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We use the Dorfmeister—Pedit-Wu construction to present three
new classes of immersed CMC cylinders, each of which includes
surfaces with umbilics. The first class consists of cylinders with
one end asymptotic to a Delaunay surface. The second class
presents surfaces with a closed planar geodesic. In the third
class each surface has a closed curve of points with a com-
mon tangent plane. An appendix, by the third author, describes
the DPW potentials that appear to give CMC punctured spheres
with k Delaunay ends (k-noids): the evidence is experimental at
present. These can have both unduloidal and nodoidal ends.

1. INTRODUCTION

Dorfmeister, Pedit and Wu presented in [Dorfmeis-
ter et al. 1998] a method by which all immersed
CMC surfaces can, in principle, be constructed. The
construction is based on the observation that the
Gauss map of every CMC surface is harmonic and
every harmonic map from a surface D to S? is the
projection of a horizontal holomorphic map from its
universal cover D into a certain loop group. Thus
the data for the DPW method is a holomorphic 1-
form with values in a certain loop algebra: this is
called a holomorphic potential. One of the difficul-
ties in using this method to construct new surfaces
is that if the potential actually lives on D it need
not follow that it produces an immersion of D. We
usually only obtain an immersion of D: this is the
closing (or monodromy) problem. Therefore part of
the purpose here is to present some examples of solv-
ing the closing problem in the simplest case, where
D=C".

The simplest known examples of CMC cylinders
are the Delaunay surfaces, which are characterized
by being cylinders of revolution (this includes the
standard cylinder). From [Korevaar et al. 1989] one
knows that if a CMC cylinder is complete and prop-
erly embedded then it must be a Delaunay surface.
Also, every properly embedded annular end must be
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a Delaunay end (i.e., asymptotic to a Delaunay sur-
face) even if the surface is not embedded [Korevaar
et al. 1989]. For example, the ‘bubbletons’ studied
in [Sterling and Wente 1993] are immersed cylinders
with no umbilics and both ends asymptotic to the
standard cylinder. The examples we will present in-
clude cylinders which have one Delaunay end and
any number of umbilics.

In fact we present three new classes of CMC cylin-
ders. The first class includes surfaces which are
best thought of as a Smyth surface [Smyth 1993;
Dorfmeister et al. 1998] with the head replaced by a
Delaunay end. Given the results of [Timmreck et al.
1994] on Smyth surfaces we conjecture that these
new examples are complete and proper immersions.
Indeed these surfaces come in one-parameter fami-
lies each of which includes a Smyth surface (with the
umbilic removed) as a degenerate limit, in the same
way that the Delaunay surfaces are a one-parameter
family containing the sphere (with two points re-
moved) as a degenerate limit. The next class con-
sists of CMC cylinders which contain a closed planar
geodesic. The third class presents cylinders each of
which admits a closed curve of points with common
tangent plane.

Although it is very easy to read off the Hopf dif-
ferential from the potential, it is usually unclear how
the geometry of the surface is encoded in the poten-
tial. For example, there is as yet no understand-
ing of the conditions on a potential which ensure
that the surface is either proper, complete or embed-
ded. The main obstacle in understanding the pas-
sage from the potential to the surface is a loop group
factorization (the Iwasawa decomposition). This led
us to build a numerical package that would com-
pute this factorization and produce images of the
surface: the approach is described below. The re-
sult is a computer laboratory, called dpwlab, writ-
ten by the third author. Other attempts have been
made to implement the DPW method numerically
(see [Lerner and Sterling 1995], for example), but
they find the Iwasawa decomposition by first turning
it into a Riemann-Hilbert problem (Birkhoff factor-
ization). The dpwlab directly computes the Iwasawa
decomposition according to the theory described in
[Pressley and Segal 1986].

An appendix, by the third author, introduces a
class of DPW potentials that appear to give the tri-

unduloid surfaces classified in [Grofie-Brauckmann
et al. 1999]. In fact the experiments predict that
there is another family of 3-punctured spheres, with
two unduloidal ends and one nodoidal end. A gen-
eralization of the balancing formulae [Kusner 1991]
applies to these latter surfaces even though they are
no longer almost embedded. Moreover, these ideas
are extended to produce a family of DPW potentials
which will, it is conjectured, produce symmetric k-
punctured spheres with equal asymptotic necksizes:
the so-called equilateral k-noids. The experiments
support this conjecture.

2. THE DPW CONSTRUCTION

Before stating the DPW recipe, we introduce the
ingredients. For G C gl(2, C), denote the analytic
maps of the unit circle S with values in G by AG
and define the twisted loops by

A7G = {g € AG : g(=X) = og(N\)o '},

1

o 7(1)). Furthermore, define

where o = (

ATl =qg€A’ SL(2,C) : g(N) = Zkzo ge\F,

Jo = (g ai) for a € R+}.

The principal tool in the DPW method is the loop
group Iwasawa decomposition: any & € A” SL(2, C)
factorizes uniquely into a product ® = F'b where
F e A°SU(2) and b € A7.

Now let us recall the DPW construction. Let D be
a Riemann surface and D its universal cover. Denote
by Q3;° the holomorphic 1-forms on D. Also define

A7, sl(2, C)

= {g e A°sl(2,C):g(N) = Z;o:_l gk)\k}.
The following steps (see [Dorfmeister et al. 1998])
give an S' family, called the associated family, of

immersions (possibly with branch points) f : D —
R® 2 su(2) with constant mean curvature H.

