0, 0, -1, 0)\}$ $S_8 = \{(-1, 0, 0, 0), (-1, 1, -1, 1)/2, (-1, -1, -1, 1)/2, (-1, 1, -1, -1)/2, (-1, -1, -1, -1)/2, (0, 0, -1, 0)\}$ $S_9 = \{(0, 1, 0, 0), (1, 1, 1, 1)/2, (-1, 1, 1, 1)/2, (1, 1, 1, -1)/2, (-1, 1, 1, -1)/2, (0, 0, 1, 0)\}$ $S_{10} = \{(0, -1, 0, 0), (1, -1, 1, 1)/2, (-1, -1, 1, 1)/2, (1, -1, 1, -1)/2, (-1, -1, 1, -1)/2, (0, 0, 1, 0)\}$ $S_{11} = \{(0, 1, 0, 0), (1, 1, -1, 1)/2, (-1, 1, -1, 1)/2, (1, 1, -1, -1)/2, (-1, 1, -1, -1)/2, (0, 0, -1, 0)\}$ $S_{12} = \{(0, -1, 0, 0), (1, -1, -1, 1)/2, (-1, -1, -1, 1)/2, (1, -1, -1, -1)/2, (-1, -1, -1, -1)/2, (0, 0, -1, 0)\}$ $S_{13} = \{(1, 0, 0, 0), (1, 1, 1, 1)/2, (1, -1, 1, 1)/2, (1, 1, -1, 1)/2, (1, -1, -1, 1)/2, (0, 0, 0, 1)\}$ $S_{14} = \{(-1, 0, 0, 0), (-1, 1, 1, 1)/2, (-1, -1, 1, 1)/2, (-1, 1, -1, 1)/2, (-1, -1, -1, 1)/2, (0, 0, 0, 1)\}$ $S_{15} = \{(1, 0, 0, 0), (1, 1, 1, -1)/2, (1, -1, 1, -1)/2, (1, 1, -1, -1)/2, (1, -1, -1, -1)/2, (0, 0, 0, -1)\}$ $S_{16} = \{(-1, 0, 0, 0), (-1, 1, 1, -1)/2, (-1, -1, 1, -1)/2, (-1, 1, -1, -1)/2, (-1, -1, -1, -1)/2, (0, 0, 0, -1)\}$ $S_{17} = \{(0, 1, 0, 0), (1, 1, 1, 1)/2, (-1, 1, 1, 1)/2, (1, 1, -1, 1)/2, (-1, 1, -1, 1)/2, (0, 0, 0, 1)\}$ $S_{18} = \{(0, -1, 0, 0), (1, -1, 1, 1)/2, (-1, -1, 1, 1)/2, (1, -1, -1, 1)/2, (-1, -1, -1, 1)/2, (0, 0, 0, 1)\}$ $S_{19} = \{(0, 1, 0, 0), (1, 1, 1, -1)/2, (-1, 1, 1, -1)/2, (1, 1, -1, -1)/2, (-1, 1, -1, -1)/2, (0, 0, 0, -1)\}$ $S_{20} = \{(0, -1, 0, 0), (1, -1, 1, -1)/2, (-1, -1, 1, -1)/2, (1, -1, -1, -1)/2, (-1, -1, -1, -1)/2, (0, 0, 0, -1)\}$ $S_{21} = \{(0, 0, 1, 0), (1, 1, 1, 1)/2, (-1, 1, 1, 1)/2, (1, -1, 1, 1)/2, (-1, -1, 1, 1)/2, (0, 0, 0, 1)\}$ $S_{22} = \{(0, 0, -1, 0), (1, 1, -1, 1)/2, (-1, 1, -1, 1)/2, (1, -1, -1, 1)/2, (-1, -1, -1, 1)/2, (0, 0, 0, 1)\}$ $S_{23} = \{(0, 0, 1, 0), (1, 1, 1, -1)/2, (-1, 1, 1, -1)/2, (1, -1, 1, -1)/2, (-1, -1, 1, -1)/2, (0, 0, 0, -1)\}$ $S_{24} = \{(0, 0, -1, 0), (1, 1, -1, -1)/2, (-1, 1, -1, -1)/2, (1, -1, -1, -1)/2, (-1, -1, -1, -1)/2, (0, 0, 0, -1)\}$ $= \{(-1, 0, 0, 0), (-1, 1, 1, 1)/2, (-1, 1, -1, 1)/2, (-1, 1, 1, -1)/2, (-1, 1, -1, -1)/2, (0, 1, 0, 0)\}$ S_1' S'_2 $= \{(1, 0, 0, 0), (1, 1, 1, 1)/2, (1, 1, -1, 1)/2, (1, 1, 1, -1)/2, (1, 1, -1, -1)/2, (0, 1, 0, 0)\}$ $=\{(-1,0,0,0),(-1,-1,1,1)/2,(-1,-1,-1,1)/2,(-1,-1,1,-1)/2,(-1,-1,-1,-1)/2,(0,-1,0,0)\}$ S'_3 S'_{4} $= \{(1, 0, 0, 0), (1, -1, 1, 1)/2, (1, -1, -1, 1)/2, (1, -1, 1, -1)/2, (1, -1, -1, -1)/2, (0, -1, 0, 0)\}$ S_5' $= \{(1,0,0,0), (1,1,-1,1)/2, (1,-1,-1,1)/2, (1,1,-1,-1)/2, (1,-1,-1,-1)/2, (0,0,-1,0)\}$ S'_6 $= \{(-1, 0, 0, 0), (-1, 1, -1, 1)/2, (-1, -1, -1, 1)/2, (-1, 1, -1, -1)/2, (-1, -1, -1, -1)/2, (0, 0, -1, 0)\}$ $= \{(1,0,0,0), (1,1,1,1)/2, (1,-1,1,1)/2, (1,1,1,-1)/2, (1,-1,1,-1)/2, (0,0,1,0)\}$ S'_7 S'_8 $= \{(-1, 0, 0, 0), (-1, 1, 1, 1)/2, (-1, -1, 1, 1)/2, (-1, 1, 1, -1)/2, (-1, -1, 1, -1)/2, (0, 0, 1, 0)\}$ S'_{0} $= \{(0, -1, 0, 0), (1, -1, 1, 1)/2, (-1, -1, 1, 1)/2, (1, -1, 1, -1)/2, (-1, -1, 1, -1)/2, (0, 0, 1, 0)\}$ $S'_{10} = \{(0, 1, 0, 0), (1, 1, 1, 1)/2, (-1, 1, 1, 1)/2, (1, 1, 1, -1)/2, (-1, 1, 1, -1)/2, (0, 0, 1, 0)\}$ $S_{11}' = \{(0, -1, 0, 0), (1, -1, -1, 1)/2, (-1, -1, -1, 1)/2, (1, -1, -1, -1)/2, (-1, -1, -1, -1)/2, (0, 0, -1, 0)\}$ $S'_{12} = \{(0, 1, 0, 0), (1, 1, -1, 1)/2, (-1, 1, -1, 1)/2, (1, 1, -1, -1)/2, (-1, 1, -1, -1)/2, (0, 0, -1, 0)\}$ $S'_{13} = \{(1, 0, 0, 0), (1, 1, 1, -1)/2, (1, -1, 1, -1)/2, (1, 1, -1, -1)/2, (1, -1, -1, -1)/2, (0, 0, 0, -1)\}$ $S_{14}' = \{(-1, 0, 0, 0), (-1, 1, 1, -1)/2, (-1, -1, 1, -1)/2, (-1, 1, -1, -1)/2, (-1, -1, -1, -1)/2, (0, 0, 0, -1)\}$ $S'_{15} = \{(1, 0, 0, 0), (1, 1, 1, 1)/2, (1, -1, 1, 1)/2, (1, 1, -1, 1)/2, (1, -1, -1, 1)/2, (0, 0, 0, 1)\}$ $S'_{16} = \{(-1, 0, 0, 0), (-1, 1, 1, 1)/2, (-1, -1, 1, 1)/2, (-1, 1, -1, 1)/2, (-1, -1, -1, 1)/2, (0, 0, 0, 1)\}$ $S'_{17} = \{(0, -1, 0, 0), (-1, -1, 1, -1)/2, (1, -1, 1, -1)/2, (-1, -1, -1, -1)/2, (1, -1, -1, -1)/2, (0, 0, 0, -1)\}$ $S'_{18} = \{(0, 1, 0, 0), (-1, 1, 1, -1)/2, (1, 1, 1, -1)/2, (-1, 1, -1, -1)/2, (1, 1, -1, -1)/2, (0, 0, 0, -1)\}$ $S'_{19} = \{(0, -1, 0, 0), (-1, -1, 1, 1)/2, (1, -1, 1, 1)/2, (-1, -1, -1, 1)/2, (1, -1, -1, 1)/2, (0, 0, 0, 1)\}$ $S'_{20} = \{(0, 1, 0, 0), (-1, 1, 1, 1)/2, (1, 1, 1, 1)/2, (-1, 1, -1, 1)/2, (1, 1, -1, 1)/2, (0, 0, 0, 1)\}$ $S'_{21} = \{(0, 0, -1, 0), (-1, 1, -1, -1)/2, (1, 1, -1, -1)/2, (-1, -1, -1, -1)/2, (1, -1, -1, -1)/2, (0, 0, 0, -1)\}$ $S_{22}' = \{(0,0,1,0), (-1,1,1,-1)/2, (1,1,1,-1)/2, (-1,-1,1,-1)/2, (1,-1,1,-1)/2, (0,0,0,-1)\}$ $S_{23}' = \{(0,0,-1,0), (-1,1,-1,1)/2, (1,1,-1,1)/2, (-1,-1,-1,1)/2, (1,-1,-1,1)/2, (0,0,0,1)\}$ $S'_{24} = \{(0, 0, 1, 0), (-1, 1, 1, 1)/2, (1, 1, 1, 1)/2, (-1, -1, 1, 1)/2, (1, -1, 1, 1)/2, (0, 0, 0, 1)\}$

N	SP	S	H_1	H_2	H_3	LT	N	SP	S	H_1	H_2	H_3	LT	N	SP	S	H_1	H_2	H_3	LT
1	1428BD	16	330	700	4	AAABF	8	1427BD	16	150	500	4	ABBBF	16	14B7E8	16	060	400	4	BBBBF
2	14278D	16	240	600	4	AABBF	9	1477EB	16	150	500	4	ABBBF	17	14B7ED	16	060	400	4	BBBBF
3	1477B8	16	240	600	4	AABBF	10	1477ED	16	150	500	4	ABBBF	18	14BDE7	16	060	400	4	BBBBF
4	1477BE	16	240	600	4	AABBF	11	1478EB	16	150	500	4	ABBBF	19	14B7DE	16	060	400	4	BBFFF
5	1478ED	16	240	600	4	AABBF	12	147BDE	16	150	500	4	ABBBF	20	14B8E7	16	051	400	4	ABFFF
6	14278E	16	240	600	4	ABBBF	13	14B8ED	16	150	500	4	ABBBF	21	14BD7E	16	051	400	4	ABFFF
7	142DBE	48	150	500	4	ABBBF	14	1427BE	16	150	500	4	BBBBF	22	17BE8D	16	051	400	4	ABFFF
							15	1477DE	16	150	500	4	BBBBF							

TABLE 2. Orientable, 5 cusped, minimal volume, integral, congruence 2, hyperbolic 4-manifolds.

