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BIASES IN THE SHANKS–RÉNYI PRIME NUMBERS RACE

ANDREY FEUERVERGER AND GREG MARTIN
UNIVERSITY OF TORONTO

Abstract

Rubinstein and Sarnak investigated systems of inequalities of the form π(x; q, a1) > · · · >
π(x; q, ar), where π(x; q, a) denotes the number of primes up to x that are congruent to a mod q.
They showed, under standard hypotheses on the zeros of Dirichlet L-functions mod q, that
the set of positive real numbers x for which these inequalities hold has positive (logarithmic)
density δq;a1,...,ar > 0. They also discovered the surprising fact that a certain distribution
associated with these densities is not symmetric under permutations of the residue classes ai
in general, even if the ai are all squares or all nonsquares mod q (a condition necessary to avoid
obvious biases of the type first observed by Chebyshev). This asymmetry suggests, contrary to
prior expectations, that the densities δq;a1,...,ar themselves vary under permutations of the ai.

In this paper, we derive (under the hypotheses used by Rubinstein and Sarnak) a general
formula for the densities δq;a1,...,ar , and we use this formula to calculate many of these densities
when q ≤ 12 and r ≤ 4. For the special moduli q = 8 and q = 12, and for {a1, a2, a3} a per-
mutation of the nonsquares {3, 5, 7} mod 8 and {5, 7, 11} mod 12, respectively, we rigorously
bound the error in our calculations, thus verifying that these densities are indeed asymmet-
ric under permutation of the ai. We also determine several situations in which the densities
δq;a1,...,ar remain unchanged under certain permutations of the ai, and some situations in which
they are provably different.

Key words and phrases: Chebyshev’s bias, comparative prime number theory, primes in arith-
metic progressions, Shanks-Rényi race.

1. Introduction and Summary.

In 1853 Chebyshev remarked that there are more primes congruent to 3 than to 1 modulo 4,
and since that time considerable efforts have been expended in attempts to determine in
what sense this remark is true. It follows from the prime number theorem for arithmetic
progressions (see for instance Davenport [3]) that, asymptotically, half of all primes are
congruent to 3 mod 4 and half are congruent to 1 mod 4, so that Chebyshev’s observation
cannot be interpreted in that sense. However, when we compute the numbers of primes up
to x that are congruent to 3 mod 4 and to 1 mod 4, we find that for most values of x, the
primes congruent to 3 are more numerous than those congruent to 1. Similar “biases” have
also been observed, notably by Shanks [13], for moduli q other than 4; in particular, the
numbers of primes in nonsquare residue classes modulo q tend to exceed the numbers of
primes in square residue classes. We refer to inequities of this type as “Chebyshev biases”.

These observations lead naturally to the study of inequalities of the type

π(x; q, a1) > π(x; q, a2) > · · · > π(x; q, ar), (1.1)

where π(x; q, a) denotes the number of primes p ≤ x such that p ≡ a mod q. Little-
wood [7] showed (unconditionally) that the inequalities π(x; 3, 1) > π(x; 3, 2) and π(x; 4, 1) >
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π(x; 4, 3), as well as the opposite inequalities, each hold for infinitely many integer values
of x. A number of additional results on single inequalities of this type were subsequently
derived under certain hypotheses by Knapowski and Turán in a series of papers beginning
with [6], and Kaczorowski wrote several papers concerning the multiple inequalities (1.1),
the most recent of which is [5].

A major advance was made recently by Rubinstein and Sarnak [10] who showed (con-
ditionally) that for any modulus q and for any distinct reduced residues a1, . . . , ar mod q
(i.e., integers relatively prime to q), the system of inequalities (1.1) holds for infinitely many
integers x. More precisely, they worked under the assumption of the Generalized Riemann
Hypothesis for Dirichlet L-functions, which we shall abbreviate GRH, and an additional as-
sumption (their “Grand Simplicity Hypothesis”) that the imaginary parts of the nontrivial
zeros of Dirichlet L-functions corresponding to primitive characters are linearly independent
over the rationals, which we shall abbreviate LI. Rubinstein and Sarnak studied the quan-
tities δq;a1,...,ar , defined as the logarithmic density of the set of positive real numbers x for
which the system of inequalities (1.1) holds. (Here, the logarithmic density δ(Λ) of any
subset Λ of the real numbers is defined as

δ(Λ) = lim
x→∞

1

log x

∫

Λ∩[2,x]

dt

t
,

provided that this limit exists. Suffice it to say here that logarithmic densities are more
appropriate for these problems than ordinary densities; in this paper, by “density” we shall
always mean logarithmic density.)

Under the above hypotheses, Rubinstein and Sarnak proved that the densities δq;a1,...,ar
exist and are positive for any integer q ≥ 2 and for any distinct reduced residues a1, . . . , ar
mod q. They obtained, for several small moduli q, numerical values for the density of those
x for which the primes up to x that are quadratic nonresidues mod q outnumber those which
are quadratic residues. Rubinstein and Sarnak also proved that δq;a,a′ = δq;a′,a = 1/2 if a and
a′ are both squares or both nonsquares mod q, and otherwise δq;a,a′ is greater than or less
than 1/2 according to whether a or a′ is the nonsquare mod q, thus bearing out the biases
of the type observed by Chebyshev.

It was generally suspected for r > 2 as well that whenever the aj are all squares or all
nonsquares modulo q, the densities δq;a1,...,ar are invariant under permutations of the aj (and
thus equal to 1/r!). However, Rubinstein and Sarnak showed that certain distributions
µq;a1,...,ar on Rr that are associated naturally with the densities δq;a1,...,ar are not symmetric
under permutations of the aj when r ≥ 3, except in the special case when r = 3 and there
exists ρ 6≡ 1 mod q with ρ3 ≡ 1 mod q such that a2 ≡ a1ρ mod q and a3 ≡ a1ρ

2 mod q. (Note
that since ρ ≡ ρ4 mod q is a square, it follows that such {a1, a2, a3} are all squares or all
nonsquares mod q.) This result suggests, but does not imply, that the δq;a1,...,ar are generally
asymmetric under permutation of the aj .

In this paper, we rigorously establish a number of asymmetries of this type. Triples of
nonsquares and triples of squares occur for the moduli q = 7 and q = 9, but these triples fall
under the special case that has just been mentioned. Therefore the smallest moduli for which
such asymmetries of the δq;a1,...,ar could arise are q = 8 and q = 12, each of which has three
nonsquares (and a single square), and q = 11, which has five squares and five nonsquares.
Our main theorem provides rigorous results for the cases q = 8 and q = 12, subject to the
two aforementioned hypotheses:
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Theorem 1. Assume GRH and LI. Let δq;a1,...,ar denote the (logarithmic) density of the set
of positive real numbers x for which the system of inequalities (1.1) holds. Then

δ8;3,5,7 = δ8;7,5,3 = 0.1928013± 0.000001

δ8;3,7,5 = δ8;5,7,3 = 0.1664263± 0.000001

δ8;5,3,7 = δ8;7,3,5 = 0.1407724± 0.000001

and
δ12;5,7,11 = δ12;11,7,5 = 0.1984521± 0.000001

δ12;5,11,7 = δ12;7,11,5 = 0.1215630± 0.000001

δ12;7,5,11 = δ12;11,5,7 = 0.1799849± 0.000001,

where the indicated error bounds are rigorous.

The pairwise equalities among the δ’s in Theorem 1 are not numerical coincidences, but
are provably exact. In fact there are several situations in which we can establish symmetries
of this sort. To state these results, we first need to define

c(q, a) = −1 + #{1 ≤ b ≤ q : b2 ≡ a mod q} (1.2)

for coprime integers a and q. Note that when q is an odd prime, c(q, a) simply equals the

Legendre symbol
(

a
q

)

. Note further that c(q, a) can take only two possible values for a

given q: certainly c(q, a) = −1 for every nonsquare a mod q, while c(q, a) = c(q, 1) for every
square a mod q. We can interpret c(q, 1) as the ratio of the number of invertible nonsquares
to the number of invertible squares mod q.

We may now state our results concerning symmetries:

Theorem 2. Assume GRH and LI. Let q, r ≥ 2 be integers and let a1, . . . , ar be distinct
reduced residue classes mod q.

(a) Letting a−1
j denote the multiplicative inverse of aj modulo q, we have δq;a1,...,ar =

δq;a−1
1 ,...,a−1

r
.

(b) If b is a reduced residue class modulo q such that c(q, aj) = c(q, baj) for each 1 ≤ j ≤ r,
then δq;a1,...,ar = δq;ba1,...,bar . In particular, this holds if b is a square modulo q.

(c) If the aj are all squares modulo q and b is any reduced residue class modulo q, then
δq;a1,...,ar = δq;ba1,...,bar .

(d) If the aj are either all squares modulo q or all nonsquares modulo q, then δq;a1,...,ar =
δq;ar ,...,a1.

(e) If b is a reduced residue class modulo q such that c(q, aj) 6= c(q, baj) for each 1 ≤ j ≤ r,
then δq;a1,...,ar = δq;bar ,...,ba1. In particular, this holds if q is an odd prime power or twice
an odd prime power and b is any nonsquare modulo q.

The pairwise equalities in Theorem 1 are special cases of part (d) of Theorem 2, which
generalizes the previously mentioned result of Rubinstein and Sarnak that δq;a,a′ = δq;a′,a if a
and a′ are either both squares or both nonsquares modulo q. Their other symmetry result,
that δq;a1,a2,a3 is invariant under permutations of the aj when there exists ρ 6≡ 1 (mod q) with
ρ3 ≡ 1 (mod q) such that a2 ≡ a1ρ (mod q) and a3 ≡ a1ρ

2 (mod q), is also a consequence
of Theorem 2 (specifically parts (b) and (d), the former applied with b = ρ and b = ρ2).

To complement Theorem 2, we can also establish several inequalities concerning the den-
sities δ:
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Theorem 3. Assume GRH and LI. Let q ≥ 2 be an integer, let N and N ′ be distinct
(invertible) nonsquares mod q, and let S and S ′ be distinct (invertible) squares mod q. Then:

(a) δq;N,N ′,S > δq;S,N ′,N ;
(b) δq;N,S,S′ > δq;S′,S,N ;
(c) δq;N,S,N ′ > δq;N ′,S,N if and only if δq;N,S > δq;N ′,S;
(d) δq;S,N,S′ > δq;S′,N,S if and only if δq;S,N > δq;S′,N .

Parts (c) and (d) of Theorem 3 are further examples that the predisposition towards some
orderings of {π(x; q, a1), . . . , π(x; q, ar)} over others cannot be explained solely in terms of
the Chebyshev bias that encourages nonsquares to run ahead of squares in the prime number
race. (See also the discussion of “bias factors” in Section 6.)

The most general result in this paper is an explicit formula for an arbitrary density
δq;a1,...,ar . Because of the amount of notation involved, we have deferred the statement of
this result (Theorem 4) to Section 2.5. We have used this general formula to calculate the
densities given in Theorem 1, and also a number of the δq;a1,...,ar in many interesting cases
involving q ≤ 12 and r ≤ 4. In these additional computations we have not undertaken to
rigorously bound the error terms; nevertheless we believe, from numerical considerations,
that the results given in Section 4 are accurate to the number of decimal places indicated.

We shall assume the hypotheses GRH and LI throughout this paper. In Section 2 we
provide our main analysis leading to Theorem 4, the general formula for δq;a1,...,ar . The
rigorous bounding of the error terms incurred during the calculation of the densities in
Theorem 1 is carried out in Section 3. Details of the computations and the additional
numerical results are collected together in Section 4. The proofs of Theorems 2 and 3 are
given in Section 5, while in Section 6 we provide concluding remarks, noting some possible
directions for further work.

2. Analytic Determination of the Densities δq;a1,...,ar .

The goal for this section of the paper is to derive Theorem 4 (see Section 2.5), a general
formula for the densities δq;a1,...,ar . We begin by developing some notation and citing the
relevant results of Rubinstein and Sarnak in Section 2.1. In Section 2.2 we investigate the
function ρ̂q;a1,...,ar which will figure prominently in the arguments that follow, while in Section
2.3 we establish some facts about Cauchy principal values of multidimensional integrals; these
sections are technical rather than conceptual in nature, and the reader may wish to examine
these only briefly on the first reading. Because the general formula given in Theorem 4
and the arguments leading to it are somewhat involved, in Section 2.4 we first detail the
derivation of this formula for the special cases δ8;a,b,c and δ12;a,b,c occurring in Theorem 1; the
derivation of the formula in the general case is then carried out in Section 2.5. We assume
the hypotheses GRH and LI throughout.

2.1. Notation and Background Results. We begin by establishing the notation neces-
sary for discussing the results of Rubinstein and Sarnak. For any coprime integers q and a
and any real number x ≥ 1, define

E(x; q, a) =
log x√

x

(

φ(q)π(x; q, a)− π(x)
)

, (2.1)
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so that E(x; q, a) is an error term for the number of primes congruent to a mod q, normalized
so as to vary roughly boundedly as x varies. Since the inequalities π(x; q, a1) > · · · >
π(x; q, ar) hold if and only if E(x; q, a1) > · · · > E(x; q, ar), we wish to study how often the
vector

Eq;a1,...,ar(x) =
(

E(x; q, a1), . . . , E(x; q, ar)
)

(2.2)

lies in the region {(x1, . . . , xr) ∈ Rr : x1 > · · · > xr}. Notice that if r = φ(q) then the aj
form a complete set of reduced residues mod q, in which case we see from equation (2.1) that

E(x; q, a1) + · · ·+ E(x; q, ar) = − log x√
x
φ(q)ω(q) (2.3)

where ω(q) denotes the number of distinct prime factors of q.
Rubinstein and Sarnak showed, assuming GRH, that the function Eq;a1,...,ar(x) has a lim-

iting distribution µq;a1,...,ar , in the sense that

lim
X→∞

1

logX

∫ X

2
f(Eq;a1,...,ar(x))

dx

x
=
∫

· · ·
∫

Rr
f(x1, . . . , xr) dµq;a1,...,ar (2.4)

for all bounded, continuous functions f on Rr. Under the further assumption of LI, they
showed that the distribution µq;a1,...,ar is absolutely continuous with respect to the ordinary
Lebesgue measure on Rr. (The exception is the case r = φ(q), when equation (2.3) implies
that the distribution µq;a1,...,ar is supported on the hyperplane x1 + · · ·+ xr = 0; in this case,
µq;a1,...,ar is absolutely continuous with respect to Lebesgue measure on this hyperplane.)
Consequently, the equation (2.4) holds when f is the characteristic function of any reasonable
subset of Rr (specifically, a measurable subset whose boundary has Lebesgue measure zero
in Rr). In particular, it follows from the definition of δq;a1,...,ar that

δq;a1,...,ar = δ
(

{x ∈ R : π(x, q, a1) > · · · > π(x, q, ar)}
)

= µq;a1,...,ar

(

{x ∈ Rr : x1 > · · · > xr}
)

=
∫

· · ·
∫

x1>···>xr

dµq;a1,...,ar .

(2.5)

Another consequence of the absolute continuity of µq;a1,...,ar is that the set of positive real
numbers x for which π(x; q, a) = π(x; q, a′) has density zero when a and a′ are distinct reduced
residues; indeed this is even true of the larger set {x : |π(x; q, a) − π(x; q, a′)| < Φ(x)} for
any function Φ such that

lim
x→∞

Φ(x)√
x/ log x

= 0.

Next we develop the notation needed to write down Rubinstein and Sarnak’s seminal
formula for the Fourier transform µ̂q;a1,...,ar of the distribution µq;a1,...,ar . In this paper we use
the normalization

f̂(ξ1, . . . , ξn) =
∫

· · ·
∫

e−i(ξ1x1+···+ξnxn)f(x1, . . . , xn) dx1 . . . dxn (2.6)

for the Fourier transform of an integrable function f on Rn, so that the Fourier inversion
formula (assuming that f̂ is itself integrable) is

f(x1, . . . , xn) = (2π)−n
∫

· · ·
∫

ei(ξ1x1+···+ξnxn)f̂(ξ1, . . . , ξn) dξ1 . . . dξn .
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Likewise we write

µ̂(ξ1, . . . , ξn) =
∫

· · ·
∫

e−i(ξ1x1+···+ξnxn) dµ

for the Fourier transform of a finite measure µ on Rr, so that the Fourier inversion formula
(assuming that µ̂ is integrable with respect to Lebesgue measure) is

dµ = (2π)−n

(

∫

· · ·
∫

ei(ξ1x1+···+ξnxn)µ̂(ξ1, . . . , ξn) dξ1 . . . dξn

)

dx1 . . . dxn. (2.7)

To write down the specific Fourier transform µ̂q;a1,...,ar , we recall the standard Bessel func-
tion of order zero,

J0(z) =
∞
∑

m=0

(−1)m(z/2)2m

(m!)2
= 1− z2

4
+

z4

64
− · · · , (2.8)

and then set

F (z, χ) =
∏

γ>0
L( 1

2
+iγ,χ)=0

J0(αγz) (2.9)

in terms of the Dirichlet L-function L(s, χ) corresponding to the Dirichlet character χ, where
we have defined

αγ =
2

√

1
4
+ γ2

. (2.10)

(Since we are assuming GRH, the product in equation (2.9) is indexed by all the nontrivial
zeros of L(s, χ) in the upper half-plane.) For later use in numerical approximations of F (z, χ)
we also define the truncated version

FT (z, χ) =

(

∏

0<γ<T
L( 1

2
+iγ,χ)=0

J0(αγz)

)

(1 + b1z
2) (2.11)

for any positive real number T , where

b1 = b1(T, χ) = −
∑

γ≥T

1
1
4
+ γ2

. (2.12)

The polynomial factor in the definition (2.11) of FT is motivated by the fact that, in view of
the power series expansion (2.8) of J0, b1 is the coefficient of z2 in the power series expansion
of
∏

γ>T J0(αγz).
With this notation in place, we can now give the formula [10, equation 1.2] of Rubinstein

and Sarnak for the Fourier transform µ̂q;a1,...,ar of the distribution µq;a1,...,ar . They showed,
assuming GRH and LI, that

µ̂q;a1,...,ar(ξ1, . . . , ξr) = exp

(

i
r
∑

j=1

c(q, aj)ξj

)

∏

χmodq
χ 6=χ0

F

(∣

∣

∣

∣

∣

r
∑

j=1

χ(aj)ξj

∣

∣

∣

∣

∣

, χ

)

,
(2.13)

where c(q, a) was defined in equation (1.2). This result will be used extensively in the sequel.
Since J0(0) = 1 we clearly have F (0, χ) = FT (0, χ) = 1 for any character χ. It is known (see

for instance the arguments in [3, Chapters 15–16]) that for a fixed character χ, the number
of zeros of L(s, χ) with imaginary part between 0 and T has order of magnitude T log T .
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From this it can be shown that the product (2.9) defining F (z, χ) converges uniformly on
bounded subsets of the complex plane, and hence F is an entire function. For later use we
will need bounds for the decay rate of F (x, χ) and its derivatives F (N)(x, χ) on the real axis;
this is the subject of the following lemma.