1. Let & = 3pr &GN € Q5" @ A7, sl(2, C)
and solve the initial value problem

d®, = 8,6, Pa(wo) =g, (2-1)

where w E~l~? and g € A SL(2, C). Then ®, is
defined on D.
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2. Apply the Iwasawa decomposition to @, point-
wise on D to obtain ®, = F\b,.

3. The Sym—Bobenko formula yields

8F,\ 1 )

= __<2/\WF + F)\elF

where e; = io.

We call the 1-form &, the holomorphic potential and
®, the extended holomorphic frame. The unitary
factor F) is called the extended unitary frame. Our
principal interest in this paper is to construct exam-
ples where D = C* and provide sufficient conditions
to ensure that the resultant map f, is also defined

on C* for A= 1.

2A. Properties

We list here a number of properties of the construc-
tion which will be relevant for our surfaces.

Group actions. Notice that the surface depends on
the data &), g, wy. It is clear from the construc-
tion that the infinite dimensional group G of holo-
morphic maps v : D — A7 with y(we) = I acts
by gauge transformation on the fibers of the map
(&x,9,w0) — [y, since the map &, — P,y leaves
the surface unchanged. In fact one can always gauge
away the diagonal terms of &,. Another group ac-
tion is the left action of A”SL(2, C) on the initial
condition, g — hg for h € A”SL(2, C), which is
called the dressing action; compare [Burstall and
Pedit 1995; Dorfmeister and Wu 1993]. It is not
hard to see from the Sym-Bobenko formula that the
dressing action of the subgroup A” SU(2) can only
result in Euclidean motions of the surface, therefore
it is more usual to think of the dressing action as
being by A7.

Metric and Hopf differential [Dorfmeister et al. 1998].
We may write

F'dFy = "N + g + OV,

where g, a; are 1-forms on the CMC surface. A
simple calculation shows that

ol = bot b5t

Further, if we write

(0 _(r 0
6_1— <a2 0> and bo— (0 T‘_l)

for a{, ay € Q})’O and 7 : D — R™, then it can be
shown that f; has metric 47*|a,|* and Hopf differ-
ential Q = —Zajas. It follows that f; has branch
points at the zeroes of a; and umbilics at the ze-
roes of ay. When f; is unbranched (and away from
umbilics) the metric can be written as e*|dw|? for a
local conformal coordinate w on D and we have
. OF, — L, —L1Hew/2)\ 1
FA13—Z<_421 21 >
w Qe /%) 3w

Symmetries. We cannot usually expect the symme-
tries of the potential to be passed on to the CMC
immersion because they might not survive the com-
bination of integration and factorization. However,
there are two situations which occur in our examples
where symmetries will appear in the CMC surface.

A. Suppose p € Aut(D) is an automorphism with
wy as a fixed point and p*¢{ = p(§) where p €
Aut(sl(2,C)) preserves the subalgebra su(2). Since
the base point wy is fixed, the solution to (2-1) will
satisfy p*®, = u(®,). Now, since p (or rather, its
lift to the group) preserves SU(2), we have p*F) =
w(Fy) by uniqueness of the Iwasawa decomposition.
Thus, by the Sym—Bobenko formula, p*f\ = u(fy).
We will produce examples of this below, where p is
a real involution on C and p is either the identity or
w(é) = —Zt. These produce reflection symmetries of
the immersion.

B. Suppose that v € Aut(D) induces a finite order
automorphism on D, of order n, and that these con-
ditions hold:

(@ 7€ = &
(b) h = @, (v(wp))Px(wo) * belongs to A7 SU(2).

(c) f1 is an immersion of D itself.

Then we may conclude that f; has an n-fold rota-
tional symmetry by the following argument. By (b)
v*®, = h®,, so by uniqueness of the Iwasawa de-
composition v*Fy = hF). Therefore v*f; = R(f,)
where R is a Euclidean motion. But R must have
order n, therefore it is a rotation. In the examples
below we will have D = C* and v will induce a
rotation on C*.

2B. Known Examples

Two classes of known examples will turn out to play
an important role in understanding the new surfaces
we will examine later:
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Example 1. Recall from [Dorfmeister et al. 1998] that
potentials of the form

[0 1
“=A (p(Z) 0>dz’

where p(z) = kz™, for m € NU{0} and any constant
k, give the Smyth surfaces [1993]. These surfaces are
characterized as CMC planes which possess an in-
trinsic isometric S'-action (with a fixed point). If
we think of these as singly punctured (topological)
spheres, they have one end with m + 2 ‘legs’ and an
(m + 2)-fold rotational symmetry. We must beware
of some degenerate cases: taking p = 0 yields the
round sphere while p = £1 gives the standard cylin-
der. The asymptotics of these ends have been quite
thoroughly studied. In [Timmreck et al. 1994] it
was shown that these surfaces are proper immersions
and that for ¢, = ™ /(m+2), n =10,...,2m + 3,
there are polar coordinate rays ¢ — f(te'#") which
are planar geodesics. The curvature of these, in the
limit as t — oo, tends to 0 for n even and 1 for
n odd. The legs develop around those lines with n
even, along which the distance from the origin grows
fastest. The angle between the legs depends upon
the coefficient k. Further, it was shown in [Bobenko
1991] that the surface is bounded by a cone.

