Embedded, Doubly-Periodic Minimal Surfaces

Wayne Rossman, Edward C. Thayer, Meinhard Wohlgemuth ${ }^{\dagger}$

Abstract

We consider the question of existence of embedded doubly periodic minimal surfaces in \mathbb{R}^{3} with Scherk-type ends, surfaces that topologically are Scherk's doubly periodic surface with handles added in various ways. We extend the existence results of H. Karcher and F. Wei to more cases, and we find other cases where existence does not hold.

1 Introduction

H. Karcher [K3] proved the existence of the first complete, embedded, doubly-periodic minimal surface to be found since H. Scherk's classical example, which dates from 1835. We denote Karcher's surface by M_{1} (see Figure 1, left). Following this discovery, Wei We constructed an embedded, doubly-periodic surface of genus two by adding a handle to M_{1} (Figure 1, center). We describe a new embedded, genus two surface that results from adding a different type of handle to M_{1} (Figure 1, right), and outline the differences between these two genus two surfaces. In addition, we construct three collections of new, embedded surfaces of genus three that result from adding either two handles of the same type (Figure 2) or two handles of different type (Figure 3).

Using a technique discovered by Karcher-Polthier [KP] to reduce the number of periods to be considered, we are able to add ends to the fundamental piece of each surface presented without increasing the dimension of the period problems, thereby producing countably many different families of new, embedded examples for each of the handle types shown in Figures 1 and 2,

The existence proofs for the genus two surfaces require solving one-dimensional period problems, and the existence proofs for the genus three surfaces require solving either one-dimensional or two-dimensional period problems, depending on the types of handles we choose. When the period problem is one-dimensional (as for surfaces in Figures 11 and 21), we use the intermediate value theorem to solve it. When it is twodimensional (as for surfaces in Figure 3), we achieve a solution by using a mapping degree argument, a kind of generalization of the intermediate value theorem.

We find that in the two cases of genus three surfaces with four ends and handles of the same type the period problems have no solution. In these exceptional cases we demonstrate a natural geometric obstruction to existence, an obstruction that disappears when more ends are added to the surfaces.

2 Overview of the construction

Karcher's original surfaces M_{1} are highly symmetric; they have three mutually perpendicular planes of symmetry and contain four vertical straight lines (see Figures 1, left and 5 left). The three planes divide

[^0]

Figure 1: Fundamental pieces of Karcher's surface $M_{1}($ left $)$, Wei's surface M_{1}^{-}(center), and M_{1}^{+}(right).

Figure 2: Fundamental pieces of M_{3}^{--}and M_{3}^{++}

Figure 3: Fundamental pieces of M_{1}^{+-}(left), and M_{2}^{+-}(right).

Figure 4: M_{1}, M_{1}^{-}, and M_{1}^{+}projected onto the $x_{1}-x_{2}$ plane.

Figure 5: Sketches of one eighth of M_{1} (left), M_{1}^{-}(center), and M_{1}^{+}(right).
the surface into eight pieces. Each piece is bounded by planar geodesic curves, and has one end. Since all the surfaces we will discuss here share these planar symmetries we will focus on one eighth of these surfaces and draw sketches of this portion only.

The first modification of M_{1} was made by F. Wei We, who constructed a one-parameter family of genus two examples M_{1}^{-}by adding a single handle over one of the two saddle points of M_{1} (see Figures 1 , center and 5 center). Recently it was discovered by Karcher-Polthier KP (and the second author independently) that another modification of M_{1} was possible. This new surface M_{1}^{+}results from adding a handle to M_{1} in a different direction, thereby producing another doubly-periodic, embedded minimal surface of genus two (see Figures 1, right and 5, right).

Remark on notation: In order to distinguish the two genus two surfaces, we view M_{1} from above, imagining that M_{1} projects into the black squares of an infinite, black and white checkerboard pattern, with the vertical straight lines projecting onto the corners of these squares (see Figure 4). From this perspective, the handles added by Wei project into the black regions while the new handles project into the white ones. In both cases, the additional handles modify the checker board pattern into a tiling made up of rectangular regions as is indicated in Figure 4. We denote the handles over the black squares with a superscript '-', and those over the white squares with a superscript ' + '. Hence, in this notation, Wei's genus two surface is referred to as M_{1}^{-}, and the new surface discussed in Section 5 is M_{1}^{+}.
Each surface discussed in this paper lies in a one-parameter family of embedded surfaces. Since we are interested in the topological qualities of these surfaces, our notation thoughout the paper will not reflect the specific surface in the family. The subscript indexes the number of ends on each eighth of the surface.

Both M_{1}^{+}and M_{1}^{-}have smaller symmetry groups than Karcher's original surface; in particular, the vertical straight lines of M_{1} are eliminated. The question "Is it possible to add handles to M_{1} and preserve the original symmetries?" is a natural one. We might, for example, want to add either a ' + ' or a '-' type handle and preserve the vertical straight lines. Rotation about these lines (via the Schwarz reflection principle, Theorem 3.1) places another handle over the other saddle point of M_{1}. This would result in a genus three surface with four Scherk ends. It is easy to imagine such a surface for either type of handle. Indeed, the suggested conjugate contour of one eighth of either surface supports a Plateau solution that is a Jenkins-Serrin graph JS. So a minimal surface with boundary exists with the desired shape, but we only know that certain bounding planar curves lie in parallel planes. We then must solve the one-dimensional period problem or, equivalently, show that the parallel planes coincide. We will prove that neither of these period problems are solvable, and we do so by finding natural obstructions on the corresponding conjugate surfaces. Understanding these obstructions, we realize it is possible to overcome them by adding more ends to each surface. Because of the desired symmetries, each eighth of these surfaces must have an odd number of ends. Indexing by this number, we show the period problems are never solved on M_{1}^{--}and M_{1}^{++}, and that for $k \geq 1$ the period problems associated to $M_{2 k+1}^{--}$and $M_{2 k+1}^{++}$are solvable. The superscript indicates the types of handles added to M_{1}. See Figure 2

With the addition of each new end, there is a new associated period. In Section 4 , we describe a technique found by Karcher-Polthier [KP] that shows that one may simultaneously solve these end periods. Specifically, they observed that a certain simple restriction on the conjugate contours ensures these end periods are all zero. Moreover, this restriction leaves an ample number of parameters free to allow us to adjust the other periods associated with the new handles.

Instead of adding two handles of the same type to M_{1}, we may also consider surfaces which have two
handles of different types. This produces a family of genus three surfaces that no longer have the straight line symmetries of M_{1}. Without this additional symmetry, the period problem resulting from the new handles is two-dimensional. The third author's experience with two-dimensional period problems Wo suggested that these period problems may be solvable. We prove in Section 9 that M_{1}^{+-}with four Scherk-type ends exists. Generalizing the examples M_{1}^{+-}to have $4 k$ Scherk-type ends for $k \geq 2$, numerical evidence suggests the existence of M_{k}^{+-}for $k \geq 2$ (see Figure 3).

The computer graphics in the figures were created using the MESH software produced by James T. Hoffman of the Mathematical Sciences Research Institute, Berkeley, California, U.S.A..

3 Background results needed for the construction

We consider only connected and properly immersed minimal surfaces. To establish notation we state the following description of the Weierstrass Representation.

Weierstrass-Representation: Let M be a minimal surface in \mathbb{R}^{3} and R the underlying Riemann surface of M. Then M can be expressed, up to translations, in terms of a meromorphic function g on R, the so-called Gauss map (since g will be stereographic projection of the oriented normal vector of M), and a holomorphic differential η on R by

$$
\begin{equation*}
F(p)=\operatorname{Re} \int_{p_{0}}^{p}\left(\phi_{1}, \phi_{2}, \phi_{3}\right) \tag{3.1}
\end{equation*}
$$

where $p_{0} \in R$ is fixed and

$$
\begin{equation*}
\left(\phi_{1}, \phi_{2}, \phi_{3}\right)=\left(\left(\frac{1}{g}-g\right) \eta, i\left(\frac{1}{g}+g\right) \eta, 2 \eta\right) \tag{3.2}
\end{equation*}
$$

Conversely, let R be a Riemann surface, g a meromorphic function on R, and η a holomorphic differential on R. Then (3.1) and (3.2) define a conformal minimal immersion $F: R \rightarrow \mathbb{R}^{3}$, provided the poles and zeros of order ℓ of g coincide with the zeros of order ℓ of η, and $\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$ has no real periods, i.e.

$$
\begin{equation*}
\operatorname{Period}_{\left(\phi_{1}, \phi_{2}, \phi_{3}\right)}(\gamma)=\int_{\gamma}\left(\phi_{1}, \phi_{2}, \phi_{3}\right) \in i \mathbb{R} \tag{3.3}
\end{equation*}
$$

for all closed curves γ on R.

We call (R, g, η) the Weierstrass data of the minimal surface M. Denoting the universal cover of R by \tilde{R}, the minimal immersion $F^{*}: \tilde{R} \rightarrow \mathbb{R}^{3}$ with the Weierstrass data ($R, g, i \eta$) is called the conjugate surface to M, and is denoted by M^{*}. It is known that any curve of R which is mapped by F to a non-straight planar geodesic of M is mapped by F^{*} to a straight line in M^{*}. Furthermore, since the Gauss map g and the first fundamental form are the same for both M and M^{*}, it follows that the planar geodesic in M will lie in a plane perpendicular to the corresponding line in M^{*} and that the planar geodesic in M will have the same length as the line in M^{*}. We will use these properties extensively. The following known results are also central to the arguments we will be making.

Theorem 3.1 (Schwarz reflection principle) If a minimal surface $M \subset \mathbb{R}^{3}$ with boundary contains a nonstraight planar geodesic \mathcal{C} (resp. straight line \mathcal{C}) in its boundary, then M can be extended smoothly across \mathcal{C} by reflecting through the plane containing \mathcal{C} (resp. rotating about \mathcal{C}).

Theorem 3.2 (Krust DHKW) If an embedded minimal surface $F: B \rightarrow \mathbb{R}^{3}, B=\{w \in \mathbb{C}:|w|<1\}$ can be written as a graph over a convex domain in a plane, then the conjugate surface $F^{*}: B \rightarrow \mathbb{R}^{3}$ is also a graph over a domain in the same plane.

Theorem 3.3 (Jenkins-Serrin [JS) Let D be a bounded convex domain such that ∂D contains two sets of finite numbers of open straight segments $\left\{A_{i}\right\},\left\{B_{j}\right\}$ with the property that no two segments A_{i} and no two segments B_{j} have a common endpoint. Let the remaining portion of ∂D consist of a finite number of open arcs $\left\{C_{k}\right\}$, and of endpoints of A_{i}, B_{j}, and C_{k}. Let \mathcal{P} denote a simple closed polygon whose vertices are chosen from among the endpoints of the A_{i} and B_{j}. Let

$$
\alpha=\sum_{A_{i} \subset \mathcal{P}} \operatorname{length}\left(A_{i}\right), \quad \beta=\sum_{B_{j} \subset \mathcal{P}} \text { length }\left(B_{j}\right), \quad \gamma=\text { length of perimeter of } \mathcal{P} .
$$

Then if $\left\{C_{k}\right\} \neq \emptyset$, there exists a solution of the minimal surface equation in D which assumes the value $+\infty$ on each $A_{i},-\infty$ on each B_{j}, and any assigned bounded continuous data on each open arc C_{k} if and only if

$$
2 \alpha<\gamma \text { and } 2 \beta<\gamma
$$

for each polygon \mathcal{P} chosen as above. Moreover, the solution is unique when it exists.
Remark 3.1 Note that in Theorem [3.3, we allow the possibility that two different C_{k} have a common endpoint. We may have jump discontinuities in the boundary data at the points where two different C_{k} meet. It follows from the arguments in [JS] that, for D as in Theorem [3.3. if u_{1} and u_{2} are two solutions of the minimal surface equation such that $u_{1}=u_{2}=+\infty$ on each A_{i} and $u_{1}=u_{2}=-\infty$ on each B_{j} and $u_{1} \geq u_{2}$ on each C_{k}, then $u_{1} \geq u_{2}$ in the interior of D.

