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We give a numerical method for approximating critical points

of the Ginzburg–Landau functional, and present test results in

the form of plots of the corresponding electron densities, mag-

netic fields, and currents. Our domains include a rectangle, a

rectangle with a rectangular hole in the center, and a rectan-

gle with two rectangular holes. In each case, we found several

critical points. The plots reveal interesting patterns, including

the existence of counter-currents (adjacent currents in opposite

directions).

1. INTRODUCTIONThere is considerable current interest, both math-ematical and physical, in Ginzburg{Landau energyfunctionals. The critical points of these function-als represent distributions of currents and magnetic�elds in superconducting materials. Superconduc-tors have a number of important industrial appli-cations, including high-speed semiconductor deviceswith low power consumption. Numerical computa-tion of critical points is essential for two purposes:to provide simulations for use by designers of su-perconducting devices, and to provide guidance tomathematicians seeking to characterize the criticalpoints. It is the latter purpose we emphasize here,with particular attention to �nding multiple criticalpoints of a given functional, and to the behavior ofcurrents and magnetic �elds in domains with holes.Let 
 be a bounded, simply connected region inR 2, inside which we consider zero or more holes,whose union we denote by 
0. The region 
n
0 rep-resents a cross section of a superconductor whose en-ergy is given by the (nondimensionalized) Ginzburg{Landau functional, which is de�ned onu 2 H1;2(
; C ) and A 2 H1;2(
; R 2)
c
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by the expressionE(u;A) =12 Z
n
0 �kru�iuAk2+(r�A�H0)2+�22 (juj2�1)2�
+ 12 Z
0(r�A�H0)2; (1–1)We interpret u as a complex wave function, referredto as the order parameter, with juj2 representing the(probability) density of superconducting electrons(Cooper pairs), and A as the magnetic �eld vectorpotential so that r � A (third component) is theinduced magnetic �eld. The applied magnetic �eldH0 is the magnetic �eld that would be present inthe absence of the superconductor, and a local min-imum of E is obtained with u = 0 and r�A = H0everywhere in 
. The Ginzburg{Landau parame-ter � is a temperature-independent nondimensionalmaterial number [Rubinstein 1998].A simpli�ed version of (1{1) is treated in [Bethuelet al. 1994]:E(u) = 12 Z
�kruk2 + �22 (juj2 � 1)2�: (1–2)A mathematical study of minimizers of this func-tional has been carried out in [Bethuel et al. 1994;Shafrir 1995; Comte and Mironescu 1995] as well asin papers to which these works refer. Much of thatwork seems to be directed toward developing intu-ition which might carry over to (1{1). In [Neubergerand Renka 1997] we describe numerical experimentsin which we located two families of critical pointsfor 1{2 under boundary conditions of degree d, ford = 2; : : : ; 10. These were found in response to aquestion raised in [Bethuel et al. 1994, problem 12,p. 139].The critical points of E are solutions to the sta-tionary Ginzburg{Landau equations|that is, theEuler equations associated with (1{1)|with thecorresponding natural boundary conditions|a pairof coupled nonlinear PDE's with nonlinear bound-ary conditions [Du et al. 1992; Neuberger and Renka1999]. The equations can be uncoupled and theboundary conditions can be linearized, but the costof the computational procedure is quite high [Muand Huang 1998]. A second approach to computingthe critical points is to evolve the time-dependentGinzburg{Landau equations until a steady state is