Now take the first orientable 4-manifold in Table 2 above. The hexadecimal digits in the column headed SP are interpreted as follows:

- 1 represents diag(-1, 1, 1, 1, 1),
- 2 represents diag(1, -1, 1, 1, 1),
- 4 represents diag(1, 1, -1, 1, 1),
- 8 represents diag(1, 1, 1, -1, 1),
- B represents diag(-1, -1, 1, -1, 1),
- D represents diag(-1, 1, -1, -1, 1),

and the code 1428BD represents the side-pairing

1111444422228888BBBBDDDD

for the 24 sides of the 24-cell Q^4 . The set S_i of vertices of the side of Q^4 whose normal vector is s_i is given in the upper half of page 116. The corresponding ordered sets of the vertices of the paired sides are given in the lower half of the same page. Here we have $S'_i = k_i S_i$ where $k_i = \text{diag}(a_1, a_2, a_3, a_4, 1)$ acts on S_i as a 4×4 matrix $\text{diag}(a_1, a_2, a_3, a_4)$.

6. TABLES

Tables 2–4 list side-pairings and isometric invariants of all the congruence two 24-cell manifolds. In each table, N is the row number. The column

N	SP	S	H_1	H_2	H_3	LT	N	SP	S	H_1	H_2	H_3	LT	N	SP	S	H_1	H_2	H_3	LT
23	1569A4	32	420	620	2	AAGGH	49	134A3F	16	330	520	2	AAHIJ	75	1358BD	16	330	430	1	AGGHI
24	134B2E	16	420	620	2	AAGHH	50	1369A4	16	330	520	2	AAIIJ	76	13C8B4	16	330	430	1	AGGHI
25	134B3E	16	420	620	2	AAGHH	51	156A9C	16	330	520	2	ABGGH	77	13CB36	16	330	430	1	AGGHI
26	13483D	16	420	620	2	AAGHJ	52	13D834	16	330	520	2	ABGGJ	78	13EFCA	16	330	430	1	AGGHI
27	1348BD	16	420	620	2	AAGHJ	53	136F8A	32	330	520	2	ABGHH	79	157B9D	16	330	430	1	AGGHI
28	13492C	16	420	620	2	AAHHI	54	134B6E	16	330	520	2	ABGHH	80	13483E	16	330	430	1	AGGHJ
29	1349AC	16	420	620	2	AAHHI	55	134B7E	16	330	520	2	ABGHH	81	1348FC	16	330	430	1	AGGHJ
30	1429AC	48	420	620	2	AFGGG	56	13D935	16	330	520	2	ABGHI	82	134B2C	16	330	430	1	AGGHJ
31	13C835	16	420	530	1	AGGGJ	57	13482E	16	330	520	2	ABGHJ	83	13583C	16	330	430	1	AGGHJ
32	13482C	16	420	530	1	AGGHH	58	13487D	16	330	520	2	ABGHJ	84	135B2E	16	330	430	1	AGGHJ
33	1348AC	16	420	530	1	AGGHJ	59	1348AD	16	330	520	2	ABGHJ	85	136B2E	16	330	430	1	AGGHJ
34	1348BC	16	420	530	1	AGHHI	60	134B3C	16	330	520	2	ABGHJ	86	136F2A	16	330	430	1	AGGHJ
35	146928	64	420	440	0	GGGGH	61	136DA8	16	330	520	2	ABGHJ	87	13EE64	16	330	430	1	AGGHJ
36	1468AF	32	330	610	3	AAAJJ	62	1439AC	16	330	520	2	ABGHJ	88	13C875	16	330	430	1	AGGIJ
37	156F8C	32	330	610	3	AABJJ	63	143B9C	16	330	520	2	ABGHJ	89	13EA35	16	330	430	1	AGGIJ
38	143BD8	16	330	610	3	ABFGH	64	13483F	16	330	520	2	ABGJJ	90	134B3D	16	330	430	1	AGGJJ
39	14378D	16	330	610	3	ABFHH	65	13496C	16	330	520	2	ABHHI	91	136D28	16	330	430	1	AGGJJ
40	143CF9	16	330	520	2	AAGGJ	66	1349BC	16	330	520	2	ABHHI	92	1348EC	16	330	430	1	AGHHI
41	13FF8A	32	330	520	2	AAGHH	67	134A2C	16	330	520	2	ABHIJ	93	13593D	16	330	430	1	AGHHI
42	13482D	16	330	520	2	AAGHJ	68	1368A4	16	330	520	2	AFGGI	94	135A2F	16	330	430	1	AGHHI
43	1348FD	16	330	520	2	AAGHJ	69	1347B8	16	330	520	2	AFGII	95	136CA8	16	330	430	1	AGHHI
44	136B84	16	330	520	2	AAGIJ	70	1437C9	16	330	520	2	BFGGH	96	13EFC4	16	330	430	1	AGHHI
45	13ED28	16	330	520	2	AAGIJ	71	13EB34	16	330	430	1	AGGGH	97	147B9C	16	330	430	1	AGHHJ
46	13493C	16	330	520	2	AAHHI	72	13EB64	16	330	430	1	AGGGH	98	1347A8	16	330	430	1	AGHIJ
47	1349EC	16	330	520	2	AAHHI	73	13582D	16	330	430	1	AGGHH	99	13486C	16	330	430	1	AGHIJ
48	134A2F	16	330	520	2	AAHIJ	74	135B3F	16	330	430	1	AGGHH	100	13487C	16	330	430	1	AGHIJ

TABLE 3 (start). Non-orientable, 5 cusped, minimal volume, integral, congruence 2, hyperbolic 4-manifolds.