4 The Examples M_{k}

An immediate application of Theorems 3.2 and 3.3 is to prove that one can add more ends to Karcher's genus one surface M_{1}, thereby creating the surfaces M_{k}.

Theorem 4.1 For each $k \geq 2$, there exists a one-parameter family M_{k} of embedded, doubly-periodic minimal surfaces of genus one with $4 k$ Scherk-type ends.

Proof. Fix k. The conjugate boundary of one eighth of M_{k} is a graph over a rectangular domain with three sides at height zero and the fourth edge subdivided into k segments with heights alternating between $+\infty$ and $-\infty$. Theorem 3.3 yields a Plateau solution with this boundary. Then Theorem 3.2, together with Theorem 3.1 and the maximum principle, gives the embedded surfaces M_{k} from these solutions. The period problems associated to the ends, which equal the residues at the end punctures on the compact Riemann surface, are solved by choosing the A_{i} and B_{j} to all be of the same length. Varying the length of the opposing zero height sides of the rectangular domain yields a one-parameter family of surfaces.

On the other hand, we immediately have:
Corollary 4.1 M_{k} is a k-fold covering of M_{1}.
Proof. Schwarz reflection (Theorem 3.1) about line segments on the bounding conjugate contour for M_{1} produces the bounding conjugate contour for M_{k} for any k. The uniqueness of the minimal graphs in Theorem 3.3 completes the proof.

We included these examples M_{k} because the technique used to solve the k-dimensional period problem arising from the additional ends is used throughout the paper. In particular, we have

Figure 6: Fundamental piece of M_{2}^{+}.

Lemma 4.1 Each collection of surfaces, $M_{k}^{+}, M_{k}^{-}, M_{2 k+1}^{++}, M_{2 k+1}^{--}, M_{k}^{+-}$, results from adding ends and handles to M_{1}, and the period problems arising from the additional ends are all solved as above, i.e. by requiring

$$
\epsilon=\operatorname{length}\left(A_{i}\right)=\operatorname{length}\left(B_{j}\right)
$$

to be constant for all i, j.
A proof of this lemma is contained in the appendix of this paper.
The observation that this restriction on the conjugate contour solves all the periods arising from additional ends demonstrates that these periods are independent of the periods arising from additional handles. This restriction enables us to eliminate all but one or two periods in these surfaces, so we may focus only on the periods arising from the new handles.

5 The Examples $\mathrm{M}_{\mathrm{k}}^{+}$

The sketch in Figure 7, upper-left is of a contour suggestive of a ' + ' type handle in an even ended surface which we will use to motivate the discussion. Taking its conjugate contour produces the contour in Figure 7 upper-right, which is bounded by line segments as labelled in the figure. This contour bounds a JenkinsSerrin graph over the front face of the box and hence supports a solution to the Plateau problem. Let $\beta_{j}=\operatorname{Length}\left(B_{j}\right)=\operatorname{Length}\left(B_{j}^{*}\right)$ for $j=2,3,4,5$. The symmetries of M_{k}^{+}imply there are k periods, $k-1$ of these resulting from the ends, and one arising from the new handle. Lemma 4.1 implies that if we restrict the conjugate contours so that the lengths of the segments over which the boundary contour is unbounded are equal, then $k-1$ of these periods are zero. Let $\epsilon=\beta_{3} / k$ be this common length.

Figure 7: Sketches of the boundaries of one eighth of M_{2}^{+}and its conjugate (top row), and the graph dimensions and heights over the front face of the bounding box for the conjugate contour (bottom).

The remaining period is shown to change sign as β_{4} is varied so that the intermediate value theorem implies the following

Theorem 5.1 For each $k>0$, there exists a one-parameter family M_{k}^{+}of embedded, doubly-periodic minimal surfaces of genus two with $4 k$ Scherk type ends.

We give the argument only for the case $k=2$, as the argument is essentially identical for all k. Choosing the curves B_{2}^{*} and B_{3}^{*} to lie at the zero level, the height of B_{5}^{*} is $+\beta_{4}$, with the end E_{1}^{*} at height $+\infty$ and E_{2}^{*} at $-\infty$ as indicated in Figure 7 bottom.
Proof. All that remains to be shown is that as β_{4} is varied, the period $\pi\left(\beta_{4}\right)=\operatorname{Re} \int_{S_{1}}^{V_{4}} \phi_{2}$ changes signs. Note that this period measures the distance between the planes containing the curves B_{4} and C.

Let $\beta_{2}>\epsilon$ and consider the two cases of β_{4} large and β_{4} small:
a) Let $\beta_{4} \rightarrow 0$. The limiting surface is M_{2} and the embeddedness of M_{2} implies the point V_{4} lies behind the symmetry plane of C; so $\pi\left(\beta_{4}\right)<0$ for β_{4} near zero.
b) For large β_{4}, we claim the distance between the planes containing B_{4} and B_{6} is $\beta_{2}-\delta>\epsilon$, since the Gauss map approaches a constant along B_{5}. To see this, use the barrier surface given as a Jenkins-Serrin graph over the back face of the box in Figure [7, right, with height $+\infty$ over the edge B_{5}^{*} and the same heights as the contour for M_{2}^{+}over all other edges. Arguments in JS imply the conjugate graphs converge to the barrier surface as $\beta_{4} \rightarrow \infty$. So in the limit, the behavior of the ends is the same and therefore B_{5} approaches a straight line of length β_{2} which is greater than ϵ. Hence B_{4} lies in front of C and $\pi\left(\beta_{4}\right)>0$ for β_{4} large.

Hence the period problem is solvable. Since β_{2} is only bounded below this shows the period problem can be solved for each $\beta_{2}>\epsilon$ and therefore there exists a one-parameter family of these surfaces. Theorem 3.2 implies each eighth of any one of these surfaces is embedded and, by Theorem 3.1] extends to an embedded minimal surface.

Weierstrass data for M_{k}^{+}: Since M_{k}^{+}is invariant under an order-two normal symmetry about the x_{3}-axis, with six fixed points, the quotient is a sphere minus $2 k$ points. The meromorphic function g^{2}, where g is the Gauss map, descends to the quotient. Taking z to be the coordinate on this sphere, we normalize so that $z\left(V_{3}\right)=0, z\left(V_{2}\right)=\infty$ and $e_{k}=z\left(E_{k}\right)=1$. Define v_{i} by $v_{i}=z\left(V_{i}\right)$ for $i=1,4,5, s_{j}=z\left(S_{j}\right)$, $j=1,2, \ldots, k-1$, where $\left\{S_{j}\right\}$ are the vertical points lying on the planar geodesics between the ends, $e_{m}=z\left(E_{m}\right), m=1, \ldots, k-1$. Conformality of z orders these values $0<v_{4}<v_{5}<1<s_{k-1}<e_{k-1}<$ $s_{k-2}<\ldots<s_{1}<e_{1}<v_{1}$.

Comparison of the meromorphic functions g^{2} and z leads to the following Weierstrass data for M_{k}^{+}:

$$
\begin{align*}
g^{2} & =\frac{z+v_{4}}{z-v_{4}} \frac{z+v_{5}}{z-v_{5}} \frac{z+(-1)^{k} v_{1}}{z-(-1)^{k} v_{1}} \cdot f_{k}^{2}\left(z, s_{1}, \ldots, s_{k-1}\right) \\
\eta & =\frac{d z}{\mathcal{E}_{k}\left(z, e_{1}, \ldots, e_{k}\right)} D_{k}\left(z, s_{1}, \ldots, s_{k-1}\right) N_{k}\left(z, s_{1}, \ldots, s_{k-1}\right) \tag{5.1}
\end{align*}
$$

where $f_{k}\left(z, s_{1}, \ldots, s_{k-1}\right)=N_{k}\left(z, s_{1}, \ldots, s_{k-1}\right) / D_{k}\left(z, s_{1}, \ldots, s_{k-1}\right)$, with

$$
\begin{aligned}
N_{k}\left(z, s_{1}, \ldots, s_{k-1}\right) & :=\prod_{j=1}^{k-1}\left(z+(-1)^{k+j} s_{j}\right) \\
D_{k}\left(z, s_{1}, \ldots, s_{k-1}\right) & :=\prod_{j=1}^{k-1}\left(z-(-1)^{k+j} s_{j}\right) \\
\mathcal{E}_{k}\left(z, e_{1}, \ldots, e_{k}\right) & :=\prod_{m=1}^{k}\left(z^{2}-e_{m}^{2}\right)
\end{aligned}
$$

The conditions for embedded ends are

$$
\begin{equation*}
g^{2}(1)=g^{2}\left(e_{m}\right)=1 \tag{5.2}
\end{equation*}
$$

for all $m \leq k$. For $k=2$, we have the constraints

$$
\begin{aligned}
A\left(1+v_{4}\right)\left(1+v_{5}\right) & =\tilde{A}\left(1-v_{4}\right)\left(1-v_{5}\right) \\
B\left(e_{2}+v_{4}\right)\left(e_{2}+v_{5}\right) & =\tilde{B}\left(e_{2}-v_{4}\right)\left(e_{2}-v_{5}\right),
\end{aligned}
$$

where $A=\left(1-s_{1}\right)^{2}\left(1+v_{1}\right), \tilde{A}=\left(1+s_{1}\right)^{2}\left(1-v_{1}\right), B=\left(e_{1}-s_{1}\right)^{2}\left(e_{1}+v_{1}\right)$, and $\tilde{B}=\left(e_{1}+s_{1}\right)^{2}\left(e_{1}-v_{1}\right)$. From this, we can derive the conditions

$$
\begin{align*}
v_{4} v_{5} & =\frac{(A-\tilde{A})(B+\tilde{B}) e_{1}-(A+\tilde{A})(B-\tilde{B}) e_{1}^{2}}{(A+\tilde{A})(B-\tilde{B})-(A-\tilde{A})(B+\tilde{B}) e_{1}} \tag{5.3}\\
v_{4}+v_{5} & =\frac{(A-\tilde{A})(B+\tilde{B})\left(e_{1}^{2}-1\right)}{(A+\tilde{A})(B-\tilde{B})-(A-\tilde{A})(B+\tilde{B}) e_{1}} \tag{5.4}
\end{align*}
$$

And v_{4} and v_{5} are the zeros of a degree-two polynomial.
With the Weierstrass data (5.1) and the constraints (5.3) and (5.4) we get the image in Figure 6after choosing $k=2$ and determining the correct values for v_{1} and e_{1}.

6 The Examples $\mathrm{M}_{\mathrm{k}}^{-}$

The periods associated to M_{k}^{-}arise as residues at the punctures for the ends or from integrating along a curve representing a non-trivial homotopy class. As in the case of M_{k}, the residues at the ends are made equal by equally distributing the straight lines lieing between the ends of the conjugate of one-eighth of the fundamental piece. The portion of the period problem resulting from non-trivial homotopy classes is one-dimensional due to the symmetries of M_{k}^{-}, and use of the same barriers as in We shows that this period is also solvable. Hence

Theorem 6.1 There exists a one-parameter family of genus two, embedded minimal surfaces M_{k}^{-}with $4 k$ Scherk-type ends, for all $k \geq 1$.

