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This paper deals with the computation and classification of 5-

and 6-dimensional torsion-free crystallographic groups, known

as Bieberbach groups. We describe the basis of an algorithm

that decides torsion-freeness of a crystallographic group as well

as the triviality of its centre. The computations were done us-

ing the computer package CARAT, which handles enumeration,

construction, recognition and comparison problems for crystal-

lographic groups up to dimension 6.

The complete list of isomorphism types of Bieberbach groups up

to dimension 6 can be found online.

1. INTRODUCTIONWe say that a groupG is an n-dimensional crystallo-graphic group G if G contains a normal, torsion-free,maximal abelian subgroup V , of rank n and �nite in-dex. Thus an n-dimensional crystallographic groupsatis�es the short exact sequence0 �! V �! G �! P �! 1;where P � GL(n;Z ) �= Aut(V )is a �nite group acting faithfully on V . The groupsP and V are called the point-group (or holonomygroup) and translation subgroup of G, respectively.Crystallographic groups arise as discrete, irreduciblesubgroups of the group of isometries of the n-dimen-sional Euclidean space; see [Charlap 1986], for ex-ample. We say that a crystallographic group Gis a Bieberbach group if it is torsion-free. Bieber-bach groups also appear as fundamental groups ofcompact, connected, at Riemannian manifolds (atmanifolds for short). Then X is a at manifold ofdimension n if and only if its fundamental group G isa n-dimensional Bieberbach group. Furthermore, Gdetermines X up to a�ne equivalence; see [Charlap1986], for example.
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A referee pointed out that the classi�cation de-scribed here implies estimates for the volume of cer-tain 6 and 7 dimensional hyperbolic manifolds; cf.[Szczepa�nski 1996].
2. THE CLASSIFICATION PROBLEMThe problem of classifying isomorphism types of n-dimensional crystallographic groups goes back overa hundred years. Bieberbach's Third Theorem [Bie-berbach 1912] states that for every n 2 N , the setof representatives of isomorphism classes of crystal-lographic (and Bieberbach) groups is �nite. Theclassi�cation for dimensions 1, 2 and 3 was found atthe end of the nineteenth century, using mainly ge-ometric techniques. H. Zassenhaus [1948] presentedan algorithm, based on group-theoretical concepts,that allows the calculation of the set of representa-tives of isomorphism classes of n-dimensional crys-tallographic groups for any n.If G is a n-dimensional crystallographic group,it follows from Bieberbach's Theorems [1911; 1912]that the point-group of G is isomorphic to a �nitesubgroup of GL(n;Z ). Let }n be the set of repre-sentatives of conjugacy classes of �nite subgroupsof GL(n;Z ). It follows from the Jordan{ZassenhausTheorem that the set }n is �nite for every n. For in-stance, for n = 1; 2; 3; 4; 5; 6, the set }n has 2, 13, 73,710, 6079 and 85311 elements, respectively [Pleskenand Schulz 2000].Once given the set }n of representatives of con-jugacy classes of �nite subgroups of GL(n;Z ) andthe generators of the normalizer in GL(n;Z ) of eachelement of }n, Zassenhaus' algorithm allows one tocalculate the set of representatives of isomorphismclasses of n-dimensional crystallographic groups. In[Brown et al. 1978] one can �nd the list of crystal-lographic groups for dimensions � 4. The numbersfor dimensions 5 and 6 (see Table 1) were reportedin [Plesken and Schulz 2000].Note that n = 4 seems to be the last dimen-sion where a complete list of isomorphism classesof n-dimensional crystallographic groups still makessense, since the increase in the number of isomor-phism classes for higher dimensions does not allowa complete list in readable form. An alternative kindof classi�cation for crystallographic group up to di-mension 6 is suggested in [Plesken and Schulz 2000].