N	SP	S	H_1	H_2	H_3	LT	N	SP	S	H_1	H_2	H_3	LT	N	SP	S	H_1	H_2	H_3	LT
101	13492E	16	330	430	1	AGHIJ	156	1359AD	16	330	331	0	GHHHI	211	134A3D	16	240	420	2	ABIJJ
102	13592C	16	330	430	1	AGHIJ	157	3579BF	32	250	430	2	ABGII	212	136A3D	16	240	420	2	ABIJJ
103	135A3E	16	330	430	1	AGHIJ	158	1437F9	16	240	510	3	ABBGJ	213	136E39	16	240	420	2	ABIJJ
104	1367A8	16	330	430	1	AGHIJ	159	14378E	16	240	510	3	ABBJJ	214	136E84	16	240	420	2	ABIJJ
105	1368AE	16	330	430	1	AGHIJ	160	143DF8	16	240	510	3	ABFGH	215	13EE75	16	240	420	2	ABIJJ
106	136920	16	330	430	1	AGHTJ	161	14779C	16	240	510	3	ABEGH	216	1429FA	16	240	420	2	AFGGG
107	135940	16	330	430	1	AGTTI	162	14F7C9	16	240	510	3	AREGI	210	136584	16	240	420	2	AFGHT
100	13/0RD	16	330	130	1	ACTII	162	1/386D	16	240	510	3	VBEAR	217	1/3051	16	210	120	2	AFCHT
100	1369AF	16	330	430	1	литата Иннит	164	143F8D	16	240	510	3	VBEHH	210	13487F	16	240	420	2	AECHI
110	12/7D0	16	330	430	1		104	1/275/	16	240	510	2		219	12/060	16	240	420	2	AFCUI
110	124040	16	220	430	1		105	140700	16	240	510	ა ა	ADFILL	220	142000	16	240	420	2	AFGIIJ
111	1349AD	10	220	430	1	ATIIJ	100	142790	10	240	510	ა ი		221	190096	10	240	420	2	AFGIJ
112	1368/4	10	330	430	1	BGGGH	167	1427AC	10	240	510	3	BBFGG	222	136DA4	10	240	420	2	AFGIJ
113	1358AU	10	330	430	T	BGGGJ	168	143708	10	240	510	3	BBFGH	223	100190	10	240	420	2	AFGIJ
114	IJEECA	16	330	430	T	BGGGJ	169	143068	16	240	510	3	BBFGH	224	134B7D	10	240	420	2	AFGJJ
115	13682E	16	330	430	1	BGGHH	170	1CFF38	32	240	420	2	AAGJJ	225	1347FC	16	240	420	2	AFHII
116	136C2A	16	330	430	1	BGGHH	171	153CF4	32	240	420	2	AAHII	226	1367A9	16	240	420	2	AFHII
117	1359BD	16	330	430	1	BGGHI	172	13D864	16	240	420	2	ABGGJ	227	157DB9	16	240	420	2	AFHII
118	136E28	16	330	430	1	BGGHJ	173	143DE8	16	240	420	2	ABGGJ	228	13496E	16	240	420	2	AFHIJ
119	13EEC4	16	330	430	1	BGGHJ	174	13DB37	16	240	420	2	ABGHI	229	156DA9	16	240	420	2	AFHIJ
120	13C837	16	330	430	1	BGGIJ	175	13486D	16	240	420	2	ABGHJ	230	1347A9	16	240	420	2	AFIII
121	157A9C	16	330	430	1	BGHHH	176	1348ED	16	240	420	2	ABGHJ	231	1569F4	32	240	420	2	BBGGH
122	136A2C	16	330	430	1	BGHHI	177	136B3C	16	240	420	2	ABGHJ	232	13D8A4	16	240	420	2	BBGGJ
123	153A9C	16	330	430	1	BGHHI	178	136F38	16	240	420	2	ABGHJ	233	143EC9	16	240	420	2	BBGGJ
124	1539AD	16	330	430	1	BGHHJ	179	13D8B4	16	240	420	2	ABGHJ	234	143FD8	16	240	420	2	BBGGJ
125	143AC9	16	330	430	1	FGGGH	180	13EE84	16	240	420	2	ABGHJ	235	5EFF7A	32	240	420	2	BBGHH
126	1539BD	16	330	430	1	FGGGH	181	13EED4	16	240	420	2	ABGHJ	236	136B3E	16	240	420	2	BBGHH
127	1439BC	16	330	430	1	FGGHH	182	1477B9	16	240	420	2	ABGHJ	237	136F3A	16	240	420	2	BBGHH
128	136B8C	16	330	421	1	AGHHH	183	1479BE	16	240	420	2	ABGHJ	238	13EB74	16	240	420	2	BBGHH
129	13678A	16	330	421	1	AGHTJ	184	1347E8	16	240	420	2	ABGTJ	239	13EA74	16	240	420	2	BBGHT
130	13CB35	16	330	340	0	GGGGJ	185	136B8D	16	240	420	2	ABGIJ	240	15FA9C	16	240	420	$\frac{-}{2}$	BBGHT
131	13583D	16	330	340	Ô	GGGHH	186	13EEDB	16	240	420	2	ABGLI	241	13683D	16	240	420	2	BRGHI
130	136F28	16	330	340	õ	СССНН	187	14BC79	16	240	420	2	ARGII	241	136D38	16	240	420	2	BRGHI
122	130836	16	330	340	õ	СССИТ	100	134R0D	16	240	420	2	ARGII	242	130874	16	240	420	2	BBCHI
12/	135B3F	16	330	340	Ň	CCCHI	100	136835	16	240	120	2	ABCII	243	13557/	16	240	120	2	BBCHI
104	136000	16	330	340	0		109	136915	16	240	120	2	ADCII	244	1/2700	16	240	420	2	DDCUI
135	1260020	16	220	240	0		190	126021	16	240	420	2	ADGJJ	245	120026	16	240	420	2	
130	130DZA	10	220	240	0	GGGTI	191	120034	10	240	420	2	ADGJJ	246	120074	10	240	420	2	DDGIJ
137	130935	10	220	340	0	GGGIJ	192	142004	10	240	420	2	ADGJJ	247	140704	10	240	420	2	BBGIJ
138	130EZA	10	330	340	0	GGGJJ	193	143868	10	240	420	2	ABGJJ	248	1437CA	10	240	420	2	BBGIJ
139	132104	10	330	340	0	GGHHH	194	134970	10	240	420	2	ABHHI	249	1539AF	10	240	420	2	BRGIJ
140	135A3F	16	330	340	0	GGHHI	195	1349FC	16	240	420	2	ABHHI	250	13DD74	16	240	420	2	BBGJJ
141	13EA64	16	330	340	0	GGHHI	196	136CA9	16	240	420	2	ABHII	251	13EF74	16	240	420	2	ввннн
142	1358AD	16	330	340	0	GGHHJ	197	13D975	16	240	420	2	ABHII	252	13693C	16	240	420	2	BBHHI
143	13593C	16	330	340	0	GGHIJ	198	13493E	16	240	420	2	ABHIJ	253	136C39	16	240	420	2	BBHHI
144	156B9D	16	330	340	0	GHHHI	199	134A7F	16	240	420	2	ABHIJ	254	13D9B5	16	240	420	2	BBHHI
145	1359BC	16	330	340	0	GHIJJ	200	13693E	16	240	420	2	ABHIJ	255	13DC74	16	240	420	2	BBHHJ
146	135B2F	16	330	331	0	GGGHH	201	136C3B	16	240	420	2	ABHIJ	256	156AD9	16	240	420	2	BBHHJ
147	136B2C	16	330	331	0	GGGHH	202	136CA4	16	240	420	2	ABHIJ	257	153CA4	32	240	420	2	BBHII
148	13582C	16	330	331	0	GGGHJ	203	13DCF4	16	240	420	2	ABHIJ	258	136A3F	16	240	420	2	BBHIJ
149	13682C	16	330	331	0	GGGHJ	204	156A3C	16	240	420	2	ABHIJ	259	136E3B	16	240	420	2	BBHIJ
150	13592D	16	330	331	0	GGHHI	205	156DAE	16	240	420	2	ABHIJ	260	143C69	16	240	420	2	BFGGH
151	13692E	16	330	331	0	GGHHI	206	1347F9	16	240	420	2	ABIIJ	261	147CA9	16	240	420	2	BFGGH
152	1358BC	16	330	331	0	GGHHJ	207	13D9A4	16	240	420	2	ABIIJ	262	14379C	16	240	420	2	BFGHH
153	13C8B5	16	330	331	0	GGHHJ	208	13DA36	16	240	420	2	ABIIJ	263	14396C	16	240	420	2	BFGHH
154	135A2E	16	330	331	0	GGHIJ	209	13EA75	16	240	420	2	ABIIJ	264	14B7C9	16	240	420	2	BFGHI
155	136A2E	16	330	331	0	GGHIJ	210	13492F	16	240	420	2	ABIJJ	265	1437BE	16	240	420	2	BFGHJ

N	SP	S	H_1	H_2	H_3	LT	N	SP	S	H_1	H_2	H_3	LT	N	SP	S	H_1	H_2	H_3	LT
266	1358EC	16	240	330	1	AGGIJ	321	156FC9	16	240	330	1	BGGHJ	376	13EEC5	16	240	330	1	BGHJJ
267	1368B4	16	240	330	1	AGGIJ	322	1357A8	16	240	330	1	BGGIJ	377	13EED5	16	240	330	1	BGHJJ
268	13E837	16	240	330	1	AGGIJ	323	1359FC	16	240	330	1	BGGIJ	378	156E9D	16	240	330	1	BGHJJ
269	143FCA	16	240	330	1	AGGIJ	324	1368E4	16	240	330	1	BGGIJ	379	1357B9	16	240	330	1	BGIIJ
270	13482F	16	240	330	1	AGGJJ	325	136DB8	16	240	330	1	BGGIJ	380	136AC4	16	240	330	1	BGIIJ
271	143A9F	16	240	330	1	AGGJJ	326	13C7A8	16	240	330	1	BGGIJ	381	13D936	16	240	330	1	BGIIJ
272	13EF84	16	240	330	1	AGHH.J	327	13CA35	16	240	330	1	BGGTJ	382	15396A	16	240	330	1	BGTTJ
273	1359FD	16	240	330	1	AGHTT	328	1539BF	16	240	330	1	BGGTJ	383	135970	16	240	330	1	BGT.I.I
274	13E936	16	240	330	1	AGHTT	329	13582E	16	240	330	1	BGGJJ	384	135A2C	16	240	330	1	BGIJJ
275	13EA94	16	240	330	1	AGHTT	330	13583E	16	240	330	1	BGGII	385	135430	16	240	330	1	BGTII
276	134430	16	240	330	1	AGHTI	331	135870	16	240	330	1	BGGII	386	13547F	16	240	330	1	BGTII
270	136020	16	240	330	1	ACHTI	330	135B7F	16	240	330	1	BCCII	397	136035	16	240	330	1	BGTII
211	13FF0B	16	240	330	1	AGHTI	332 222	136830	16	240	330	1	BCC II	201	136D3B	16	240	330	1	BGIJJ
270		16	240	330	1		222	126520	16	240	330	1	DGGJJ	200	120050	16	240	330	1	DGIJJ
219	14AD90	16	240	220	1	AGIIIJ	334 205	142005	16	240	220	1		369	142064	16	240	220	1	DGIJJ
280	126104	16	240	220	1	AGHJJ	335	143906	10	240	220	1		390	12DOAE	16	240	220	1	DUIIIIT
281	136494	10	240	330	1	AGIIJ	336	143A69	10	240	330	1	BGGJJ	391	13D9A5	10	240	330	1	BHHHI
282	130A37	10	240	330	1	AGIIJ	337	15/9ED	10	240	330	1	BGGJJ	392	130005	10	240	330	1	BHHHI
283	13493F	10	240	330	1	AGIJJ	338	1369EC	10	240	330	1	BGHHI	393	130075	10	240	330	Ţ	RHHHI
284	134A2D	16	240	330	1	AGIJJ	339	136A3E	16	240	330	1	BGHHI	394	156A3E	16	240	330	1	RHHHJ
285	136E2B	16	240	330	1	AGIJJ	340	136CB9	16	240	330	1	BGHHI	395	13D965	16	240	330	1	BHHII
286	1347EC	16	240	330	1	AHHIJ	341	136F29	16	240	330	1	BGHHI	396	13EF75	16	240	330	1	BHHIJ
287	1349FD	16	240	330	1	AHIIJ	342	136F3B	16	240	330	1	BGHHI	397	13EFD5	16	240	330	1	BHHIJ
288	1347FD	16	240	330	1	AHIJJ	343	13C974	16	240	330	1	BGHHI	398	156B3D	16	240	330	1	BHHIJ
289	13678C	16	240	330	1	AHIJJ	344	13CCE6	16	240	330	1	BGHHI	399	156D39	16	240	330	1	BHHIJ
290	13496D	16	240	330	1	AIIJJ	345	13EFD4	16	240	330	1	BGHHI	400	143CE9	16	240	330	1	FGGGH
291	136DA9	16	240	330	1	AIJJJ	346	357B9D	16	240	330	1	BGHHI	401	136B94	16	240	330	1	FGGGI
292	1358ED	16	240	330	1	BGGGH	347	13CCE5	16	240	330	1	BGHHJ	402	136BC4	16	240	330	1	FGGGI
293	13EB94	16	240	330	1	BGGGH	348	13DC64	16	240	330	1	BGHHJ	403	143F9C	16	240	330	1	FGGHH
294	13EBC4	16	240	330	1	BGGGH	349	1479EC	16	240	330	1	BGHHJ	404	13679A	16	240	330	1	FGGHI
295	13DB34	16	240	330	1	BGGGJ	350	157A3C	16	240	330	1	BGHHJ	405	1367B8	16	240	330	1	FGGHI
296	13683C	16	240	330	1	BGGHH	351	15EA9C	16	240	330	1	BGHHJ	406	14BAC9	16	240	330	1	FGGHI
297	136BCE	16	240	330	1	BGGHH	352	136A9C	16	240	330	1	BGHII	407	14B93C	16	240	330	1	FGGHJ
298	136C38	16	240	330	1	BGGHH	353	13C936	16	240	330	1	BGHII	408	15397D	16	240	330	1	FGGHJ
299	13EC64	16	240	330	1	BGGHH	354	15FB9D	16	240	330	1	BGHII	409	153B9F	16	240	330	1	FGGHJ
300	13EF9A	16	240	330	1	BGGHH	355	13592F	16	240	330	1	BGHIJ	410	1569ED	16	240	330	1	FGGHJ
301	1368BE	16	240	330	1	BGGHI	356	13593F	16	240	330	1	BGHIJ	411	1369B4	16	240	330	1	FGGII
302	136F9A	16	240	330	1	BGGHI	357	13597D	16	240	330	1	BGHIJ	412	1369E4	16	240	330	1	FGGII
303	13C9B4	16	240	330	1	BGGHI	358	135A7F	16	240	330	1	BGHIJ	413	13C7B8	16	240	330	1	FGGII
304	13CB74	16	240	330	1	BGGHI	359	13692F	16	240	330	1	BGHIJ	414	1357B8	16	240	330	1	FGGIJ
305	13D837	16	240	330	1	BGGHT	360	13693D	16	240	330	1	BGHT.J	415	156AC9	16	240	330	1	FGHHT
306	13DA35	16	240	330	1	BGGHT	361	1369BE	16	240	330	1	BGHTJ	416	157D39	16	240	330	1	FGHHT
307	13E964	16	240	330	1	BGGHT	362	136A3C	16	240	330	1	BGHTJ	417	157A3E	16	240	330	1	FGHHI
308	1569BF	16	240	330	1	BGGHT	363	136D2B	16	240	330	1	BGHT I	418	157F9C	16	240	330	1	FGHII
300	13587D	16	240	330	1	BCCHI	364	136030	16	240	330	1	BCHT I	410	135749	16	240	330	1	FGTTI
210	135800	16	240	330	1	BCCHI	265	136F0B	16	240	330	1	BCHT I	419	135885	16	240	301	1	ACHTI
211	135030	16	240	330	1	DOGIIJ	200	136530	16	240	330	1		420	152000	16	240	201	1	
311	125075	16	240	220	1		300	120064	16	240	220	1		421	15350F	16	240	201	1	
312	136025	10 16	240 240	33V 220	⊥ 1	BGGD 1 DGGUJ	301	130004	16	240 010	33V	⊥ 1	BGD11 DGUT1	422	136715	16	240 240	0∠⊥ 201	1 1	лиц ЈЈ ТТТТЛ
313	126000E	10	24U 040	220	1		308	125404	10	24U 040	220	1 1		423		10 16	240	JZT 201	⊥ 1	AIIIJJ
314		10	240	330	1	DGGHJ	369		10	240	330	1	DOUT	424	1 OEFDA	10	240	ວ∠1 201	1	DGHHI
315	TOCROC	10	240	330	1	BGGHJ	370	13EB(5	10	240	330	1	BGHIJ	425	1 ACEOC	10	240	321 040	1	BGHII
316	130RAC	10	240 040	33U	1	BGGHJ	371		10	240 040	330	1	RCHIJ	426	140528	32	Z40	240 040	0	GGGGH
317	136C3A	16	240	330	1	BGGHJ	372	TREECB	16	240	330	1	RCHIJ	427	13FFC8	32	240	240	0	GGGHH
318	136E3A	16	240	330	1	BGGHJ	373	14A93C	16	240	330	1	RCHIJ	428	1308F4	16	240	240	0	GGGHL
319	13EEDA	16	240	330	1	BGGHJ	374	15396D	16	240	330	1	BGHIJ	429	13583F	16	240	240	0	GGGHJ
320	1569EA	16	240	330	1	BGGHJ	375	1569FD	16	240	330	1	BGHIJ	430	13E935	16	240	240	υ	GGGLJ