7 The Examples $\mathrm{M}_{2 \mathrm{k}+1}^{--}$

In this section, we construct the embedded minimal surfaces $M_{2 k+1}^{--}$. Specifically, we construct genus three surfaces having all the symmetries of Karcher's genus one surface M_{1}, with two ' - ' handles and $4(2 k+1)$ Scherk ends.

Figure 8: Sketches of the boundary of one eighth of M_{1}^{--}(upper left) and M_{3}^{--}(upper right) with the parameters for the conjugate boundary contour viewed as a graph over the rectangular region drawn below each sketch.
F. Wei modified M_{1} by introducing a single handle over one of its saddle points. In the sketches of Figure 5 one can see that this results in a new vertical point over V_{4}. In order to retain the vertical straight lines of M_{1} on higher genus surfaces, one is obliged to add a handle over the other saddle point, since, by Theorem 3.1 180° rotation about these straight lines are isometries of the surface. Such a surface might have a boundary like that sketched in Figure 8 left. If this surface did exist, it's conjugate contour would be as in Figure 8, lower left. This conjugate contour meets all the conditions of Theorem 3.3, hence it supports a solution to the Plateau Problem, and the original surface conjugate to this solution is a minimal surface bounded by planar curves with the desired symmetries.

Although the conjugate surface is a minimal surface bounded by planar curves, it is not guaranteed that reflection in these planes produces an embedded doubly-periodic surface. In particular, using the notation of Figure 8, one does not know if the curves B_{1} and B_{3} lie in the same plane. This brings us to the period problem; one must insure that the planes containing B_{1} and B_{3} coincide. Since we have assumed the surface contains a vertical straight line, knowing B_{1} and B_{3} lie in the same plane implies the planes containing B_{5} and B_{7} also coincide. Should this period problem be solvable, the surface in our notation would be denoted by M_{1}^{--}.

In Theorem 7.1 2 we prove, by analyzing the Plateau solutions for the countour of Figure 8 lower left, that this period problem can never be solved. In contrast, by having more ends on the surface, as in Figure 8, right, we prove in Theorem 7.1] that the obstruction to solving this period problem is removed. These new surfaces are the surfaces $M_{2 k+1}^{--}$in our notation.

Theorem 7.1 (1) For each $k \geq 1$, there exists a one-parameter family of embedded, doubly-periodic minimal surfaces $M_{2 k+1}^{--}$of genus three;
(2) M_{1}^{--}does not exist.

Proof. Let $\beta_{j}=\operatorname{Length}\left(B_{j}\right)=\operatorname{Length}\left(B_{j}^{*}\right)$ for $j=2,3,4,5,6$. By Lemma 4.1, all periods arising from the addition of ends are zero provided the lengths of the segments over which the conjugate contours are unbounded are equal. We assume this condition, and let ϵ be this common length, which remains fixed throughout the proof. Hence we need only address the periods arising from non-trivial homotopy classes, i.e. from the addition of new handles. Note that from the conjugate contour one sees that for each $M_{2 k+1}^{--}$, $\beta_{4}=(2 k+1) \epsilon$.

Proof of (2): We proceed by contradiction. Suppose M_{1}^{--}does exist. Let S be one eighth of M_{1}^{--}. Figure 8, left shows a sketch of S. We are assuming that there is a vertical straight line on S passing through the end E, orthogonal to the plane containing B_{4}. Rotation about this line interchanges V_{1} and V_{6}, and interchanges V_{2} and V_{5}.

Remark 7.1 The boundary contour of S^{*} is a graph over a rectangle as drawn in Figure 8, lower left, and as a result of the symmetries, B_{2}^{*} and B_{6}^{*} lie at the same height. Choosing this to be the zero height implies the line B_{4}^{*} has height $-\infty<-\beta_{3}<0$, and the end E has height $+\infty$. From Theorem 3.3, we get a minimal graph with this boundary. As a graph, it is embedded and Theorem 3.2 assures that S is embedded. Hence there exists a Plateau solution S^{*} with the desired boundary and symmetries.

Claim: The distance between the planes containing B_{3} and B_{5} is always shorter than the distance between the planes containing B_{1} and B_{7}. Hence the period is always of the same sign.

The planar geodesic B_{4} has length ϵ and is not a straight line. Therefore the distance between the symmetry planes containing B_{3} and B_{5} is strictly less than $\beta_{4}=\epsilon$, and the curve B_{3} always lies to one side of the plane containing B_{1}. This establishes the claim and completes the proof of (2).

In summary, the period problem on M_{1}^{--}is unsolvable because the distance ϵ between the planar curves bounding the end is equal to β_{4} and the planar curve B_{4} is not straight. If one could modify the conjugate contour so that $\beta_{4}>\epsilon$, then the period problem may be solvable. One way of achieving this is to add more ends to the conjugate contour as in the sketch in Figure 8, lower right. Because we wish to maintain the vertical straight lines, the contour bounded by straight lines must have a horizontal planar symmetry. Therefore we must add an even number of extra ends. Figure 8, right is a sketch of such a surface with three ends. The conjugate contour for this surface is again a Jenkins-Serrin graph over a rectangle as drawn in Figure 8, lower right.

Proof of 1): Assume $\beta_{2}>\beta_{4}=(2 k+1) \epsilon$. Since we have assumed the existence of a vertical straight line on the surface passing thru E_{k+1} and orthogonal to B_{4}, we have only one period arising from a nontrivial homotopy class. For this period, we must show that B_{1} lies in the plane containing B_{3}. We use the intermediate value theorem to show the existence of a value for β_{3} such that this period is zero. Specifically we have two cases:
a) As $\beta_{3} \rightarrow 0, M_{2 k+1}^{--}$degenerates to $M_{2 k+1}$. By the embeddedness of $M_{2 k+1}$, we have the point V_{2} moves behind the plane containing B_{1}, and the period is negative.
b) As $\beta_{3} \rightarrow \infty$, the curve B_{4}^{*} moves away toward height $-\infty$. Let \mathcal{B} be the Jenkins-Serrin graph over the rectangle as described in Figure 8 , lower right, with boundary heights $0,-\infty, 0,+\infty,-\infty,+\infty$ with zero heights corresponding to the edges containing the curves B_{2}^{*} and B_{6}^{*}. This graph \mathcal{B} exists, since $\beta_{2}>\beta_{4}$, by Theorem 3.3. By the arguments in JS, the conjugate graphs converge to \mathcal{B} as $\beta_{3} \rightarrow \infty$. Therefore along B_{4}^{*} the Gauss map approaches a constant value, and the displacement along B_{4} in the desired direction
approaches $(2 k+1) \epsilon=\beta_{4}$. Hence V_{2} lies in front of the plane containing B_{1} for large β_{3}, and the period is positive.

By the intermediate value theorem, there exists a value of β_{3} at which the period is zero. Therefore the period problem is solvable on $M_{2 k+1}^{--}$.

Theorems 3.3 and 3.2 imply that the one eighth portion S of $M_{2 k+1}^{--}$is embedded. Applying the classical maximum principle and the maximum principle at infinity [MR, one easily determines that the full fundamental piece of $M_{2 k+1}^{--}$lies inside the box given by its boundary curves. Reflections through the faces of this box produces an embedded surface. Therefore $M_{2 k+1}^{--}$is embedded.
β_{2} has not been used in this argument (β_{2} is any fixed number greater than β_{4}), and therefore we have a one-parameter family of $M_{2 k+1}^{--}$for each $k \geq 1$.

Weierstrass data for M_{3}^{--}: Since M_{3}^{--}is invariant under an order-two normal symmetry about the x_{3}-axis, with eight fixed points, the quotient surface is a sphere. The meromorphic function g^{2}, where g is the stereographic projection of the Gauss map, descends to the quotient. Taking z to be the coordinate on the sphere, we normalize so that $z\left(V_{3}\right)=\infty, z\left(V_{4}\right)=0$, and $z\left(E_{2}\right)=1$. With this normalization, rotation about the vertical straight line on M_{3}^{--}corresponds to inversion through the unit circle. Define $e_{1}=z\left(E_{1}\right), v_{j}=z\left(V_{j}\right)$, for $j=1,2$, and $s_{1}=z\left(S_{1}\right)$. Then $z\left(E_{3}\right)=1 / e_{1}, z\left(V_{5}\right)=1 / v_{2}, z\left(V_{6}\right)=1 / v_{1}$, and $z\left(S_{2}\right)=1 / s_{1}$. Comparison of the meromorphic functions g^{2} and z leads to the following Weierstrass data for M_{3}^{--}:

$$
\begin{align*}
g^{2} & =\frac{z-v_{1}}{z+v_{1}} \frac{z+1 / v_{1}}{z-1 / v_{1}} \frac{z+v_{2}}{z-v_{2}} \frac{z-1 / v_{2}}{z+1 / v_{2}}\left(\frac{z-s_{1}}{z+s_{1}}\right)^{2}\left(\frac{z+1 / s_{1}}{z-1 / s_{1}}\right)^{2} \\
\eta & =\frac{d z}{z^{2}-1} \frac{z^{2}-s_{1}^{2}}{z^{2}-e_{1}^{2}} \frac{z^{2}-1 / s_{1}^{2}}{z^{2}-1 / e_{1}^{2}} \tag{7.1}
\end{align*}
$$

This Weierstrass data insures each Scherk-type end is itself an embedded end, but one must also guarantee that the limit normals on the ends are antipodal so the ends do not cross each other as they diverge. Because of our choice of orientation, this is equivalent to the conditions

$$
g^{2}(1)=g^{2}\left(e_{1}\right)=g^{2}\left(1 / e_{1}\right)=1
$$

Due to the rotational symmetry, the second and third conditions result in the same constraints, while the first is automatically satisfied. The second condition places the following constraint on e_{1} :

$$
\begin{align*}
(\delta+\gamma+2 \nu) e_{1}^{6} & +\left[(\delta+\gamma)\left(\nu^{2}-1\right)+2(\delta \gamma-2) \nu-(\delta+\gamma)-2 \nu\right] e_{1}^{4} \\
& +\left[2 \nu-(\delta+\gamma)\left(\nu^{2}-2\right)-2 \nu(\delta \gamma-2)+(\delta+\gamma)\right] e_{1}^{2} \tag{7.2}\\
& -2 \nu-(\delta+\gamma)=0
\end{align*}
$$

where $\delta=v_{2}-1 / v_{2}, \gamma=1 / v_{1}-v_{1}$, and $\nu=1 / s_{1}-s_{1}$.
By Theorem 7.1, there exists a solution to (7.2) in the necessary range. Using the computer to find this solution and to calculate the values of the two periods of the Weierstrass data, we determine the appropriate values for e_{1}, v_{1}, and v_{2}, given a value for s_{1}. We thereby generate the image of M_{3}^{--}in Figure 2,

8 The Examples $\mathrm{M}_{2 \mathbf{k}+1}^{++}$

As in the previous section, one might investigate whether it is possible to construct genus three examples by adding two '+' type handles to M_{1} while preserving the symmetries. The same methods as those used in

Figure 9: Sketches of the boundary of one eighth of M_{3}^{++}and it's conjugate boundary graph heights over the front face of the bounding box.
the '-' case can be used to show the existence of a minimal disc with the desired boundary and symmetries, but one must again consider the period problem. The similarities between the conjugate contours for the two '-' handles and two ' + ' handles allow one to observe a similar natural obstruction to solving the period problem for the one-ended surfaces. By adding more ends to these surfaces, as in the previous section, this obstruction is overcome. Denoting these new surfaces by $M_{2 k+1}^{++}$and using arguments similar to those used in the proof of Theorem 7.1, one has:

Theorem 8.1 1) There exists a one-parameter family of embedded, doubly-periodic minimal surfaces $M_{2 k+1}^{++}$of genus three, for each $k \geq 1$.
2) M_{1}^{++}does not exist.