Lemma 2.1. Given a modulus q ≥ 2 and a nonnegative integer N , there exist positive
constants β1 and β2 such that

|F (N)(x, χ)| ≤ β1e
−β2|x|

for all real numbers x.

We caution the reader that in the next three sections, the constants β1 and β2 will not nec-
essarily have the same values at different occurrences; each statement should be interpreted
as holding for some suitable positive values of β1 and β2.

Proof: In this proof we will use the symbol γ, with or without subscript, exclusively to
denote a positive imaginary part of a nontrivial zero of L(s, χ). We also use Γ to denote
an ordered N -tuple (γ1, . . . , γN), and we let mΓ(γ) denote the number (possibly zero) of
coordinates of Γ that equal γ. When convenient we can also assume that x > 1, since F is
an even, smooth function. From the definition (2.9) of F (z, χ), an N -fold application of the
product rule gives us the expression

F (N)(x, χ) =
∑

Γ=(γ1,...,γN )

αγ1 . . . αγN

∏

γ

J
(mΓ(γ))
0 (αγx)

=
∑

Γ

Φ(x,Γ)F (x, χ,Γ)
(2.14)

for the Nth derivative of F (x, χ), where we have set

Φ(x,Γ) =
∏

γ∈Γ
αmΓ(γ)
γ J

(mΓ(γ))
0 (αγx) (2.15)

and

F (x, χ,Γ) =
∏

γ /∈Γ
J0(αγx).

We can show that F (x, χ) decays rapidly on the real axis by using the standard bound [10,
equation (4.5)]

|J0(x)| ≤ min

{

1,

√

2

π|x|

}

for the Bessel function on the real axis. This bound implies that

|F (x, χ)| ≤
∏

γ

min

{

1,

√

2

π|αγx|

}

≤
J
∏

j=1

√

√

√

√

2

π|αγjx|
= (π|x|)−J/2

J
∏

j=1

(

1

4
+ γ2

j

)1/4
(2.16)

for any positive integer J , where the γj have been indexed in increasing order. Choose
J = J(x) to be the number of zeros of L(s, χ) up to height x/2. For any 0 < γ ≤ x/2,
it is easily verified that the factor (π|x|)−1/2(1/4 + γ2)1/4 does not exceed 1/2. Therefore
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the upper bound (2.16) implies that |F (x, χ)| ≤ 2−J . Since the order of magnitude of J is
x log x, this argument shows that as x tends to infinity, |F (x, χ)| decreases at least as fast
as a function of the form cx log x for some constant c depending on χ.

The same conclusion holds for F (x, χ,Γ), since removing the indices j in equation (2.16)
for which γj ∈ Γ changes J by at mostN and thus does not affect the order of magnitude of J .
Certainly then there exist positive constants β1 and β2 (depending only on N and χ) such
that |F (x, χ,Γ)| ≤ β1e

−β2|x| for all real numbers x. Since this implies from equation (2.14)
that

|F (x, χ)| ≤ β1e
−β2|x|∑

Γ

Φ(x,Γ), (2.17)

the lemma will be established (possibly with different values of β1 and β2) if we can show
that this last sum is bounded by some polynomial function of |x|.

To this end, we employ the crude bounds |J ′
0(t)| ≤ t

2
and |J (n)

0 (t)| ≤ 1 for the derivatives
of the Bessel function, which follow easily from the integral representation

J0(t) =
2

π

∫ π/2

0
cos(t sin θ) dθ.

Again supposing that x > 1, the definition (2.15) of Φ(x,Γ) leads to the bound

|Φ(x,Γ)| ≤
(

∏

γ∈Γ
mΓ(γ)=1

α2
γ |x|

)(

∏

γ∈Γ
mΓ(γ)>1

αmΓ(γ)
γ

)

.

It follows that
∣

∣

∣

∣

∣

∑

Γ

Φ(x,Γ)

∣

∣

∣

∣

∣

≤ |x|N
∑

Γ

αmax{mΓ(γ),2}
γ

≤ |x|NN !
∏

γ

(1 + α2
γ + α3

γ + · · ·+ αN
γ ).

Since the jth constant αγ has order of magnitude 1/γj ∼ (log j)/j, this last product converges
to some constant depending only on χ. Combining this bound with the inequality (2.17)
establishes the lemma.

Of course it also follows from the first line of equation (2.16) that |F (x, χ)| is bounded
above by 1 on the real axis.

In Sections 3.1 and 3.5 we will need to make use of the fact that µq;a1,...,ar can also be
thought of as the joint distribution of a certain set of r real-valued random variables, and it
is convenient to exhibit these random variables explicitly at this time. For given values of q,
r, and a1, . . . , ar, define the vector

bq;a1,...,ar = −
(

c(q, a1), . . . , c(q, ar)
)

.

Next, for any character χ mod q, define both the vector

vq;a1,...,ar(χ) =
(

χ(a1), . . . , χ(ar)
)

and the random variable

X(χ) =
∑

γ>0
L( 1

2
+iγ,χ)=0

αγ sin(2πUγ), (2.18)
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where the αγ are as in (2.10) and the Uγ are independent random variables uniformly dis-
tributed on [0, 1]. Note that by the hypothesis LI, the γ’s corresponding to different L-
functions are distinct, so that a given Uγ only appears in the definition of one of the X(χ);
consequently the random variables {X(χ)} are mutually independent. Then Rubinstein and
Sarnak showed that the distribution µq;a1,...,ar is in fact the same as the probability measure
corresponding to the random vector

bq;a1,...,ar +
∑

χmodq
χ 6=χ0

X(χ)vq;a1,...,ar(χ). (2.19)

2.2. The function ρ̂q;a1,...,ar . In this section we introduce the function ρ̂q;a1,...,ar : R
r−1 → C,

which we define by the formula

ρ̂q;a1,...,ar(η1, . . . , ηr−1) = µ̂q;a1,...,ar(η1, η2 − η1, . . . , ηr−1 − ηr−2,−ηr−1),
(2.20)

so that

ρ̂q;a1,...,ar(η1, . . . , ηr−1) = exp

(

r−1
∑

j=1

(

c(q, aj)− c(q, aj+1)
)

ηj

)

×
∏

χmodq
χ 6=χ0

F

(
∣

∣

∣

∣

∣

r−1
∑

j=1

(

χ(aj)− χ(aj+1)
)

ηj

∣

∣

∣

∣

∣

, χ

)

(2.21)

from the formula (2.13) for µ̂q;a1,...,ar . We will see in Sections 2.4 and 2.5 that ρ̂q;a1,...,ar
is the Fourier transform of a certain measure ρq;a1,...,ar on Rr−1 associated with µq;a1,...,ar .
We remark that in the special case where the aj are all squares or all nonsquares, we have
c(q, a1) = · · · = c(q, ar) and so the exponential term in the formula (2.21) is identically 1, so
that ρ̂q;a1,...,ar is real-valued and symmetric with respect to reflection through the origin.

The function ρ̂q;a1,...,ar will feature significantly in the remainder of this paper, and it will
be important to establish some of its smoothness and decay properties. To avoid frequent
repetition of the same properties, we shall say that a function f on Rn is well-behaved if
it has continuous derivatives of all orders and if there exist positive constants β1 and β2

such that, for every subset {j1, . . . , jk} of {1, . . . , n}, the mixed partial derivative ∂kf
∂xj1

...∂xjk

satisfies the inequality
∣

∣

∣

∣

∣

∂kf

∂xj1 . . . ∂xjk

(x1, . . . , xn)

∣

∣

∣

∣

∣

≤ β1e
−β2‖x‖, (2.22)

where ‖x‖ = ‖(x1, . . . , xn)‖ =
√

x2
1 + · · ·+ x2

n is the Euclidean norm of x. This criterion

must also be satisfied for the empty subset of {1, . . . , n}, so that the actual values of f must
also be bounded by the right-hand side of (2.22). Certainly any well-behaved function is
integrable as well. We remark that all of the functions shown to be well-behaved below in
fact satisfy an inequality analogous to (2.22) for partial derivatives of all orders; however
our proof of Lemma 2.4 below only requires this assumption on the mixed linear partial
derivatives.

It is easily seen that finite sums and products of well-behaved functions are again well-
behaved. If f and g are well-behaved functions on Rm and Rn, respectively, then fg is a
well-behaved function on Rm+n; conversely, the restriction of a well-behaved function on Rn
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to any subspace defined by setting certain variables equal to zero is a well-behaved function
on that subspace. Also, if L : Rm → Rn is an injective linear map and f is a well-behaved
function on Rn, then the composite function f ◦ L is a well-behaved function on Rm: the
partial derivatives of f ◦ L will just be linear combinations of the partial derivatives of f ,
and the fact that L is injective means that ‖L(x)‖ is bounded below by a constant multiple
of ‖x‖, so that the estimate (2.22) for f on Rn can be converted to a similar estimate for
f ◦ L on Rm.

The following two lemmas establish the important fact that the functions ρ̂q;a1,...,ar are
well-behaved.

Lemma 2.2. For every subset {j1, . . . , jk} of {1, . . . , r},
∂k

∂xj1 . . . ∂xjk

F

(∣

∣

∣

∣

∣

r
∑

j=1

χ(aj)xj

∣

∣

∣

∣

∣

, χ

)

≤ β1 exp

(

−β2

∣

∣

∣

∣

∣

r
∑

j=1

χ(aj)xj

∣

∣

∣

∣

∣

)

(2.23)

for some positive constants β1 and β2.

Proof: Define

G(x1, . . . , xr;χ) = F

(
∣

∣

∣

∣

∣

r
∑

j=1

χ(aj)xj

∣

∣

∣

∣

∣

, χ

)

.

The argument of F on the right-hand side of this definition involves a modulus and hence
implicitly a square root, which could potentially cause discontinuities in the derivatives
of G when this argument equals zero; however, the Bessel function J0 is even, whence the
function F (x, χ) involves only even powers of x in its power series expansion about the origin.
Consequently, G has continuous derivatives of all orders. Note also that it suffices to establish
the upper bound (2.23) when |∑r

j=1 χ(aj)xj | > 1, since the bound on the complementary
set follows immediately from continuity (with some value of β1).

If we write F̃ (x, χ) = F (
√

|x|, χ), then it is easy to check by induction that the nth

derivative of F̃ equals

F̃ (n)(x, χ) =
n
∑

k=1

αn,kF
(k)
(

√

|x|, χ
)

|x|−n+j/2

for some constants αn,k. In particular, when |x| > 1 we see from Lemma 2.1 that

|F̃ (n)(x, χ)| ≤ β1e
−β2

√
|x| (2.24)

for some positive constants β1 and β2.
In this notation we have

G(x1, . . . , xr;χ) = F̃

((

Re
r
∑

j=1

χ(aj)xj

)2

+

(

Im
r
∑

j=1

χ(aj)xj

)2

, χ

)

.

Suppressing the details, we note that the mixed partial derivative ∂kG
∂xj1

...∂xjk
can be computed

using the product rule as a combination of three types of expressions: derivatives of F̃ eval-
uated at |∑r

j=1 χ(aj)xj |2, linear factors of the form 2Re(χ̄(ak)
∑r

j=1 χ(aj)xj), and constants
of the form 2Re(χ̄(ak)χ(ak′)). From equation (2.24), the expressions of the first type can
be bounded above by β1 exp(−β2|

∑r
j=1 χ(aj)xj |), while the expressions of the other types
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grow only as fast as a polynomial in |∑r
j=1 χ(aj)xj |. This establishes the lemma for suitable

positive values of β1 and β2.

Lemma 2.3. The function ρ̂q;a1,...,ar is well-behaved for any integers q, r ≥ 2 and any distinct
reduced residues {a1, . . . , ar}.
Proof: From the formula (2.13), the function µ̂q;a1,...,ar certainly has continuous derivatives
of all orders (see the proof of Lemma 2.2), and thus the same is true of ρ̂q;a1,...,ar . We
begin by examining the behavior of the mixed partial derivatives of the function µ̂q;a1,...,ar .

Let S = {j1, . . . , jk} be a subset of indices from the set {1, . . . , r}, and let ∂k

∂xS
denote the

result of taking the partial xj-derivatives for every j in S. The product rule applied to the
formula (2.13) for µ̂q;a1,...,ar yields

∂k

∂xS
µ̂q;a1,...,ar(ξ) =

∑

S0,{Sχ}

{

∂k

∂xS0

exp

(

i
r
∑

j=1

c(q, aj)ξj

)

∏

χmodq
χ 6=χ0

∂k

∂xSχ

F

(∣

∣

∣

∣

∣

r
∑

j=1

χ(aj)ξj

∣

∣

∣

∣

∣

, χ

)}

,
(2.25)

where the outer summation is taken over the finitely many partitions of the index set S
into S0 ∪ (

⋃

χ 6=χ0
Sχ). Each mixed partial derivative of the exponential term is bounded,

while from Lemma 2.2 each mixed partial derivative of F (|∑r
j=1 χ(aj)ξj|, χ) is exponentially

decaying as a function of its argument. We conclude from equation (2.25) that there exist
positive constants β1 and β2 such that

∣

∣

∣

∂k

∂xS
µ̂q;a1,...,ar(ξ)

∣

∣

∣ ≤ β1

∏

χmodq
χ 6=χ0

exp

(

−β2

∣

∣

∣

∣

∣

r
∑

j=1

χ(ar)ξj

∣

∣

∣

∣

∣

)

= β1e
−β2Q(ξ)1/2 , (2.26)

where we have defined

Q(ξ) = Qq;a1,...,ar(ξ) =

(

∑

χmodq
χ 6=χ0

∣

∣

∣

∣

∣

r
∑

j=1

χ(aj)ξj

∣

∣

∣

∣

∣

)2

.

We thus seek a lower bound on Q(ξ).
We may certainly write

Q(ξ) ≥
∑

χmodq
χ 6=χ0

∣

∣

∣

∣

∣

r
∑

j=1

χ(aj)ξj

∣

∣

∣

∣

∣

2

=
∑

χmodq

∣

∣

∣

∣

∣

r
∑

j=1

χ(aj)ξj

∣

∣

∣

∣

∣

2

−
(

r
∑

j=1

ξj

)2

.

Now

∑

χmodq

∣

∣

∣

∣

∣

r
∑

j=1

χ(aj)ξj

∣

∣

∣

∣

∣

2

=
r
∑

i=1

r
∑

j=1

ξiξj
∑

χmodq

χ(ai)χ(aj) = φ(q)
r
∑

j=1

ξ2j

by the orthogonality of the characters χ. Therefore

Q(ξ) ≥ φ(q)
r
∑

j=1

ξ2j −
(

r
∑

j=1

ξj

)2

. (2.27)

We assume for now that r is strictly less than φ(q), commenting at the end of the proof
on the slight differences in the case r = φ(q). The quadratic form on the right-hand side of
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the inequality (2.27) turns out to be positive definite when r < φ(q), and so we can write

Q(ξ) ≥ φ(q)λr‖ξ‖2, (2.28)

where λr is the smallest eigenvalue of that quadratic form. From the inequalities (2.26)
and (2.28), it follows that

∣

∣

∣

∂k

∂xS

µ̂q;a1,...,ar(ξ)
∣

∣

∣ ≤ β1e
−β2‖ξ‖

for some different positive constants β1 and β2. Since the index set S ⊂ {1, . . . , r} was
arbitrary, this shows that the function µ̂q;a1,...,ar is well-behaved.

Furthermore, from its definition (2.20) the function ρ̂q;a1,...,ar is simply the composition
of µ̂q;a1,...,ar with the injective linear transformation (η1, . . . , ηr−1) 7→ (η1, η2 − η1, . . . , ηr−1 −
ηr−2,−ηr−1) from Rr−1 to Rr. As mentioned before, this implies that ρ̂q;a1,...,ar is itself a
well-behaved function.

When r = φ(q), the function µ̂q;a1,...,ar is invariant under translation in the direction of
the vector (1, . . . , 1), and so it is not well-behaved even though it has the required decay
properties on the hyperplane orthogonal to (1, . . . , 1) (one can check that the quadratic
form on the right-hand side of the inequality (2.27) is positive semi-definite when r = φ(q),
with its zero set being the multiples of the (1, . . . , 1) vector). However, the image of the
linear transformation (η1, . . . , ηr−1) 7→ (η1, η2 − η1, . . . , ηr−1 − ηr−2,−ηr−1) lies within this
hyperplane, so we can still deduce that ρ̂q;a1,...,ar is well-behaved even when r = φ(q). This
establishes the lemma.