N	SP	S	H_1	H_2	H_3	LT	N	SP	S	H_1	H_2	H_3	LT	N	SP	S	H_1	H_2	H_3	LT
431	13EE6A	16	240	240	0	GGGIJ	486	1368BF	16	240	231	0	GGHHJ	541	13692D	16	231	231	0	GGIJJ
432	135B3C	16	240	240	0	GGGJJ	487	13EDA8	16	240	231	0	GGHHJ	542	1367CE	16	231	231	0	GHHIJ
433	13EE9A	16	240	240	0	GGGJJ	488	13EF6A	16	240	231	0	GGHHJ	543	1367EC	16	231	231	0	GHHIJ
434	136FC8	32	240	240	0	GGHHH	489	367AB5	16	240	231	0	GGHII	544	357ABE	16	231	231	0	GHHIJ
435	1358FD	16	240	240	0	GGHHH	490	13586C	16	240	231	0	GGHIJ	545	367ABF	32	222	321	1	BGGGG
436	13586D	16	240	240	0	GGHHT	491	135A2D	16	240	231	0	GGHTJ	546	13E7AC	16	160	330	2	BBGTT
137	1368FC	16	240	240	õ	CCHHT	101	13642D	16	240	231	Õ	GGHTI	547	143DF4	16	150	410	3	ARRII
130	136C2B	16	240	240	õ	ССНИТ	102	136CFA	16	240	231	Õ	CCHTI	5/9	143FDB	16	150	410	3	ABBIJ
430	136DFA	16	240	240	õ	ССНИТ	493	130865	16	240	231	0	CCHTI	540	1477AF	16	150	410	3	ABECH
439	125064	16	240	240	õ	CCUUI	494	125250	16	240	201	0	CCUII	545	1/1/700	16	150	110	3	ADECT
440	157044	20	240	240	0	COUTT	495	120000	16	240	201	0	CCUIT	550	1/1/200	16	150	410	2	ADEUU
441	157DR4	22	240	240	0	COULT	490	1250050	16	240	231	0	COTIT	551	142060	16	150	410	2	ADFIII
442	125/054	3Z 16	240	240	0		497	13092E	10	240	231	0	GGIJJ	552	143D0E	10	150	410	ა ი	ADEII
443	100AOD	10	240	240	0	GGHIJ	498	130700	10	240	231	0	GGIJJ	553	143005	10	150	410	3	ADFJJ
444	135BOF	10	240	240	0	GGHIJ	499	1307 EA	10	240	231	0	GGTJJ	554	14F7CA	10	150	410	3	BBBGJ
445	136E29	16	240	240	0	GGHIJ	500	IJE9A6	10	240	231	0	GHHHI	555	1437AC	10	150	410	3	RRRHI
446	136F2B	16	240	240	0	GGHIJ	501	13596D	16	240	231	0	GHHII	556	1437DB	16	150	410	3	BBBIJ
447	13CB75	16	240	240	0	GGHIJ	502	136F9B	16	240	231	0	GHHII	557	14279F	16	150	410	3	BBLCC
448	13CC65	16	240	240	0	GGHIJ	503	13EF9B	16	240	231	0	GHHII	558	1427AF	16	150	410	3	BBFGG
449	1539EA	16	240	240	0	GGHIJ	504	1359ED	16	240	231	0	GHHIJ	559	14779A	16	150	410	3	BBFGH
450	136CB8	16	240	240	0	GGHJJ	505	136A9D	16	240	231	0	GHHIJ	560	1477A9	16	150	410	3	BBFGH
451	13EB95	16	240	240	0	GGHJJ	506	13EA95	16	240	231	0	GHHIJ	561	14A7C9	16	150	410	3	BBFGI
452	157E9D	16	240	240	0	GGHJJ	507	135A6E	16	240	231	0	GHIIJ	562	143E69	16	150	410	3	BBFGJ
453	13C937	16	240	240	0	GGIIJ	508	13679B	16	240	231	0	GHIIJ	563	14F79C	16	150	410	3	BBFGJ
454	13593E	16	240	240	0	GGIJJ	509	1367B9	16	240	231	0	GHIIJ	564	143E6B	16	150	410	3	BBFHI
455	136B9D	16	240	240	0	GGIJJ	510	136DB9	16	240	231	0	GHIIJ	565	1437AF	16	150	410	3	BBFHJ
456	136D29	16	240	240	0	GGIJJ	511	13C7B9	16	240	231	0	GHIIJ	566	143D6A	16	150	410	3	BBFIJ
457	13EE65	16	240	240	0	GGIJJ	512	13C9A5	16	240	231	0	GHIIJ	567	1477A8	16	150	320	2	ABGGJ
458	136E9A	16	240	240	0	GGJJJ	513	13EA65	16	240	231	0	GHIIJ	568	153CFA	16	150	320	2	ABIII
459	13EFC6	16	240	240	0	GHHHI	514	357BAF	32	240	231	0	HHHII	569	157CEA	16	150	320	2	ABIII
460	5BFFDA	32	240	240	0	GHHII	515	357B9A	16	240	231	0	HHHII	570	14AB3C	16	150	320	2	ABIJJ
461	135A6F	16	240	240	0	GHHII	516	367B95	16	240	231	0	HHHIJ	571	13EE85	16	150	320	2	ABJJJ
462	136ACE	16	240	240	0	GHHTT	517	1569AF	32	231	510	3	ABBGG	572	14AB78	16	150	320	2	AFGGJ
463	13EFCB	16	240	240	0	GHHTT	518	1579BF	32	231	420	2	AAGTT	573	134A7C	16	150	320	2	AFHTI
464	156CEA	16	240	240	Õ	GHHTT	519	1347AC	16	231	420	2	ABHT.I	574	15BA79	16	150	320	2	AFHIJ
465	1359FC	16	240	240	õ	CHHT I	520	13446F	16	231	420	2	ARHTI	575	154069	16	150	320	2	AFTTT
466	13CDF6	16	240	240	õ	СННТТ	501	1369AF	16	231	420	2	ARTTI	576	3579CF	16	150	320	2	AFTTT
400	135565	16	240	240	Ň	СНИТІ	521	13/7BD	16	231	120	2	ABTIT	570	13/7FD	16	150	320	2	
407	135505	16	240	240	õ	СНИТІ	522	153051	16	231	420	2	AFCCT	571	13/075	16	150	320	2	AFTI
400	156105	16	240	240	0	CUUTI	525	1470EC	16	231	420	2	DECCU	570	126720	16	150	320	2	
409	15CACE	16	240	240	0		524	192710	16	201	220	<u>۲</u>		579	126710	16	150	200	2	AFIJJ
470	105090	10	240	240	0		525	1361 AO	10	231	220	1	AGGIJ	580	1507AF	10	150	320	2	AFIJJ
4/1	357 AD9	10	240	240	0	GUUIT	526	130020	10	231	220	1	AGGJJ	581	10DOE4	10	150	320	2	AFIJJ
472	153A9E	10	240	240	0	GHHJJ	527	136664	10	231	330	1	AGHIJ	582	130864	10	150	320	2	BBGGJ
473	135960	10	240	240	0	GHIIJ	528	13E9AC	10	231	330	1	AGIIJ	583	13EED8	10	150	320	2	BBGGJ
474	130975	16	240	240	0	GHIIJ	529	1349ED	16	231	330	1	AGIJJ	584	1437E8	16	150	320	2	BBGGJ
475	156DB9	16	240	240	0	GHIIJ	530	136A2F	16	231	330	1	AGIJJ	585	14779B	16	150	320	2	BBGGJ
476	13C9B5	16	240	240	0	GHIJJ	531	136DE4	16	231	330	1	AGIJJ	586	13EBD4	16	150	320	2	BBGHH
477	13CD65	16	240	240	0	GHIJJ	532	13C8A5	16	231	330	1	BGGHJ	587	136BDE	16	150	320	2	BBGHI
478	13CD75	16	240	240	0	GHIJJ	533	13E8AC	16	231	330	1	FGGGI	588	136CFA	16	150	320	2	BBGHI
479	157DA9	16	240	240	0	GHIJJ	534	1579FD	16	231	330	1	FGGGI	589	13DB75	16	150	320	2	BBGHI
480	1369BF	16	240	240	0	GIIJJ	535	136CE4	16	231	330	1	FGGHI	590	156CFA	16	150	320	2	BBGHI
481	367B9C	32	240	240	0	HHHJJ	536	136EC4	16	231	330	1	FGGIJ	591	1368FD	16	150	320	2	BBGHJ
482	13582F	16	240	231	0	GGGHJ	537	15397A	16	231	330	1	FGGIJ	592	136FD8	16	150	320	2	BBGHJ
483	13682F	16	240	231	0	GGGHJ	538	13EB65	16	231	231	0	GGGIJ	593	13D8E4	16	150	320	2	BBGHJ
484	135B2C	16	240	231	0	GGGJJ	539	136B2F	16	231	231	0	GGGJJ	594	13DDE7	16	150	320	2	BBGHJ
485	135B6F	16	240	231	0	GGHHI	540	13C965	16	231	231	0	GGIIJ	595	13E874	16	150	320	2	BBGHJ