Note: The symmetry groups for $M_{1}, M_{2 k+1}^{--}$, and $M_{2 k+1}^{++}$are identical. Hence one has two collections of genus three minimal surfaces with the same symmetries as Karcher's original genus one surface M_{1}.
Weierstrass data for M_{3}^{++}: Using the same notation as that used for the surface M_{3}^{--}, we can determine the Weierstrass data for M_{3}^{++}; the results are as follows:

$$
\begin{aligned}
g^{2} & =\frac{z-v_{1}}{z+v_{1}} \frac{z+1 / v_{1}}{z-1 / v_{1}} \frac{z-v_{2}}{z+v_{2}} \frac{z+1 / v_{1}}{z-1 / v_{2}}\left(\frac{z-s_{1}}{z+s_{1}}\right)^{2}\left(\frac{z+1 / s_{1}}{z-1 / s_{1}}\right)^{2} \\
\eta & =\frac{d z}{z^{2}-1} \frac{z^{2}-s_{1}^{2}}{z^{2}-e_{1}^{2}} \frac{z^{2}-1 / s_{1}^{2}}{z^{2}-1 / e_{1}^{2}}
\end{aligned}
$$

With the same constraints for parallel ends as in (7.2) and by changing γ to $v_{1}-1 / v_{1}$ we compute the parameters used in generating the image in Figure 2.

$9 \quad$ The Examples $\mathrm{M}_{\mathrm{k}}^{+-}$

In this section, we consider the genus three surfaces M_{k}^{+-}which arise by adding both a ' + ' handle and a '-' handle to M_{k}. As in the case of M_{k}^{-}and M_{k}^{+}, the handles make it impossible to preserve the straight line symmetries of M_{1}, but the three mutually perpendicular planar reflectional symmetries are preserved. These symmetries reduce the number of periods that need to be addressed in order for the period problem to be

Figure 10: Sketches of one eighth of M_{2}^{+-}(upper left) and M_{3}^{+-}(upper right) with the Jenkin-Serrin graph boundary heights for the conjugates of each eighth drawn below.
solved. In particular, M_{k}^{+-}has $k+1$ periods: $k-1$ of these periods arise from the residues of the Weierstrass data at the ends; leaving only two periods resulting from non-trivial homotopy classes. By Lemma 4.1 the periods resulting from the additional ends are simultaneously zero provided the segments over which the conjugate contours are unbounded are equal in length. As we have done in the previous sections, we fix ϵ to be this common length. Now we need only consider the two periods that result from non-trivial homotopy classes.

Figure 10 contains sketches of the boundary of one eighth of M_{2}^{+-}(left) and M_{3}^{+-}(right), together with the conjugate contour heights written as a graph, where $\beta_{j}=\operatorname{Length}\left(B_{j}\right)$ for $j=2,3,4,5,6$. We assume $\beta_{2}>\epsilon$ on all contours.

We now consider the case $k=1$. By consideration of the two periods for M_{1}^{+-}for varying values of β_{3} and β_{5}, we are able to use a two-dimensional degree argument to prove:

Theorem 9.1 There exists a one-parameter family of genus three, embedded minimal surfaces M_{1}^{+-}with 4 Scherk-type ends.

In particular, we consider the periods along the curves in the $\left(\beta_{3}, \beta_{5}\right)$ plane given by

$$
\begin{array}{ll}
\tau_{1}=\left(0, \beta_{5}\right) \text { for } \beta_{5} \in[0, T], & \tau_{2}=\left(\beta_{3}, T\right) \text { for } \beta_{3} \in[0, S] \\
\tau_{3}=\left(S, \beta_{5}\right) \text { for } \beta_{5} \in[0, T], & \tau_{4}=\left(\beta_{3}, 0\right) \text { for } \beta_{3} \in[0, S]
\end{array}
$$

for positive S and T, and are able to show that, with the correct choices for β_{2}, S, and T, these curves surround a solution for the period problem.

The conjugate contours for M_{1}^{+-}associated to points along the curves τ_{1} and τ_{4} degenerate to conjugate contours for either known surfaces or surfaces which are known to have unsolvable period problems. When the degenerate contour is known to have a solvable period problem, we assume nothing about the values of these periods, and in general the remaining unfixed parameter which we will not specify has been shown to
control this period. We seek to use only the general shape of the degenerate contours and not the solvability of the period problems on the lower genus minimal surfaces. On each of the degenerate surfaces, the labels we use are inherited from the contour for M_{1}^{+-}, which may differ from those used previously in the text.
Proof of Theorem 9.1. Consider one-eighth of the fundamental piece, analogous to the depictions of M_{2}^{+-} and M_{3}^{+-}in Figure 10. This one-eighth piece is bounded by seven planar geodesics $B_{1}, \ldots, B_{7} . B_{1}$ and B_{7} are each of infinite length with a single endpoint, and B_{2}, \ldots, B_{6} are each finite length curve segments. Let $\beta_{j}=$ Length $\left(B_{j}\right)$ for each $j=2,3,4,5,6$. The singular points of the boundary are $V_{j}=B_{j} \cap B_{j+1}$ for $j=1, \ldots, 6$. (Unlike the cases when $k \geq 2$, there are no curves C_{j}, as in Figure 10) We place the surface so that g equals 1 at the single end E_{1} and equals 0 at V_{1}, and we define the functions

$$
\begin{aligned}
& \pi_{1}\left(\beta_{2}, \beta_{3}, \beta_{5}\right)=\operatorname{Re} \int_{V_{3}}^{V_{4}} \phi_{2}=\operatorname{Re} \int_{V_{2}}^{V_{4}} \phi_{2} \\
& \pi_{2}\left(\beta_{2}, \beta_{3}, \beta_{5}\right)=\operatorname{Re} \int_{V_{4}}^{V_{6}} \phi_{2}=\operatorname{Re} \int_{V_{5}}^{V_{6}} \phi_{2}
\end{aligned}
$$

where ϕ_{2} is the second component of the Weierstrass map given in equation (3.2). We will show that:
i) $\pi_{1}\left(\tau_{j}\right)$ and $\pi_{2}\left(\tau_{j}\right)$ change monotonically on each τ_{j}, for $j=1,2,3,4$. In particular, for each fixed β_{2} and $\beta_{5}, \pi_{1}\left(\beta_{2}, \beta_{3}, \beta_{5}\right)$ is a strictly decreasing function of β_{3}; for each fixed β_{2} and $\beta_{3}, \pi_{1}\left(\beta_{2}, \beta_{3}, \beta_{5}\right)$ is a strictly increasing function of β_{5}; for each fixed β_{2} and $\beta_{5}, \pi_{2}\left(\beta_{2}, \beta_{3}, \beta_{5}\right)$ is a strictly decreasing function of β_{3}; and for each fixed β_{2} and $\beta_{3}, \pi_{2}\left(\beta_{2}, \beta_{3}, \beta_{5}\right)$ is a strictly decreasing function of β_{5}.
ii) For all $\beta_{2}>\epsilon, \pi_{1}\left(\beta_{2}, 0,0\right)>0$ and $\pi_{2}\left(\beta_{2}, 0,0\right)>0$.
iii) For any fixed $\beta_{2}>\epsilon$, if T is chosen sufficiently large, then $\pi_{1}\left(\beta_{2}, 0, T\right)>0$ and $\pi_{2}\left(\beta_{2}, 0, T\right)<0$.
iv) There exist choices for $\beta_{2}>\epsilon$ and S large so that $\pi_{1}\left(\beta_{2}, S, 0\right)<0$ and $\pi_{2}\left(\beta_{2}, S, 0\right)=0$.

We consider the period map $\Pi\left(\beta_{2}, \beta_{3}, \beta_{5}\right)=\left(\pi_{1}\left(\beta_{2}, \beta_{3}, \beta_{5}\right), \pi_{2}\left(\beta_{2}, \beta_{3}, \beta_{5}\right)\right)$. We choose β_{2}, S, and T so that $\pi_{1}\left(\beta_{2}, 0, T\right)>0, \pi_{2}\left(\beta_{2}, 0, T\right)<0, \pi_{1}\left(\beta_{2}, S, 0\right)<0$, and $\pi_{2}\left(\beta_{2}, S, 0\right)=0$. Since β_{2} is then a fixed value, we may consider $\pi_{1}=\pi_{1}\left(\beta_{3}, \beta_{5}\right)$ and $\pi_{2}=\pi_{2}\left(\beta_{3}, \beta_{5}\right)$ as functions of only the two variables β_{3} and β_{5}. Hence Π is a map from \mathbb{R}^{2} to \mathbb{R}^{2}. By the monotonic behavior of π_{1} and π_{2} on each τ_{j}, it follows that the image of $\tau_{1} \cup \tau_{2} \cup \tau_{3} \cup \tau_{4}$ under Π is a homotopically nontrivial loop in $\mathbb{R}^{2} \backslash\{(0,0)\}$. Thus a zero for the period map Π lies in the region bounded by the curves τ_{j}. Hence the period problem associated to M_{1}^{+-}is solvable.

We prove items (i),(ii),(iii),(iv) above by studying the conjugate surface of the original one-eighth portion bounded by planar geodesics B_{1}, \ldots, B_{7}. The conjugate surface is a graph \mathcal{B} with respect to the x_{2} direction over the rectangle $\left\{\left(x_{1}, 0, x_{3}\right) \in \mathbb{R}^{3} \mid 0 \leq x_{1} \leq \beta_{2}, 0 \leq x_{3} \leq \epsilon\right\}$ in the $x_{1} x_{3}$-plane, and its boundary, the conjugate contour, consists of seven lines $B_{1}^{*}, \ldots, B_{7}^{*}$ corresponding to the planar geodesics B_{1}, \ldots, B_{7} in the boundary of the original surface. Since conjugation preserves lengths, we have $\beta_{j}=\operatorname{Length}\left(B_{j}\right)=\operatorname{Length}\left(B_{j}^{*}\right)$. Thus B_{1}^{*} and B_{7}^{*} are each infinite rays with a single endpoint, and $B_{2}^{*}, \ldots, B_{6}^{*}$ are each finite line segments. The singular points of the conjugate contour are $V_{j}^{*}=B_{j}^{*} \cap B_{j+1}^{*}$ for $j=1, \ldots, 6$, corresponding to the points V_{j} on the original surface. B_{1}^{*} is the ray with endpoint $\left(\beta_{2},-\beta_{3}, \epsilon\right)$ pointing in the direction of the positive x_{2}-axis. B_{2}^{*} is the line segment with endpoints $\left(\beta_{2},-\beta_{3}, \epsilon\right)$ and $\left(0,-\beta_{3}, \epsilon\right)$. B_{3}^{*} is the line segment with endpoints $\left(0,-\beta_{3}, \epsilon\right)$ and $(0,0, \epsilon)$. B_{4}^{*} is the line segment with endpoints $(0,0, \epsilon)$ and $(0,0,0)$. B_{5}^{*} is the line segment with endpoints $(0,0,0)$ and $\left(0, \beta_{5}, 0\right)$. B_{6}^{*} is the line segment with endpoints $\left(0, \beta_{5}, 0\right)$ and $\left(\beta_{2}, \beta_{5}, 0\right) . B_{7}^{*}$ is the ray with endpoint $\left(\beta_{2}, \beta_{5}, 0\right)$ pointing in the direction of the positive x_{2}-axis.

We denote this conjugate graph by $\mathcal{B}\left(\beta_{2}, \beta_{3}, \beta_{5}\right)$, since it depends on the values of β_{2}, β_{3} and β_{5}. (It also depends on ϵ, but ϵ will remain fixed, so we do not notate this dependence.)