More general surfaces can be obtained by allow-
ing p(z) to be any polynomial [Dorfmeister et al.
1998]. The resultant surfaces have m+2 legs, where
m = deg(p), each of which looks like a Smyth sur-
face leg. To the best of our knowledge, there has

(2-2)

A
FIGURE 1. Sector of a Smyth surface bounded by a
nodoidal planar geodesic.

not been any work which describes the strength of
this resemblance. Of course, these surfaces need not
possess either intrinsic or extrinsic symmetries.

Example 2. All the Delaunay surfaces can be obtained
with the family of potentials

dz

EDBI — AA_, (2_3)
z

where
c a\~14+b)\
A)\—A)\(aa ba C)_ (b)\_l-f—C_L)\ —c )
Here 2 is a coordinate on C* and we use as the

universal cover the map C — C” taking w to z =
exp(iw). The conditions ab € R, ¢ € R with

la+b>+c =1
ensure that the map has period 27 (here, A is evalu-
ated at 1 in the Sym—Bobenko formula). The signed

neck and bulge radii of Delaunay surface with this
potential (respectively r_ and r) are

_ 1++/1—16ab
- 2H ’

The potential £P¢! can be normalized by conjugation
by a diagonal element of su(2) so that a, b € R.
The parameter ¢, although not strictly necessary, is
sometimes useful. Its geometric effect is to introduce
a phase shift along the profile curve of the Delaunay
surface. Unduloids and nodoids are obtained when
ab > 0 and ab < 0 respectively. The limiting case
ab = 0 yields a sphere with two points removed. In
fact the gauge transformation

T4 (2-4)

&=y o+ dy, (2-5)

with

L VE 0
TTwE yvE)
transforms the potential (2-2) (on C*) with p = 0
into the potential (2-3) with a =1, b =10, ¢ = 0.
This gauge transformation will be useful later on.

Below we will use ®P°' and FP! to denote respec-
tively the holomorphic and unitary extended frames
for the potential £P° with ®Q¢(0) = I. In particu-
lar, notice that ®V°! = exp(iwA,).

Remark. The Delaunay potentials fit into the follow-
ing more general context. By [Burstall and Pedit
1994, Theorem 4.3], each CMC surface with doubly
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periodic Gauss map can be obtained from a holo-
morphic potential £, on C which is constant along
the plane and with g = I, wy = 0 in (2-1). Recall
from [Bobenko 1991] that each such surface is par-
tially characterized by its spectral curve, which is a
Riemann surface with equation of the form

w=CJIC—ec=2"),

with 0 < |¢;| < 1. There is a (9—2)-parameter fam-
ily of CMC surfaces with the same spectral curve:
for g = 1 there is one surface for each spectral curve
and this surface is a Delaunay surface. It can be
shown (we omit the proof here) that one of the sur-
faces with the spectral curve above can be obtained
by taking
0 K T 2=5)

Jj=1

£ =\t dw,

g
kIO 2—¢; ) 0
j=1

where k = []{+/|c;|. For example, the spectral
curve for the Wente torus has genus 2 and this po-
tential will compute that surface once the c; are
known.

2C. Implementation of the DPW Procedure in Software

Of the three steps in the DPW process, the second
requires the most attention. The integration step 1
is performed using a standard fourth order Runge—
Kutta method. We always work with potentials &)
which are Laurent polynomials in A\, hence we are
always dealing with the Iwasawa decomposition of
Laurent polynomial loops. In software, an element
of A2 SL(2, C) is represented as a finite vector, con-
sisting of the coefficients of A= to A\ for some ap-
propriate value of K (typically between 20 and 100).
To explicitly construct the Iwasawa factors of ®, one
proceeds as follows (see [Pressley and Segal 1986]).
Let H denote the Hilbert space L?(S*, C*) and let
H, C H be the subspace of maps whose Fourier se-
ries possess only non-negative powers of A\. Define
W = &3, C J. Notice that this is the span of ¢,
P2, Ap1, Apa, ..., where 1, @ are the columns of
®, and that AW C W has codimension two. Now
compute the orthogonal projections

v; = proj(p;, A\WW) for j =1,2, (2-6)

and define ¢; = ¢,; — v;: these two span the space
V =W N (AW)=,. Finally, let Fy, F; be the Gram—
Schmidt orthonormalization of the pair @1, @, then
F = (F\,F5). It is worth recalling from [Pressley
and Segal 1986, p. 126] that on V the L*-inner prod-
uct and the C*-inner product coincide, hence F is
unitary on St.

The most time-expensive part of the software ver-
sion of the DPW procedure arises from computing
the projections (2-6). Although they can be found
directly (say by Gram—Schmidt orthonormalization
of the basis @1, 2, Ap1, Apa, ...), they are com-
puted more efficiently and stably with the following
linear method. If V is a finite-dimensional inner

product space, U a subspace with basis uy, ..., u,,
and v € V, then proj(v,U) = ) z;u; where z, ...,
T, solve the linear system

<v =Yz, uj> =0, forj=1,....,n. (2-7)

Since this system is Hermitian it can be solved by
Cholesky decomposition. Notice that if Hx C H
denotes the Laurent polynomials with zero coeffi-
cient of A\* for k > K then MHqy | Hy for j > 2K,
therefore all our calculations take place on finite di-
mensional subspaces of H.