reached [Du et al. 1992; 1995; Fleckinger-Pell�e et al.1998; Shafrir 1995]. This too is very costly.We have developed a very e�cient method thatavoids the problem of dealing with the nonlinearboundary conditions by treating the least squaresminimization problem directly. We employ a steep-est descent method using a discretized Sobolev gra-dient in place of the standard gradient [Neuberger1997; Neuberger and Renka 1999]. At each descentstep a symmetric positive de�nite linear system issolved (by a multigrid method) to obtain the Sobo-lev gradient from the standard gradient. This de-scent method is e�ectively a damped Newton iter-ation with a positive de�nite approximation to theHessian. The method is easily extended to threespace dimensions, and it appears to be applicableto a wider class of energy functionals such as Yang{Mills{Higgs functionals [Ja�e and Taubes 1980]. Forthe two-dimensional domains treated in this paper,each test run required only a few minutes on a 550MHz Pentium III.The e�ciency of our method and the fact thatit does not require a unique solution enabled us tocompute several critical points for each of severalcon�gurations (choices of the geometry 
0 and pa-rameter values H0; �). We obtain di�erent criticalpoints simply by varying the initial estimate usedby the descent method. While the existence of mul-tiple critical points is known ([Serfaty 1999], for ex-ample), we are not aware of any other numericalstudies in which multiple critical points are com-puted (or holes are included in the domain). Theprimary purpose of this paper is to provide a �rststep toward a complete classi�cation of the criticalpoints of E.Since we have no way of knowing if we have com-puted all the critical points for any given con�g-uration, the number of critical points remains anopen question. A possible approach to the problemof classifying critical points of a functional is dis-cussed in [Neuberger 1997, Chapter 14]. The presentwork, in a sense, forms a basis for a numerical imple-mentation of the idea described in that chapter forthe case of Ginzburg{Landau functionals. Call twomembers of H1;2(
; C ) � H1;2(
; R 2) equivalent ifthey lead (via steepest descent with Sobolev gradi-ents) to the same critical point of E. Using this def-inition of equivalence, one obtains a foliation, each
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leaf of which contains exactly one critical point. Atopological-algebraic characterization of these leavesmight lead to a solution of the problem of determin-ing all critical points of E.Although nonlinear, the Ginzburg{Landau modelwas derived from quantum mechanical considera-tions, and the plots of electron densities and mag-netic �elds in Figures 1{4 are similar in appearanceto eigenfunctions of a Schr�odinger operator associ-ated with a sequence of energy values. A full classi�-cation of the critical points could lead to a substan-tial chapter in the very important but still ill-de�nedarea of nonlinear spectral theory.The method is described in Sections 2 and 3, andour test results are presented in Section 4.
2. DISCRETIZATION AND SOBOLEV GRADIENTWe begin by recasting (1{1) in terms of real-valuedfunctions. Let u = r + is and A = �pq �. ThenE(p; q; r; s) =12 Z
n
0�(r1+sp)2+(s1�rp)2+(r2+sq)2+(s2�rq)2+(q1�p2�H0)2+ �(�=p2)(r2+s2�1)�2�

+12 Z
0(q1�p2�H0)2; (2–1)where the subscripts 1 and 2 on p, q, r, and s de-note �rst partial derivatives with respect to the �rstand second arguments, respectively. Once a criticalpoint of (2{1) is found, the corresponding current isJ(p; q; r; s) = (r2 + s2)� pq�� rrs+ srr:
Let w =

0BB@ rspq
1CCA, and de�ne D : H1;2(
)4 ! L2(
)12by Dw = 0@ ww1w2

1A :
Then Dw(x) 2 R 12 for x 2 
, and from (2{1) thereexist F : R 12 ! R 6 and F0 : R 12 ! R such that'(w) � E(p; q; r; s) = 12

F (Dw)

2L2(
n
0)6+ 12

F0(Dw)

2L2(
0):

By the Riesz Representation Theorem, the linearfunctional '0(w) is uniquely represented by an ele-ment of (H1;2(
))4|the Sobolev gradient rS'(w):'0(w)h = hh;rS'(w)i(H1;2(
))4 for h 2 (H1;2(
))4:We now describe a discretization and constructthe analogous Sobolev gradient for the correspond-ing �nite dimensional setting. We take 
 to be therectangle [0;�x] � [0;�y] and partition it into akx-cell by ky-cell rectangular grid with horizontalmesh width hx = �x=kx and vertical mesh widthhy = �y=ky. We take 
0 to be a subset of the in-terior grid cells. Denote the set of (kx + 1)(ky + 1)grid points by G, and denote the set of cell centersby G0. Let H be the vector space of all R 4-valuedfunctions on G, and let H 0 be the set of functionsfrom G0 to R 12, so that H and H 0 are analogousto (H1;2(
))4 and (L2(
))12, respectively. We thende�ne DG : H ! H 0 by
DGw = 0@ bIwD1wD2w

1A ;
where bI, D1, and D2 map grid-point functions tocell-center functions as follows: if the cell with cen-ter e has corners a; b; c; d at the lower left, lowerright, upper left, and upper right, respectively, thenbIw(e) = (w(a) + w(b) + w(c) + w(d))=4;D1w(e) = (w(b)� w(a) + w(d)� w(c))=(2hx);D2w(e) = (w(c)� w(a) + w(d)� w(b))=(2hy):With this notation our discretized functional is'G(w) = hxhy2 � Xe2G0\
n
0 kF (DGw)(e)k2R6