Proof of (i): Choose nonnegative values $\beta_{3}, \tilde{\beta}_{3}$, and β_{5}, with $\beta_{3}<\tilde{\beta}_{3}$, and choose any $\beta_{2}>\epsilon$. Then the interior of the graph $\mathcal{B}\left(\beta_{2}, \beta_{3}, \beta_{5}\right)$ lies above the interior of $\mathcal{B}\left(\beta_{2}, \tilde{\beta}_{3}, \beta_{5}\right)$ with respect to the x_{2} direction, by Remark 3.1. These two graphs have the line B_{4}^{*} in common, and it follows that as one travels from V_{3}^{*} to V_{4}^{*} along B_{4}^{*}, the normal vector along B_{4}^{*} of $\mathcal{B}\left(\beta_{2}, \beta_{3}, \beta_{5}\right)$ is turning ahead of the normal vector along B_{4}^{*} of $\mathcal{B}\left(\beta_{2}, \tilde{\beta}_{3}, \beta_{5}\right)$. Furthermore, by the maximum principle these two normal vectors can never be equal in the interior of B_{4}^{*}. This means that on the original surfaces the normal vector along B_{4} for $\beta_{2}, \beta_{3}, \beta_{5}$ is turning strictly ahead of the normal vector along B_{4} for $\beta_{2}, \tilde{\beta}_{3}, \beta_{5}$, with respect to arc length. Since $\operatorname{Length}\left(B_{4}\right)=\operatorname{Length}\left(B_{4}^{*}\right)=\beta_{4}=\epsilon$ is independent of β_{3}, it follows that $\pi_{1}\left(\beta_{2}, \beta_{3}, \beta_{5}\right)>\pi_{1}\left(\beta_{2}, \tilde{\beta}_{3}, \beta_{5}\right)$.

We have just shown that for each fixed β_{2} and β_{5}, π_{1} is a strictly decreasing function of β_{3}. Similar arguments show the other parts of (i).

Proof of (ii): If $\beta_{3}=\beta_{5}=0$, then V_{2} coincides with V_{3} and V_{4} coincides with V_{5}. The conjugate graph of this surface is unique, by Theorem 3.3, hence the surface is unique. Therefore it is M_{1}. The embeddedness of M_{1} implies that $\pi_{2}\left(\beta_{2}, 0,0\right)>0$.

The surface M_{1} contains a vertical line, and this line divides both M_{1} and B_{4} into two congruent pieces. Let \hat{B}_{4} be the half of B_{4} that connects the midpoint of B_{4} to $V_{3}=V_{2}$. Let \hat{M}_{1} be the congruent piece of M_{1} bounded by $B_{1}, B_{2}, \hat{B}_{4}$, and the vertical line. Since \hat{M}_{1} has a single Scherk-type end whose normal is parallel to the x_{1} axis, the maximum principle implies that the x_{2} coordinate function on M_{1} cannot be maximized in the interior of M_{1}. Furthermore, as B_{2} is a planar geodesic in a plane parallel to the $x_{2} x_{3}-$ plane, the boundary maximum principle implies that x_{2} cannot be maximized on B_{2}. Similarly, x_{2} cannot be maximized on the interior of \hat{B}_{4}. Therefore the value of the x_{2} coordinate at $V_{2}=V_{3}$ is strictly less than the value of the x_{2} coordinate at the midpoint of B_{4}. So $\pi_{1}\left(\beta_{2}, 0,0\right)>0$.

Proof of (iii): Fix $\beta_{2}>\epsilon$, and choose $\beta_{3}=0$ and $\beta_{5}=T \gg 1$. Then $\lim _{T \rightarrow \infty} \mathcal{B}\left(\beta_{2}, 0, T\right)$ is a graph bounded by $B_{1}^{*}, B_{2}^{*}, B_{4}^{*}$, and an infinite ray with endpoint at V_{4}^{*} pointing in the direction of the positive x_{2}-axis. This graph has a single Scherk-type end of width $\sqrt{\beta_{2}^{2}+\epsilon^{2}}$. (The fact that this limiting behavior occurs follows from the arguments in [JS. In this proof we will consider various limit surfaces, and in all cases the existence of the limit graph follows from [JS].)

The original surface corresponding to $\lim _{T \rightarrow \infty} \mathcal{B}\left(\beta_{2}, 0, T\right)$ via conjugation is bounded by the planar geodesics B_{1}, B_{2}, B_{4}, and an infinite version of B_{5}. It has a single non-vertical Scherk-type end of width $\sqrt{\beta_{2}^{2}+\epsilon^{2}}$. On $\lim _{T \rightarrow \infty} \mathcal{B}\left(\beta_{2}, 0, T\right)$, the maximum principle implies that its normal vector \vec{N} along B_{4}^{*} lies within a 90° geodesic arc of the unit sphere (so this is also true along B_{4}), and thus the x_{2} coordinate at V_{4} is greater than the x_{2} coordinate at $V_{2}=V_{3}$ on the original surface, so $\lim _{T \rightarrow \infty} \pi_{1}\left(\beta_{2}, 0, T\right)>0$. Hence $\pi_{1}\left(\beta_{2}, 0, T\right)>0$ for T sufficiently large.

Now we consider the limiting conjugate surface $\lim _{T \rightarrow \infty}\left(\mathcal{B}\left(\beta_{2}, 0, T\right)-(0, T, 0)\right)$, which is a graph bounded by B_{6}^{*}, B_{7}^{*}, an infinite version of B_{5}^{*} equal to the negative x_{2} axis, and a complete line through $\left(\beta_{2}, 0, \epsilon\right)$ parallel to the the x_{2}-axis. This conjugate surface has two ends of Scherk-type. One end has width ϵ and the other has width $\sqrt{\beta_{2}^{2}+\epsilon^{2}}$. The original surface that corresponds to it via conjugation is bounded by B_{6}, B_{7}, an infinite version of B_{5}, and a complete infinite version of B_{1}. It has two ends, again of width ϵ and $\sqrt{\beta_{2}^{2}+\epsilon^{2}}>\epsilon$. Because of the relative widths of the ends on this original surface, we see that the x_{2} coordinate at V_{5} is greater than the x_{2} coordinate at V_{6}, so $\lim _{T \rightarrow \infty} \pi_{2}\left(\beta_{2}, 0, T\right)<0$. Hence $\pi_{2}\left(\beta_{2}, 0, T\right)<0$ for T sufficiently large. (See Figure 11)

Figure 11: The original limit surface described at the end of the proof of (iii).

Proof of (iv): Choose $\beta_{2}>\epsilon, \beta_{5}=0$, and $\beta_{3}=S \gg 1$. We consider the limiting conjugate surface $\lim _{S \rightarrow \infty} \mathcal{B}\left(\beta_{2}, S, 0\right)$, which is a graph bounded by $B_{4}^{*}, B_{6}^{*}, B_{7}^{*}$, an infinite ray with endpoint at V_{3}^{*} pointing in the direction of the negative x_{2}-axis, and a complete line through $\left(\beta_{2}, 0, \epsilon\right)$ parallel to the the x_{2}-axis. This conjugate surface has two ends of Scherk-type. One end has width ϵ and the other has width β_{2}. The original surface that corresponds to it via conjugation is bounded by B_{4}, B_{6}, B_{7}, an infinite ray version of B_{3}, and a complete infinite version of B_{1}. It has two ends, again one of width ϵ and the other of width β_{2}.

We now consider what happens to the original surface corresponding to $\lim _{S \rightarrow \infty} \mathcal{B}\left(\beta_{2}, S, 0\right)$ as $\beta_{2} \searrow \epsilon$ and as $\beta_{2} \nearrow \infty$.

The conjugate surface $\lim _{\beta_{2} \rightarrow \epsilon}\left(\lim _{S \rightarrow \infty} \mathcal{B}\left(\beta_{2}, S, 0\right)\right)$ is a graph with respect to the x_{2} direction over the square $\left\{\left(x_{1}, 0, x_{3}\right) \in \mathbb{R}^{3} \mid 0 \leq x_{1}, x_{3} \leq \epsilon\right\}$. It is bounded by the infinite ray B_{7}^{*} with endpoint $(\epsilon, 0,0)$ pointing in the direction of the positive x_{2}-axis, the line segment B_{6}^{*} from $(\epsilon, 0,0)$ to $(0,0,0)$, the line segment B_{4}^{*} from $(0,0,0)$ to $(0,0, \epsilon)$, and the infinite ray with endpoint $(0,0, \epsilon)$ pointing in the direction of the negative x_{2}-axis. The corresponding original surface in bounded by the planar geodesics B_{4}, B_{6}, B_{7}, and a complete infinite version of B_{1}. This original surface has two ends of Scherk-type, both of width ϵ.

Note that the graph $\lim _{\beta_{2} \rightarrow \epsilon}\left(\lim _{S \rightarrow \infty} \mathcal{B}\left(\beta_{2}, S, 0\right)\right)$ contains the line segment from $(0,0,0)$ to $(\epsilon, 0, \epsilon)$ and is symmetric with respect to rotation about this line, by uniqueness in Theorem 3.3 and by Theorem 3.1 The maximum principle then implies that the normal vector \vec{N} along each of B_{4}^{*} and B_{6}^{*} is contained in a 90° geodesic arc of the unit sphere, and thus the x_{2} coordinate at V_{3} is greater than the x_{2} coordinate at $V_{4}=V_{5}$ in the corresponding original surface, and the x_{2} coordinate at V_{3} equals the x_{2} coordinate at V_{6}. Therefore $\lim _{\beta_{2} \rightarrow \epsilon}\left(\lim _{S \rightarrow \infty} \pi_{2}\left(\beta_{2}, S, 0\right)\right)=-\lim _{\beta_{2} \rightarrow \epsilon}\left(\lim _{S \rightarrow \infty} \pi_{1}\left(\beta_{2}, S, 0\right)\right)>0$. Hence for β_{2} sufficiently close to ϵ and S sufficiently large, we have $\pi_{2}\left(\beta_{2}, S, 0\right)>0$.

The limiting conjugate surface $\lim _{\beta_{2} \rightarrow \infty}\left(\lim _{S \rightarrow \infty} \mathcal{B}\left(\beta_{2}, S, 0\right)\right)$ is a portion of a helicoid (this follows from [JS]) bounded by the positive x_{1}-axis, the line segment B_{4}^{*} from $(0,0,0)$ to $(0,0, \epsilon)$, and an infinite ray with endpoint $(0,0, \epsilon)$ pointing in the direction of the negative x_{2}-axis. On the corresponding original surface, one eighth of a catenoid, we then have that B_{4} is a quarter circle of radius $2 \epsilon / \pi$. Thus $\lim _{\beta_{2} \rightarrow \infty}\left(\lim _{S \rightarrow \infty} \pi_{1}\left(\beta_{2}, S, 0\right)\right)=-2 \epsilon / \pi$. Since the original surface corresponding to $\lim _{S \rightarrow \infty} \mathcal{B}\left(\beta_{2}, S, 0\right)$ has two Scherk-type ends of width ϵ and β_{2}, it follows that $\lim _{\beta_{2} \rightarrow \infty}\left(\lim _{S \rightarrow \infty}\left(\pi_{1}\left(\beta_{2}, S, 0\right)+\pi_{2}\left(\beta_{2}, S, 0\right)\right)\right)=$ $\lim _{\beta_{2} \rightarrow \infty}\left(\epsilon-\beta_{2}\right)=-\infty$. Thus for β_{2} and S sufficiently large, we have $\pi_{2}\left(\beta_{2}, S, 0\right)<0$.