A further speedup is achieved when the twisted
structure of the loop group is exploited. Two ele-
ments of H with opposite polarity are L?-orthogonal.
In this case, the linear system (2-7) decouples into
two simpler Hermitian systems. This also means
that the columns of ® = ($,, @) are already or-
thogonal, that is, d is unitary. Hence the map f,
can be obtained by using ®in place of F' in the Sym-—
Bobenko formula and taking the trace-free part of
the result.

3. CMC CYLINDERS

In this section we will present some new classes
of CMC cylinders f, : C* — R® for which &, €
Qe ® A7, sl(2, C). First let us describe some
conditions under which the map f, will be peri-
odic on C (see also [Dorfmeister and Haak > 2000]
for similar results). For any holomorphic potential
&€ Qé’?@AZL + 81(2, C) the extended holomorphic
frame ®, has monodromy

Mg (N) = @,(2m)@5'(0),
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where we recall we have chosen to identify C* with
C/(2nZ). We would like to define a similar notion
for the unitary extended frame F) but a priori we
do not know that the quantity

MF(UJ, A) = F,\(w + QW)F;I(QU)
is independent of w. However, we can prove the

following crucial lemma.

Lemma 3.1. Suppose Mg € A7 SU(2).
independent of w € C and equals Ms.

Then My is

Proof. Since @ (w 4 27) = F)\(w + 27)by(w + 27) we
have Mg®)(w) = MpFy\(w)by(w + 27) which im-
plies Mo F)\(w)bx(w) = MpFy\(w)by(w + 2m). The
result now follows by uniqueness of the Iwasawa de-
composition. [l

Therefore, under the conditions of the lemma, we
can sensibly call M the monodromy of F\ (and in
fact this implies F} 'dF) is periodic). Notice that
if one knows that the surface is a cylinder then F)
necessarily has well-defined monodromy. These ob-
servations allow us to formulate an elementary char-
acterization of the conditions under which a periodic
potential produces a periodic immersion.

Proposition 3.2. Let &, € Qi ® A7 812, C) and
®, be a solution of (2-1). Suppose Mo € A7 SU(2),
then, for a given Ny € S, the monodromy of Fy
satisfies
MF(A()) - :tI

and

iJ\/[ (N =0

ot A=ho
if and only if the associated family member f, :
C* — R? obtained by the DPW construction is a
CMC immersion of a cylinder.

We will usually work with Ay = 1. Let us now
consider some classes of potentials which satisfy the

conditions of this proposition.

3A. Cylinders with One End Asymptotic to a Delaunay
Surface

An interesting class of surfaces is obtained by per-
turbing the Delaunay potential (2-3) by a poten-
tial on C* which extends holomorphically into z =
0. The key to this construction is that ®P¢' has
monodromy MY = exp(2miA,), which belongs to
A7 SU(2).

Proposition 3.3. Let

n=Y mztdz € QX @ A7, sl(2, C)

k=0

extend holomorphically to z = 0 with [£P°, no] = 0.
Then using the potential & = P! + 0 in (2-1), with
an appropriate initial condition, produces a cylin-
der with one end asymptotic to the Delaunay surface
with potential P

Proof. Consider the system (2-1) as a first order sys-
tem of ODE with a regular singular point at z = 0.
We will show below that a solution ®, can be writ-
ten in the form

B (w) = 83 (w)Pr(e™), (3-1)

where P, extends holomorphically to z = 0, with
P,(0) = I. Given this, we have Mp = ME® since
P, has trivial monodromy about z = 0, so Mg €
A2 SU(2). By lemma 3.1 we have both M2¢ = MBe!
and Mg = Mz hence Mp = MP. Since the Delau-
nay surface satisfies proposition 3.2 for Ay = 1, so
does the perturbed surface.

Now let us verify (3—-1). For P, to exist, there
must be a solution to the differential equation

dPy = Pxnx + [P, £°'], P\(0) = 1. (3-2)

When we examine the expansion
P,\(Z) = I+ZPka,
k=1

we discover we must have

(kI +adAy)P,= Y P,

r+s=k—1

Therefore the coefficients P, can be recursively de-
termined provided the operator kI + ad A, is in-
vertible. The only difficulty occurs for £ = 1, since
the non-zero eigenvalues of ad A, are v for v =
2¢/(5+ (A" = X)%ab) (and the reader can easily ver-
ify that |v| < /3 for |A\| = 1). But for k = 1 we
have

(I + adA)\)Pl = Mo,

which is solved by P, = 7, since [A,, 1o] = 0. There-
fore a solution P, exists of the type required. O
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In this class of examples we have more or less com-
plete freedom to specify the location of the umbilics.

FIGURE 2.
marked with a dot. Asymptotically, one end is a
Delaunay nodoid with a thin neck and the other is
a two-legged Smyth surface. Figure 3 shows a larger
piece of this surface.