N	SP	S	H_1	H_2	H_3	LT	N	SP	S	H_1	H_2	H_3	LT	N	SP	S	H_1	H_2	H_3	LT
596	13E8B7	16	150	320	2	BBGHJ	651	1569FA	16	150	320	2	BFGHI	706	143F6C	16	150	230	1	BGHJJ
597	13EF7A	16	150	320	2	BBGHJ	652	143A6F	16	150	320	2	BFGHJ	707	14F96C	16	150	230	1	BGHJJ
598	1477DF	16	150	320	2	BBGHJ	653	143CAF	16	150	320	2	BFGHJ	708	157F39	16	150	230	1	BGHJJ
599	1477EC	16	150	320	2	BBGHJ	654	143DBE	16	150	320	2	BFGHJ	709	35AFE6	16	150	230	1	BGHJJ
600	147CEB	16	150	320	2	BBGHJ	655	14B79C	16	150	320	2	BFGHJ	710	153CEA	16	150	230	1	BGIII
601	136BD4	16	150	320	2	BBGIJ	656	14B9EC	16	150	320	2	BFGHJ	711	136DEB	16	150	230	1	BGIIJ
602	136ED8	16	150	320	2	BBGLI	657	1357F9	16	150	320	2	BEGIT	712	13CA75	16	150	230	1	BGTTJ
603	13DA64	16	150	320	2	BBGTI	658	136AD4	16	150	320	2	BEGIT	713	13D9E4	16	150	230	1	BGITI
604	13E875	16	150	320	2	BBGLI	659	1367D8	16	150	320	2	BEGII	714	13EA9C	16	150	230	1	BGTTJ
605	13EDB8	16	150	320	2	BBGTI	660	1367FA	16	150	320	2	BFGII	715	1549FD	16	150	230	1	BGITI
606	13FF7B	16	150	320	2	BRGII	661	13D7B8	16	150	320	2	BEGII	716	154036	16	150	230	1	BGITI
607	14RFCQ	16	150	320	2	BRGTI	660	143C6B	16	150	320	2	BECTI	710	1357FC	16	150	230	1	BGTII
609	156CBF	16	150	320	2	BRGII	663	153CAF	16	150	320	2	BECTI	710	136DB4	16	150	230	1	BGTII
600	136050	16	150	320	2	DDGIJ	664	1/2065	16	150	320	2	DECII	710	136500	16	150	230	1	DGIJJ
610	130DFA	16	150	320	2		004 665	1/07/0	16	150	320	2	DECII	719	130007	16	150	230	1	DGIJJ
610	120074	16	150	220	2		005		16	150	220	2	DECII	720		16	150	230	1	DGIJJ
611	195574	16	150	320	2		000	156105	16	150	320	2		721	1255000	16	150	230	1	DGIJJ
612	10EE/A	16	150	320	2		667	150ADE	16	150	320	2		722	15EEC9	16	150	230	1	DGIJJ
613	135507	10	150	320	2	BBGJJ	668		10	150	320	2	DETTT	723	150190	10	150	230	1	BGIJJ
614	143/95	10	150	320	2	BBGJJ	669	13D/A9	10	150	320	2	BFIII	724	15AE9D	10	150	230	1	BGIJJ
615	13DCF/	10	150	320	2	RRHHI	670	135870	10	150	320	2	FFGGH	725	IJEEC7	10	150	230	1	BGJJJ
616	13ECB9	16	150	320	2	RRHHT	671	1358/1	16	150	320	2	FFGGJ	726	143068	16	150	230	1	RGJJJ
617	13EC/4	10	150	320	2	BBHHJ	672	135978	10	150	320	2	FFGHI	727	TORAED	10	150	230	1	BGJJJ
618	1369FC	10	150	320	2	RRHII	673	153C/A	10	150	320	2	FFGII	728	136CFB	10	150	230	1	BHHHI
619	13E974	16	150	320	2	RRHII	674	135A/C	16	150	320	2	FFGIJ	729	13DA75	16	150	230	1	BHHII
620	13E9B6	16	150	320	2	BBHII	675	14AB97	16	150	230	1	AGJJJ	730	13EFD6	16	150	230	1	BHHII
621	156DFB	16	150	320	2	RRHII	676	157CBF	16	150	230	1	AHIIJ	731	136ED9	16	150	230	1	BHHIJ
622	136ADF	16	150	320	2	BBHIJ	677	13EF85	16	150	230	1	AHJJJ	732	13D9E5	16	150	230	1	BHHIJ
623	13D9F5	16	150	320	2	BBHIJ	678	13DB64	16	150	230	1	BGGHJ	733	13DCE7	16	150	230	1	BHHIJ
624	13EC75	16	150	320	2	BBHIJ	679	13EE94	16	150	230	1	BGGHJ	734	13DCF6	16	150	230	1	BHHIJ
625	13ED74	16	150	320	2	BBHIJ	680	143CEB	16	150	230	1	BGGIJ	735	367F9A	16	150	230	1	BHHIJ
626	156BDF	16	150	320	2	BBHIJ	681	13C9F4	16	150	230	1	BGHHI	736	13DCA5	16	150	230	1	BHHJJ
627	157DEB	16	150	320	2	BBHIJ	682	13EED6	16	150	230	1	BGHHJ	737	156E3A	16	150	230	1	BHHJJ
628	357F9B	16	150	320	2	BBHIJ	683	13EF94	16	150	230	1	BGHHJ	738	357ECF	16	150	230	1	BHIII
629	13DCA4	16	150	320	2	BBHJJ	684	147ADF	16	150	230	1	BGHHJ	739	35AD69	16	150	230	1	BHIII
630	13DDF7	16	150	320	2	BBHJJ	685	136FC9	16	150	230	1	BGHII	740	1369FD	16	150	230	1	BHIIJ
631	143E6D	16	150	320	2	BBHJJ	686	13DB65	16	150	230	1	BGHII	741	13DA65	16	150	230	1	BHIIJ
632	156F3B	16	150	320	2	BBHJJ	687	13EAD4	16	150	230	1	BGHII	742	13DCE6	16	150	230	1	BHIIJ
633	1369F4	16	150	320	2	BBIIJ	688	13EFC9	16	150	230	1	BGHII	743	13E975	16	150	230	1	BHIIJ
634	13D7B9	16	150	320	2	BBIIJ	689	157CFA	16	150	230	1	BGHII	744	13EDB9	16	150	230	1	BHIIJ
635	13DA74	16	150	320	2	BBIIJ	690	1357FD	16	150	230	1	BGHIJ	745	156C3A	16	150	230	1	BHIIJ
636	156D3B	16	150	320	2	BBIIJ	691	136BDF	16	150	230	1	BGHIJ	746	15AD36	16	150	230	1	BHIIJ
637	13D9F4	16	150	320	2	BBIJJ	692	136CEB	16	150	230	1	BGHIJ	747	357ACE	16	150	230	1	BHIIJ
638	13DDF6	16	150	320	2	BBIJJ	693	136F94	16	150	230	1	BGHIJ	748	357BDF	16	150	230	1	BHIIJ
639	143D6E	16	150	320	2	BBJJJ	694	13CA74	16	150	230	1	BGHIJ	749	367BDE	16	150	230	1	BHIIJ
640	147CAF	16	150	320	2	BFGGH	695	13D7A8	16	150	230	1	BGHIJ	750	136ADE	16	150	230	1	BHIJJ
641	1357E8	16	150	320	2	BFGGI	696	13ECA9	16	150	230	1	BGHIJ	751	13EAD5	16	150	230	1	BHIJJ
642	1368F4	16	150	320	2	BFGGI	697	13EE6B	16	150	230	1	BGHIJ	752	13ED75	16	150	230	1	BHIJJ
643	14AC79	16	150	320	2	BFGGI	698	13EED9	16	150	230	1	BGHIJ	753	13EF7B	16	150	230	1	BHIJJ
644	143F68	16	150	320	2	BFGGJ	699	13EFC7	16	150	230	1	BGHIJ	754	13EFD7	16	150	230	1	BHIJJ
645	14BA97	16	150	320	2	BFGGJ	700	1579EA	16	150	230	1	BGHIJ	755	153A6E	16	150	230	1	BHIJJ
646	1437EB	16	150	320	2	BFGHI	701	15ADE6	16	150	230	1	BGHIJ	756	153B6F	16	150	230	1	BHIJJ
647	143ECB	16	150	320	2	BFGHI	702	13CCA5	16	150	230	1	BGHJJ	757	153DAE	16	150	230	1	BHIJJ
648	143F6A	16	150	320	2	BFGHI	703	13CCE7	16	150	230	1	BGHJJ	758	156F39	16	150	230	1	BHIJJ
649	143FDA	16	150	320	2	BFGHI	704	13DCB4	16	150	230	1	BGHJJ	759	357FDE	16	150	230	1	BHIJJ
650	14BCE9	16	150	320	2	BFGHI	705	13DDE6	16	150	230	1	BGHJJ	760	157ADE	16	150	230	1	BHJJJ