Therefore for some large S and some value of $\beta_{2}>\epsilon$, we have $\pi_{2}\left(\beta_{2}, S, 0\right)=0$. If, for this S and β_{2}, we have $\pi_{1}\left(\beta_{2}, S, 0\right) \geq 0$, then the original surface corresponding to this $\beta_{2}, \beta_{3}=S$, and $\beta_{5}=0$ would contain some point in $B_{4} \cup B_{6}$ where x_{2} has a local maximum and where the tangent plane is parallel to the $x_{1} x_{3}$-plane. This contradicts the maximum principle. So, for this S and β_{2}, we have $\pi_{1}\left(\beta_{2}, S, 0\right)<0$. This shows (iv).

This completes the proof of the solvability of the period problem associated to M_{1}^{+-}. Note that $\Pi\left(\tau_{1} \cup\right.$ $\tau_{2} \cup \tau_{3} \cup \tau_{4}$) changes continuously under continuous changes of β_{2}, so for all β_{2} sufficiently close to the β_{2} chosen above, $\Pi\left(\tau_{1} \cup \tau_{2} \cup \tau_{3} \cup \tau_{4}\right)$ is still a homotopically nontrivial loop in $\mathbb{R}^{2} \backslash\{(0,0)\}$, and so the period problem remains solvable. Hence β_{2} in a small open interval serves as a deformation parameter for the surface, thereby yielding a one-parameter family of these surfaces. Since each eighth of the surface is embedded, and the maximum principle tells us this embedded surface lies in the bounding box determined by the planar curves B_{j}, each surface in the family is embedded. This completes the proof.

The proof of Theorem 9.1 cannot be directly adapted to prove existence of M_{k}^{+-}for $k \geq 2$. However,
numerical evidence suggests that the M_{k}^{+-}exist for $k \geq 2$ as well, so we make this conjecture (see Figure 3).
Conjecture 9.1 There exists a one-parameter family of genus three, embedded minimal surfaces M_{k}^{+-}with $4 k$ Scherk-type ends, for all $k \geq 2$.

In fact, numerical evidence also suggests that there exists a wide variety of minimal surfaces with Scherktype ends and more handles of both + and - type. (See Figure 12.)

10 Appendix: a proof of Lemma 4.1

The first part of Lemma 4.1 is intended only to be an intuitive aid, saying that "each collection of surfaces results from adding ends and handles to $M_{1} "$. However, a rigorous proof is required for the statement that "the period problems arising from the additional ends are all solved by requiring $\epsilon=\operatorname{length}\left(A_{i}\right)=$ length $\left(B_{j}\right)$ ".

For each surface, we always begin by choosing one-eighth of the original fundamental piece of the surface. This one-eighth piece is bounded by planar geodesics, and its conjugate surface is bounded by portions of lines. Before we consider any period problems, we must first establish existence of this conjugate surface, which then implies the existence of the original one-eighth piece (without solving for period problems yet).

The conjugate pieces exist because they are Jenkins-Serrin graphs. In all the cases we consider, they are Jenkins-Serrin graphs over a rectangle, and the boundary data is a finite constant over each of three sides of the boundary of the rectangle. On the fourth side, the boundary data alternates between $+\infty$ and $-\infty$ along adjacent intervals. The jump discontinuities occur only at the corners of the rectangle and at points along the fourth side where the boundary data changes from $+\infty$ to $-\infty$.

Recall Theorem 3.3. In our case, by applying a rigid motion and a homothety of \mathbb{R}^{3}, we may assume without loss of generality that $D=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid 0 \leq x_{1} \leq \delta, 0 \leq x_{2} \leq 1\right\}$ for some positive δ, that there are three C_{k} 's which we define as $C_{1}=D \cap\left\{\left(x_{1}, 0\right) \in \mathbb{R}^{2}\right\}, C_{2}=D \cap\left\{\left(\delta, x_{2}\right) \in \mathbb{R}^{2}\right\}$, and $C_{3}=D \cap\left\{\left(x_{1}, 1\right) \in \mathbb{R}^{2}\right\}$, and that there are ℓ number of A_{i} 's and B_{j} 's, all of length $\frac{1}{\ell}$ alternating along $D \cap\left\{\left(0, x_{2}\right) \in \mathbb{R}^{2}\right\}$. Notice here that we have already incorporated the condition of Lemma 4.1, that is, that

$$
\epsilon=\operatorname{length}\left(A_{i}\right)=\operatorname{length}\left(B_{j}\right)=\frac{1}{\ell}
$$

Existence and uniqueness of a solution u to the minimal surface equation with the given boundary data now follows from Theorem 3.3. (The conditions on the polygons \mathcal{P} are trivially satisfied, since no such \mathcal{P} exists for the boundary conditions we are using.) Furthermore, the results in [JS imply that u is finite at every point in the interior of D.

Let M denote the smallest closed minimal surface that contains the graph u. (Here we use the word "closed" in the sense that M contains all of its accumulation points.) Hence the interior of M is the interior of the graph u, and M contains its boundary ∂M, and the image of the vertical projection of M to the $x_{1} x_{2}$-plane is $D \backslash\left\{\left(0, x_{2}\right) \in \mathbb{R}^{2} \left\lvert\, x_{2} \neq \frac{k}{\ell}\right.\right.$ some $\left.k \in \mathbb{Z}\right\}$.

We now prove Lemma 4.1 in a series of eight claims.
Claim 1: M has finite total absolute curvature.

Proof. Following the proof in [JS, p 334, u is the limit of a subsequence of minimal graphs $\left\{u_{n}\right\}_{n=1}^{\infty}$ over $\operatorname{Int}(D)$. The minimal graphs u_{n} are determined by replacing the boundary condition $+\infty$ by $+n$ on each A_{i},
replacing the boundary condition $-\infty$ by $-n$ on each B_{j}, and leaving the boundary data on $C_{1} \cup C_{2} \cup C_{3}$ unchanged.

First we show that the total absolute curvature of the graph of u_{n} is bounded above by a finite bound independent of n, which follows easily from the Gauss-Bonnet formula. The boundary of u_{n} is polygonal with at most $2 \ell+6$ boundary line segments, and at each intersection of adjacent boundary line segments the angle of intersection is $\frac{\pi}{2}$. Hence the total geodesic curvature of the boundary curve for the graph u_{n} is at most $\frac{\pi}{2}(2 \ell+6)$. The Gauss-Bonnet formula then implies

$$
\begin{equation*}
\int_{\operatorname{Graph}\left(u_{n}\right)}|K| d A \leq \pi(\ell+1) \quad \forall n \tag{10.1}
\end{equation*}
$$

where $d A$ is the area form on $\operatorname{Graph}\left(u_{n}\right)$ induced by \mathbb{R}^{3}, and K is the intrinsic Gaussian curvature of $\operatorname{Graph}\left(u_{n}\right)$.

Now we claim that for any compact convex domain $D^{\prime} \subset \operatorname{Int}(D)$, there exists a subsequence $\left\{n_{j}\right\}_{j=1}^{\infty}$ such that the total absolute curvature of the graphs of $u_{n_{j}}$ restricted to the domain D^{\prime} converges to the total absolute curvature of the graph of u restricted to D^{\prime}. That is, we claim that

$$
\begin{equation*}
\int_{\operatorname{Graph}\left(\left.u_{n_{j}}\right|_{D^{\prime}}\right)}|K| d A \rightarrow \int_{\operatorname{Graph}\left(\left.u\right|_{D^{\prime}}\right)}|K| d A \tag{10.2}
\end{equation*}
$$

as $n_{j} \rightarrow \infty$. This follows from the fact that, as shown in JS, $\left.u_{n}\right|_{D^{\prime}}$ converges uniformly to $\left.u\right|_{D^{\prime}}$ as $n \rightarrow \infty$. The convergence (10.2) is essentially known, and arguments showing it exist in several places. For example, a proof is contained in the arguments proving Theorem 2 in $M Y$. The arguments in $M Y$ are intended for more general ambient spaces, and when the ambient space is \mathbb{R}^{3} the arguments in $M Y$ can be considerably simplified. A simpler argument for the \mathbb{R}^{3} case can be found in section III. 2 of [C].

For completeness, in this paragraph we outline an argument showing (10.2). We know that the u_{n} converge uniformly to u over D^{\prime}, by [JS]. These graphs $\left.u_{n}\right|_{D^{\prime}}$ (resp. $\left.u\right|_{D^{\prime}}$) are graphs over convex domains in the $x_{1} x_{2}$-plane and hence are the unique compact minimal surfaces with respect to their boundaries. Hence they coincide as surfaces in \mathbb{R}^{3} with the Douglas-Rado solutions $f_{n}: B^{2}:=\left\{(u, v) \in \mathbb{R}^{2} \mid u^{2}+v^{2} \leq\right.$ $1\} \rightarrow \mathbb{R}^{3}$ (resp. $f: B^{2} \rightarrow \mathbb{R}^{3}$) for their boundaries. That is, the surfaces $f_{n}\left(B^{2}\right)$ and $\left\{\left(x_{1}, x_{2}, u_{n}\left(x_{1}, x_{2}\right)\right) \in\right.$ $\left.\mathbb{R}^{3} \mid\left(x_{1}, x_{2}\right) \in D^{\prime}\right\}\left(\right.$ resp. $f\left(B^{2}\right)$ and $\left.\left\{\left(x_{1}, x_{2}, u\left(x_{1}, x_{2}\right)\right) \in \mathbb{R}^{3} \mid\left(x_{1}, x_{2}\right) \in D^{\prime}\right\}\right)$ coincide. The parametrizations f_{n} and f have the advantage that they are conformal, hence the coordinate functions $f_{n}^{i}, f^{i}, i=1,2,3$ are harmonic on B^{2}. Using arguments similar to those we use later to prove Claim 6 of this note, we can see that in fact

$$
\frac{\partial u_{n}}{\partial x_{1}} \rightarrow \frac{\partial u}{\partial x_{1}}, \frac{\partial u_{n}}{\partial x_{2}} \rightarrow \frac{\partial u}{\partial x_{2}}
$$

converge uniformly over D^{\prime} as well. (This is equivalent to showing that the normal vectors of the graphs converge uniformly over D^{\prime}.) Once we know that first derivatives of u_{n} also converge uniformly, the arguments in the proof of Lemma 3.2 and the remark following it in $[$] can be applied: using the three-point condition as in [C], we can find a subsequence $f_{n_{j}}$ of the f_{n} which converge uniformly to f on ∂B^{2}. Since the functions $f_{n_{j}}^{i}$, f^{i} are harmonic, and hence the functions $\left|f_{n_{j}}^{i}-f^{i}\right|$ always attain their maximums on ∂B^{2}, we conclude that $f_{n_{j}} \rightarrow f$ uniformly on all of B^{2}. Uniform convergence for harmonic functions implies that the convergence is smooth (this is a basic property of harmonic functions, see, for example, Theorem 2.10 of [GT]). We conclude that the Douglas-Rado solutions $f_{n_{j}}$ converge smoothly to f. Hence the total absolute curvature of the graphs $\left.u_{n_{j}}\right|_{D^{\prime}}$ converges to the total absolute curvature of the graph $\left.u\right|_{D^{\prime}}$. This shows the convergence (10.2).

If the total absolute curvature of M is strictly greater than $\pi(\ell+1)$, then there exists some compact convex domain $D^{\prime} \subset \operatorname{Int}(D)$ such that the graph of $\left.u\right|_{D^{\prime}}$ has total absolute curvature strictly greater than $\pi(\ell+1)$. However, then the convergence (10.2) contradicts equation (10.1). Therefore the total absolute curvature of M is at most $\pi(\ell+1)$, and Claim 1 is shown.

Claim 2: The are only a finite number of points of M at which the tangent plane is horizontal.