CMC cylinder with two umbilics, one

Example 3. First consider the simplest class of per-
turbations which produce unbranched surfaces with
umbilics. Here we take

c a\"14+b\\ dz

9= ((b —q(z))A\+ar )

where ¢(z) = k2™ for m > 2 and k some constant.
By the previous proof, to obtain a cylinder we must
use the initial condition ®)(w = 0) = P\(z = 1) in
(2-1): this means first computing the solution Py (z)
to (3-2). It is quite remarkable to see that the sur-
faces obtained appear to be the result of attaching
a Delaunay end to the head of a Smyth surface. We
have observed that the end opposite to the Delau-
nay end has m legs which have all the visible charac-
teristics of the Smyth surface legs described above,
and possesses an m-fold symmetry. It appears that
there are 2m planar coordinate lines, one for each
angle nm/2m and the legs develop around those for
n even. The umbilics, which lie at the m-th roots
of b/k, lie on these lines just before the first self-
intersections (as we move away from the Delaunay

, (3-3)
4

end). Indeed, each Smyth surface lies in a one real
parameter family of surfaces with potential (3-3).
To see this, observe that the gauge transformation
(2-5) transforms the Smyth surface potential as

a0y, 0 ALY de
Z —_
p(z) 0 2Zp(z) AN 0 ) 27

which is (3-3) with @ = 1, b,c = 0 and ¢(z) =
—2%p(z). Therefore it makes sense to think of the
surfaces we see as deformations of the Smyth sur-
faces, where the intrinsic S'-symmetry has been bro-
ken by the bifurcation of the multiple umbilic at
z = 0 into m umbilics at equal distance from the
origin and at equal angles. Because of this, we con-
jecture that these cylinders are complete and proper
immersions for which the end for z — oo is bounded
by a cone.

The m-fold rotational symmetry is explained by
reference to the earlier discussion at the end of Sec-
tion 2A. Let v € Aut(C) denote translation by
27 /m. This induces on C* a rotation through this
angle. Then v*n = 7, so the same is true for £,. A
careful examination of the series expansion of (3-2)
shows that this implies v* Py, = Py. It follows that

®, (v(wo))Pa(wo) € A7SU(2)

for wy = 0; therefore we have all the conditions for
this symmetry to exhibit itself on the surface.
More general types of perturbations than (3-3)
do not seem to alter the end behavior a great deal.
Certainly taking ¢(z) to be any polynomial has the
effect one expects from knowledge of the generalized
Smyth surfaces: the number of legs is deg(q) and
their direction depends in some way upon the roots
of g(z) — b. If we consider perturbations at higher
powers of A\ we can obtain surfaces with no umbilics
but they still appear to have the same end behavior.

Example 4. The form of the potential (3-3) made us
think that to some extent we may be able to treat
holomorphic potentials like building blocks to patch
two types of end behavior together. Therefore we
considered potentials of the form &, — 1/*§C » where
v(z) = 1/z and &,, &, have the same Delaunay end.
The rationale here is that this might attach the sur-
faces for £, and I/*é » together along a Delaunay tube
centered at the image of |z| = 1 (we can always make
this lie on the Delaunay end by suitable scaling). For



602  Experimental Mathematics, Vol. 9 (2000), No. 4

FIGURE 3. Two-legged Smyth surfaces with Delaunay heads. The Smyth surface (middle) has a sphere-like head
and is a singular boundary between the unduloidal and nodoidal examples.
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FIGURE 4. The double Mr. Bubble is two two-legged Smyth surfaces joined by an unduloidal neck.

&y, &y of the type (3-3) this amounts to examining
potentials of the form (3-3) where now

*s(1/2)

and r(z), s(z) are entire functions. Although we
do not claim that the resultant surfaces close into
cylinders, the experiments show that they are very
close to closing and are quite stable to perturbations
of the coefficients of r and s. As one would hope,
each end has the expected number of legs: deg(r)
for the end near z = 0 and deg(s) for the end near
infinity. We believe that cylinders of this type exist
with the correct choice of initial condition for (2-1).

q(z) = 2*r(2) + 2~

3B. CMC Cylinders with a Closed Planar Geodesic

Proposition 3.2 gives conditions on the monodromy
of the extended unitary frame F\ which are in gen-
eral hard to verify, since both integration of (2-1)
and the subsequent Iwasawa decomposition cannot
usually be performed explicitly. Here we will work
with a class of potentials for which (2-1) can be in-
tegrated explicitly at least over the unit circle. We
will choose &, to be A”su(2)-valued on the unit cir-
cle |z] = 1in C*. It follows that the solution ®,
o (2-1) (with g = I, wy = 0) will take values in
A?SU(2), whence ®, = F) along R C C and by
Lemma 3.1 the monodromy Mp is well-defined. It
is not hard to see that £ is A7 su(2)-valued on the
unit circle if and only if p*¢ = —£! where p(z) = 1/Z.
Since it is always possible to gauge away the diago-
nal terms of a potential which is A su(2)-valued on

S', we may assume without loss of generality that
&y is of the form

c _( 0 a)\l—i-ﬂ)\)
AT\ B = pFan 0

with a, 8 € Q}C’f.

In the first class of potentials of this type we will
also insist that «, 8 both satisfy p*a = —a. In
this case, under the conditions of the next proposi-
tion, the image of the unit circle is a planar geodesic
which contains the umbilics: we exhibit some ex-
amples in Figure 7. For the purposes of the next
proposition, let z(t) denote the contour ¢ +— e in

C*.

Proposition 3.4. Let o, 3 € Q(lc’,? satisfy

1. = —q, p 5 - 757
2. f ) € miZ and
3. fSl () exp 2f1 (a+0)=0
Then
0 a4 B
&= ( 1 v > (3-4)
BAT H+ 0

is the potential for a CMC cylinder with umbilics
at the zeroes of B. Further, the plane containing
the image of the unit circle is a plane of reflective
symmetry.