Of course we also have the trivial bound |ρ̂q;a1,...,ar | ≤ 1. Lemma 2.3 implies in particular
that ρ̂q;a1,...,ar is integrable, and consequently the Fourier inversion formula (2.7) is valid for
ρq;a1,...,ar , becoming

dρq;a1,...,ar = (2π)−r

(

∫

· · ·
∫

ei(ξ1x1+···+ξrxr)ρ̂q;a1,...,ar(ξ1, . . . , ξr) dξ1 . . . dξr

)

dx1 . . . dxr.
(2.29)

2.3. Multidimensional Cauchy principal values. In one dimension, the Cauchy princi-
pal value

P.V.
∫ ∞

−∞

f(x)

x
dx = lim

ǫ→0

∫

|x|>ǫ

f(x)

x
dx

is a familiar object. For our purposes it will be necessary to make use of the multidimensional
analogue

P.V.
∫

· · ·
∫

f(x1, . . . , xn)

x1 . . . xn

dx1 . . . dxn = lim
ǫ→0

∫

· · ·
∫

min{|x1|,...,|xn|}>ǫ

f(x1, . . . , xn)

x1 . . . xn

dx1 . . . dxn;
(2.30)

in particular, we would like to know that this limit exists. The purpose of this section
is to establish the existence of these multidimensional Cauchy principal values for well-
behaved functions, a class which by Lemma 2.3 includes the functions ρ̂q;a1,...,ar discussed in
the previous section. We remark that while the lemmas in this section could certainly be
obtained under somewhat weaker hypotheses, they suffice for our purposes as stated.
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Lemma 2.4. Let f be a well-behaved function on Rn that vanishes whenever any of the
first k coordinates x1, . . . , xk equals zero. Then the function f(x1, . . . , xn)/x1 . . . xk extends
across the coordinate hyperplanes to a continuous integrable function satisfying the upper
bound

∣

∣

∣

f(x1, . . . , xn)

x1 . . . xk

∣

∣

∣ ≤ β1e
−β2‖x‖ (2.31)

for some positive constants β1 and β2.

Although this lemma holds in one dimension without any assumptions on the derivatives of
f , already in R2 one can construct an exponentially decaying, smooth (even real-analytic)
function f(x, y) that satisfies f(0, y) = 0 for all y but for which f(x, y)/x is not integrable.

Proof: The fact that f(x)/x1 . . . xk extends across the coordinate hyperplanes to a contin-
uous function follows from the fact that f has continuous derivatives of all orders; therefore
only the upper bound (2.31) remains to be proved, since integrability is a consequence of
this bound. Furthermore, by continuity it suffices to establish this upper bound when none
of the variables equals zero. Also, if all of the |xj| are bounded by 1 then the function
f(x)/x1 . . . xk is uniformly bounded; therefore we may assume (after inflating the constant
β1 if necessary) that there exists an xj with |xj | > 1.

Permuting the first k variables if necessary, we can choose an integer 1 ≤ m ≤ k such that
0 < |x1|, . . . , |xm| ≤ 1 and |xm+1|, . . . , |xk| > 1. Since f vanishes when x1 equals zero, there
exists a number t1 with |t1| ≤ |x1| such that

f(x1, . . . , xn) = f(x1, . . . , xn)− f(0, x2, . . . , xn) = x1
∂f

∂x1
(t1, x2, . . . , xn)

by the mean value theorem in the variable x1. Similarly, f vanishes whenever x2 equals
zero, so in particular ∂f

∂x1
equals zero when x2 = 0. Therefore, there exists a number t2 with

|t2| ≤ |x2| such that

∂f

∂x1

(t1, x2, . . . , xn) =
∂f

∂x1

(t1, x2, . . . , xn)−
∂f

∂x1

(t1, 0, x3, . . . , xn)

= x2
∂2f

∂x1∂x2

(t1, t2, x3, . . . , xn)

by the mean value theorem in the variable x2. Continuing in this way, we find numbers ti
with |ti| ≤ |xi| for each 1 ≤ i ≤ m such that

f(x1, . . . , xn) = x1 . . . xm
∂mf

∂x1 . . . ∂xm
(t1, . . . , tm, xm+1, . . . , xn).

It follows immediately that

∣

∣

∣

f(x)

x1 . . . xk

∣

∣

∣ ≤
∣

∣

∣

∂mf

∂x1 . . . ∂xm
(t1, . . . , tm, xm+1, . . . , xn)

∣

∣

∣ (2.32)

since |xm+1|, . . . , |xk| > 1.
Since f is well-behaved, there exist positive constants β1 and β2 such that
∣

∣

∣

∂mf

∂x1 . . . ∂xm

(

t1, . . . , tm, xm+1, . . . , xn)
∣

∣

∣ ≤ β1 exp
(

−β2

√

t21 + · · ·+ t2m + x2
m+1 + · · ·+ x2

n

)

.
(2.33)
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But notice that

t21 + · · ·+ t2m + x2
m+1 + · · ·+ x2

n ≥
∑

1≤j≤n
|xj|>1

x2
j ≥

#{1 ≤ j ≤ n : |xj | > 1}
n

n
∑

j=1

x2
j .

Since we are working under the assumption that at least one of the |xj| exceeds 1, we can
use this fact in the inequality (2.33) to see that

∣

∣

∣

∂mf

∂x1 . . . ∂xm

(t1, . . . , tm, xm+1, . . . , xn)
∣

∣

∣ ≤ β1e
−β2‖x‖/

√
n.

Combining this bound with the inequality (2.32), this establishes the lemma (upon replacing
β2/

√
n by β2).

For the proof of the next lemma, as well as for the formulation of the general formula for
δq;a1,...,ar (Theorem 4 in Section 2.5), we require the following notation: for a function f on
Rn and a subset B of {1, . . . , n}, define

f(B) = f(B)({xj : j ∈ B}) = f(θ1, . . . , θn) (2.34)

where θj = xj if j ∈ B, and θj = 0 otherwise. For example, if n = 6 and B = {2, 4, 5} then
f(B) is a function of the three variables x2, x4, and x5, namely f(B) = f(0, x2, 0, x4, x5, 0);
in general f(B) will be a function on the appropriate |B|-dimensional subspace of Rn, where
|B| denotes the cardinality of B. In the case B = ∅ we simply have f(B) = f(0, . . . , 0).

Lemma 2.5. If f is a well-behaved function on Rn, then

P.V.
∫

· · ·
∫

f(x1, . . . , xn)

x1 . . . xn
dx1 . . . dxn

is well-defined; i.e., the limit in equation (2.30) exists.

Proof. Let g1(x) be an even, well-behaved function on R1 with g1(0) = 1 (for instance,

we might have in mind g1(x) = e−x2
), and let g(x1, . . . , xn) = g1(x1) . . . g1(xn). Define an

operator G on well-behaved functions f by

G(f) = G(f)(x1, . . . , xn) =
∑

B⊂{1,...,n}
(−1)n−|B|f(B)g(B̄) (2.35)

in the notation of equation (2.34), where B̄ denotes the complement {1, . . . , n} \ B of B.
Since f and g are well-behaved functions, the same is true of G(f).

Consider the term in (2.35) corresponding to some particular proper subset B of {1, . . . , n}.
If we choose ℓ /∈ B, then the term f(B)g(B̄) can be written as g(xℓ) times a function
independent of xℓ. Thus f(B)g(B̄) is an even function of xℓ, and hence integrates to zero
against any odd function of xℓ. In particular,

∫

· · ·
∫

min{|x1|,...,|xn|}>ǫ

f(B)g(B̄)

x1 . . . xr
dx1 . . . dxn = 0

for any positive ǫ and any proper subset B of {1, . . . , n}. Since the term in the sum (2.35)
corresponding to B = {1, . . . , n} is simply the function f itself, we see that

∫

· · ·
∫

min{|x1|,...,|xn|}>ǫ

f(x1, . . . , xn)

x1 . . . xn

dx1 . . . dxn =
∫

· · ·
∫

min{|x1|,...,|xn|}>ǫ

G(f)

x1 . . . xn

dx1 . . . dxn

(2.36)
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for any ǫ > 0.
On the other hand, we claim that G(f) evaluates to zero when any of the variables xℓ

equals zero. To see this, let B be a subset of {1, . . . , n} not containing ℓ. When xℓ = 0
we see that the term (−1)n−|B|f(B)g(B̄) corresponding to B in the sum (2.35) reduces to
(−1)n−|B|f(B)g(B̄ \ {ℓ}). On the other hand, the term

(−1)n−|B∪{ℓ}|f(B ∪ {ℓ})g(B ∪ {ℓ}) = (−1)n−1−|B|f(B ∪ {ℓ})g(B̄ \ {ℓ})
corresponding to B ∪{ℓ} reduces to (−1)n−1−|B|f(B)g(B̄ \ {ℓ}) when xℓ = 0. It follows that
when xℓ = 0, the terms in (2.35) will cancel pairwise in the natural pairing between the
subsets of {1, . . . , n} not containing ℓ and those containing ℓ.

Because of this, Lemma 2.4 tells us that the function G(f)/x1 . . . xn is integrable, whence
the dominated convergence theorem implies

lim
ǫ→0

∫

· · ·
∫

min{|x1|,...,|xn|}>ǫ

G(f)

x1 . . . xn

dx1 . . . dxn =
∫

· · ·
∫

G(f)

x1 . . . xn

dx1 . . . dxn.
(2.37)

This together with equation (2.36) shows that the principal value (2.30) exists—in fact it
equals the integral on the right-hand side of equation 2.37.

Lemma 2.6. If f is a well-behaved function on Rn, then for any 1 ≤ k ≤ n,

lim
c→0+

cn−k
∫

· · ·
∫

Rn

f(x1, . . . , xn)x1 . . . xk

(c2 + x2
1) . . . (c

2 + x2
n)

dx1 . . . dxn

= πn−k P.V.
∫

· · ·
∫

Rk

f(x1, . . . , xk, 0, . . . , 0)

x1 . . . xk
dx1 . . . dxk. (2.38)

Proof. We proceed along lines similar to the proof of Lemma 2.5. Analogously to the
definition (2.35) of the operator G(f), define the operator

Gk(f) = Gk(f)(x1, . . . , xn) =
∑

B⊂{1,...,k}
(−1)k−|B|f(B ∪ {k + 1, . . . , n})g(B̄),

so that Gk(f) is itself a well-behaved function. The arguments leading to the validity of
equation (2.36) in the proof of Lemma 2.5 show that the function Gk(f)− f integrates to 0
against any function that is odd in each of the variables x1, . . . , xk separately. In particular,

cn−k
∫

· · ·
∫

f(x1, . . . , xn)x1 . . . xk

(c2 + x2
1) . . . (c

2 + x2
n)

dx1 . . . dxn

= cn−k
∫

· · ·
∫

Gk(f)(x1, . . . , xn)x1 . . . xk

(c2 + x2
1) . . . (c

2 + x2
n)

dx1 . . . dxn.

Making the change of variables xj = cξj for k < j ≤ n and rearranging terms, we see that

cn−k
∫

· · ·
∫

Gk(f)(x1, . . . , xn)x1 . . . xk

(c2 + x2
1) . . . (c

2 + x2
n)

dx1 . . . dxn

=
∫

· · ·
∫ G̃k(f)(x1, . . . , xk, cxk+1, . . . , cxn)x

2
1 . . . x

2
k

(c2 + x2
1) . . . (c

2 + x2
k)(1 + x2

k+1) . . . (1 + x2
n)

dx1 . . . dxn, (2.39)
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where we have defined

G̃k(f)(x) =
Gk(f)(x)

x1 . . . xk
.

As in the proof of Lemma 2.5, we can check that Gk(f) evaluates to zero whenever any of

the first k variables equals zero, and thus by Lemma 2.4 the function G̃k(f) is continuous
and integrable and satisfies an upper bound of the form

|G̃k(f)(x)| ≤ β1e
−β2‖x‖ (2.40)

for some positive constants β1 and β2.
Now define

Sc(x1, . . . , xk) =















β1e
−β2c‖x‖, if ‖x‖ > 1/

√
c,

max
|tk+1|,...,|tn|≤

√
c

∣

∣

∣

∣

∣

G̃k(f)(x1, . . . , xk, tk+1, . . . , tn)

(1 + x2
k+1) . . . (1 + x2

n)

∣

∣

∣

∣

∣

, if ‖x‖ ≤ 1/
√
c.

One can check that the integrand on the right-hand side of equation (2.39) is bounded
in absolute value by Sc(x1, . . . , xk) when 0 < c < 1. Moreover, the continuity of G̃k(f)
implies that Sc is bounded on the set {x ∈ Rk : ‖x‖ ≤ 1/

√
c}, and therefore Sc is integrable.

Furthermore, both Sc and the integrand on the right-hand side of equation (2.39) tend
pointwise to the function

G̃k(f)(x1, . . . , xk, 0, . . . , 0)

(1 + x2
k+1) . . . (1 + x2

n)

as c tends to zero, and this function is also integrable by the exponential decay 2.40 of
G̃k(f). Therefore, taking limits on both sides of equation (2.39) and using the generalized
dominated convergence theorem, we conclude that

lim
c→0+

cn−k
∫

· · ·
∫

Gk(f)(x1, . . . , xn)x1 . . . xk

(c2 + x2
1) . . . (c

2 + x2
n)

dx1 . . . dxn

=
∫

· · ·
∫

G̃k(f)(x1, . . . , xk, 0, . . . , 0)

(1 + x2
k+1) . . . (1 + x2

n)
dx1 . . . dxn

= πn−k
∫

· · ·
∫

Gk(f)(x1, . . . , xk, 0, . . . , 0)

x1 . . . xk

dx1 . . . dxk.

But just as in the proof of Lemma 2.5, this last integral equals the principal value of the
integral of f(x1, . . . , xk, 0, . . . , 0)/x1 . . . xk, which establishes the lemma.

Of course, the lemma would also hold if both occurrences of the product x1 . . . xk in equa-
tion (2.38) were replaced by any product xj1 . . . xjk of k distinct variables (and the variables
of integration on the right-hand side adjusted accordingly).

2.4. Analysis for the special case. In this section we derive analytic expressions for the
density δ8;3,5,7 (the logarithmic density of the set {x ∈ R : π(x; 8, 3) > π(x; 8, 5) > π(x; 8, 7)})
and for the other densities in Theorem 1. These formulas are special cases of Theorem 4,
which will be established in the next section; however, we present a complete analysis in
these special cases to illustrate and motivate the techniques in the general case.
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We begin by noting the special case

δ8;3,5,7 =
∫ ∫ ∫

x>y>z

dµ8;3,5,7(x, y, z)

of equation (2.5). Making the change of variables u = x− y, v = y − z, and w = z gives

δ8;3,5,7 =
∫

u>0

∫

v>0

∫

w∈R
dν8;3,5,7(u, v, w),

where the measure νq;a1,...,ar is defined, in obvious notation, by

ν8;3,5,7(u, v, w) = µ8;3,5,7(u+ v + w, v + w,w), (2.41)

or equivalently µ8;3,5,7(x, y, z) = ν8;3,5,7(x − y, y − z, z). Integrating out the w variable, we
obtain

δ8;3,5,7 =
∫

u>0

∫

v>0

dρ8;3,5,7(u, v), (2.42)

where we have defined, again in obvious notation,

ρ8;3,5,7(u, v) =
∫

w∈R
dν8;3,5,7(u, v, w) . (2.43)

It is easily checked that the Fourier transform of ρ8;3,5,7 is related to that of µ8;3,5,7 via
ρ̂8;3,5,7(ξ, η) = µ̂8;3,5,7(ξ, η − ξ,−η), which is a particular case of equation (2.20).

We can appeal to the formula (2.21) for ρ̂q;a1,...,ar to write ρ̂8;3,5,7(ξ, η) explicitly. Recall that
a discriminant is an integer congruent to 0 or 1 mod 4, and a fundamental discriminant D is
an integer that cannot be written in the form D = dn2 for some discriminant d and integer
n ≥ 2. For any fundamental discriminant D, let χD denote the character χD(n) = (D

n
) using

Kronecker’s extension of the Legendre symbol (see Davenport [3, Chapter 5]). Then the three
nonprincipal characters mod 8 are simply χ−8, χ−4, and χ8. In this setting, equation (2.21)
becomes

ρ̂8;3,5,7(ξ, η) = F (|2ξ|, χ−8)F (|2η − 2ξ|, χ−4)F (| − 2η|, χ8), (2.44)

showing that ρ̂8;3,5,7 is real-valued and symmetric with respect to reflection through the ori-
gin. The same argument gives formulas for δq;a,b,c for any permutation {a, b, c} of {3, 5, 7},
where the arguments of the F (·, χ) functions in equation (2.44) simply are permuted ac-
cordingly. Since each F (z, χ) is an even function, we can omit the absolute value signs in
these arguments. Similar remarks hold for the modulus 12, where the three nonprincipal
characters are χ−4, χ−3, and χ12.