Proof. The proof below is simply a modification of an argument in the proof of Theorem 3.1 of MW.
Consider the Gauss map $G: M \rightarrow S^{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\} . M$ is the closure of the graph u, so M is orientable, and so G is well-defined. We can define G so that $G(M) \subset S^{2} \cap\left\{\left(x_{1}, x_{2}, x_{3}\right) \in\right.$ $\left.\mathbb{R}^{3} \mid x_{3} \geq 0\right\}$. With respect to conformal coordinates on M, G is a holomorphic map from M to the upper hemisphere of S^{2}, hence G is a branched covering with boundary into the upper hemisphere. Furthermore, since ∂M consists of portions of lines parallel to the coordinate axes in \mathbb{R}^{3},

$$
G(\partial M) \subset\left\{\left(x_{1}, x_{2}, x_{3}\right) \in S^{2} \mid x_{1}=0 \text { or } x_{2}=0 \text { or } x_{3}=0\right\} \cap\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{3} \geq 0\right\}
$$

Therefore the covering degree of G is a constant on each of the four sets

$$
\begin{array}{ll}
\left\{\left(x_{1}, x_{2}, x_{3}\right) \in S^{2} \mid x_{1}>0, x_{2}>0, x_{3}>0\right\}, & \left\{\left(x_{1}, x_{2}, x_{3}\right) \in S^{2} \mid x_{1}<0, x_{2}>0, x_{3}>0\right\} \\
\left\{\left(x_{1}, x_{2}, x_{3}\right) \in S^{2} \mid x_{1}>0, x_{2}<0, x_{3}>0\right\}, & \left\{\left(x_{1}, x_{2}, x_{3}\right) \in S^{2} \mid x_{1}<0, x_{2}<0, x_{3}>0\right\}
\end{array}
$$

By Claim 1, these four constant covering degrees are all finite. If the inverse image $G^{-1}\left(\vec{e}_{3}=(0,0,1)\right)$ were to contain infinitely many points of M, then at least one of these four constant covering degrees would not be finite. Hence $G^{-1}\left(\vec{e}_{3}=(0,0,1)\right)$ is a finite set, showing Claim 2.

Let $P_{s}=\left\{\left(x_{1}, x_{2}, s\right) \in \mathbb{R}^{3}\right\}$ be the horizontal plane in \mathbb{R}^{3} of height s. An immediate corollary to Claim 2 is the following Claim 3. In Claim 3, by "nonsingular curves of $\mathbb{R}^{3 "}$, we mean curves of \mathbb{R}^{3} which are 1-dimensional submanifolds with boundary.

Claim 3: There exists a constant $L>0$ such that, for all $L^{\prime}>L, P_{s} \cap M, s \in\left[L, L^{\prime}\right]$ (resp. $s \in\left[-L^{\prime},-L\right]$) is a smooth deformation (with respect to s) from $P_{L} \cap M$ to $P_{L^{\prime}} \cap M$ (resp. from $P_{-L} \cap M$ to $\left.P_{-L^{\prime}} \cap M\right)$ through an embeddeded collection of nonsingular curves of \mathbb{R}^{3}.

Proof. A singularity in this deformation can only occur at a point of M where the tangent plane is horizontal. By Claim 2, we can choose L large enough that no such horizontal points exist in $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in M \mid x_{3} \geq L\right\}$ nor in $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in M \mid x_{3} \leq-L\right\}$. This proves Claim 3 .

Thus, by Claim 3, for any $L^{\prime}>L, M \cap\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{3} \in\left[L, L^{\prime}\right]\right\}$ consists of a finite number of components, and each component is an embedded disk bounded by two vertical lines segments, and one curve in $P_{L^{\prime}}$, and one curve in P_{L}. We choose any component $M_{\text {comp }}$ of $M \cap\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{3} \in\left[L, L^{\prime}\right]\right\}$ and extend it by rotations of π radians about vertical boundary lines (this can be done, and the extended surfaces are smooth, by the Schwarz reflection principle, Theorem 3.1). Extending $M_{\text {comp }}$ (and its extended surfaces) by these rotations a finite number of times results in a larger compact surface which still has only two vertical boundary line segments, and one boundary curve in $P_{L^{\prime}}$, and one boundary curve in P_{L}. We make these rotational extensions enough times so that the distance in \mathbb{R}^{3} from any point in $M_{\text {comp }}$ to the
two boundary vertical line segments of the extended surface is greater than $\frac{1}{4}\left(L^{\prime}-L\right)$. We call this extended surface $M_{\text {comp }}^{e x t}$ - it is an immersed compact disk in \mathbb{R}^{3}, and is not necessarily embedded. (We will later see that $M_{\text {comp }}^{e x t}$ is indeed embedded for L large enough.)

Claim 4: $M_{\text {comp }}^{e x t}$ is strongly stable.

Proof. The image $G\left(M_{c o m p}\right)$ is contained in the upper hemisphere of S^{2} and does not contain the north pole \vec{e}_{3}. Since $M_{\text {comp }}^{e x t}$ is comprised of a finite number of pieces congruent to $M_{c o m p}$ which are all images of vertical rotations of $M_{c o m p}$, it follows that $G\left(M_{c o m p}^{e x t}\right)$ is also contained in the upper hemisphere and does not contain \vec{e}_{3}. In particular, the area of $G\left(M_{\text {comp }}^{e x t}\right)$ in S^{2} is strictly less than 2π.

Theorem 1.2 of $[\mathrm{BdC}]$ tells us that if the area of $G\left(M_{\text {comp }}^{e x t}\right)$ is less than 2π, then $M_{\text {comp }}^{e x t}$ is stable. The $\operatorname{map} G$ is not required to be an injection in order for this theorem to hold, and the minimal surface need only be an immersion - it does not need to be an embedding. Furthermore, in BdC the word stable is used in the strong sense; that is, a minimal surface is stable if the second derivative of area for any smooth nontrivial boundary-preserving variation is strictly positive. This shows Claim 4.

For an oriented minimal surface $\mathcal{M} \subset \mathbb{R}^{3}$, let $\operatorname{dist}_{\mathcal{M}}(A, B)$ be the intrinsic distance in \mathcal{M} between two sets $A, B \subset \mathcal{M}$. For each point $q \in \mathcal{M}$, let K_{q} be the Gaussian curvature of \mathcal{M} at q, and let \vec{N}_{q} be the oriented unit normal vector of \mathcal{M} at q. Let $\vec{e}_{1}=(1,0,0)$, and let $\langle\cdot, \cdot\rangle$ be the standard inner product on \mathbb{R}^{3}. Let dist $\mathbb{R}^{3}(A, B)$ be the distance in \mathbb{R}^{3} between two sets $A, B \subset \mathbb{R}^{3}$.

By Corollary 4 of [$\mathbf{S}]$ there exists a universal constant c such that

$$
\left|K_{q}\right|<\frac{c}{\left(\operatorname{dist}_{\mathcal{M}}(q, \partial \mathcal{M})\right)^{2}}
$$

where \mathcal{M} is any compact stable minimal surface in \mathbb{R}^{3}, and q is any point in \mathcal{M}. This result (just like Theorem 1.2 of $[\mathrm{BdC}]$) does not require the surface \mathcal{M} to be embedded - only immersed. The constant c is universal in the sense that it is independent of the choice of \mathcal{M}. (See Theorem 16.20 of GT] and Theorem 11.1 of (O] for related results.)

Claim 5: On the surface $\hat{M}:=M_{\text {comp }} \cap\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \left\lvert\, x_{3} \in\left[\frac{1}{4} L^{\prime}+\frac{3}{4} L, \frac{3}{4} L^{\prime}+\frac{1}{4} L\right]\right.\right\}$, the
Gaussian curvature K is uniformly bounded by

$$
|K|<\frac{16 c}{\left(L^{\prime}-L\right)^{2}}
$$

Proof. $M_{c o m p}^{e x t}$ is a compact minimal surface in \mathbb{R}^{3}, which is strongly stable by Claim 4. For all $q \in \hat{M}$, $\operatorname{dist}_{M_{\text {comp }}^{e x t}}\left(q, \partial M_{\text {comp }}^{e x t}\right) \geq \frac{L^{\prime}-L}{4}$. Now we apply Corollary 4 of $[\mathrm{S}]$ and Claim 5 is proven.

Assume that L^{\prime} is chosen large enough that $\frac{8 \sqrt{c} \delta}{L^{\prime}-L}<1$.
Claim 6: At every point of $M_{\text {comp }} \cap\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \left\lvert\, x_{3} \in\left[\frac{3}{8} L^{\prime}+\frac{5}{8} L, \frac{5}{8} L^{\prime}+\frac{3}{8} L\right]\right.\right\}$, we have

$$
\left|\left\langle\vec{N}, \vec{e}_{1}\right\rangle\right| \geq \sqrt{1-\frac{8 \sqrt{c} \delta}{L^{\prime}-L}}
$$

Proof. Suppose some point $p \in M_{\text {comp }} \cap\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \left\lvert\, x_{3} \in\left[\frac{3}{8} L^{\prime}+\frac{5}{8} L, \frac{5}{8} L^{\prime}+\frac{3}{8} L\right]\right.\right\}$ has normal \vec{N}_{p} so that $\left|\left\langle\vec{N}_{p}, \vec{e}_{1}\right\rangle\right|<\sqrt{1-\frac{8 \sqrt{c} \delta}{L^{\prime}-L}}$. Then there is a tangent vector \vec{T} at p such that $\left\langle\vec{T}, \vec{e}_{1}\right\rangle>\sqrt{\frac{8 \sqrt{c} \delta}{L^{\prime}-L}}$. Assume
L^{\prime} and c are chosen large enough that $L^{\prime}-L>1$ and $c>1024 \cdot \delta^{2}$. Consider a unit-speed geodesic $\gamma(t) \subset \hat{M}, t \in\left[0,\left(L^{\prime}-L\right) / 8\right]$ so that $\gamma(0)=p$ and $\gamma^{\prime}(0)=\vec{T}$, where $\boldsymbol{\prime}=\frac{\partial}{\partial t}$. We define

$$
t_{0}:=\sqrt{\frac{\delta\left(L^{\prime}-L\right)}{2 \sqrt{c}}}
$$

Since $L^{\prime}>L+1$ and $c>1024 \cdot \delta^{2}$, we have that $t_{0}<\left(L^{\prime}-L\right) / 8$ and hence $\gamma\left(t_{0}\right) \in \hat{M}$. Let $k_{g}(t)$ be the geodesic curvature of $\gamma(t)$. Since $\left|K_{q}\right|<\frac{16 c}{\left(L^{\prime}-L\right)^{2}}$ for all $q \in \hat{M}$ by Claim 5 , and since \hat{M} is minimal, $\left|k_{g}(t)\right|<\frac{4 \sqrt{c}}{\left(L^{\prime}-L\right)}$ for all $t \in\left[0,\left(L^{\prime}-L\right) / 8\right]$. Thus $\left|\gamma^{\prime \prime}(t)\right|<\frac{4 \sqrt{c}}{\left(L^{\prime}-L\right)}$. Writing $\gamma(t)=\left(\gamma_{1}(t), \gamma_{2}(t), \gamma_{3}(t)\right)$ in terms of coordinates in \mathbb{R}^{3}, we have $\left|\gamma_{1}^{\prime \prime}(t)\right|<\frac{4 \sqrt{c}}{\left(L^{\prime}-L\right)}$. Then for $t \in\left[0,\left(L^{\prime}-L\right) / 8\right]$,

$$
\left|\gamma_{1}^{\prime}(t)-\gamma_{1}^{\prime}(0)\right|=\left|\int_{0}^{t} \gamma_{1}^{\prime \prime}(s) d s\right| \leq \int_{0}^{t}\left|\gamma_{1}^{\prime \prime}(s)\right| d s<\frac{4 \sqrt{c}}{L^{\prime}-L} \cdot t
$$

and thus $\gamma_{1}^{\prime}(t)>\gamma_{1}^{\prime}(0)-\frac{4 \sqrt{c}}{L^{\prime}-L} \cdot t$. Therefore

$$
\begin{aligned}
\gamma_{1}\left(t_{0}\right) & \geq \gamma_{1}\left(t_{0}\right)-\gamma_{1}(0)=\int_{0}^{t_{0}} \gamma_{1}^{\prime}(t) d t>\int_{0}^{t_{0}}\left(\gamma_{1}^{\prime}(0)-\frac{4 \sqrt{c}}{L^{\prime}-L} t\right) d t= \\
& =\gamma_{1}^{\prime}(0) t_{0}-\frac{2 \sqrt{c}}{L^{\prime}-L} t_{0}^{2}>\sqrt{\frac{8 \sqrt{c} \delta}{L^{\prime}-L}} \cdot t_{0}-\frac{2 \sqrt{c}}{L^{\prime}-L} t_{0}^{2}=\delta
\end{aligned}
$$

The final inequality above follows from $\gamma_{1}^{\prime}(0)=\left\langle\vec{T}, \vec{e}_{1}\right\rangle>\sqrt{\frac{8 \sqrt{c} \delta}{L^{\prime}-L}}$, and the final equality follows from the definition of t_{0}. This is a contradiction, since the vertical projection to the $x_{1} x_{2}$-plane of the geodesic $\gamma(t) \subset \hat{M} \subset M$ is contained in D. This proves Claim 6 .