Proof. For A = 1, the solution of

d‘I)l = @151, @1(0) =1



604  Experimental Mathematics, Vol. 9 (2000), No. 4

along t € R C C is given by ®,(t) = exp flz(t) .
Therefore

i =ew ([ @a(] 5)).

Since @, = F), along R the first monodromy condi-
tion from proposition 3.2 becomes Mg = +1, which
is equivalent to

/ (a+ B) = kmi, where k € Z.
S1

Similarly, it is straightforward to check that the sec-
ond monodromy condition of proposition 3.2 is im-

plied by
29
@)\—@71 == 0
Loome)
A computation yields
o8 _ | sinhw — coshw
/Slé/\aq))\ A:l_ /Sl(oz—ﬂ) (Coshw sinhw) ’

where w = 2f12(t)(oz + ). Using the reality condi-

tions on «, [, this integral vanishes precisely when
Jsi (= B)expw = 0. O

Example 5. The simplest example is obtained with
the forms

—;Z—z, B=(L+r(z"+ z))%

Here the constant x must satisfy Jy(4x) = 0 where
Jo is the Bessel function of order zero. To see this
observe that if we parametrize the unit circle by
z(t) = e we have

[ a=pew (2/1Z(a+ﬂ)>

2m
=— / (1+ 2k cost)exp(4dixsint) dt
0

= —2Jo(4k).

It follows that we have a discrete family of immersed
CMC cylinders indexed by the zeroes of Jy(4x). Fur-
ther, £(1/2) = —&(2)" and &£(Z) = &(2). Therefore
each cylinder in this family has two planar symme-
tries: one plane containing the image of the unit
circle and the other containing the image of the real
axis. From the graphics we observe that, near the
planar geodesic, the image of the the positive real
axis resembles a profile curve of a nodoid while the
image of the negative real axis resembles the profile

FIGURE 5. This CMC cylinder has the appearance
of an unduloid conjoined with a nodoid. The fig-
ure-eight in the transparent image is the planar geo-
desic across which the surface has reflective symme-
try. As it evolves toward an end, one of its loops
sweeps out half of the unduloid, the other traces the
opposite half-nodoid.

curve of an unduloid. Figure 5 displays aspects of
the surface for the first positive root of Jy(4k).

More examples can be obtained using the following
method. The first monodromy condition is simply
resy (a+/3) € 1Z, where we consider «, 3 as 1-forms
on C with an isolated singularity at z = 0. For the
second condition, set w = (a — B)exp(2 [ a + B),
then w is a 1-form on C* by the first monodromy
condition. It is straightforward to show that, for any
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1-form w, the residue resyw = 0 vanishes whenever
viw = d*w for v,(2) = az with a* # 1. In particular
we consider the case where a is a primitive n-th root
of unity. Then v’w = a*w, and the reality conditions
are satisfied, if «;, 8 are of the form

; . d
Z (c;2™ + Ejz_"J)—Z, for ¢; € C,
z

JENU{0}

with 2 resy (a+3) € nZ+k for ged(k,n) = 1. In this
case the potential (3-4) possesses the symmetries
vigy = & and p*&, = —¢&,. These imply that the
surface has an n-fold rotational symmetry (since ®,
is A SU(2)-valued over |z| = 1). Further, if o,
also satisfy a(z) = a(z) then the surfaces will have
n extra planes of reflective symmetry (for example,
see Figure 6).

FIGURE 6. The planar geodesic of this CMC cylin-
der, marked in black, lies near the beginning of the
sequence shown in Figure 7.

Figure 7 shows a sequence of planar geodesic cross-
sections for CMC cylinders with potential (3-4) for
o =3dz/z and 3 = ¢(2* + 273) dz/z, where ¢ € R.
For ¢ = 0 we obtain the round sphere. As cincreases
(left to right) the curves acquire more loops.

3C. Other CMC Cylinders

Another class of examples is obtained by asking that
the holomorphic potential satisfy £&; = 0 and p*€, =

=& for p(z) =1/z.

C
=
g
O

YA

FIGURE 7. Planar geodesics which are the cross sec-
tions of a CMC cylinder family. The dots mark the
six umbilic points.

Proposition 3.5. Let o € Qi with [, o = 0. Then

(o o)ot-n

pra 0 (3=

s the potential for a CMC cylinder with umbilics
at the zeroes of p*a and branch points at the zeroes
of a.

Proof. Since & (z) = 0, the solution ®, to (2-1) with
®,(0) = I has ®; = I. As above, ®, = F) over
the unit circle and we deduce Mg = I, so the first



606  Experimental Mathematics, Vol. 9 (2000), No. 4

monodromy condition of proposition 3.2 is satisfied.
The second monodromy condition follows from

o€ / 0 «
b, —=P =-2 =0
/Sl Tox A=1 51 (p*a 0>

as in the proof of proposition 3.4. O

The cylinders generated by these potentials have
This
means that the Gauss map is constant along the
image of the unit circle so that this lies on a single
tangent plane to the surface.

constant frame Fy = I over the unit circle.