N	SP	S	H_1	H_2	H_3	LT	N	SP	S	H_1	H_2	H_3	LT	N	SP	S	H_1	H_2	H_3	LT
761	1367FB	16	150	230	1	BIIJJ	816	157DAE	16	150	140	0	GHIJJ	871	136CF4	16	141	320	2	ABHIJ
762	136DFB	16	150	230	1	BIIJJ	817	15AB96	16	150	140	0	GHIJJ	872	136ED4	16	141	320	2	ABIJJ
763	153C6F	16	150	230	1	BIIJJ	818	15BA69	16	150	140	0	GHIJJ	873	14BA79	16	141	320	2	AFGIJ
764	153D6E	16	150	230	1	BIIJJ	819	13EF95	16	150	140	0	GHJJJ	874	13486F	16	141	320	2	AFGJJ
765	15AF36	16	150	230	1	BIIJJ	820	15BE9D	16	150	140	0	GHJJJ	875	13E78C	16	141	320	2	AFIIJ
766	13E9B7	16	150	230	1	BIJJJ	821	15BD69	16	150	140	0	GIIIJ	876	15BD79	16	141	320	2	AFIIJ
767	15AE36	16	150	230	1	BTITI	822	367405	16	150	140	0	GIILI	877	13446D	16	141	320	2	AFLI
768	136CB4	16	150	230	1	FCCHT	822	367FCF	16	150	140	Õ	GTTTT	878	157DRF	16	141	320	2	AFTII
760	14BC69	16	150	230	1	FCCHI	824	1309F5	16	150	140	õ	GTTTT	870	156DFB	16	141	320	2	RRGGT
770	14RFQC	16	150	230	1	FCCHI	825	135065	16	150	140	Õ	CTTTT	880	1479FA	16	141	320	2	BECCH
774	122701	16	150	230	1	FCCTT	020	135040	16	150	140	0	CTTTT	000	120750	16	1/1	320	2	DECCT
770	126E04	16	150	230	1	FGGII	820	15LDR9	16	150	140	0	CTTTT	001	125704	16	1/1	200	2	DECCT
772	1250694	16	150	230	1	FGGIJ	827		16	150	140	0	GIIJJ	882	14E07C	16	1/1	320	2	DECCI
113	13ED9C	10	150	230	1	FGGIJ	828	10AD/9	10	150	140	0	GIIJJ	883	145970	10	141	320	2	BFGGJ
774	35FABO	10	150	230	T	FGHHI	829	367 DB5	10	150	140	0	GIIJJ	884	135780	10	141	320	2	BFGHI
775	128430	16	150	230	T	FGHHJ	830	307EB9	10	150	140	0	GIIJJ	885	136FD4	10	141	320	2	BFGHI
776	156DBE	16	150	230	1	FGHII	831	13CDF7	16	150	140	0	GIJJJ	886	13E/B8	16	141	320	2	BFGHI
777	15ADE9	16	150	230	1	FGHII	832	157E9A	16	150	140	0	GIJJJ	887	143A6D	16	141	320	2	BFGHJ
778	1357ED	16	150	230	1	FGHIJ	833	13CDA5	16	150	140	0	GJJJJ	888	156BCF	16	141	320	2	BFGHJ
779	13679C	16	150	230	1	FGHIJ	834	367EFD	16	150	140	0	HHIII	889	1357AC	16	141	320	2	BFGIJ
780	1367BE	16	150	230	1	FGHIJ	835	367DFA	16	150	140	0	HHIJJ	890	136DF4	16	141	320	2	BFGIJ
781	157ACE	16	150	230	1	FGHIJ	836	367EF5	16	150	140	0	HIIII	891	1367DE	16	141	320	2	BFHHI
782	157E3A	16	150	230	1	FGHIJ	837	367EC5	16	150	140	0	HIIIJ	892	1367FC	16	141	320	2	BFHHI
783	15AF9C	16	150	230	1	FGHIJ	838	357AFB	16	150	140	0	HIIJJ	893	357F9C	16	141	320	2	BFHHI
784	153A7E	16	150	230	1	FGHJJ	839	357BEA	16	150	140	0	HIIJJ	894	13E9BC	16	141	320	2	BFHII
785	153B7F	16	150	230	1	FGHJJ	840	35ACE6	16	150	140	0	HIIJJ	895	14B93E	16	141	320	2	FFGGJ
786	156E9A	16	150	230	1	FGHJJ	841	35ACED	16	150	140	0	HIIJJ	896	15397F	16	141	320	2	FFGGJ
787	1367C9	16	150	230	1	FGIIJ	842	367F95	16	150	140	0	HIIJJ	897	153A7C	16	141	320	2	FFGHH
788	1367EB	16	150	230	1	FGIIJ	843	35ADCE	16	150	140	0	HIJJJ	898	157DFB	16	141	230	1	AGIIJ
789	13C7A9	16	150	230	1	FGIIJ	844	367C9B	16	150	140	0	HIJJJ	899	367ACF	16	141	230	1	BGGII
790	157CAF	16	150	230	1	FGIIJ	845	367FD5	16	150	140	0	HIJJJ	900	1368ED	16	141	230	1	BGGIJ
791	15BE36	16	150	230	1	FGIIJ	846	367BEC	16	150	140	0	HJJJJ	901	13C7EA	16	141	230	1	BGGIJ
792	367AFB	16	150	230	1	FGIIJ	847	367DFC	16	150	140	0	IIJJJ	902	13C8E5	16	141	230	1	BGGJJ
793	1357FC	16	150	230	1	FGTJJ	848	367FDE	16	150	140	0	TTJJJ	903	13E8A7	16	141	230	1	BGGJJ
794	153C7F	16	150	230	1	FGLU	849	13586F	16	150	131	Õ	GGH.I.I	904	14BA3D	16	141	230	1	BGG.LI
795	153D7E	16	150	230	1	FGTII	850	135B6C	16	150	131	õ	GGIII	905	13E8BC	16	141	230	1	BGHTI
796	157F9B	16	150	230	1	FGTII	851	13F79B	16	150	131	Õ	GHTTI	906	136ACF	16	141	230	1	BGTTI
707	155046	16	150	230	1	FCTII	001	135460	16	150	131	Ň	CHIII	007	135017	16	1/1	230	1	BCITI
700	367CQD	16	150	230	1	гатта	002	157BCE	16	150	131	0	CHIIJ	907	157031	16	1/1	230	1	BGIIJ
700	367BEA	16	150	230	1		000	155560	16	150	131	Ň	CHITI	900	357FBF	16	1/1	230	1	BCITI
199	15750D	16	150	200	1		054	125065	16	150	121	0	CTTTT	909	267CD0	16	1/1	230	1	DGIIJ
008	127700	16	150	221	1	AJJJJ	855	126700	16	150	101	0	GIJJJ	910	367EED	16	141	230	1	DGIIJ
801	1360EC	10	150		1	BGHIJ	856	130/9D	10	150	101	0	GIJJJ	911	12EACE	10	141	230	1	BGIIJ
802	1308FC	10	150	221	T	BGHJJ	857	130/BF	10	150	131	0	GTJJJ	912	13EAC5	10	141	230	1	BGIJJ
803	13EFD9	10	150	221	T	RHIII	858	35ADC9	10	150	131	0	HIIIJ	913	157D3B	10	141	230	1	BGIJJ
804	136FD9	16	150	221	1	RHIIJ	859	35FAB9	16	150	131	0	HIIIJ	914	13E/B9	16	141	230	1	RHIIJ
805	35AFEC	16	150	221	1	BHIIJ	860	367DC5	16	150	131	0	HIIIJ	915	1367DF	16	141	230	1	BHIJJ
806	357FAE	16	150	221	1	BHIJJ	861	367DCE	16	150	131	0	HIIIJ	916	13C7FA	16	141	230	1	FGGHI
807	1367D9	16	150	221	1	BIIJJ	862	367EC9	16	150	131	0	HIIIJ	917	13E7A9	16	141	230	1	FGGII
808	357AC9	16	150	221	1	FHHII	863	367BD5	16	150	131	0	HIIJJ	918	15BD36	16	141	230	1	FGGII
809	357AFC	16	150	221	1	FHHII	864	367DF5	16	150	131	0	HIIJJ	919	367AC9	16	141	230	1	FGGII
810	35FB9D	16	150	221	1	FHIIJ	865	35ABE6	16	150	131	0	HIJJJ	920	367EBF	16	141	230	1	FGGII
811	14BA69	16	150	140	0	GGIJJ	866	14A86F	32	141	410	3	AABJJ	921	153DBE	16	141	230	1	FGGIJ
812	13EE95	16	150	140	0	GGJJJ	867	15BF8C	32	141	410	3	ABBJJ	922	1579FA	16	141	230	1	FGGIJ
813	13CDF6	16	150	140	0	GHIIJ	868	143B6C	16	141	410	3	ABFHJ	923	15A9ED	16	141	230	1	FGGIJ
814	13EF6B	16	150	140	0	GHIIJ	869	156CAF	16	141	410	3	ABFII	924	15B9FD	16	141	230	1	FGGIJ
815	13EC65	16	150	140	0	GHIJJ	870	156F8B	16	141	410	3	ABFJJ	925	367DBE	16	141	230	1	FGGIJ