Note that $M_{\text {comp }}$ is one component of $M \cap\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{3} \in\left[L, L^{\prime}\right]\right\}$ and thus $M_{\text {comp }}=M_{\text {comp }}\left(L^{\prime}\right)$ depends on L^{\prime}. We now wish to increase $M_{\text {comp }}$ to a connected noncompact surface \tilde{M} that is independent of L^{\prime}. Define

$$
\tilde{M}:=\cup_{L^{\prime}>L} M_{\text {comp }}\left(L^{\prime}\right)
$$

Thus $M_{\text {comp }}\left(L^{\prime}\right) \subset \tilde{M}$ for all L^{\prime}, and \tilde{M} is a disk bounded by one curve in P_{L} and by two upward-pointing vertical rays r_{1}, r_{2} with endpoints in P_{L}. Since $L^{\prime}>L+\max (1,8 \sqrt{c} \delta)$ was arbitrary in the proof of Claim 6 , an easy corollary of Claim 6 is the following:

Claim 7: The normal vector \vec{N} on \tilde{M} converges to $\pm \vec{e}_{1}$ at the end of \tilde{M}. More precisely, for all $\rho \in(0,1)$, there exists $\mathcal{L}(\rho)>0$ such that at all points $q \in\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \tilde{M} \mid x_{3}>\mathcal{L}(\rho)\right\}$, the normal \vec{N}_{q} satisfies $\left\|\vec{N}_{q}-\vec{e}_{1}\right\|<\rho$ or $\left\|\vec{N}_{q}+\vec{e}_{1}\right\|<\rho$.

Proof. We choose s so that $L^{\prime}=2 s$. By Claim 6, if $L^{\prime}>L+\max (1,8 \sqrt{c} \delta)$, then

$$
\left\langle\vec{N}_{q}, \vec{e}_{1}\right\rangle^{2} \geq 1-\frac{8 \sqrt{c} \delta}{2 s-L}
$$

for every point $q \in P_{s} \cap M_{\text {comp }}$. Define

$$
\vec{N}_{q}^{\perp}:=\vec{N}_{q}-\left\langle\vec{N}_{q}, \vec{e}_{1}\right\rangle \vec{e}_{1}
$$

Then $\left\|\vec{N}_{q}^{\perp}\right\|^{2} \leq \frac{8 \sqrt{c} \delta}{2 s-L}$ and $\vec{N}_{q} \pm \vec{e}_{1}=\left(\left\langle\vec{N}_{q}, \vec{e}_{1}\right\rangle \pm 1\right) \vec{e}_{1}+\vec{N}_{q}^{\perp}$. By a straightforward computation, choosing

$$
s>\frac{16 \sqrt{c} \delta+3 L}{3 \rho^{2}}+1
$$

is sufficient to ensure

$$
\min \left\|\vec{N}_{q} \pm \vec{e}_{1}\right\|<\rho \text { and } L^{\prime}>L+\max (1,8 \sqrt{c} \delta)
$$

Claim 7 is shown.
Using Claim 7 and elementary properties of conjugation, we now prove Lemma 4.1.
Note that dist $\mathbb{R}^{3}\left(r_{1}, r_{2}\right)=\frac{k}{\ell}$ for some positive integer k. By Claim 7 and the original construction of the boundary data (i.e. the choices we made for the A_{i}, B_{j}) in the Jenkins-Serrin graph, we see that $k=1$. Furthermore, by Claim 7, we have

$$
\begin{equation*}
\operatorname{dist}_{\tilde{M}}\left(r_{1}, r_{2}\right)=\operatorname{dist}_{\mathbb{R}^{3}}\left(r_{1}, r_{2}\right)=\frac{1}{\ell} \tag{10.3}
\end{equation*}
$$

Let $\tilde{M}_{c o n j}$ be the conjugate surface of \tilde{M}. We have the following properties:

1. Since conjugation is an isometry, $\tilde{M}_{\text {conj }}$ is bounded by one smooth curve of finite length, and two smooth curves \hat{r}_{1}, \hat{r}_{2} of infinite length.
2. Since conjugation maps straight lines to planar geodesics, \hat{r}_{1}, \hat{r}_{2} are two boundary planar geodesics of $\tilde{M}_{\text {conj }}$ that are the images of the boundary rays r_{1}, r_{2}, respectively, under conjugation.
3. Since conjugation preserves the Gauss map and hence also \vec{N}, \hat{r}_{1} and \hat{r}_{2} each lie in a horizontal plane. We call these two horizontal planes \hat{P}_{1} and \hat{P}_{2}, respectively.
4. Since the normal vector \vec{N} is preserved under conjugation, \vec{N} on $\tilde{M}_{\text {conj }}$ converges to $\pm \vec{e}_{1}$ at the end of $\tilde{M}_{\text {conj }}$.
5. By property 4 above, $\operatorname{dist}_{\mathbb{R}^{3}}\left(\hat{P}_{1}, \hat{P}_{2}\right)=\operatorname{dist}_{\tilde{M}_{\text {conj }}}\left(\hat{r}_{1}, \hat{r}_{2}\right)$.
6. Since conjugation is an isometry, $\operatorname{dist}_{\tilde{M}_{\text {conj }}}\left(\hat{r}_{1}, \hat{r}_{2}\right)=\operatorname{dist}_{\tilde{M}}\left(r_{1}, r_{2}\right)$.

Finally, from equation (10.3) and properties 5 and 6 above, we conclude:
Claim 8: $\operatorname{dist}_{\mathbb{R}^{3}}\left(\hat{P}_{1}, \hat{P}_{2}\right)=\frac{1}{\ell}$.
On the conjugate $\tilde{M}_{\text {conj }}$ of $\tilde{M} \subset\left\{\left(x_{1}, x_{2}, x_{3}\right) \in M \mid x_{3} \geq L\right\}$, the period problem at the end is a vertical translation comprised of one reflection through \hat{P}_{1} composed with one reflection through \hat{P}_{2}. Thus the period problem is a vertical translation of length exactly $\frac{2}{\ell}$, by Claim 8 . Likewise, the same holds for the conjugate surface of any other components of $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in M \mid x_{3} \geq L\right\}$ and any components of $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in M \mid x_{3} \leq-L\right\}$ as well, when L is chosen large enough. Since the boundary behavior alternates between $+\infty$ and $-\infty$ along the alternating A_{i} 's and B_{j} 's, the normal vector of the graph u must alternately approach $+\vec{e}_{1}$ and $-\vec{e}_{1}$ along the A_{i} 's and B_{j} 's. Therefore, as one travels along the line segment $D \cap\left\{\left(0, x_{2}\right) \in \mathbb{R}^{2}\right\}$, the vertical direction of the translation periods at the ends of the conjugate surface of M alternates between upward and downward translations of length $\frac{2}{\ell}$.

Thus Lemma 4.1 is shown.

References

[BdC] L. Barbosa, M. do Carmo. On the size of a stable minimal surface in \mathbb{R}^{3}, Amer. J. of Math., vol 98, no. 2, pg515-528, 1976.
[C] R. Courant. Dirichlet's principle, conformal mapping, and minimal surfaces. Interscience Publishers, 1950.
[DHKW] U. Dierkes, S. Hildebrandt, A. Küster, and O. Wohlrab. Minimal Surfaces I. Springer-Verlag, 1993.
[GT] D. Gilbarg, N. S. Trudinger. Elliptic partial differential equations of second order. A series of comprehensive studies in mathematics 224, 2nd ed, Springer, revised third printing 1998.
[JS] H. Jenkins, J. Serrin. Variational problems of minimal surface type II. Boundary value problems the minimal surface equation. Arch. Rational Mech. Anal., 21:321-342, 1965.
[K1] H. Karcher. Embedded minimal surfaces derived from Scherk's examples. Manuscripta Math., 62:83-114, 1988.
[K2] H. Karcher. Construction of minimal surfaces. Surveys in Geometry, 1-96, 1989. University of Tokyo, 1989, and Lecture Notes No. 12, SFB256, Bonn, 1989.
[K3] H. Karcher. Construction of higher genus embedded minimal surfaces. Geometry and Topology of Submanifolds III, World Scientific, 1990, 174-191.
[KP] H. Karcher, K. Polthier. Personal communications.
[MR] W. H. Meeks, H. Rosenberg. The maximum principle at infinity for minimal surfaces in flat three-manifolds. Commentari Mathematici Helvetici, 65:255-270, 1990.
[MY] W. H. Meeks, S. T. Yau. The classical Plateau problem and the topology of three-dimensional manifolds, Topology 21(4), 409-442, 1982.
[MW] W. H. Meeks, B. White. Minimal surfaces bounded by convex curves in parallel planes, Comm. Math. Helv., 66, p263-278, 1991.
[O] R. Osserman. A survey of minimal surfaces. Dover Publications, 1986.
[S] R. Schoen. Estimates for stable minimal surfaces in three dimensional manifolds, Annals of Math. Stud. 103, Princeton University Press, 1983.
[T] E. Thayer. Complete Minimal Surfaces in Euclidean Three Space. PhD thesis, University of Massachusetts, Amherst, September 1994.
[We] F. Wei. Some existence and uniqueness theorems for doubly periodic minimal surfaces. Invent. Math., 109:113-136, 1992.
[Wo] M. Wohlgemuth. Minimal surfaces of high genus with finite total curvature. Arch. Ration. Mech. Anal., 137(1):1-25, 1997.

Figure 12: Fundamental pieces of M_{1}^{9+} (left) and $M_{1}^{+, 8-}$ (right).

Figure 13: The location of \hat{M}, as defined in Claim 5.

Figure 14: The construction of $M_{c o m p}^{e x t}$.

Figure 15: The conjugate surface of \tilde{M}.

Figure 16: The surface \tilde{M}.

[^0]: *Supported by the National Science Foundation under grants DMS-9011083 and DMS-9312087 and by the U.S. Department of Energy under grant DE-FG02-86ER25015 of the Applied Mathematical Science subprogram of the Office of Energy Research
 \dagger Supported by SFB 256 at University of Bonn and the Alexander von Humboldt-Stiftung