Example 6. First, this class contains all Delaunay
nodoids. They arise if we take any s € R\ {—1} and
set o = z°T! dz. The explanation for this lies in the
gauge transformation

(o2 e )5 (L Jong

achieved by gauging the left-hand potential by

B €Sw/2 0
= 0 efsw/Q )
Del

where z = e*. This left-hand potential is —s &
witha=-b=—1/s and c=1/2

By contrast, if we take a = (1 + z) dz we obtain
the surface in Figure 8. This example displays the
characteristic features of the cylinders in this class.

More generally, if @ = p(z)dz for a polynomial
p(2), we have observed that the resulting surface has
deg(p) legs emerging within a nodoid-like sheath.
Experiments suggest that all surfaces in this class
are bounded by the outer nodoid-like surface.

4. CONCLUDING REMARKS

It is difficult to convey in static pictures the intu-
ition gained by being able to rotate, cut away and
zoom in on these surfaces. One feature which struck
us was the ubiquity of nodoidal and unduloidal fea-
tures in the ends. In fact, the Smyth end itself,
which at first looks impossibly complicated, appears
to have the following simple description. Consider
the 2-legged Smyth end. Divide the region |z| > 1
into its four quadrants. The lines at angles 0, 7 are
mapped to unduloidal-like profiles, which decay in
amplitude as the radius increases. The line at an-
gles 7/2,3m/2 are mapped to nodoidal-like profiles
which become more circular as the radius increases.

FIGURE 8. This CMC cylinder is tangent to a plane
along the black curve in the solid figure.

Between these lines the surface must interpolate be-
tween an unduloid and a nodoid. It does so in a way
which strongly resembles the way a Delaunay undu-
loid unravels and wraps up into a Delaunay nodoid
as it moves through the associated family.

The surfaces introduced in Sections 3B and 3C
have a similar description as we rotate around C”*.
But their behavior as the radius increases or de-
creases is quite different. Figures 5 and 8 lead us
to ask: are either of these surfaces bounded by a
standard cylinder?
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For the surface with a planar geodesic in Figure
5, as |z| increases from |z| = 1 (or as it decreases)
each circle is stretched in two opposite directions
in 3-space. Since the image of circles of constant |z|
appear to pass through the central plane of reflection
not far from the planar curve, it is not yet settled
whether these examples are properly immersed.

On the other hand, the surface in Figure 8 seems
to be made by translating the same shape as the
radius |z| increases and decreases from |z|, although
this cannot be literally true since there is only one
umbilic (and branch point): it lies at z = —1. This
suggests that this map is proper.

It seems that these surfaces give two new types
of end behavior which, although they are immersed,
do not appear to be significantly more complicated
than the Smyth surfaces.

5. APPENDIX BY NICHOLAS SCHMITT: K-NOIDS

5A. Introduction

A problem of fundamental importance in the theory
of constant mean curvature surfaces is the classifi-
cation of complete CMC surfaces with ends asymp-
totic to Delaunay surfaces (k-noids). Examples have
been constructed using the conjugate cousin con-
struction of minimal surfaces in S* [Grofe-Brauck-
mann 1993; GroBe-Brauckmann et al. 1999]. The al-
most embedded CMC surfaces with genus zero and
three ends (triunduloids) have been classified:

Theorem (GroRe-Brauckmann, Kusner, Sullivan). Triun-
duloids are classified by triples of distinct labeled
points in the two-sphere (up to rotations); the spher-
ical distances of points in the triple are the necksizes
of the unduloids asymptotic to the three ends. The
moduli space of triunduloids is therefore homeomor-
phic to an open three-ball.

Specifying DPW potentials and initial conditions to
produce k-noids will require a careful analysis of the
Riemann-Hilbert problem. In the genus-zero case,
trinoids can be constructed by choosing DPW po-
tentials whose monodromy is computable using hy-
pergeometric functions, according to J. Dorfmeister
and H. Wu (private communication). For potentials
with more than three poles, the Riemann—Hilbert
problem cannot be solved with hypergeometric func-
tions, but one still expects to be able to prove exis-

tence for the various Delaunay-type end configura-
tions and describe their moduli.

In this appendix we conjecture, on the basis of
computer experiments, the existence of three fami-
lies of genus-zero k-noids. The meromorphic poten-
tials for these examples are constructed as the linear
superposition of Delaunay potentials.

FIGURE 9. Two views of an isosceles 3-noid with one
nodoid end; all three ends extend infinitely down-
ward. In contrast to the triunduloids, the two um-
bilic points lie not symmetrically about the mirror
plane but on it.
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5B. Balancing

As a prerequisite for specifying the meromorphic po-
tentials for the conjectured families, we discuss the
balancing formula for k-noids [Bobenko 1994; Kore-
vaar et al. 1989; Kusner 1991].

Theorem 5.1 (Balancing Formula). Let S be an k-noid
with monodromies

M, = U, exp(2miA,)U, " (n=1...k),
with U,, € A° SU(2) and
A - < Cn a1+ En)\>
b At +a, A —c,

and pi,, = (|an+5n\2+ci)l/2 € 1Z as in (2-3). Then

nbn —_
Y Ty, AUY =0,
My, A=1
Proof. With \ = e’ apply 82/392‘020 to [[ M, =1.