N	SP	S	H_1	H_2	H_3	LT	N	SP	S	H_1	H_2	H_3	LT	N	SP	S	H_1	H_2	H_3	LT
926	15A9E6	16	141	230	1	FGGJJ	981	14BF97	16	060	220	2	FFGGJ	1036	13D7FA	16	051	220	2	BFGIJ
927	13E96C	16	141	230	1	FGHII	982	17AF9C	16	060	220	2	FFGHJ	1037	13E87C	16	051	220	2	BFGIJ
928	1367CF	16	141	230	1	FGHIJ	983	15BC6F	16	060	220	2	FFGIJ	1038	13D8F6	16	051	220	2	BFGJJ
929	1367ED	16	141	230	1	FGHIJ	984	16BF9C	16	060	220	2	FFGJJ	1039	13EBD7	16	051	220	2	BFGJJ
930	157F3B	16	141	230	1	FGHJJ	985	57EC6D	96	060	220	2	FFHHH	1040	15B9E6	16	051	220	2	BFGJJ
931	367F9C	16	141	230	1	FGHJJ	986	35FA6B	16	060	220	2	FFHHI	1041	1B57ED	16	051	220	2	BFGJJ
932	15BF36	16	141	230	1	FGIJJ	987	36ABE7	16	060	220	2	FFHHJ	1042	1B57FD	16	051	220	2	BFGJJ
933	13EB6C	16	141	221	1	BGGIJ	988	14BF68	16	060	130	1	BGGJJ	1043	13ECB6	16	051	220	2	BFHHJ
934	13C7F9	16	141	221	1	BGIIJ	989	15ACF6	16	060	130	1	BHIIJ	1044	13D7EB	16	051	220	2	BFHII
935	1367FD	16	141	221	1	BHIJJ	990	15ADF6	16	060	130	1	BHIIJ	1045	35AEF6	16	051	220	2	BFHIJ
936	35ADF9	16	141	221	1	FGGHI	991	36CEBF	16	060	130	1	BIIIJ	1046	35AFDE	16	051	220	2	BFHIJ
937	13EBC6	16	141	221	1	FGGHJ	992	36FEBD	16	060	130	1	BIIIJ	1047	15EAD6	16	051	220	2	BFHJJ
938	13C9E6	16	141	221	1	FGHIJ	993	15ECB6	16	060	130	1	BIJJJ	1048	15EB7D	16	051	220	2	BFHJJ
939	357BED	16	141	221	1	FGHTJ	994	15EFD6	16	060	130	1	BTJJJ	1049	15FAD6	16	051	220	2	BFH.I.J
940	13C7AE	16	141	221	1	FGTLI	995	15AD7E	16	060	130	1	FGLLI	1050	35AFD9	16	051	220	2	BFITT
941	13C8F6	16	141	131	ō	GGHII	996	15AF79	16	060	130	1	FGIII	1051	13D7AF	16	051	220	2	BETTI
942	13E865	16	141	131	õ	GGTTJ	997	16AE9D	16	060	130	1	FGLU	1052	35FE6D	16	051	220	2	BFILI
943	13CB65	16	141	131	õ	GGTIJ	998	15AE96	16	060	130	1	FGIII	1053	13ED7B	16	051	220	2	BFIII
011	136BCF	16	141	131	õ	GGIII	000	158F96	16	060	130	1	FGIII	1054	13FDB7	16	051	220	2	REIII
0/5	13FBC5	16	141	131	õ	GGIII	1000	364FF9	16	060	130	1	FHTTT	1055	15FB7D	16	051	220	2	FEGHI
940	13FD64	16	141	131	õ	CCIII	1000	35ARFD	16	060	130	1	FULLI	1055	135047	16	051	220	2	FEGHI
940	367CDF	16	141	131	õ	CHITI	1001	35ADE6	16	060	130	1	FHIIJ	1050	15FBC6	16	051	220	2	FEGHI
0/9	153CBF	16	141	131	õ	CHTII	1002	36ABD5	16	060	130	1	FHIIJ	1059	15FCB6	16	051	220	2	FEGII
040	367AFD	16	141	131	õ	CHTII	1003	36AFD5	16	060	130	1	FHIJJ	1050	36FFB7	16	051	220	2	FFUIJ
949	1350/810	16	1/1	131	õ	CHIII	1004	37DF6F	16	060	130	1		1060		16	051	220	2	PRTTI
950	15FBC6	16	141	131	õ	CHIII	1005	36ADE7	16	060	130	1	FHIJJ	1061	13D7FA	16	051	130	1	BGTTI
951	13C7FB	16	141	131	õ	CTTTI	1000	36AFF7	16	060	130	1	FHIJJ	1062	145961	16	051	130	1	BGIII
053	130465	16	141	131	õ	CTTTT	1007	36CDB5	16	060	130	1	FTTTT	1062	13FAD6	16	051	130	1	BHTII
955	13F965	16	141	131	õ	GTTTT	1000	36CFB9	16	060	130	1	FTTTT	1064	13D9F6	16	051	130	1	BTIT
954	1369FD	16	141	131	õ	CTIT	1010	36CE97	16	060	130	1	FIIJJ	1065	13FC6B	16	051	130	1	FCHT I
056	130955	16	141	131	õ	CTIT	1010	145528	320	060	040	Ō	CCCCC	1066	361000	16	051	130	1	FGTTT
950	367005	16	141	131	õ	нтттт	1011	DFFF7B	64	060	040	õ	GIIII	1067	374FD9	16	051	130	1	FGITI
059	367055	16	141	131	õ	нтттт	1012	37DFRF	30	060	040	õ	нтттт	1069	13C7FB	16	051	130	1	FGITI
950 950	367CFD	16	141	122	õ	HTTTT	1013	364005	16	060	040	õ	TTTTT	1060	13F7C9	16	051	130	1	FGITI
960	1447F9	16	060	400	4	RRRFT	1015	14FBD7	16	051	310	3 3	ARFII	1070	15BDF6	16	051	130	1	FGITI
961	145749	16	060	400	4	BBBFI	1016	15BC7F	16	051	310	3	AFFT I	1070	36CDBF	16	051	130	1	FGITI
060	14179F	16	060	310	3	BBBC I	1010	158F79	16	051	310	२ २	AFFTI	1071	130955	16	051	130	1	FGTII
963	14FD6A	16	060	310	3	BBBII	1017	15BF86	16	051	310	3	AFFIJ	1072	15FE7D	16	051	130	1	FGIII
967	15FC7A	16	060	310	3	BBFTI	1010	13D7F9	16	051	310	3	RRFTT	1074	37ACDE	16	051	130	1	FHITT
965	14F794	16	060	310	3	BEEGI	1013	13F47C	16	051	310	3	BRETT	1075	364FFD	16	051	130	1	FILII
066		30	060	220	2	BRCII	1020	135074	16	051	310	२ २	BEECH	1076		16	051	121	1	BITTI
900	1B6FD8	32	060	220	2	BBHII	1021	15FD7B	16	051	310	3	BEEGI	1070	354FF9	16	051	121	1	BITIJ
069	106538	32	060	220	2	BBHII	1022	1447CF	16	051	310	२ २	BEEGI	1079	135790	16	051	121	1	FGITI
900	1/1/7DF	16	000	220	2	BBIII	1023	156470	16	051	310	3	BEEND	1070	361005	16	051	101	1	CUTTT
909		16	000	220	2	DD J J J	1024	130057	16	051	310	3	BEEUT	1019	36CFF7	80	051	050	0	11111
071	1/BE60	16	000	220	2	BECTI	1025	1/FB6C	16	051	220	2	ARTIT	1000	37FDBC	61	051	031	Ň	<u> </u>
971	14DE09	16	000	220	2	BECII	1020	130758	16	051	220	2	ADJJJ	1001	SACEDE	16	051	031	0	пјјјј
912		16	000	220	2	DECII	1027		16	051	220	2	DDGIJ	1002	371000	16	051	031	0	
913	17BFQD	16	000	220	2	BECII	1020	135070	16	051	220	2	BBIIJ	1003	374550	16	051	031	0	
914 075		10 16	000	∠∠∪ วา∩	∠ ^	DLAJJ	1029	1/B06E	16		∠∠∪ 220	∠ ೧	BEGGI	1005		30 TO	001	100	1	VBEEG
915	15BDE6	16	000	∠∠∪ วว∩	∠ ົ	ргитт	1030	13E2D0E	16	051	∠∠∪ 220	∠ ೧	BEGRI	1000	722511 197911	ง∠ วา	042	400 220	+ 0	RECTT
910 077	327550	16	060	220 220	∠ ົ	велтт	1020	15BCE6	16	051	220 220	∠ ົ	BEGUI	1007	130957	16	042	220 220	∠ ົ	PDGII
911 070	15FF7C	16	060	∠∠∪ 220	∠ ົ	вентт	1022	130857	16	051	∠∠0 220	∠ ົ	BEGUI	1000	145071	16	042	220 220	∠ ົ	FECCI
910	155016	16	060	∠∠∪ 220	∠ ົ	BELII DUUJJ	1024		16	051	∠∠0 220	∠ ົ	BEGUI	1000	136107	16	042	220 220	∠ ົ	FECTI
980	14AC7F	16	060	220	2	FFGGI	1034	15FA7C	16	051	220	2	BFGHI	1099	36ACD5	16	042	121	<u>د</u> 1	FGTTT
							1000			~ ~ -				1000			~		-	0

TABLE 3 (conclusion).