+ Xe2G0\
0 kF0(DGw)(e)k2R�;where the subscripts denote Euclidean norms on thedesignated spaces. To obtain a Sobolev gradient for'G, we must de�ne a corresponding inner productfor H . The obvious choice would be, for v; w 2 H ,hv; wiS = hDGv;DGwiH0 , where the subscript H 0denotes Euclidean inner product on H 0 (or on R Nfor N = 12kxky). However, there exists w 6= 0 suchthat DGw = 0. We therefore de�nehv; wiS = hDv;DwiH00 for v; w 2 H; (2–2)
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where Dw = 0@ wD1wD2w
1A ;

and the H 00 inner product is de�ned appropriately.The linear functional '0G(w) has two representa-tions by means of gradients. The value of the con-ventional gradient at w, denoted by r'G(w), is ob-tained by evaluating partial derivatives of 'G at w.With this gradient, the representation is'0G(w)h = hh;r'G(w)iH for h 2 H; (2–3)where the subscript H denotes the standard Eu-clidean inner product on H (or on R n for n = 4�(kx+1)(ky+1)). In terms of the Sobolev gradient orS-gradient rS'G of 'G, the representation is'0G(w)h = hh;rS'G(w)iS for h 2 H: (2–4)The relationship between the two gradients is givenby equations (2{2), (2{3), and (2{4):'0G(w)h = hh;rS'G(w)iS= hDh;DrS'G(w)iH00= hh;DtDrS'G(w)iH= hh;r'G(w)iH for h 2 H:It follows thatrS'G(w) = (DtD)�1r'G(w) for w 2 H:See [Neuberger 1997; Neuberger and Renka 1999]for a more extensive discussion of the properties ofSobolev gradients.
3. NUMERICAL METHODSThe steepest descent iteration step iswk+1 = wk � �k(DtD)�1r'G(wk); (3–1)where w0 is an initial solution estimate and �k iscomputed by a line search minimization of  (�k) ='�wk��krS'G(wk)�. We use Brent's univariate op-timization algorithm [1973], which combines goldensection search with parabolic interpolation.Note that, with the Hessian of 'G at wk in place ofDtD, (3{1) becomes the Newton iteration for com-puting a zero of r'G. The advantage of approxi-mating the Hessian values by the symmetric positivede�nite operator DtD is that the matrix need notbe stored, and the linear systems can be solved by a

multigrid method with both storage and time com-plexity linear in the number of grid points. To thisend we de�ne a sequence of grids G0; G1; : : : ; GM ,where G0 is as coarse as possible given the con-straints on the geometry (the hole locations), andGi is a re�nement of Gi�1 obtained by bisecting eachcell both horizontally and vertically.Write the linear system as Au = b, whereA = AM = DtD;u = uM = rS'GM (wk);b = bM = r'GM (wk) :
The �rst step of the multigrid scheme is to apply oneto three steps of an iterative method chosen to e�ec-tively damp out the high frequency components ofthe error. This step is referred to as pre-smoothing.Let �u denote the approximate solution. Then theerror e = u � �u is the solution to Ae = r for resid-ual r = b � A�u. The correction e is approximatedby restricting r and A to a coarser grid, solving fore using 0 as the initial estimate, interpolating thesolution back to the �ne grid, and correcting the�ne-grid solution �u. This coarse-grid solution stepe�ciently damps out the low-frequency error com-ponents. The �nal step is post-smoothing by one ormore steps of the iterative method.The linear system on the coarse grid, if not thecoarsest grid, is itself solved by pre-smoothing fol-lowed by coarse-grid correction and post-smoothing.We thus have a recursive de�nition of a V-cycle. Thefollowing algorithm, however, describes an iterativeimplementation requiring only three vectors on eachgrid. It is easily shown that the storage requirementfor all M + 1 grids is approximately 43 times the re-quirement for GM .for i=M;M�1; : : : ; 1 Downward part of V-cycleui = S(bi; ui) Pre-smoothingri = bi �Aiui Residual on grid Gibi�1 = R(ri) Restriction of ri to Gi�1ui�1 = 0 Initial estimate of ui�1 = ei�1endforu0 = A�10 b0 Accurate solution on G0for i = 1; 2; : : : ;M Upward part of V-cycleri = In(ui�1) Interpolation of ui�1 = ei�1ui = ui + ri Correction [to Giui = S(bi; ui) Post-smoothingendfor
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Our smoothing operator S(bi; ui) consists of twosteps of the weighted Jacobi method. While theorysuggests w = 23 as the optimal weight, we empiri-cally determined that w = 0:88 was optimal for ourtest data. The restriction operator R(ri) computesa grid-point value on the coarse grid as a weightedaverage of ri values at the grid point and its eightneighbors in the �ner grid with weights 14 at thegrid point, 18 at the four horizontally and verticallyadjacent neighbors, and 116 at the four diagonallyadjacent neighbors. (The scheme is modi�ed ap-propriately for grid points on the boundary.) Theinterpolation operator In uses piecewise bilinear in-terpolation. Unless the domain is a rectangle, thesystem on the coarsest grid G0 is nontrivial, and weuse a conjugate gradient method to compute u0.In the full multigrid method the initial solutionestimate for the �nest grid is obtained by interpo-lating a solution computed by applying a V-cycleon the coarser grid. In our application the Sobolevgradient computed at each descent step provides agood initial estimate for the subsequent step, withincreasing accuracy as the descent iteration nearsconvergence. We therefore solve each linear systemby a sequence of V-cycles on the �nest grid. See[Demmel 1997] for further background on the multi-grid method.
4. RESULTSWe take our domain to be a 10 by 6 rectangle andemploy four grid re�nements with kx = 5 and ky = 3on the coarsest grid G0, so that the �nest grid Gconsists of 80 by 48 cells with mesh widthshx = hy = 18 :We begin with material number � = 1 and con-stant applied magnetic �eldH0 = 1. Figures 1{4 de-pict the electron densities, induced magnetic �elds,and current magnitudes associated with four criti-cal points obtained by varying initial solution esti-mates. The energy levels (' = 'G values), speci�edin the �gure captions, constitute a decreasing se-quence. Note the similarities between the electrondensity and magnetic �eld of each critical point.At the bottom of the same �gures we show alsothe corresponding currents as vector �elds. Thepresence of counter-currents is clearly demonstrated