O

In interpreting the balancing formula [Bobenko 1991,
Kusner 1991], each summand can be thought of as
a force vector along a unit-length asymptotic end
axial direction, scaled, up to a proportionality con-
stant, by a weight:

axis = U (iA/p) U™" € su(2) = R?,
weight = 2ab/p € R,
force = weight - axis.
The end weight is equal to mH?r, r_, where m is
the end’s wrapping number and 7. are the signed
neck/bulge radii as in (2-4). The weights of undu-
loid /nodoid ends are respectively positive/negative.

As a corollary of the balancing formula we have
the triangle-type inequalities

wal <>y (n=1,...,k).
Jj#n
Applying 8%/06? ‘ i—o

balancing formula.

to [[ M,, = I leads to a torque

5C. Genus-Zero k-noids
We conjecture the existence of two families of tri-

noids and a discrete family of k-noids.

Conjecture 5.2 (Triunduloids). The triunduloids are 0b-
tained from the meromorphic potential £(a,, as, as, c)

FIGURE 10. Two isosceles 3-noids with one nodoid
end, sliced by a mirror plane. The corresponding
ends of the two surfaces have the same neck radii
but opposite phase: the top example has a bulge at
the center, the bottom one a neck.

(see Definition 5.4) subject to weight constraints

’LU]_>0, w2>0, 'LU3>0

Conjecture 5.3 (Trinoids with one nodoid end). There
exists a family of 3-noids with one nodoid and two
unduloid ends. These are obtained from the mero-
morphic potential £(ay, az, asz, c) (see Definition 5.4)
subject to weight constraints wy >0, wy > 0, wz <0,
lws| < fws] + |ws.
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Definition 5.4 (Family of trinoid potentials). Let e, e,
e; € CPP be fixed distinct points. Let aq,aq,a3 €
R\ {0}, and s, c € R satisfy

2 2 1
S=a;+ay+as, S +c =7

The meromorphic A7 sl(2, C)-valued differential £ =
&(ay, aq, az, c) is defined uniquely by these condi-
tions:

) € has simple poles only at ey, es, e3, p € CP.
(i) With A, denoting the Delaunay residue as in
(2-3), the residues of £ are

res., £ = A\(—s+a1, —a1, —c),
res., £ = Ax(aq, s—as, c),
eseg f = A)\(a37 s$—as, € )a

res, { = A,(0, —s, —c).
(iii) the Hopf differential corresponding to & has nei-
ther pole nor zero at p; with the above residues,
this condition specifies p uniquely.

The end weights of the trinoid induced by
&(ay,aq,as,c)

are wy, = 4ay(a;+a;), with {i,7,k} = {1,2,3}.

Conjecture 5.5 (Maximal equilateral k-noids). For each

integer k > 2 there exists an equilateral k-noid with
meromorphic potential &, defined by

. 0 apA 4G A
S = (6k)\1+ak)\ 0 ) ’
(2F1-1)dz
2(z—1)(zF-1)’
(k—1)2""2(2—1)dz
2(2F1=1)(2%-1)

ap =

Br. =

Cone Points. The conjectured k-noid potentials have,
besides the k poles inducing ends, k — 2 extra poles,
which we will call cone points, that are not ends
(or umbilics) on the CMC surface. These arise from
the fact that the meromorphic differential § in the
potential

‘= < ~y a)\_l—I—ﬁ)\)
BA +aA —
has k simple poles at the ends and a total of 2k — 4
zeros at umbilics, and must therefore have k — 2

more poles so that the algebraic sum is —2. At these
cone points, « is constructed to have zeros so that

J

FIGURE 11. Views of an asymmetric 3-noid whose
ends are asymptotically a cylinder, a nodoid, and
an unduloid. The downward force of cylinder and
unduloid are balanced by an upward force of the
nodoid.

the Hopf differential does not see the cone point.
The residue at each cone point p is chosen to be
+A,(0,b,c) with b+ c? = 0 so that the monodromy
around p is —I and the surface closes at p for any
initial condition.

5D. Experimental Evidence

That the meromorphic potentials in the DPW initial
value problem (2-1) for these examples are locally
those of Delaunay surfaces is not sufficient to guar-
antee global existence: initial conditions must also
be found which simultaneously close all the ends.
While it it yet unproved that such initial conditions
exist, these are conjectured on the basis of compu-
tational evidence: we have computed approximate
initial conditions with a minimizing algorithm.
This computational algorithm implements conju-
gate gradient methods [Press et al. 1992] to find
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a DPW initial condition C' that minimizes, for a
fixed potential, an error-measure £(C) on the mon-
odromies:

£(0) = SO s + 1] + H%an)\

A=1

M, (C) is the monodromy of the extended frame
around the n-th end induced by C. The sum is taken
over a set of generators of the fundamental group of
the underlying Riemann surface. This method was
used to create the k-noids shown in Figures 9-12.

5E. Further Directions

Recent experiments give evidence for other genus-
zero k-noids: trinoids with three nodoid ends, fam-
ilies of k-noids with k£ > 3, and 4-noids with non-
coplanar end axes.

A monodromy-closer under development finds ini-
tial conditions more efficiently by unitarizing the
monodromies simultaneously.
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ELECTRONIC AVAILABILITY

For further information about CMC surfaces, the
DPW construction, and the dpwlab software, visit
the site of The Center for Geometry, Analysis, Nu-
merics and Graphics (GANG) at www.gang.umass.
edu, or write Schmitt at nick@gang.umass.edu.
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