Using the monotone convergence theorem and the Fourier inversion formula (2.29), equa-
tion (2.42) becomes

δ8;3,5,7 = lim
c→0+

∫

u>0

∫

v>0

e−c(u+v) dρ8;3,5,7(u, v)

= lim
c→0+

∫

u>0

∫

v>0

e−c(u+v)
{

1

4π2

∫ ∫

ei(uξ+vη)ρ̂8;3,5,7(ξ, η) dξdη
}

dudv.
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We next use Fubini’s theorem to write

δ8;3,5,7 =
1

4π2
lim
c→0+

∫ ∫

ρ̂8;3,5,7(ξ, η)

{

∫

u>0

∫

v>0

eu(−c+iξ)+v(−c+iη) dudv

}

dξdη

=
1

4π2
lim
c→0+

∫ ∫ ρ̂8;3,5,7(ξ, η)

(c− iξ)(c− iη)
dξdη

=
1

4π2
lim
c→0+

∫ ∫ ρ̂8;3,5,7(ξ, η)(c
2 + ic(ξ + η)− ξη)

(c2 + ξ2)(c2 + η2)
dξdη

=
1

4π2
(G8;3,5,7 + iH8;3,5,7 − I8;3,5,7),

(2.45)

where we have defined

G8;3,5,7 = lim
c→0+

c2
∫ ∫

ρ̂8;3,5,7(ξ, η)

(c2 + ξ2)(c2 + η2)
dξdη , (2.46)

H8;3,5,7 = lim
c→0+

c
∫ ∫ ρ̂8;3,5,7(ξ, η)(ξ + η)

(c2 + ξ2)(c2 + η2)
dξdη , (2.47)

and

I8;3,5,7 = lim
c→0+

∫ ∫

ρ̂8;3,5,7(ξ, η)ξη

(c2 + ξ2)(c2 + η2)
dξdη . (2.48)

In equation (2.46) we make the change of variables α = ξ/c and β = η/c to obtain

G8;3,5,7 = lim
c→0+

∫ ∫

ρ̂8;3,5,7(cα, cβ)

(1 + α2)(1 + β2)
dξdη =

∫ ∫

ρ̂8;3,5,7(0, 0)

(1 + α2)(1 + β2)
dαdβ = π2

where we have again used the dominated convergence theorem together with the trivial
bound |ρ̂8;3,5,7(ξ, η)| ≤ ρ̂8;3,5,7(0, 0) = 1. Next, we note that H8;3,5,7 equals zero since the
integrand in equation (2.47) is odd under reflection through the origin. Finally, we observe
that equation (2.48) may be written as

I8;3,5,7 = lim
c→0+

∫ ∫

(ρ̂8;3,5,7(ξ, η)− ρ̂8;3,5,7(ξ, 0)ρ̂8;3,5,7(0, η)) ξη

(c2 + ξ2)(c2 + η2)
dξdη,

since the term introduced is odd in either variable separately and so integrates to zero. This
is the same as

I8;3,5,7 = lim
c→0+

∫ ∫

ρ̂8;3,5,7(ξ, η)− ρ̂8;3,5,7(ξ, 0)ρ̂8;3,5,7(0, η)

ξη

ξ2η2

(c2 + ξ2)(c2 + η2)
dξdη.

Note that the expression ρ̂8;3,5,7(ξ, η)−ρ̂8;3,5,7(ξ, 0)ρ̂8;3,5,7(0, η) is well-behaved by Lemma 2.3,
and since ρ̂8;3,5,7(0, 0) = 1, it evaluates to zero when either ξ or η equals zero. Therefore,
the first fraction in the integrand can be extended across the ξ and η axes to a continuous
integrable function by Lemma 2.4. We may thus use the dominated convergence theorem to
see that

I8;3,5,7 =
∫ ∫

ρ̂8;3,5,7(ξ, η)− ρ̂8;3,5,7(ξ, 0)ρ̂8;3,5,7(0, η)

ξη
dξdη. (2.49)

Note that this integral may be written as the multivariate Cauchy principal value

I8;3,5,7 = P.V.
∫ ∫

ρ̂8;3,5,7(ξ, η)

ξη
dξdη (2.50)
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as discussed in Section 2.3, since ρ̂8;3,5,7(ξ, 0) and ρ̂8;3,5,7(0, η) are even functions and hence
the term omitted in passing from (2.49) to (2.50) is odd in either variable. (Of course, we
could have arrived at (2.50) directly from the definition of I8;3,5,7 by invoking Lemma 2.6;
however, not only is this derivation more concrete, in keeping with the spirit of this section,
but we will also need the formula (2.49) during our error analysis in Section 3.)

It follows that the right-hand side of equation (2.45) can be evaluated to give

δ8;3,5,7 =
1

4
− 1

4π2
I8;3,5,7 =

1

4
− 1

4π2
P.V.

∫ ∫

ρ̂8;3,5,7(ξ, η)

ξη
dξdη , (2.51)

where ρ̂8;3,5,7 is given explicitly in equation (2.44). The identical argument, of course, applies
for evaluating δ8;a,b,c for any permutation {a, b, c} of {3, 5, 7} to yield

δ8;a,b,c =
1

4
− 1

4π2
P.V.

∫ ∫ ρ̂8;a,b,c(ξ, η)

ξη
dξdη, (2.52)

where ρ8;a,b,c is defined via obvious analogy to (2.41) and (2.43), and similarly

δ12;a,b,c =
1

4
− 1

4π2
P.V.

∫ ∫

ρ̂12;a,b,c(ξ, η)

ξη
dξdη, (2.53)

for any permutation {a, b, c} of {5, 7, 11}.
We remark that the numerator of the integrand in (2.49) may be viewed as a “measure of

dependence” in the Fourier domain for the bivariate distribution of a random vector (X, Y )
in R2 having density ρ8;3,5,7. In fact, the integrand in equation (2.49) is the Fourier trans-
form of the natural dependence measure based on factorizability of the bivariate cumulative
distribution function corresponding to ρ8;3,5,7. This interpretation is important in Section
3.1, where a random vector (X, Y ) of this type is analyzed to yield bounds for the tail of the
measure ρ8;3,5,7.

2.5. Analysis for the general case. We are now at the point where we have the notation
and tools needed for the statement and proof of a general formula for the densities δq;a1,...,ar .

Theorem 4. Assume GRH and LI. Let q, r ≥ 2 be integers, and let a1, . . . , ar be distinct
reduced residue classes mod q. Then

δq;a1,...,ar = 2−(r−1)

(

1 +
∑

B⊂{1,...,r−1}
B 6=∅

(

i

π

)|B|
P.V.

∫

· · ·
∫

ρ̂q;a1,...,ar(B)
∏

j∈B

dηj
ηj

)

,
(2.54)

where ρ̂q;a1,...,ar(B) uses the notation of equation (2.34) applied to the function

ρ̂q;a1,...,ar(η1, . . . , ηr−1) = exp

(

r−1
∑

j=1

(c(q, aj)− c(q, aj+1))ηj

)

×
∏

χmodq
χ 6=χ0

F

(∣

∣

∣

∣

∣

r−1
∑

j=1

(χ(aj)− χ(aj−1))ηj

∣

∣

∣

∣

∣

, χ

)

.

Proof: We follow the strategy used for the special cases in Section 2.4. Our starting point
is equation (2.5),

δq;a1,...,ar =
∫

· · ·
∫

x1>x2>···>xr

dµq;a1,...,ar(x1, . . . , xr) .
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We make the change of variables u1 = x1 − x2, . . . , ur−1 = xr−1 − xr, ur = xr to obtain

δq;a1,...,ar =
∫

· · ·
∫

u1>0, ..., ur−1>0
ur∈R

dνq;a1,...,ar(u1, . . . , ur) ,

where the measure νq;a1,...,ar is defined, in obvious notation, by

νq;a1,...,ar(u1, . . . , ur) = µq;a1,...,ar(u1 + · · ·+ ur, u2 + · · ·+ ur, . . . , ur) ,

or equivalently µq;a1,...,ar(x1, . . . , xr) = νq;a1,...,ar(x1 − x2, . . . , xr−1 − xr, xr). Integrating out
the ur variable leads to

δq;a1,...,ar =
∫

u1>0

· · ·
∫

ur−1>0

dρq;a1,...,ar(u1, . . . , ur−1) , (2.55)

where we have defined (again in obvious notation)

ρq;a1,...,ar(u1, . . . , ur−1) =
∫

v∈R
dνq;a1,...,ar(u1, . . . , ur−1, v) .

It is easily checked that the Fourier transform of ρq;a1,...,ar is related to that of µq;a1,...,ar by
the identity (2.20).

At this point, our goal is to evaluate the integral on the right-hand side of equation (2.55)
in terms of the Fourier transform ρ̂q;a1,...,ar of ρq;a1,...,ar . The correct final formula could be
obtained by writing this as the integral of dρq;a1,...,ar against the characteristic function of the
region of integration, and using Parseval’s identity in the context of the theory of generalized
functions; the following analysis derives this final formula rigorously.

Using the monotone convergence theorem followed by the Fourier inversion formula (2.29),
equation (2.55) becomes

δq;a1,...,ar = lim
c→0+

∫

u1>0

· · ·
∫

ur−1>0

e−c(u1+···+ur−1) dρq;a1,...,ar(u1, . . . , ur−1)

= lim
c→0+

∫

u1>0

· · ·
∫

ur−1>0

e−c(u1+···+ur−1)

{

(2π)−(r−1)

×
∫

· · ·
∫

ei(u1ξ1+···+ur−1ξr−1)ρ̂q;a1,...,ar(ξ1, . . . , ξr−1) dξ1 . . . dξr−1

}

du1 . . . dur−1.

Then by Fubini’s theorem this becomes

δq;a1,...,ar = (2π)−(r−1) lim
c→0+

∫

· · ·
∫

ρ̂q;a1,...,ar(ξ1, . . . , ξr−1)

×
{

∫

u1>0

· · ·
∫

ur−1>0

eu1(−c+iξ1)+···+ur−1(−c+iξr−1) du1 . . . dur−1

}

dξ1 . . . dξr−1

= (2π)−(r−1) lim
c→0+

∫

· · ·
∫

ρ̂q;a1,...,ar(ξ1, . . . , ξr−1)

(c− iξ1) . . . (c− iξr−1)
dξ1 . . . dξr−1

= (2π)−(r−1) lim
c→0+

∫

· · ·
∫

ρ̂q;a1,...,ar(ξ1, . . . , ξr−1)(c+ iξ1) . . . (c+ iξr−1)

(c2 + ξ21) . . . (c
2 + ξ2r−1)

dξ1 . . . dξr−1,
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and expanding the product (c+ iξ1) . . . (c+ iξr−1) leads to

δq;a1,...,ar = (2π)−(r−1)
∑

B⊂{1,2,...,r−1}
i|B| Iq;a1,...,ar(B), (2.56)

where we have defined

Iq;a1,...,ar(B) = lim
c→0+

cr−1−|B|
∫

· · ·
∫ ρ̂q;a1,...,ar(ξ1, . . . , ξr−1)

(

∏

j∈B ξj
)

(c2 + ξ21) . . . (c
2 + ξ2r−1)

dξ1 . . . dξr−1 .

Appealing to Lemma 2.6 with n = r − 1 and k = |B|, we see that

Iq;a1,...,ar(B) = πr−1−|B| P.V.
∫

· · ·
∫

ρ̂q;a1,...,ar(B)
∏

j∈B

dηj
ηj

,

which includes the special case Iq;a1,...,ar(∅) = πr−1. Using this fact in equation (2.56) estab-
lishes the theorem.

We remark that the measure ρq;a1,...,ar is actually the limiting distribution of the vector

log x√
x

(

π(x; q, a1)− π(x; q, a2), . . . , π(x; q, ar−1)− π(x; q, ar)
)

in Rr−1, so its usefulness to the investigation of those x with π(x; q, a1) > · · · > π(x; q, ar)
is not surprising.

To conclude this section, we consider two special cases of Theorem 4. In the case r = 2 (in
other words, when we are comparing simply a pair a1, a2 of residues modulo q) the formula
(2.54) reduces to

δq;a1,a2 =
1

2

(

1 +
i

π
P.V.

∫

ρ̂q;a1,a2(η)dη

η

)

=
1

2
− 1

2π

∫ sin({c(q, a1)− c(q, a2)}η)
η

∏

χmodq
χ 6=χ0

Fχ(|χ(a1)− χ(a2)|η) dη , (2.57)

the corresponding cosine term in the last integral being omitted by virtue of symmetry. When
c(q, a1) = c(q, a2), the integrand is identically zero and hence δq;a1,a2 = 1/2, as was proved
by Rubinstein and Sarnak. In fact, the formula (2.57) is analogous to their formula [10,
equation 4.1].

In the case r = 3, Theorem 4 becomes

δq;a1,a2,a3 =
1

4
+

i

4π
P.V.

∫

(ρ̂q;a1,a2,a3(η, 0) + ρ̂q;a1,a2,a3(0, η))
dη

η

− 1

4π2
P.V.

∫ ∫

ρ̂q;a1,a2,a3(η1, η2)
dη1dη2
η1η2

. (2.58)

If the aj are all squares or all nonsquares, then the one-dimensional integral again vanishes
due to symmetry, yielding a generalization of the formulas (2.52) and (2.53) of Section 2.4.
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3. Rigorous Error Bounds.

In this section, we describe how the densities in Theorem 1 were calculated and provide a
rigorous analysis bounding the error between the calculated and true values.

Suppose that we wish to evaluate δ8;3,5,7. According to equation (2.51), we need only to
evaluate

P.V.
∫ ∫

ρ̂8;3,5,7(ξ, η)

ξη
dξdη = P.V.

∫ ∫

F (2ξ, χ−8)F (2η − 2ξ, χ−4)F (−2η, χ8)

ξη
dξdη,

(3.1)

where we have used the formula (2.44) for ρ̂8;3,5,7. We shall approximate this integral by
sampling the integrand on the (symmetrically offset) grid of points

{(

mǫ

2
,
nǫ

2

)

:
∣

∣

∣

mǫ

2

∣

∣

∣,
∣

∣

∣

nǫ

2

∣

∣

∣ ≤ C, m, n odd
}

for some appropriately small ǫ > 0 and some appropriately large C > 0. In fact the quantity
we actually compute is 4S8;3,5,7(ǫ, C, T ), where we define

S8;3,5,7(ǫ, C, T ) =
∑∑

|m|,|n|≤2C/ǫ
m,n odd

FT (mǫ, χ−8)FT ((n−m)ǫ, χ−4)FT (−nǫ, χ8)

mn
; (3.2)

here FT (z, χ) is the approximation to F (z, χ) defined in equation (2.11), and as before χD

is the character given by the Kronecker symbol χD(n) = (D
n
).

The quantity S8;3,5,7(ǫ, C, T ) is a discrete, truncated approximation to the integral (3.1)
involving an approximated summand as well. The overall error incurred in evaluating (3.1) by
means of (3.2) thus consists of three components: error due to discretizing the integral, error
due to truncating the resulting infinite sum, and error due to approximating the summand.
In Sections 3.1–3.3, respectively, we obtain rigorous bounds for each of these sources of error,
and in Section 3.4 we combine these bounds to establish Theorem 1. Section 3.5 provides
some technical bounds that are required for our arguments in Section 3.1. While in the
sections to follow, all of the specific expressions we write down (such as S8;3,5,7(ǫ, C, T ))
are those that arise in the calculation of the single density δ8;3,5,7, the given constants and
error bounds were chosen so as to apply also to the analogous quantities arising during the
calculation of any of the densities listed in Theorem 1.

3.1. Error Due To Discretization. The first step is to discretize the calculation of I8;3,5,7
by converting the integral defining I8;3,5,7 into a sum; we may bound the error incurred
by doing so using the Poisson summation formula, as we now explain. Let f(ξ, η) be a

continuous, integrable function on R2 such that both f and f̂ decay rapidly enough near
infinity (for instance, exponential decay certainly suffices). Then f satisfies the Poisson
summation formula

ǫ1ǫ2
∞
∑

k=−∞

∞
∑

ℓ=−∞
f(kǫ1 + α, ℓǫ2 + β) =

∞
∑

κ=−∞

∞
∑

λ=−∞
f̂

(

2πκ

ǫ1
,
2πλ

ǫ2

)

e2πi(κα/ǫ1+λβ/ǫ2)

(see for instance Stein and Weiss [14, Corollary 2.6 of Chapter VII], although we are using a
Fourier transform (2.6) with a different choice of constants). In this formula, set ǫ1 = ǫ2 = ǫ
and α = β = ǫ/2, and make the change of variables m = 2k + 1 and n = 2ℓ + 1 on the
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left-hand side, to obtain

ǫ2
∑∑

m,n∈Z
m,n odd

f
(

mǫ

2
,
nǫ

2

)

= f̂(0, 0) +
∑∑

κ,λ∈Z
(κ,λ)6=(0,0)

f̂

(

2πκ

ǫ
,
2πλ

ǫ

)

(−1)κ+λ. (3.3)

Now let

f(ξ, η) =
ρ̂8;3,5,7(ξ, η)− ρ̂8;3,5,7(ξ, 0)ρ̂8;3,5,7(0, η)

ξη
,

which can be extended continuously over the coordinate axes as was noted in Section 2.3.
This function f is integrable and has exponential decay near infinity by Lemmas 2.3 and 2.4,
and its Fourier transform can be seen to equal

f̂(u, v) = −4π2(P (u, v)− P 1(u)P 2(v)), (3.4)

where

P (u, v) =
∫ ∞

u

∫ ∞

v
dρ8;3,5,7

is the upper cumulative distribution function of ρ8;3,5,7 and P 1(u) = P (u,−∞) and P 2(v) =

P (−∞, v) are the corresponding “upper marginals”. (Note that f̂(u, v) is a dependence
measure of the type mentioned at the end of Section 2.4.) At the end of this section we will

show that the function f̂ decays exponentially as well, so that we are justified in applying
the form (3.3) of the Poisson summation formula to f .

Now observe from equation (2.49) that

I8;3,5,7 =
∫ ∫

f(ξ, η) dξdη = f̂(0, 0).