in this set of �gures. For each critical point, the de-gree of the wave function u on the boundary wascomputed (by counting the number of cycles of thephase angle). This computation veri�ed that thenumber of vortices agrees with the number of localextrema apparent in the plots|1 to 4. The degree-0 critical point corresponding tou = 0; r�A = H0(not depicted) has energy value 15. The increasingcomplexity of the electron densities appears similarto that of a sequence of eigenfunctions of a linearoperator (Laplacian) associated with an increasingsequence of eigenvalues (energy levels).We now alter the domain with the removal of a 2by 2 square from the center. In this case we found�ve distinct critical points with energy levels 12:65,11:26, 11:17, 10:83, and 10:45. However, we dis-play only the �rst and last. Figures 5 and 6 depictthe electron densities, magnetic �elds, magnitudesof current, and currents. Note that the magnetic�eld is constant in the hole. This property agreeswith theory and adds to our con�dence that thecomputed results are accurate.For our �nal test domain, we remove two sym-metrically placed squares from the 10 by 6 rectan-gle. We found only three critical points in this case:energy levels 10:44, 9:38, and 8:44. The electrondensities, magnetic �elds, current magnitudes, andcurrents for the �rst and last solutions are depictedin Figures 7 and 8.For our �nal tests we increased the material num-ber to � = 2 on the one-hole domain, �rst withH0 = 1 (Figure 9) and then with H0 = 2 (Figure10). We computed just one critical point in this case.The increase in � suppresses the counter-currentswhich are then restored by the increase in H0. Thisdemonstrates the ability to control the presence ofcounter-currents by varying parameter values. Therelationship between parameter values and solutionsappears, however, to be quite complex.
ACKNOWLEDGEMENTSWe express our appreciation to Jacob Rubinstein,who introduced us to the subject of superconduc-tivity and has provided us with substantial advicethroughout our investigations.
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FIGURE 1. Solution 1: ' = 13:75.
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FIGURE 2. Solution 2: ' = 12:58.
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FIGURE 3. Solution 3: ' = 11:94.
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FIGURE 4. Solution 4: ' = 11:69.
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FIGURE 5. One-hole solution 1: ' = 12:65.
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FIGURE 6. One-hole solution 5: ' = 10:45.
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FIGURE 7. Two-hole solution 1: ' = 10:44.
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FIGURE 8. Two-hole solution 3: ' = 8:44.
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FIGURE 9. One-hole solution 1: �= 2, H0 = 1, '= 20:29.
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FIGURE 10. One-hole solution 1: �=2, H0=2, '=35:49.
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