N	SP	S	H_1	H_2	H_3	LT	N	SP	S	H_1	H_2	H_3	LT	N	SP	S	H_1	H_2	H_3	LT
1091	53FF35	32	510	820	3	AGHHAA	1118	56FF95	16	240	340	1	BHIJGG	1145	56CCF5	16	141	420	3	FHIIBB
1092	53FFCA	64	430	630	2	AAGGGG	1119	56FF9A	16	240	340	1	BHIJGG	1146	36AAF9	16	141	330	2	BFGIII
1093	53AA35	16	420	630	2	GHIJAA	1120	36AC65	16	240	340	1	BIIJGG	1147	35AAF9	16	141	330	2	BFHIGG
1094	53FF3A	16	420	540	1	AGHHGG	1121	36CC65	16	240	340	1	FIIJGG	1148	53AC35	16	141	330	2	GHIJBB
1095	5CFF3A	64	420	450	0	HHHHGG	1122	53FAC5	16	240	250	0	GHHJII	1149	53AF36	16	141	240	1	AIIJII
1096	56CC65	48	330	620	3	FIIIAA	1123	53AA6F	16	240	250	0	HHHIII	1150	56CA6F	16	141	240	1	BGHIII
1097	53AA9F	16	330	440	1	AHIIGG	1124	56FF3A	16	240	250	0	HHHJII	1151	36AACF	16	141	240	1	BGHJII
1098	53FF36	16	330	440	1	AHIJGG	1125	53AA36	16	240	250	0	HIIJGG	1152	36CC6F	16	141	240	1	BIJJGG
1099	56FF35	16	330	440	1	BGHHGG	1126	56AF95	16	240	250	0	HIJJII	1153	36AF65	16	141	240	1	BIJJII
1100	56FA65	16	330	440	1	BGIJGG	1127	56AA3F	16	240	241	0	GHHJII	1154	56CF35	16	141	240	1	FGHIII
1101	56AF35	16	330	350	0	GHJJGG	1128	53AFC5	16	231	340	1	AGHIII	1155	36CF65	16	141	240	1	FIJJII
1102	53AA65	16	330	350	0	HHIIGG	1129	53FF6A	16	231	340	1	AGHJII	1156	56AC35	16	141	150	0	GIJJII
1103	53AA3F	16	330	350	0	HHIJGG	1130	56FAC5	16	231	340	1	BGGJII	1157	36AAC5	16	141	150	0	GJJJII
1104	53FA65	16	330	350	0	HHIJGG	1131	36AA65	16	231	340	1	BGIJGG	1158	53AC36	16	141	150	0	HIIJII
1105	53FA35	16	330	341	0	GHHHGG	1132	56CA65	16	231	340	1	FGIIGG	1159	36FF65	16	132	330	2	BFIJGG
1106	56FF65	16	321	620	3	BHIJAA	1133	36AAC9	16	231	340	1	FGIJGG	1160	56AAC9	16	132	240	1	FGGIII
1107	53AF35	16	321	440	1	AGIJGG	1134	56FF6A	32	231	250	0	HHJJGG	1161	36CC9F	32	070	230	2	BBIIII
1108	56AACF	16	321	440	1	BGGHGG	1135	56CC6F	16	150	420	3	BIIJBB	1162	35FFAC	128	061	410	4	BBBBGG
1109	56AA35	16	321	350	0	GGJJGG	1136	36FC65	16	150	330	2	BFIIII	1163	35AAFC	32	051	230	2	FFHHII
1110	53FF9A	16	250	430	2	ABGIII	1137	36CC69	16	150	330	2	HIJJBB	1164	39FF65	16	051	230	2	FFHIII
1111	59FF9A	32	250	430	2	BBIIGG	1138	36AC69	16	150	240	1	BHIIII	1165	36FF95	16	051	140	1	BJJJII
1112	53FF39	16	240	520	3	AHIJBB	1139	35AA69	16	150	240	1	BHIJII	1166	35AAF6	16	051	140	1	FHJJII
1113	56FFC5	16	240	520	3	BGHHBB	1140	36AC6F	16	150	240	1	BHIJII	1167	39CC6F	32	051	050	0	JJJJII
1114	53AAC5	16	240	430	2	GHIJBB	1141	35AAC9	16	150	240	1	FHIJII	1168	35FF6C	16	042	320	3	BBFJII
1115	53AF95	16	240	340	1	AIIJII	1142	53AA96	16	150	150	0	HHIIII	1169	36FF6A	16	042	320	3	FHJJBB
1116	53AACF	16	240	340	1	BGHIII	1143	53FA36	16	150	150	0	HHIJII	1170	36FF6C	32	042	230	2	FFJJGG
1117	59FF3A	16	240	340	1	BHHIII	1144	36AA6F	32	141	420	3	BGHHBB	1171	36FF9C	32	042	230	2	FFJJGG

TABLE 4. Non-orientable, 6 cusped, minimal volume, integral, congruence 2, hyperbolic 4-manifolds.

headed by SP lists the side-pairing for the manifold in a coded form that is explained in Section 5. The column headed by S lists the number of symmetries of the manifolds. All the manifolds have a subgroup of symmetries corresponding to K^4 . Therefore, the number of symmetries is a multiple of 16. The possible orders are 16, 32, 48, 64, 80, 96, 128, and 320. Only manifold number 1011 has a symmetry group of order 320.

The column of Tables 2–4 headed by H_i lists the *i*-th homology groups of the manifolds with the 3 digit number *abc* representing $\mathbb{Z}^a \oplus \mathbb{Z}_2^b \oplus \mathbb{Z}_4^c$ and the single digit entry *a* representing \mathbb{Z}^a .

The column headed by LT lists the link types of the cusps of the manifolds. Here A, B, ..., J represent the 10 closed Euclidean 3-manifolds in the order given by Hantzsche and Wendt [1935]. The orientable manifolds are A, ..., F with A the 3-torus and F the Hantzsche–Wendt 3-manifold [Zimmermann 1990]. Only C, D, and E do not occur as links of cusps of our manifolds. The closed Euclidean 3-manifolds are identified by their homology [Hantzsche and Wendt 1935]. Manifold 1162 is the hyperbolic 24-cell space in [Ratcliffe 1994, p. 510]. Tables 2–4 give some indication of the diversity of hyperbolic 4-manifolds of finite volume.

ELECTRONIC AVAILABILITY

Plain text files of Tables 1–4 are available at ftp://math.vanderbilt.edu/users/tschantz/mantabs. The files are 3mantab.txt and 4mantab.txt.

REFERENCES

- [Bianchi 1892] L. Bianchi, "Sui gruppi di sostituzioni lineari con coefficienti appartenenti a corpi quadratici immaginari", Math. Ann. 40 (1892), 332–412.
- [Brunner et al. 1984] A. M. Brunner, M. L. Frame, Y. W. Lee, and N. J. Wielenberg, "Classifying torsion-free subgroups of the Picard group", *Trans. Amer. Math.* Soc. 282:1 (1984), 205–235.
- [Coxeter and Whitrow 1950] H. S. M. Coxeter and G. J. Whitrow, "World-structure and non-Euclidean

honeycombs", Proc. Roy. Soc. London. Ser. A. 201 (1950), 417–437.

- [Davis 1985] M. W. Davis, "A hyperbolic 4-manifold", Proc. Amer. Math. Soc. 93:2 (1985), 325–328.
- [Fricke 1891] R. Fricke, "Ueber eine besondere Classe discontinuirlicker Gruppen reeller linearer Substitutionen", Math. Ann. 38 (1891), 50–81.
- [Gibbons 1996] G. W. Gibbons, "Tunnelling with a negative cosmological constant", Nuclear Phys. B 472:3 (1996), 683–708.
- [Gromov 1982] M. Gromov, "Volume and bounded cohomology", Publ. Math. Inst. Hautes Études Sci. 56 (1982), 5–99.
- [Hantzsche and Wendt 1935] W. Hantzsche and H. Wendt, "Dreidimensionale euklidische Raumformen", Math. Ann. 110 (1935), 593–611.
- [Hilden et al. 1992] H. M. Hilden, M. T. Lozano, and J. M. Montesinos-Amilibia, "On the Borromean orbifolds: geometry and arithmetic", pp. 133–167 in *Topology* '90 (Columbus, OH, 1990), edited by B. Apanasov et al., de Gruyter, Berlin, 1992.
- [Hopf 1926] H. Hopf, "Über die curvatura integra Clifford-Kleinscher Raumformen", Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl. (1926), 131-141.
- [Milnor 1982] J. Milnor, "Hyperbolic geometry: the first 150 years", Bull. Amer. Math. Soc. (N.S.) 6:1 (1982), 9-24.
- [Newman 1972] M. Newman, Integral matrices, Pure and Applied Mathematics 45, Academic Press, New York, 1972.

- [Ratcliffe 1994] J. G. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Math. 149, Springer, New York, 1994.
- [Ratcliffe and Tschantz 1998] J. G. Ratcliffe and S. T. Tschantz, "Gravitational instantons of constant curvature", *Classical Quantum Gravity* 15:9 (1998), 2613-2627.
- [Thurston 1979] W. P. Thurston, "The geometry and topology of 3-manifolds", Technical report, Princeton University, 1979. Available at http://www.msri.org/ publications/books/gt3m.
- [Thurston 1997] W. P. Thurston, Three-dimensional geometry and topology, vol. 1, Princeton Math. Series 35, Princeton University Press, Princeton, NJ, 1997.
- [Vinberg 1967] E. B. Vinberg, "Discrete groups generated by reflections in Lobachevskii spaces", Mat. Sb. (N.S.) 72 (1967), 471–488. Correction in 73 (1967), 303. In Russian; translated in Math. USSR Sbornik 1 (1967), 429-444.
- [Wang 1972] H. C. Wang, "Topics on totally discontinuous groups", pp. 459–487 in Symmetric spaces (St. Louis, MO, 1969–1970), edited by W. M. Boothby and G. L. Weiss, Pure and Appl. Math. 8, Marcel Dekker, New York, 1972.
- [Wielenberg 1978] N. Wielenberg, "The structure of certain subgroups of the Picard group", Math. Proc. Cambridge Philos. Soc. 84:3 (1978), 427–436.
- [Zimmermann 1990] B. Zimmermann, "On the Hantzsche-Wendt manifold", Monatshefte Math. 110:3-4 (1990), 321-327.
- John G. Ratcliffe, Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240 (John.G.Ratcliffe@Vanderbilt.edu)
- Steven T. Tschantz, Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240 (Steven.T.Tschantz@Vanderbilt.edu)

Received March 4, 1999; accepted March 9, 1999