Therefore applying equation (3.3) to the function f , we have

I8;3,5,7 = ǫ2
∑∑

m,n∈Z
m,n odd

ρ̂8;3,5,7(mǫ/2, nǫ/2)− ρ̂8;3,5,7(mǫ/2, 0)ρ̂8;3,5,7(0, nǫ/2)

(mǫ/2)(nǫ/2)
+ Error1,

(3.5)

where Error1, the error due to discretization, is given by

Error1 = 4π2
∑∑

κ,λ∈Z
(κ,λ)6=(0,0)

(

P
(2πκ

ǫ
,
2πλ

ǫ

)

− P 1

(2πκ

ǫ

)

P 2

(2πλ

ǫ

))

(−1)κ+λ. (3.6)

Defining

Q(u, v) =
(

P (2πu, 2πv)− P 1(2πu)P 2(2πv)
)

+
(

P (−2πu, 2πv)− P 1(−2πu)P 2(2πv)
)

+
(

P (2πu,−2πv)− P 1(2πu)P 2(−2πv)
)

+
(

P (−2πu,−2πv)− P 1(−2πu)P 2(−2πv)
)

,

and grouping the terms on the right-hand side of equation (3.6) analogously, we obtain

Error1 = 4π2

(

∑∑

κ,λ∈Z+

(−1)κ+λQ
(κ

ǫ
,
λ

ǫ

)

+
1

2

∑

κ∈Z+

(−1)κQ
(κ

ǫ
, 0
)

+
1

2

∑

λ∈Z+

(−1)λQ
(

0,
λ

ǫ

)

)

,

so that

|Error1| ≤ 4π2
∑∑

κ,λ≥0
(κ,λ)6=(0,0)

∣

∣

∣Q
(κ

ǫ
,
λ

ǫ

)∣

∣

∣. (3.7)
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Now let (X, Y ) denote a pair of real-valued random variables whose joint distribution is
given by ρ8;3,5,7 (these random variables are given explicitly in equation (3.33) below, though
their explicit form is not needed here). Then P (u, v) = Pr(X > u, Y > v) and hence
P 1(u) = Pr(X > u) and P 2(v) = Pr(Y > v). With this interpretation, and using the fact
that ρ8;3,5,7 is symmetric about the origin, the identity

Q(u, v) = Pr(X > 2πu, Y > 2πv)− Pr(X > 2πu, Y < −2πv) (3.8)

is easily verified. Clearly

0 ≤ Pr(X > u, Y > v) ≤ min{Pr(X > u),Pr(Y > v)}.
Moreover, since ρ8;3,5,7 is symmetric about the origin, each component X and Y is a sym-
metric random variable, so that

0 ≤ Pr(X > u, Y < −v) ≤ min{Pr(X > u),Pr(Y < −v)} = min{Pr(X > u),Pr(Y > v)}.
It therefore follows from the identity (3.8) that

|Q(u, v)| ≤ min{Pr(X > 2πu),Pr(Y > 2πv)}. (3.9)

In Section 3.5 we shall establish the bounds

Pr(X ≥ u) ≤ exp(−0.04(u− 3)2)

Pr(Y ≥ u) ≤ exp(−0.04(u− 3)2)
(3.10)

for any u ≥ 3. Hence by the inequality (3.9),

|Q(u, v)| ≤ exp
(

−0.04(2πmax{u, v} − 3)2
)

if either u or v exceeds 1, so that by equation (3.7),

|Error1| ≤ 4π2

( ∞
∑

κ=0

∞
∑

λ=max{κ,1}
exp

(

−0.04
(2πλ

ǫ
− 3

)2)

+
∞
∑

λ=0

∞
∑

κ=max{λ,1}
exp

(

−0.04
(2πκ

ǫ
− 3

)2)
)

≤ 8π2
∞
∑

κ=0

∞
∑

λ=max{κ,1}
exp

(

−0.04
(2πλ

ǫ
− 3

)2)

(3.11)

if ǫ < 1, say. Now for any positive integer λ0,
∞
∑

λ=λ0

exp
(

−0.04
(2πλ

ǫ
− 3

)2) ≤ 2 exp
(

−0.04
(2πλ0

ǫ
− 3

)2)

,

since each term of the sum is at most half of the preceding term. Applying this inequality
twice in succession to the bound (3.11) gives

|Error1| ≤ 8π2

(

2 exp
(

−0.04
(2π

ǫ
− 3

)2)

+ 2
∞
∑

κ=1

exp
(

−0.04
(2πκ

ǫ
− 3

)2
)

≤ 48π2 exp
(

−0.04
(2π

ǫ
− 3

)2)

.

We therefore conclude that

|Error1| < 5× 10−12 (3.12)
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for any choice of ǫ < 1/5, which is more than adequate for our purposes.

To conclude this section, we return to the matter of showing that the function f̂ given
in equation (3.4) decays exponentially. In terms of the random variables X and Y , the
formula (3.4) becomes

f̂(u, v) = −4π2(Pr(X > u, Y > v)− Pr(X > u)Pr(Y > v)).

By an argument similar to the one used for the function Q, we see that

|f̂(u, v)| ≤ 4π2max{Pr(X > u, Y > v),Pr(X > u)Pr(Y > v)}
≤ 4π2min{Pr(X > u),Pr(Y > v)}.

(3.13)

On the other hand, by elementary considerations we have

f̂(−u,−v) = 4π2(Pr(X > −u, Y > −v)− Pr(X > −u)Pr(Y > −v))

= 4π2
(

(1− Pr(X ≤ −u)− Pr(Y ≤ −v) + Pr(X ≤ −u, Y ≤ −v))

− (1− Pr(X ≤ −u))(1− Pr(Y ≤ −v))
)

= 4π2(Pr(X ≤ −u, Y ≤ −v)− Pr(X ≤ −u)Pr(Y ≤ −v)).

By the same argument as in equation (3.13) we see that

|f̂(−u,−v)| ≤ 4π2min{Pr(X ≤ −u),Pr(Y ≤ −v)}
= 4π2min{Pr(X ≥ u),Pr(Y ≥ v)}

since X and Y are symmetric. We can therefore apply the bounds (3.10) to conclude that

|f̂(−u,−v)| ≤ 4π2 exp
(

−0.04(max{|u|, |v|} − 3)2
)

if either |u| or |v| exceeds 3. In particular, the function f̂ decays (faster than) exponentially,
as claimed above.

3.2. Error due to truncating the infinite sums. From equation (3.5) we have

I8;3,5,7 = 4
∑∑

m,n∈Z
m,n odd

ρ̂8;3,5,7(mǫ/2, nǫ/2)− ρ̂8;3,5,7(mǫ/2, 0)ρ̂8;3,5,7(0, nǫ/2)

mn
+ Error1

= 4S8;3,5,7(ǫ) + Error1
(3.14)

where we have defined

S8;3,5,7(ǫ) =
∑∑

m,n∈Z
m,n odd

ρ̂8;3,5,7(mǫ/2, nǫ/2)

mn
. (3.15)

(The term that has been omitted in the latter equality in equation (3.14) equals zero, since
ρ̂8;3,5,7(mǫ/2, 0)ρ̂8;3,5,7(0, nǫ/2)(mn)−1 is odd in either variable separately due to the symme-
try of the functions ρ̂8;3,5,7(mǫ/2, 0) and ρ̂8;3,5,7(0, nǫ/2) through the origin.) At this point we
have accomplished the first step of converting our integral I8;3,5,7 into a discrete sum, with a
manageable error; the next step is to truncate the ranges of summation so that the resulting
sum has only finitely many terms.
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From the formula (2.44) for ρ̂8;3,5,7, the definition (3.15) becomes

S8;3,5,7(ǫ) =
∑∑

m,n∈Z
m,n odd

F (mǫ, χ−8)F ((n−m)ǫ, χ−4)F (−nǫ, χ8)

mn

= S8;3,5,7(ǫ, C) + Error2,

(3.16)

where we have defined the truncated series

S8;3,5,7(ǫ, C) =
∑′∑′

|m|,|n|≤2C/ǫ

F (mǫ, χ−8)F ((n−m)ǫ, χ−4)F (−nǫ, χ8)

mn
(3.17)

(the primes indicating that the sums are taken over only odd values of m and n) and the
error due to truncation

Error2 =
∑′∑′

max{|m|,|n|}>2C/ǫ

F (mǫ, χ−8)F ((n−m)ǫ, χ−4)F (−nǫ, χ8)

mn
.

We rewrite this as

Error2 = 2

{

∑′

m>2C/ǫ

m/2
∑′

n=−m

+
∑′

m>2C/ǫ

m
∑′

n=m/2

+
∑′

n>2C/ǫ

n/2
∑′

m=−n

+
∑′

n>2C/ǫ

n
∑′

m=n/2

}

F (mǫ, χ−8)F ((n−m)ǫ, χ−4)F (−nǫ, χ8)

mn
, (3.18)

where the factor of 2 comes from grouping together the terms corresponding to (m,n) and
(−m,−n) by the symmetry of the summand through the origin.

To bound Error2, we will certainly need explicit estimates for the functions F (x, χ) on the
real axis. We recall the upper bound (2.16),

|F (x, χ)| ≤ (π|x|)−J/2
J
∏

j=1

(

1

4
+ γ2

j

)1/4

,

where J is any positive integer and 0 < γ1 < γ2 < · · · are the imaginary parts of the
nontrivial zeros of L(s, χ). Any particular choice of J gives an upper bound of the form

|F (x, χ)| ≤ d(χ)|x|−e(χ) (3.19)

for some positive constants d(χ) and e(χ). For any fixed x the optimal choice of J is the
largest integer such that (πx)2 > 1

4
+ γ2

J ; but for our present purposes, we obtain sufficiently
good results that are easy to apply uniformly in x by choosing J so that γJ is just less
than 30. Table 3.1 lists, for each of the five characters χ relevant to the densities mod 8 and
mod 12, the values of J chosen and the resulting values of d(χ) and e(χ) in the bound (3.19),
which we computed from the lists of zeros of the L(s, χ) supplied to us by R. Rumely.
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χ J d(χ) e(χ)

χ−8 56 1.3× 1032 28
χ8 56 2.1× 1032 28
χ−4 46 8.5× 1026 23
χ−3 42 7.5× 1024 21
χ12 62 3.0× 1035 31

Table 3.1. Allowable constants in the bound (3.19) for |F (x, χ)|

Since |F (x, χ)| is also bounded by 1 on the real axis, we can estimate the first double sum
in equation (3.18) by

∣

∣

∣

∣

∣

∑′

m>2C/ǫ

m/2
∑′

n=−m

F (mǫ, χ−8)F ((n−m)ǫ, χ−4)F (−nǫ, χ8)

mn

∣

∣

∣

∣

∣

≤
∑

m>2C/ǫ

m/2
∑

n=−∞

∣

∣

∣

∣

∣

F (mǫ, χ−8)F ((n−m)ǫ, χ−4)

m

∣

∣

∣

∣

∣

≤ d(χ−8)d(χ−4)ǫ
−e(χ−8)−e(χ−4)

∑

m>2C/ǫ

m/2
∑

n=−∞
m−e(χ−8)−1(m− n)−e(χ−4)

(3.20)

using the bound (3.19) for χ−8 and χ−4.
Now we claim that

∑

m>M

m/2
∑

n=−∞
m−α(m− n)−β =

∑

m>M

∞
∑

n=m/2

m−αn−β

< 2β−1M1−α−β

(

2

α+ β − 1
+

M

(α+ β − 2)(β − 1)

)

(3.21)

for any real numbers α, β > 1. The equality is clear upon making the change of variables
n 7→ m− n, while the inequality follows from the elementary argument

∑

m>M

∞
∑

n=m/2

m−αn−β <
∑

m>M

m−α

(

⌈m

2

⌉−β
+
∫ ∞

⌈m/2⌉
t−β dt

)

≤
∑

m>M

m−α

(

(

m

2

)−β

+
1

β − 1

(

m

2

)1−β
)

< 2β
∫ ∞

M
t−α−β dt+

2β−1

β − 1

∫ ∞

M
t1−α−β dt

=
2β

α + β − 1
M1−α−β +

2β−1

(β − 1)(α+ β − 2)
M2−α−β ,
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this last expression being equivalent to the right-hand side of (3.21).
Applying the upper bound (3.21), with α = e(χ−8)+1 and β = e(χ−4), to equation (3.20)

gives

∣

∣

∣

∣

∣

∑′

m>2C/ǫ

m/2
∑′

n=−m

F (mǫ, χ−8)F ((n−m)ǫ, χ−4)F (−nǫ, χ8)

mn

∣

∣

∣

∣

∣

< d(χ−8)d(χ−4)ǫ
−e(χ−8)−e(χ−4)2e(χ−4)−1

(

2C

ǫ

)−e(χ−8)−e(χ−4)

×
(

2

e(χ−8) + e(χ−4)
+

2C/ǫ

(e(χ−8) + e(χ−4)− 1)(e(χ−4)− 1)

)

= d(χ−8)d(χ−4)2
−e(χ−8)C−e(χ−8)−e(χ−4)

×
(

1

e(χ−8) + e(χ−4)
+

C/ǫ

(e(χ−8) + e(χ−4)− 1)(e(χ−4)− 1)

)

.

(3.22)

Substituting the appropriate values from Table 3.1, we find that this last expression is less
than 1.85× 10−7 when ǫ = 1/20 and C = 15.

The second double sum in equation (3.18) may be similarly bounded as
∣

∣

∣

∣

∣

∑′

m>2C/ǫ

m
∑′

n=−m/2

F (mǫ, χ−8)F ((n−m)ǫ, χ−4)F (−nǫ, χ8)

mn

∣

∣

∣

∣

∣

≤
∑

m>2C/ǫ

∞
∑

n=m/2

∣

∣

∣

∣

∣

F (mǫ, χ−8)F (−nǫ, χ8)

m

∣

∣

∣

∣

∣

≤ d(χ−8)d(χ8)ǫ
−e(χ−8)−e(χ8)

∑

m>2C/ǫ

∞
∑

n=m/2

m−e(χ−8)−1n−e(χ8).

Applying (3.19) to bound this last expression yields just the right-hand side of equation (3.22)
except with χ−4 replaced with χ8; upon substituting values from Table 3.1 we find that this
expression is also less than 1.85 × 10−7 when ǫ = 1/20 and C = 15. The third and fourth
double sums in (3.18) are treated the same way, and so we conclude from equation (3.18)
that

|Error2| < 8(1.85× 10−7) < 1.5× 10−6 (3.23)

when ǫ = 1/20 and C = 15.

3.3. Error due to approximating F (z, χ) by FT (z, χ). We have accomplished the second
step of approximating the infinite sum S8;3,5,7(ǫ) by the finite sum S8;3,5,7(ǫ, C); however, this
latter sum is still unsuitable for computation, since it involves the functions F (z, χ) which
are infinite products. The last step is to replace the functions F (z, χ) by their truncated
counterparts FT (z, χ) defined in equation (2.11).

Recall the definition (2.12) of b1,

b1 = b1(T, χ) = −
∑

γ≥T

1
1
4
+ γ2

,
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and put

∆T (z, χ) =

∏

γ>T J0(αγz)

1 + b1z2
− 1. (3.24)

From the definitions (2.9) and (2.11) of F and FT we see that

F (z, χ) = FT (z, χ)(1 + ∆T (z, χ)).

Making this substitution in equation (3.17) for χ−8, χ−4, and χ8, we then obtain

S8;3,5,7(ǫ, C) = S8;3,5,7(ǫ, C, T ) + Error3, (3.25)

where S8;3,5,7(ǫ, C, T ) is as defined in equation (3.2) and

Error3 =
∑′∑′

|m|,|n|≤2C/ǫ

FT (mǫ, χ−8)FT ((n−m)ǫ, χ−4)FT (−nǫ, χ8)

mn

×
(

(1 + ∆T (mǫ, χ−8))(1 + ∆T ((n−m)ǫ, χ−4))(1 + ∆T (−nǫ, χ8))− 1
)

. (3.26)

Regarding the size of the function ∆T , Rubinstein and Sarnak [10, Section 4.3] established
the inequality

∣

∣

∣

∣

∣

(

∏

γ>T

J0(αγx)

)

− (1 + b1x
2)

∣

∣

∣

∣

∣

≤ b21x
4

2(1− |b1|x2)

for real numbers x satisfying |b1|x2 < 1. From the definition (3.24) of ∆T this immediately
yields

|∆T (x, χ)| =
|∏γ>T J0(αγx)− (1 + b1x

2)|
|1 + b1x2| <

b21x
4

2(1− |b1|x2)2
if |b1|x2 < 1.

(3.27)

The quantities b1 can be computed if we know all the zeros of L(s, χ) up to height T , since

b1 =
∑

0<γ<T

1
1
4
+ γ2

−
∑

γ>0

1
1
4
+ γ2

and we have the formula (see Davenport [3, p. 83])

∑

γ>0

1
1
4
+ γ2

=
1

2

∑

γ

1
1
4
+ γ2

=
1

2
log

q

π
− γ0

2
− (1 + χ(−1))

log 2

2
+

L′(1, χ)

L(1, χ) (3.28)

for a real primitive character χ mod q, where γ0 = 0.577215 . . . is Euler’s constant. The
values L(1, χ) can be calculated in closed form by classical formulas (again see [3]), while the
values L′(1, χ) can be calculated in closed form using a formula of Selberg and Chowla [12] for
the odd characters and a formula of Deninger [4] for the even characters. The former formula
expresses L′(1, χ) in terms of the logarithm of the Γ-function, while the latter expresses
L′(1, χ) in terms of a function R(x) defined as

R(x) =
(∂2ζ(s, x)

∂s2

)∣

∣

∣

s=0
;

here ζ(s, x) is the Hurwitz zeta function, defined when x > −1 by ζ(s, x) =
∑∞

n=1(n + x)−s

for Re s > 1 and by meromorphic continuation to the complex s-plane.
The Mathematica software package is capable of calculating both log Γ(x) and R(x) to

arbitrary precision, and thus by the formula (3.28) the sums
∑

γ>0 1/(
1
4
+ γ2) can also be so
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χ L(1, χ) L′(1, χ)
∑

γ>0
1

1/4+γ2

χ−8
π

2
√
2

π
2
√
2
(γ0 + log 2π + log Γ(5/8)Γ(7/8)

Γ(1/8)Γ(3/8)
) 0.158037

χ8
log(1+

√
2)√

2
1

2
√
2
(γ0 + log 2π +R(1

8
)− R(3

8
)− R(5

8
) +R(7

8
)) 0.117716

χ−4
π
4

π
4
(γ0 + log 2π + 2 log Γ(3/4)

Γ(1/4)
) 0.077784

χ−3
π

3
√
3

π
3
√
3
(γ0 + log 2π + 3 log Γ(2/3)

Γ(1/3)
) 0.056615

χ12
log(2+

√
3)√

3
1

2
√
3
(γ0 + log 2π +R( 1

12
)−R( 5

12
)− R( 7

12
) +R(11

12
)) 0.165083

Table 3.2. Values of L(1, χ), L′(1, χ), and
∑

γ>0
1

1/4+γ2

calculated. Table 3.2 contains the results of such calculations for the five characters relevant
to the densities mod 8 and mod 12.

For all five of these characters, when we choose T = 10,000 we find that |b1| < 0.000173.
The upper bound (3.27) can then be written more simply as |∆T (x, χ)| ≤ D(x) for |x| < 74,
where we have defined

D(x) =
1.5× 10−8x4

(1− 0.00018x2)2
. (3.29)

Consequently, the definition (3.26) of Error3 implies the inequality

|Error3| ≤
∑′∑′

|m|,|n|≤2C/ǫ

∣

∣

∣

∣

∣

FT (mǫ, χ−8)FT ((n−m)ǫ, χ−4)FT (−nǫ, χ8)

mn

∣

∣

∣

∣

∣

×
(

(1 +D(mǫ))(1 +D((n−m)ǫ))(1 +D(−nǫ))− 1
)

. (3.30)

The quantity on the right-hand side of this inequality was computed at the same time as the
sum S8;3,5,7(ǫ, C, T ) was computed, and we obtained the bound

|Error3| < 5.5× 10−6. (3.31)

3.4. Conclusion. From the relationships (3.15), (3.16), and (3.25) among the various in-
termediate sums S8;3,5,7, we have

I8;3,5,7 = 4S8;3,5,7(ǫ, C, T ) + Error1 + 4Error2 + 4Error3.

Using this identity in equation (2.51) yields

δ8;3,5,7 =
1

4
− 1

4π2
I8;3,5,7 =

1

4
− 1

4π2
(4S8;3,5,7(ǫ, C, T ) + Error1 + 4Error2 + 4Error3),

whence it follows that
∣

∣

∣δ8;3,5,7 −
(1

4
− S8;3,5,7(ǫ, C, T )

π2

)∣

∣

∣ ≤ |Error1|
4π2

+
|Error2|+ |Error3|

π2
.

Thus by the inequalities (3.12), (3.23), and (3.31), we conclude that
∣

∣

∣

∣

∣

δ8;3,5,7 −
(1

4
− S8;3,5,7(ǫ, C, T )

π2

)

∣

∣

∣

∣

∣

< 8× 10−7
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when ǫ = 1/20, C = 15, and T = 10,000. Using these values for ǫ, C, and T , the sum
S8;3,5,7(ǫ, C, T ) was calculated and found to equal 0.5645285 . . . , and therefore we have rig-
orously that

δ8;3,5,7 = 0.1928013± 9× 10−7,

which is slightly stronger than the first assertion of Theorem 1.
The error analysis in Sections 3.1–3.3 can be repeated for each of the densities in The-

orem 1; the constants mentioned in the error analysis have been chosen to apply to all of
these densities. Therefore, the densities calculated for Theorem 1 are all correct to within
the same margin 9× 10−7, which is enough to establish the theorem.

3.5. Appendix: Probability bounds. In this section we establish the bounds (3.10) for
Pr(X ≥ u) and Pr(Y ≥ u) which were used for the computations in Section 3.1.

To do so, we first recall from Section 2.1 the explicit form of the random variables having
the distribution µq;a1,...,ar . Specializing the representation (2.19) to the case q = 8 and
{a1, a2, a3} = {3, 5, 7}, we find that µ8;3,5,7 is the distribution of the random R3-vector

(1, 1, 1) +X(χ−8)(1,−1,−1) +X(χ−4)(−1, 1,−1) +X(χ8)(−1,−1, 1).

Next, recalling the changes of variables (2.41) and (2.43) that took us from µ to ν and then
to ρ, we observe that ρ8;3,5,7 is the distribution of of the random R2-vector

X(χ−8)(2, 0) +X(χ−4)(−2, 2) +X(χ8)(0,−2) . (3.32)

Now define the two real-valued random variables

X = 2
∑

γ>0
L(1/2+iγ,χ−8)=0

αγ sin(2πUγ) − 2
∑

γ>0
L(1/2+iγ,χ−4)=0

αγ sin(2πUγ),

Y = 2
∑

γ>0
L(1/2+iγ,χ−4)=0

αγ sin(2πUγ) − 2
∑

γ>0
L(1/2+iγ,χ8)=0

αγ sin(2πUγ).
(3.33)

We see from the definition (2.18) of the X(χ) that the random vector (X, Y ) equals the
random vector (3.32).

The following lemma gives information about the tails of random variables of this type.

Lemma 3.1. Let r1 ≥ r2 ≥ · · · be a sequence of positive real numbers such that
∑∞

k=1 rk = ∞
but

∑∞
k=1 r

2
k = R < ∞. Let U1, U2, . . . be independent random variables uniformly distributed

on [0, 1], and define the random variable

W =
∞
∑

k=1

rk sin(2πUk).

Then for any real number w ≥ 2r1,

Pr(W ≥ w) ≤ exp
(−3(w − 2r1)

2

16R

)

.
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Proof. Theorem 1 of Montgomery [8, Section 3] states that under the assumptions of this
lemma, we have

Pr

(

W ≥ 2
K
∑

k=1

rk

)

≤ exp

(

−3

4

(

K
∑

k=1

rk

)2
/

∑

k>K

r2k

)

(3.34)

for any integer K ≥ 1. Since the rk are decreasing and
∑∞

k=1 rk = ∞, it is clear that for any
w ≥ 2r1 there exists a K ≥ 1 such that

w

2
− r1 ≤

K
∑

k=1

rk ≤ w

2
.

With this choice of K, the inequality (3.34) simplifies to

Pr(W ≥ w) ≤ exp

(

−3

4

(w

2
− r1

)2/
∞
∑

k=K

r2k

)

≤ exp
(−3(w − 2r1)

2

16R

)

which is the statement of the lemma.

We now apply this lemma to the random variables X and Y defined in equation (3.33).
(Note that because each variable Uγ is uniformly distributed on [0, 1], we may replace each Uγ

in the second sums on each line with Uγ+1/2; this has the effect of changing the subtraction
signs in the equations (3.33) to addition signs, thus rendering X and Y into the form to
which Lemma 3.1 applies.) For the variable X , the sequence corresponding to rk is

{2αγ : L(1/2 + iγ, χ−8) = 0, γ > 0} ∪ {2αγ : L(1/2 + iγ, χ−4) = 0, γ > 0}.
For this sequence, the largest element r1 is less than 1.5, and the sum R of the squares of
the elements does not exceed 4.5. Therefore, applying Lemma 3.1, we find that

Pr(X ≥ u) ≤ exp(−0.04(u− 3)2)

for any u ≥ 3. Similarly, Y can be shown to satisfy the same estimate, which establishes
the upper bounds (3.10). In fact, the constants mentioned above will work for every pair of
characters that arises in the computations of ρ8;a1,a2,a3, where {a1, a2, a3} is a permutation
of {3, 5, 7}, and in ρ12;a1,a2,a3 , where {a1, a2, a3} is a permutation of {5, 7, 11}.

4. Computational Results.

The mathematical and numerical computations described in this paper were implemented
on an SGI Challenge computer using the Mathematica software package, which has the
capability to perform computations to arbitrary and verifiable precision (see Wolfram [15]).
A typical quantity to be calculated is the expression S8;3,5,7(ǫ, C, T ) defined in equation (3.2),
which depends on the functions FT (z, χ) defined in equation (2.11). To compute these
functions we needed, for the Dirichlet L-functions corresponding to characters to the moduli
q ≤ 12, lists of the zeros whose imaginary parts are bounded by T = 10,000. These lists
of imaginary parts of zeros (accurate to twelve decimal places) were kindly supplied to us
by R. Rumely (see [11]). For the estimation of Error3 in Section 3.3 it was also necessary
to compute quantities typified by the right-hand side of equation (3.30), which is no harder
than computing S8;3,5,7(ǫ, C, T ) itself.

In addition to the results reported in Theorem 1, a number of further computations were
carried out involving certain cases with q ≤ 12 and r ≤ 4. In these additional results, which
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are presented below, we report only the numbers of decimal places in which we have some
degree of confidence; specifically, we expect the entries to be correct to within one or two
units in the last decimal place reported.

Table 4.1 shows the calculated densities δq;a1,a2 for the two-way races between π(x; q, a1)
and π(x; q, a2), for the moduli q = 3, 4, and 5. For example, the first line of the table
indicates that δ3;2,1 = 0.999063 (rounded to seven decimal places). Throughout this section
we use the symbol N to stand for any nonsquare mod q and S to stand for any square mod
q (although distinct occurrences of N or S in a single entry stand for distinct residues) to
make the Chebyshev biases more clearly evident where appropriate.

Of course, since ϕ(3) = ϕ(4) = 2, the two-way races shown are the only possible races
for the moduli 3 and 4. The densities for these moduli were calculated by Rubinstein and
Sarnak and our calculations agree with theirs to six decimal places. (Although they were
only reported in [10] truncated to four decimal places, they had in fact been calculated to
higher accuracy.)

For the races modulo 5, it turns out that the densities δq;a1,a2 depend only on whether or
not a1 and a2 are squares mod 5, due to the symmetry results given in Theorem 2. (In fact
this is true for the races between multiple residues mod 5 as well.) For instance, applying
Theorem 2(b) with a1 = 2, a2 = 1, and b = 4 shows that δ5;2,1 = δ5;3,4; then applying
Theorem 2(a) to each of these expressions shows further that δ5;2,1 = δ5;3,1 and δ5;3,4 = δ5;2,4.
Since the two nonsquares mod 5 are {2, 3} while the two squares are {1, 4}, these equalities
show that all four densities represented by δ5;N,S are equal, as indicated in Table 4.1.

The fact that δq;N,N = δq;S,S = 1/2 as shown on the penultimate line of the table was
proved by Rubinstein and Sarnak, and it also follows from our Theorem 2(d). We calculated
these densities anyway, and the calculated answers differed from 1/2 by at most 10−16, which
is the default machine precision for our Mathematica calculations. This degree of accuracy
is not unexpected in this instance, as the integral in the formula (2.57) is identically zero
when a1 and a2 are both squares or both nonsquares mod q.

Table 4.2 provides the calculated densities δq;a1,a2,a3 for the three-way races modulo 5.
Again, in this case the densities only depend on whether a1, a2, and a3 are squares mod 5,
by the symmetry results (a) and (b) of Theorem 2. In addition, each density matches two
different types of permutations: for instance, Theorem 2(e) with a1 = 2, a2 = 3, a3 = 1, and
b = 2 asserts that δ5;2,3,1 = δ5;2,1,4 as indicated in the first entry of the table.

q a1a2 δq;a1,a2
NS: 21 .9990633

3
SN: 12 .0009367

NS: 31 .9959280
4

SN: 13 .0040720

NS: 21,24,31,34 .952140
NN: 23,32

5
SS: 14,41

1/2

SN: 12,13,42,43 .047860

Table 4.1. Two-way races for the moduli q = 3, 4, 5
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a1a2a3 δ5;a1,a2,a3
NNS: 231,234,321,324
NSS: 214,241,314,341

.45678

NSN: 213,243,312,342
SNS: 124,134,421,431

.03859

SNN: 123,132,423,432
SSN: 142,143,412,413

.00464

Table 4.2. Three-way races modulo q = 5

As mentioned at the beginning of this section, we are confident from numerical consider-
ations that the numbers reported in Table 4.2 are accurate to the five decimal places given
there, with a possible error of one or two units in the fifth decimal place. Thus, for instance,
if we choose a particular triple of residues such as {1, 2, 3} and add up the densities from
Table 4.2 corresponding to the six permutations of that triple, the result is 1.00002. More-
over, the three ordered triples {3, 2, 1}, {2, 3, 1}, and {2, 1, 3} are the three permutations in
which 2 is ahead of 1, and so we have the identity

δ5;2,1 = δ5;3,2,1 + δ5;2,3,1 + δ5;2,1,3 (4.1)

(cf. equation (5.1)). Table 4.1 gives .952140 for the left-hand side of this identity, while
adding the appropriate entries from Table 4.2 gives .95215 for the right-hand side.

There are two reasons why our calculations of the densities in three-way races for moduli
other than 8 and 12 are less accurate than the full six-decimal-place accuracy proven in
Theorem 1, both stemming from the fact that there are complex-valued Dirichlet characters
associated with the other moduli. First, when we calculate the function FT (z, χ) we do so
only on a discrete set of points, evenly spaced at intervals of ǫ/2. These points are the only
ones needed to evaluate the sum S8;3,5,7(ǫ, C, T ), as we see from its definition (3.2), but for
the sums corresponding to other moduli we need to know the value of FT (z, χ) at irrational
multiples of ǫ. We estimated this value by interpolating linearly between the two nearest
values, and this estimation introduces an additional error into the calculations.

Second, the zeros of L-functions corresponding to complex characters are not symmetric
with respect to the real axis, and so the quantity

∑

γ>0 1/(
1
4
+ γ2), needed to compute

b1(T, χ), cannot be evaluated in closed form. Since we can evaluate b1(T, χ) + b1(T, χ̄) in
closed form, we used half of this quantity in place of both b1(T, χ) and b1(T, χ̄); this gives
the correct first-order approximation to the tail of F (z, χ)F (z, χ̄), but the absolute error in
our calculations can be somewhat higher as a result. For higher moduli, the sheer number
of characters will also play a role, as the product of the φ(q)− 1 functions FT (z, χ) required
for the evaluation of ρ̂q;a1,...,ar will gradually erode the accuracy of the calculated number.

Since there are precisely four reduced residues modulo 5, it is natural to look at the
complete four-way race mod 5; Table 4.3 shows the calculated densities for this four-way
race. Here again, the densities only depend on whether a1, a2, a3, and a4 are squares mod 5,
by the symmetry results from parts (a) and (b) of Theorem 2, with the added symmetry in
the third entry of the table following from Theorem 2(e). Once again we can estimate the
accuracy of these densities by comparing the sum of all twenty-four densities to 1, and also
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a1a2a3a4 δ8;a1,a2,a3
NNSS: 2314,2341,3214,3241 .21136
NSNS: 2134,2431,3124,3421 .02985
NSSN: 2143,2413,3142,3412
SNNS: 1234,1324,4231,4321

.00424

SNSN: 1243,1342,4213,4312 .00028
SSNN: 1423,1432,4123,4132 .00007

Table 4.3. The full four-way race modulo q = 5

by comparing the values here to those in Table 4.2 using identities such as

δ5;1,2,3 = δ5;4,1,2,3 + δ5;1,4,2,3 + δ5;1,2,4,3 + δ5;1,2,3,4.

In all cases, these sums of densities from Table 4.3 are precise to within a few units in the
fifth decimal place.

In the calculation of these four-way densities, the general formula given in Theorem 4
involves a three-dimensional integral which must be computed numerically. Performing this
calculation with a reasonable degree of accuracy lies at the limit of the computing capabilities
of the method used for the calculations in this paper; in particular, we found it necessary
to reduce the value of C and increase the value of ǫ somewhat to make the computations
feasible.

Since the distribution of the primes into residue classes modulo 6 is fully determined
by their distribution mod 3, the next modulus of interest is q = 7. Table 4.4 shows the
calculated densities δ7;a1,a2 for the two-way races modulo 7. Here for the first time, we see
that the density does not depend merely on whether a1 and a2 are squares mod 7: the
squares mod 7 are {1, 2, 4}, and so each of the top two lines of the table are densities of
the form δ7;N,S, while each of the bottom two lines are densities of the form δ7;S,N . In other
words, Chebyshev’s bias is not the only factor causing asymmetries in the Shanks–Rényi
race games. (For a somewhat more precise discussion of Chebyshev biases for r-tuples with
r ≥ 3, see the discussion of “bias factors” in Section 6.) The middle row of the table again
indicates the known fact that all densities of the form δ7;N,N and δ7;S,S equal 1/2.

Table 4.5 gives the calculated densities for the three-way races modulo 7. Because the
number of different values for the densities is larger than in the previous cases, we have
not organized them strictly by decreasing size, but rather we have grouped together the

a1a2 δ7;a1,a2
31,32,51,54,62,64 .874349

34,52,61 .845210
12,14,21,24,41,42,
35,36,53,56,63,65

1/2

16,25,43 .154790
13,15,23,26,45,46 .125651

Table 4.4. Two-way races modulo q = 7
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a1a2a3 δ7;a1,a2,a3
512; 314; 631; 651; 621; 324; 532; 562; 641; 542; 354; 364 .4038
521; 341; 361; 561; 612; 342; 352; 652; 614; 524; 534; 634 .3678
251; 431; 316; 516; 162; 432; 325; 625; 164; 254; 543; 643 .1027
152; 134; 613; 615; 261; 234; 523; 526; 461; 452; 345; 346 .0736
215; 413; 136; 156; 126; 423; 235; 265; 146; 245; 453; 463 .0295
125; 143; 163; 165; 216; 243; 253; 256; 416; 425; 435; 436 .0226

312,321; 351,531; 514,541; 362,632; 624,642; 564,654 .3943
132,231; 315,513; 154,451; 326,623; 264,462; 546,645 .0857
123,213; 135,153; 145,415; 236,263; 246,426; 456,465 .0200

124,142,214,241,412,421; 356,365,536,563,635,653 1/6

Table 4.5. Three-way races modulo q = 7

values corresponding to isomorphic race games . We say that two r-tuples {a1, . . . , ar} and
{b1, . . . , br} of reduced residue classes mod q have isomorphic race games if there exists a
bijection τ from the set {1, . . . , n} to itself such that each residue aj acts exactly like the
corresponding residue bτ(j), i.e., if

δq;aσ(1),...,aσ(r)
= δq;bτ(σ(1)),...,bτ(σ(r))

for every permutation σ of {1, . . . , n}.
For instance, Theorem 2(a) tells us that δ7;1,2,5 = δ7;1,3,4 and similarly for the corresponding

permutations of {1, 2, 5} and {1, 3, 4}. Therefore the bijection τ : {1, 2, 5} → {1, 3, 4} given
by τ(a) ≡ a−1 (mod 7) shows that these triples have isomorphic race games. Table 4.5
shows that there are ten triples whose race games are in the isomorphism class determined
by {1, 2, 5}; the six densities for the race games in this class are all distinct. In addition, there
are five triples in the isomorphism class of {1, 2, 3}; the race games in this class have only
three distinct densities due to an additional symmetry generated by Theorem 2(a). Finally,
the two special triples {S,S,S} = {1, 2, 4} and {N,N,N} = {3, 5, 6} each give completely
symmetric race games; this is the smallest modulus to which parts (d) and (e) of Theorem
2 can be applied, since three distinct squares or nonsquares are needed. The complete
symmetry for these two race games was also proven by Rubinstein and Sarnak. We remark
that our computations of these densities yielded 1/6 to five decimal places. We did not
proceed further with computations modulo 7, since there is no natural four-way race and
races with five or more residues are beyond the present capabilities of our computing set-up.

Table 4.6 shows the calculated densities for the two-way races modulo 8. Because only one
fourth of the residues mod 8 are squares (i.e., c(8, 1) = 3), in contrast to the lower moduli,
there are fewer symmetries among the densities. (This is somewhat counterintuitive, since the
multiplicative group modulo 8 is highly symmetric.) This higher value of c(8, 1) also causes
a larger bias towards nonsquares, as can be seen by the fact that the values in Table 4.6 are
more extreme than those in Tables 4.1 and 4.4.

Table 4.7 shows the calculated densities for the three-way races modulo 8, including the
values for δ8;N,N,N highlighted in Theorem 1. Since all of the characters mod 8 are real, the
additional sources of computational error mentioned in the discussion of Table 4.2 are not
present here, and so we feel justified in reporting these figures to seven decimal places; in
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a1a2 δ8;a1,a2
31 .9995688
13 .0004312

51 .9973946
15 .0026054

71 .9989378
17 .0010622

35,37,53,
57,73,75

1/2

Table 4.6. Two-way races modulo q = 8

a1a2a3 δ8;a1,a2,a3 a1a2a3 δ8;a1,a2,a3 a1a2a3 δ8;a1,a2,a3 a1a2a3 δ8;a1,a2,a3
531 .4996015 731 .4995765 571 .4990135
351 .4974123 371 .4989440 751 .4974474

357,753 .1928013

315 .0025550 317 .0010483 715 .0024769
513 .0003808 713 .0004173 517 .0009337

375,573 .1664263

135 .0000327 137 .0000077 175 .0000757
153 .0000177 173 .0000062 157 .0000528

735,537 .1407724

Table 4.7. The four three-way races modulo q = 8

fact note that the sums of the appropriate three-way densities sum to the two-way densities
in Table 4.6 in a manner analogous to equation (4.1), with the sums all agreeing to within
one or two units in the seventh decimal place.

As with the modulus 5, it is natural to look at the complete four-way race modulo 8;
Table 4.8 shows the calculated densities for this four-way race, listed in the lexicographical
ordering on the permutations of {1, 3, 5, 7}. Despite the need to use slightly cruder values
of C and ǫ in the calculations of the three-dimensional integrals arising in the formulas for
these densities, the sum of all 24 densities and numerical checks against Table 4.7 suggest
that these densities are also accurate to within one or two units in the seventh decimal place.

Tables 4.9 and 4.10 show the calculated densities for the two-way and three-way races
modulo 9. Since the multiplicative group mod 9 is isomorphic to the multiplicative group

a1a2a3a4 δ8;a1,a2,a3,a4 a1a2a3a4 δ8;a1,a2,a3,a4 a1a2a3a4 δ8;a1,a2,a3,a4 a1a2a3a4 δ8;a1,a2,a3,a4
1357 .0000014 3157 .0000500 5137 .0000027 7135 .0000261
1375 .0000029 3175 .0000696 5173 .0000023 7153 .0000154
1537 .0000007 3517 .0007972 5317 .0001315 7315 .0008983
1573 .0000006 3571 .1919526 5371 .1406374 7351 .1398456
1735 .0000023 3715 .0015371 5713 .0000848 7513 .0002910
1753 .0000009 3751 .1648170 5731 .1663386 7531 .1924939

Table 4.8. The full four-way race modulo q = 8
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a1a2 δ9;a1,a2
21,24,51,57,84,87 .881584

27,54,81 .864230
14,17,41,47,71,74,
25,28,52,58,82,85

1/2

72,45,18 .135770
12,15,42,48,75,78 .118416

Table 4.9. Two-way races modulo q = 9

a1a2a3 δ9;a1,a2,a3
514; 217; 821; 851; 841; 247; 524; 584; 871; 574; 257; 287 .4010
541; 271; 281; 581; 814; 274; 254; 854; 817; 547; 527; 827 .3814
451; 721; 218; 518; 184; 724; 245; 845; 187; 457; 572; 872 .0992
154; 127; 812; 815; 481; 427; 542; 548; 781; 754; 275; 278 .0819
415; 712; 128; 158; 148; 742; 425; 485; 178; 475; 752; 782 .0194
145; 172; 182; 185; 418; 472; 452; 458; 718; 745; 725; 728 .0172
214,241; 517,571; 251,521; 284,824; 847,874; 587,857 .3965
124,421; 157,751; 215,512; 248,842; 487,784; 578,875 .0885
142,412; 175,715; 125,152; 428,482; 478,748; 758,785 .0149
147,174,417,471,714,741; 258,285,528,582,825,852 1/6

Table 4.10. Three-way races modulo q = 9

mod 7 (both are cyclic of order 6), the various symmetries present in Tables 4.9 and 4.10
mirror those found in Tables 4.4 and 4.5, with the squares mod 9 being {1, 4, 7}.

Again, the distribution of the primes into residue classes modulo 10 is determined by
their distribution mod 5, so the next modulus of interest is q = 11. Table 4.11 shows the
calculated densities for the two-way races modulo 11, where we have used the symbol T to
represent the residue 10 mod 11. In the middle row, the entry “NN,SS” refers to the forty
pairs {a1, a2} where a1 and a2 are either both among the nonsquares {2, 6, 7, 8,T} or both
among the squares {1, 3, 4, 5, 9} mod 11.

a1a2 δ11;a1,a2
23,25,64,69,71,75,81,89,T3,T4 .761121
21,24,61,63,73,79,84,85,T5,T9 .731135

29,65,74,83,T1 .713943
NN,SS 1/2

1T,38,47,56,92 .286057
12,16,36,37,42,48,58,5T,97,9T .268865
17,18,32,3T,46,4T,52,57,96,98 .238879

Table 4.11. Two-way races modulo q = 11
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We do not include the calculations of the three-way races mod 11 for reasons of space. Us-
ing Theorem 2 it can be checked that of the 120 distinct (unordered) triples of residues mod
11, the twenty triples of the form {ab−1, a, ab} with b a square mod 11 comprise two isomor-
phism classes of race games of ten triples each; a race game in either of these isomorphism
classes has only two distinct densities, one taken by four permutations of the triple and the
other taken by the other two permutations. The forty triples of the form {ab−1, a, ab} with
b a nonsquare mod 11 form four isomorphism classes with ten triples in each class; a race
game in one of these classes has three distinct densities, each taken by a pair of permutations
with the same middle element. Finally, the remaining sixty triples form three isomorphism
classes of twenty race games each; a race game in one of these classes has all six densities
distinct. There are 34 densities that remain to be calculated after these symmetries from
Theorem 2 are taken into account, and the calculations reveal that these 34 densities are
indeed distinct.

As mentioned previously, determining the densities in a five-way race game lies beyond the
scope of the computing methods used for the calculations in this paper (though this barrier is
only technological, as Theorem 4 is valid for arbitrarily large race games). If this barrier were
overcome (for example, by recoding in a lower level computing language) the five-way race
among the squares mod 11 and the five-way race among the nonsquares mod 11 would be
natural and interesting questions to consider, especially in light of the nearly-cyclic behavior
of the leaders in these five-way race games reported by Bays and Hudson [1]. Because of the
symmetries of Theorem 2, it turns out that only eight distinct densities would need to be
calculated for both of these five-way race games to be completely determined.

Tables 4.12, 4.13, and 4.14 show the two-way, three-way, and four-way race games modulo
12, respectively, using the symbol E to represent the residue 11 mod 12. Since the multi-
plicative group mod 12 is isomorphic to the multiplicative group mod 8 (both groups being
isomorphic to the Klein group of order 4), the various symmetries present in Tables 4.12, 4.13,
and 4.14 mirror those found in Tables 4.6, 4.7, and 4.8. As with the modulus 8 case, all the
characters mod 12 are real-valued, and so we feel justified in reporting seven decimal places
of the numbers in these tables.

Notice from Table 4.13 that the densities δ12;5,11,1 and δ12;7,11,1 only differ by one unit in
the sixth decimal place, and that there are several other entries that differ by similarly small
amounts owing to their small size. Nevertheless, we see no reason to believe that any of
the twenty-one densities in Table 4.13 is equal to any another. Similar remarks hold for the

a1a2 δ12;a1,a2
51 .9992059
15 .0007941
71 .9986061
17 .0013939
E1 .9999766
1E .0000234

57,5E,75,
7E,E5,E7

1/2

Table 4.12. Two-way races modulo q = 12
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a1a2a3 δ12;a1,a2,a3 a1a2a3 δ12;a1,a2,a3 a1a2a3 δ12;a1,a2,a3 a1a2a3 δ12;a1,a2,a3
751 .4992728 5E1 .4999772 7E1 .4999780
571 .4986582 E51 .4992062 E71 .4986066

57E,E75 .1984521

517 .0012750 E15 .0007931 E17 .0013919
715 .0006751 51E .0000225 71E .0000214

E57,75E .1799849

157 .0000668 1E5 .0000006 1E7 .0000015
175 .0000521 15E .0000003 17E .0000006

5E7,7E5 .1215630

Table 4.13. The four three-way races modulo q = 12

a1a2a3a4 δ12;a1,a2,a3,a4 a1a2a3a4 δ12;a1,a2,a3,a4 a1a2a3a4 δ12;a1,a2,a3,a4 a1a2a3a4 δ12;a1,a2,a3,a4
157E < 10−7 517E .0000004 715E .0000001 E157 .0000664
15E7 .0000001 51E7 .0000010 71E5 .0000002 E175 .0000519
175E < 10−7 571E .0000152 751E .0000059 E517 .0011332
17E5 < 10−7 57E1 .1984364 75E1 .1799788 E571 .1787850
1E57 .0000002 5E17 .0001403 7E15 .0000243 E715 .0006505
1E75 .0000001 5E71 .1214216 7E51 .1215384 E751 .1977496

Table 4.14. The full four-way race modulo q = 12

twenty-four densities in Table 4.14 and for the corresponding Tables 4.7 and 4.8 for the race
games modulo 8. One observation supporting our view is that whenever the symmetries of
Theorem 2 imply that two densities are equal, the computed densities agree to within a few
multiples of the default machine precision rather than to only five or six decimal places.

5. Proofs of Theorems 2 and 3.

In this section we establish Theorem 2, concerning symmetries of the densities δq;a1,...,ar
under certain permutations of the residue classes {a1, . . . , ar}, and Theorem 3, giving some
strict inequalities in the same setting. We first present the proof of Theorem 3 since it is
somewhat simpler than that of Theorem 2.

Proof of Theorem 3. Let a1, a2, and a3 be distinct reduced residue classes mod q. We
begin with the simple observation that if x is a real number such that π(x; q, a1) > π(x; q, a2),
then the quantity π(x; q, a3) must either equal one of π(x; q, a1) and π(x; q, a2), lie between
them, exceed both, or be exceeded by both. This observation leads to the density identity

δq;a1,a2 = δq;a3,a1,a2 + δq;a1,a3,a2 + δq;a1,a2,a3 , (5.1)

since the set of real numbers x such that π(x; q, a3) = π(x; q, a1) or π(x; q, a3) = π(x; q, a2)
has density zero, as mentioned in Section 2.1. It follows that

δq;a1,a2,a3 − δq;a3,a2,a1 = δq;a1,a2 − δq;a3,a2, (5.2)

by using the appropriate identity of the type (5.1) on both terms on the right-hand side of
equation (5.2) and simplifying.

Now we can use our knowledge of the two-way densities to study the difference on the
left-hand side of (5.2). In particular, if c(q, a1) = c(q, a2) then δq;a1,a2 = 1/2, and hence
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δq;a1,a2,a3 − δq;a3,a2,a1 = 1/2 − δq;a3,a2 , an expression whose sign is known from the work of
Rubinstein and Sarnak. More specifically, if N and N ′ are nonsquares mod q while S is a
square mod q, then δq;N,N ′,S − δq;S,N ′,N = 1/2 − δq;S,N ′ > 0; therefore δq;N,N ′,S > δq;S,N ′,N ,
which establishes part (a) of the theorem. Similarly, if N is a nonsquare mod q while S and
S ′ are squares mod q, then δq;S′,S,N < δq;N,S,S′, which establishes part (b) of the theorem.

Another application is to the difference δq;N,S,N ′ − δq;N ′,S,N when N and N ′ are nonsquares
mod q while S is a square mod q. In this case equation (5.2) becomes

δq;N,S,N ′ − δq;N ′,S,N = δq;N,S − δq;N ′,S,

which immediately implies part (c) of the theorem. The analogous observation about the
difference δq;S,N,S′ − δq;S′,N,S when S and S ′ are squares mod q while N is a nonsquare mod
q establishes part (d) of the theorem.

We remark that the identity (5.2), applied when a1, a2, and a3 are all nonsquares mod q,
becomes δq;a1,a2,a3 − δq;a3,a2,a1 = 0; this is another way of seeing that the densities calculated
in Theorem 1 are equal in pairs as indicated.

Our next goal is to establish Theorem 2. Before doing so it will be helpful to recall the
relationships between the density δq;a1,...,ar and the measures µq;a1,...,ar and ρq;a1,...,ar . We
begin by recalling from equation (2.5) that

δq;a1,...,ar =
∫

· · ·
∫

x1>···>xr

dµq;a1,...,ar . (5.3)

We remark that if σ is a permutation of the indices {1, . . . , r}, then we can express the
density δq;aσ(1),...,aσ(r)

in two different ways: we have

δq;aσ(1),...,aσ(r)
=
∫

· · ·
∫

x1>···>xr

dµq;aσ(1),...,aσ(r)

corresponding to the formula (5.3), but we also have the alternate form

δq;aσ(1),...,aσ(r)
=

∫

· · ·
∫

xσ(1)>···>xσ(r)

dµq;a1,...,ar

since µq;a1,...,ar is the limiting distribution of the vector (E(x; q, a1), . . . , E(x; q, ar)), whose co-
ordinated are ordered by size exactly as the coordinates of the vector (π(x; q, a1), . . . , π(x; q, ar)).

If we make the change of variables u1 = x1 − x2, . . . , ur−1 = xr−1 − xr, ur = xr and
integrate out the variable ur, as in Section 2.5, the formula (5.3) becomes

δq;a1,...,ar =
∫

· · ·
∫

u1>0, ..., ur−1>0

dρq;a1,...,ar . (5.4)

For the special permutation σ that reverses the set {1, . . . , n}, we see that

xσ(1) > · · · > xσ(r) ⇐⇒ xr > · · · > x1 ⇐⇒ ur−1 < 0, . . . , u1 < 0.

Consequently, we have

δq;ar ,...,a1 =
∫

· · ·
∫

u1<0, ..., ur−1<0

dρq;a1,...,ar (5.5)

as a companion formula to equation (5.4).
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As a final prerequisite to the proof of Theorem 2 we recall from equation (2.13) the explicit
formula

µ̂q;a1,...,ar(ξ1, . . . .ξr) = exp

(

i
r
∑

j=1

c(q, aj)ξj

)

∏

χmodq
χ 6=χ0

F

(
∣

∣

∣

∣

∣

r
∑

j=1

χ(aj)ξj

∣

∣

∣

∣

∣

, χ

)

, (5.6)

for the Fourier transform of µq;a1,...,ar , and the related formula (2.21)

ρ̂q;a1,...,ar(η1, . . . , ηr−1) = exp

(

r−1
∑

j=1

(c(q, aj)− c(q, aj+1))ηj

)

×
∏

χmodq
χ 6=χ0

F

(
∣

∣

∣

∣

∣

r−1
∑

j=1

(χ(aj)− χ(aj−1))ηj

∣

∣

∣

∣

∣

, χ

)

(5.7)

for the Fourier transform of ρq;a1,...,ar .

Proof of Theorem 2. Let a−1
j denote the inverse of aj mod q. We will show that the Fourier

transforms µ̂q;a1,...,ar and µ̂q;a−1
1 ,...,a−1

r
are the same function. This is enough to establish part

(a), since the densities µq;a1,...,ar and µq;a−1
1 ,...,a−1

r
will then be identical, which by equation (5.3)

will imply

δq;a1,...,ar =
∫

· · ·
∫

x1>x2>···>xr

dµq;a1,...,ar =
∫

· · ·
∫

x1>x2>···>xr

dµq;a−1
1 ,...,a−1

r
= δq;a−1

1 ,...,a−1
r
.

We use the formula (5.6) for µ̂q;a1,...,ar and the analogous formula for µ̂q;a−1
1 ,...,a−1

j
. Notice

that the square roots of a−1
j are precisely the inverses mod q of the square roots of aj . In

particular, c(q, a−1
j ) = c(q, aj), and so the exponential term in the formula (5.6) is unchanged

if we replace each aj by a−1
j . Moreover, we see that for each character χ mod q,

∣

∣

∣

∣

∣

r
∑

j=1

χ(a−1
j )ξj

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

r
∑

j=1

χ(aj)ξj

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

r
∑

j=1

χ(aj)ξj

∣

∣

∣

∣

∣

since the ξj are real, so that each term F (·, χ) in (5.6) is also unchanged by replacing all of
the aj with the a−1

j . This shows that µ̂q;a1,...,ar = µ̂q;a−1
1 ,...,a−1

r
, which establishes part (a) of

the theorem.
We use a similar strategy to prove part (b). Let b be a reduced residue class mod q such

that c(q, aj) = c(q, baj) for each 1 ≤ j ≤ r. Because of this hypothesis, the exponential term
in the formula (5.6) is unchanged if we replace each aj by baj as above. Moreover, for each
character χ mod q,

∣

∣

∣

∣

∣

r
∑

j=1

χ(baj)ξj

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

χ(b)
r
∑

j=1

χ(aj)ξj

∣

∣

∣

∣

∣

= |χ(b)|
∣

∣

∣

∣

∣

r
∑

j=1

χ(aj)ξj

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

r
∑

j=1

χ(aj)ξj

∣

∣

∣

∣

∣

, (5.8)

so that each term F (·, χ) in (5.6) is also unchanged by replacing all of the aj with the baj .
This shows that µ̂q;a1,...,ar = µ̂q;ba1,...,bar , which establishes part (b) of the theorem.

The proofs of parts (c) and (d) rely on the formula (5.7) for the function ρ̂q;a1,...,ar . When
the aj are all squares mod q, then the exponential term in (5.7) is identically 1. Moreover, if
b is a square mod q then each baj is also a square, while if b is a nonsquare mod q then each
baj is a nonsquare; in either case we have c(q, ba1) = · · · = c(q, bar), so that the exponential
term in the analogous formula to equation (5.7) for ρ̂q;ba1,...,bar is also identically 1. Since
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the chain of equalities (5.8) again shows that each term F (·, χ) is unchanged upon replacing
the aj with baj , we see that ρ̂q;a1,...,ar = ρ̂q;ba1,...,bar and so δq;a1,...,ar = δq;ba1,...,bar by virtue of
equation (5.4), which establishes part (c) of the theorem.

For part (d) we begin with the formula (5.5) for δq;ar ,...,a1 . As remarked above, the exponen-
tial term of ρ̂q;a1,...,ar is identically 1 when the aj are all squares mod q, so that ρ̂q;a1,...,ar will
be real valued. Since ρq;a1,...,ar is real-valued as well, we conclude that ρq;a1,...,ar is symmetric
through the origin. Hence making the change of variables uj 7→ −uj for each 1 ≤ j ≤ r in
equation (5.5), we obtain

δq;ar,...,a1 =
∫

· · ·
∫

u1>0,...,ur−1>0

dρq;a1,...,ar = δq;a1,...,ar ,

which establishes part (d) of the theorem.
To establish part (e), we first consider the relationship between ρ̂q;a1,...,ar and ρ̂q;ba1,...,bar

(note that the residue classes baj have not yet been reversed in the second subscript). Again,
equation (5.8) shows that replacing each aj with baj does not change the terms of the
form F (·, χ), and so we only need to consider the exponential term. Because the quantity
c(q, a) can only take the two values −1 and c(q, 1), we see that if c(q, a′) 6= c(q, a) then
c(q, a′) = c(q, 1)− 1 − c(q, a). It follows that under our hypothesis that c(q, baj) 6= c(q, aj)
for each 1 ≤ j ≤ r; but we also have

c(q, baj+1)− c(q, baj) = −(c(q, aj+1)− c(q, aj)),

and so the imaginary expression in the exponential term in equation (5.6) is negated upon
replacing each aj by baj . The end result is that ρ̂q;ba1,...,bar = ρ̂q;a1,...,ar , which implies that
when the measure ρq;ba1,...,bar is reflected through the origin, the resulting measure is identical
to ρq;a1,...,ar .

Since we can express

δq;bar ,...,ba1 =
∫

· · ·
∫

u1<0, ..., ur−1<0

ρq;ba1,...,bar

as in equation (5.5), we can make the change of variables uj 7→ −uj for each 1 ≤ j ≤ r − 1
to see that

δq;bar ,...,ba1 =
∫

· · ·
∫

u1>0, ..., ur−1>0

ρq;a1,...,ar = δq;a1,...,ar .

This establishes the final assertion of the theorem.

6. Remarks, Questions, and Open Problems.

In this final section, we collect together several observations, unanswered questions, and
conjectures concerning the results of this paper.

Systems of inequalities with one equality. Since we know that δq;a,b and δq;b,a are both positive
(assuming GRH and LI), it follows that each inequality π(x; q, a) > π(x; q, b) and π(x; q, b) >
π(x; q, a) has arbitrarily large solutions, and therefore π(x; q, a) = π(x; q, b) for infinitely
many integers x. However, knowing that δq;a,b,c and δq;b,a,c are both positive—i.e., that each
string of inequalities

π(x; q, a) > π(x; q, b) > π(x; q, c) and π(x; q, b) > π(x; q, a) > π(x; q, c)
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has arbitrarily large solutions—does not imply that there are necessarily any solutions to
π(x; q, a) = π(x; q, b) > π(x; q, c). Undoubtably, the equality π(x; q, a) = π(x; q, b) should
hold infinitely often both when their common value exceeds π(x; q, c) and when their value
is exceeded by π(x; q, c). We conjecture more generally that for any given integer 1 ≤ j ≤ r
and reduced residue classes a1, . . . , ar and a′j mod q, the conditions

π(x; q, a1) > · · · > π(x; q, aj) > · · · > π(x; q, ar)
||

π(x; q, a′j)

should be satisfied for infinitely many integers x.

Multiple equalities. Another direction along these lines involves solutions to

π(x; q, a1) = π(x; q, a2) = · · · = π(x; q, ar) (6.1)

when r ≥ 3. If we consider the vectors

Vq;a1,...,ar(n) =
(

π(pn; q, a1)− π(pn; q, a2), . . . , π(pn; q, ar−1)− π(pn; q, ar)
)

,
(6.2)

where pn denotes the nth prime, then the sequence of vectors {Vq;a1,...,ar(n)}might reasonably
be expected to resemble a random walk on Zr−1, where the possible steps at each stage are
(1, 0, . . . , 0), (−1, 1, 0, . . . , 0), . . . , (0, . . . , 0,−1, 1), and (0, . . . , 0,−1) and are chosen with
roughly equal probabilities. (Even though the Chebyshev bias will cause a drift in the mean
behavior of the vectors (6.2), this drift has the same order of magnitude as the standard
deviation of the random walk).

Since random walks on Zn return to any point infinitely often with probability 1 when
n = 1 or 2 but fail to do so with probability 1 when n ≥ 3 (Polya [9]), this heuristic leads to
the prediction that the system of equalities (6.1) has infinitely many solutions when r ≤ 3
but only finitely many solutions for r ≥ 4. Similar reasoning suggests that any pair of
equalities

π(x; q, a1) = π(x; q, a2), π(x; q, a3) = π(x; q, a4)

with a1, . . . , a4 distinct should simultaneously hold for arbitrarily large values of x, but
three or more equalities will hold simultaneously only finitely many times. Further, we
might expect that the conditions

π(x; q, a1) > · · · > π(x; q, aj) > · · · > π(x; q, ar)
||

π(x; q, a′j)
||

π(x; q, a′′j )

and

π(x; q, a1) > · · · > π(x; q, ai) > · · · > π(x; q, aj) > · · · > π(x; q, ar)
|| ||

π(x; q, a′i) π(x; q, a′j)

should hold for infinitely many integers x, but that analogous conditions involving three or
more equalities would not.
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Bias factors. To try to quantify the Chebyshev biases for r-tuples of reduced residue classes
aj mod q for all r ≥ 2, let us define the “bias factor” βq;a1,...,ar to be the difference between the
number of nonsquares preceding squares among the aj and the number of squares preceding
nonsquares:

βq;a1,...,ar = #{i < j : ai 6= , aj = } −#{i < j : ai = , aj 6= }

=
∑∑

1≤i<j≤r

c(q, aj)− c(q, ai)

c(q, 1) + 1

=
1

c(q, 1) + 1

∑

1≤j≤r

(2j − r − 1)c(q, aj).

(6.3)

For instance, when r = 2 the possible bias factors are βq;N,S = 1, βq;N,N = βq;S,S = 0, and
βq;S,N = −1. Rubinstein and Sarnak proved that the sign of δq;a,b − 1/2 equals the sign of
βq;a,b in this notation, thereby showing that

βq;a,b > βq;a′,b′ =⇒ δq;a,b > δq;a′,b′.

The converse to this statement is false: the first two lines of Table 4.4 shows that δq;a,b and
δq;a′,b′ can be different even when βq;a,b = βq;a′,b′ , for instance.

We might hope that the bias factors βq;a1,...,ar would provide some information about the
relative sizes of the δq;a1,...,ar , perhaps in the form of the implication

βq;a1,...,ar > βq;b1,...,br =⇒ δq;a1,...,ar > δq;b1,...,br (6.4)

for any fixed r. In this regard, it is worth remarking that all of the symmetries in Theorem
2 are equalities between two r-tuples of residues with equal bias factors. Examining the
densities computed in Section 4, we observe that the implication (6.4) holds most of the
time, but we do note the following two anomalies:

• β8;5,1,3,7 = β8;5,1,7,3 = −1 > −3 = β8;1,3,7,5, but it appears from Table 4.8 that δ8;1,3,7,5
slightly exceeds both δ8;5,1,3,7 and δ8;5,1,7,3;

• β12;7,1,11,5 = β12;7,1,5,11 = −1 > −3 = β12;1,11,5,7, but it appears from Table 4.14 that
δ12;1,11,5,7 slightly exceeds both δ12;7,1,11,5 and δ12;7,1,5,11.

It would therefore be of interest, in connection with determining whether the implication (6.4)
is always valid, to compute more precisely the densities just mentioned in order to verify the
apparent inequalities.

Unfortunately, the computation of the densities to arbitrary precision is not simply a
matter of reducing ǫ and increasing C and letting a bigger computer run for a longer period
of time. The major source of error in these computations is the effect of truncating the
infinite product defining the functions F (z, χ) to form the approximations FT (z, χ) (see
Section 3.3); to decrease this error it would be necessary to compute zeros of the relevant
L-functions to a height greater than 10,000, and perhaps to greater precision than twelve
decimal places as well.

It is certainly conceivable that some definition of bias factor different from (6.3) might be
better suited to the role of βq;a1,...,ar , although it is hard to imagine what natural definition
would be able to explain the apparent anomalies noted above. It might also be the case
that the implication (6.4) is valid in more limited settings—for instance, when we restrict
to r-tuples {a1, . . . , ar} and {b1, . . . , br} where exactly half of the aj are nonsquares and half
squares, and similarly for the bj .
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Convergence to unbiased distribution. Rubinstein and Sarnak proved [10, Theorem 1.5] that
for a fixed integer r ≥ 2,

(

max
a1,...,ar

|r!δq;a1,...,ar − 1|
)

→ 0 (6.5)

as q tends to infinity (where the maximum is taken over all r-tuples of distinct reduced residue
classes mod q), so that biases of any sort become less and less evident with increasing moduli.
Thus although the biases in the two-way races mod 8 and mod 12 are more pronounced than
those in the two-way races mod 4, 5, and 7 owing to the larger values of c(8, 1) = c(12, 1) = 3,
these sorts of extreme biases will not continue (even with a sequence of moduli such as
qn = 4p2p3 . . . pn, say, which satisfies c(qn, 1) = 2n − 1).

On the other hand, it might happen that an extremely negatively biased density such as
δq;S1,...,Sn,N1,...,Nn might tend to zero much more rapidly than 1/(2n)! as n increases, while an
extremely positively biased density such as δq;N1,...,Nn,S1,...,Sn might behave more like 1/(n!)2.
In general, one could investigate the uniformity of the statement (6.5), i.e., attempt to show
that the statement holds uniformly for all r ≤ r0 for some integer-valued function r0 = r0(q)
satisfying 2 ≤ r0 ≤ φ(q). For instance, is it the case that

lim sup
q→∞

(

max
a1,...,ar0

r0! δq;a1,...,ar0

)

= ∞ and lim inf
q→∞

(

min
a1,...,ar0

r0! δq;a1,...,ar0

)

= 0
(6.6)

if r0 = r0(q) grows sufficiently quickly, and if so, how quickly must r0 grow with q for these
phenomena to emerge? We certainly conjecture that

lim
q→∞

(

max
a1,...,ar0

r0! δq;a1,...,ar0

)

= 0 (6.7)

for any arbitrary function r0 = r0(q) tending to infinity with q, but at this point it seems
nontrivial to prove this modest result even for r0 = φ(q) itself.

Race-game symmetries, isomorphisms, and order equivalences. Another question of interest
is whether there exist more symmetry results of the type arising in Theorem 2. Reviewing the
proof of Theorem 2, we see that all of the symmetries therein are consequences of provable
equalities between two distributions of the type µq;a1,...,ar or ρq;a1,...,ar (possibly after reflecting
one of the distributions through the origin). We can then ask

(1) whether there exist any equalities between these distributions other than those used in
the proof of Theorem 2;

(2) whether there can be numerical “coincidences” between two densities even though their
underlying distributions are not related.

An answer to question (1) might be forthcoming from a careful analysis of the Fourier
transforms ρ̂q;a1,...,ar of the distributions ρq;a1,...,ar . As for question (2), it seems reasonable to
believe the phenomenon addressed therein can never occur, but proving such a claim seems
very difficult.

In support of the possibility that Theorem 2 accounts for all numerical equalities between
the densities δq;a1,...,ar , we remark that among the densities computed in Section 4, each time
a symmetry from Theorem 2 was applicable the corresponding computed densities were equal
to within a small multiple of the machine precision. Conversely, all such numerical equalities
observed among the computed densities are accounted for by the symmetries already asserted
in Theorem 2.
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Symmetries among individual densities δq;a1,...,ar are of course closely related to isomor-
phisms between complete race games of r-tuples. Theorem 2 implies that the following
bijections between r-tuples induce isomorphisms of race games:

• the map τ(aj) ≡ a−1
j (mod q) between the r-tuples {a1, . . . , ar} and {a−1

1 , . . . , a−1
r };

• the map τ(aj) ≡ baj (mod q) between the r-tuples {a1, . . . , ar} and {ba1, . . . , bar}, if
either c(q, aj) = c(q, 1) for each 1 ≤ j ≤ r or c(q, aj) = c(q, baj) for each 1 ≤ j ≤ r;

• the map τ(aj) ≡ bar+1−j (mod q) between the r-tuples {a1, . . . , ar} and {bar, . . . , ba1},
if c(q, aj) 6= c(q, baj) for each 1 ≤ j ≤ r;

• either bijection τ : {a, b} → {a′, b′}, if c(q, a) = c(q, b) and c(q′, a′) = c(q′, b′);
• any bijection τ : {a, b, c} → {a′, b′, c′}, if there exists ρ 6≡ 1 (mod q) with ρ3 ≡ 1 (mod q)
such that b ≡ aρ (mod q) and c ≡ aρ2 (mod q) and an analogous ρ′ (mod q′).

(Our definition of isomorphic race games required that the r-tuples consist of reduced residues
to the same modulus, but the definition has an obvious extension to two r-tuples of residues
to different moduli which encompasses the last two isomorphisms.) We conjecture that any
isomorphism between two race games is induced by a composition of bijections from this list;
in particular, the only isomorphisms between race games of distinct moduli are those race
games with complete internal symmetry, which were determined by Rubinstein and Sarnak.

A weaker relationship than isomorphic race games is order-equivalent race games , where
there exists a bijection τ on the set {1, . . . , n} such that

δq;aσ(1),...,aσ(r)
> δq;aσ′(1),...,aσ′(r)

⇐⇒ δq′;bτ(σ(1)),...,bτ(σ(r))
> δq′;bτ(σ′(1)),...,bτ(σ′(r))

(6.8)

for any two permutations σ, σ′ of {1, . . . , n}. Order-equivalent race games seem common
for small values of r. For instance, any two race games both of the form {N, S} are order-
equivalent by Rubinstein and Sarnak’s results. The tables in Section 4 indicate many three-
way race games that are order-equivalent. The triples {N,N ′, 1} mod 7 with NN ′ 6≡ −1
mod 7, the triples {N,N ′, 1} mod 8, the triples {N,N ′, 1} mod 9 with NN ′ 6≡ −1 mod 9,
and the triples {N,N ′, 1} mod 12 are all order-equivalent to one another. Also, the triples
{N,−N−1, S} mod 5, the triples {N,−N−1, S} mod 7, and the triples {N,−N−1, S} mod 9
are all order-equivalent as well (but note that these are not order-equivalent to the triples
{N,N,N} mod 8 and mod 12).

We remark that from the values in Tables 4.8 and 4.14, the bijection

τ(1) = 1, τ(3) = 11, τ(5) = 7, τ(7) = 5

is quite close to inducing an order-equivalence between the full four-way race games modulo
8 and 12, respectively (in the sense that the values in these tables would only have to be
modified by at most 6 × 10−5 in order for the condition (6.8) to always hold). It would
certainly be interesting to try to establish (or even classify) order-equivalent race games,
especially for larger values of r and between r-tuples to different moduli.

Another problem of Knapowski–Turán. In their paper [6], Knapowski and Turán pose many
problems in comparative prime number theory, several of which have been answered by
Rubinstein and Sarnak [10] and herein. We conclude by mentioning one other problem given
by Knapowski and Turán in [6]. They ask whether, for any r-tuple a1, . . . , ar of reduced



48 ANDREY FEUERVERGER AND GREG MARTIN UNIVERSITY OF TORONTO

residue classes mod q, the inequalities

π(x; q, a1) <
li(x)

φ(q)
, π(x; q, a2) <

li(x)

φ(q)
, . . . , π(x; q, ar) <

li(x)

φ(q)
(6.9)

simultaneously hold for arbitrarily large values of x. Each individual inequality is unbiased
if aj is a nonsquare mod q and biased negatively if aj is a square mod q. We remark here
that if we apply the method of Rubinstein and Sarnak [10] to the error term

E1(x; q, a) =
log x√

x

(

φ(q)π(x; q, a)− li(x)
)

,

which has been centered in a slightly different way than in the definition (2.1) of E(x; q, a),
we can see that this question of Knapowski and Turán is answered in the affirmative, and in
fact the set of real numbers x satisfying the inequalities (6.9) has positive density as well.
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