For every �nite group P , Auslander and Kuran-ishi [1957] have shown that there is a Bieberbachgroup having point-group isomorphic to P . Follow-ing [Hiller and Sah 1986], we will call a �nite groupP primitive if it can be realized as point-group ofa Bieberbach group G with �nite commutator quo-tient. In contrast to the result of Auslander andKuranishi, not every �nite group is primitive. Hillerand Sah [1986] proved that a �nite group P is prim-itive if and only if no cyclic Sylow p-subgroup of Phas a normal complement. Let X be a at manifoldthat has G as its fundamental group. Then it is wellknown that the �rst Betti number of the manifoldXis zero if and only if the commutator quotient of G is�nite, which is also equivalent to the triviality of thecentre of G [Hiller and Sah 1986]. Due to the Cal-abi construction [Calabi 1957], n-dimensional Bie-berbach groups with trivial centre have a relevantrole in the classi�cation of n-dimensional Bieber-bach groups in general.
3. DECIDING TORSION-FREENESSEven though the problem of classi�cation of isomor-phism types of crystallographic groups dates backto the nineteenth century, the idea of studying andclassifying the torsion-free ones in particular camemuch later, with the study of at manifolds. In[Brown et al. 1978] one can �nd the list of Bie-berbach groups up to dimension 4; there are 1, 2,10 and 74 Bieberbach groups, respectively, in theselow dimensions. Below we describe the basis of analgorithm that decides torsion-freeness of a crystal-lographic group and veri�es whether it has trivialcentre.The description of a crystallographic group G isbased on the following property: If x1; x2; : : : ; xk arethe generators of the point-group P � GL(n;Z ) ofG, then a generating set of G can be given in theform��x1 v10 1 �; : : : ;�xk vk0 1 �� [ ��Id v0 1� : v 2 Z n� ;
where v1; : : : ; vk 2 Q n and Id is the n � n identitymatrix. We set gi = �xi vi0 1 �:
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The following lemma gives the condition that acrystallographic group G must satisfy in order to betorsion-free.
Lemma 3.1. Let V be a torsion-free ZP -module, andG the extension of P by V corresponding to � 2H2(P; V ). Then G is torsion-free if and only ifresPH(�) 6= 0 for every cyclic subgroup H of primeorder of P .Let ' : G ! P �= G=V be the natural homomor-phism. Let g 2 G be an element of �nite order.Without loss of generality, we can assume that gp =1 for some prime p. And since V is torsion-free, '(g)is an element of order p in P , and resPH(�) = 0, whereH = h'(g)i. Conversely, assume that resPH = 0.Then '�1(H) splits and therefore G has an elementof �nite order.
Remark 3.2. Let V;G; P and � be as given in Lemma3.1, and de�ne t(n; x) := 1 + � � � + xn�1. Let g 2G given by g = �h0 �1�, where '(g) = h 2 P hasorder m. Then resPhhi � = 0 if and only if t(m;h)� 2t(m;h)V .A trivial calculation shows that one needs only todo such tests for representatives of conjugacy classesof cyclic subgroups of prime order of P .In short, the main points of the algorithm are :
(1) Given the generators g1; g2; : : : ; gk of G, obtaincoset representatives of V in G corresponding tothe point-group P (via ');
(2) In view of Lemma 3.1, restrict the list from (1)to those elements giving rise to representativesof conjugacy classes of elements of prime orderin P ;
(3) For every element g 2 G from the list (2), test ift(p; '(g))vg 2 t(p; '(g))V , where vg is the trans-lation component of g and p is a prime such that'(g)p = e. If so, the solution of this Z -linearsystem will give an element of order p in G. Oth-erwise, G is torsion-free.The centre of a space group in general is the lattice�xed by P , and it is easy to determine by solving('(gi)�1)v = 0, for i = 1; : : : ; k. Note that thiscalculation has to be done only once for all groupsin a speci�c Q -class.The algorithm has been implemented in C anduses as input the results presented in [Plesken and

Schulz 2000]. The computer programs and datawhich were used to obtain these results are partof the package CARAT, which is also available atthe address given in the last section. The package,the algorithms, a lot of the underlying theory aredescribed in [Opgenorth et al. 1998; Plesken andSchulz 2000].As a result, we have the following count of n-dimensional crystallographic groups and Bieberbachgroups, for n � 6.dim. cryst. Bieb. dim. cryst. Bieb.1 2 1 4 4783 742 17 2 5 222,018 10603 219 10 6 28,927,922 38746
TABLE 1. Number of crystallographic and Bieberbachgroups in each dimension up to 6.

4. FIVE-DIMENSIONAL BIEBERBACH GROUPSThrough our calculations, we have obtained 1060Bieberbach groups in dimension 5, of which 101have trivial centre. On working �rst with those5-dimensional Bieberbach groups with trivial cen-tre, we classi�ed the possible isomorphism types ofpoint-groups.Let (Cn)k denote the direct product of k copies ofthe cyclic group of order n, Dn the dihedral group oforder n, Sn and An the symmetric and alternatinggroups, and � the group of order 16 and nilpotenceclass 2, isomorphic to (C2 � C2)o C4.
Theorem 4.1. A �nite group P can be realized aspoint-group of a �ve-dimensional Bieberbach groupwith trivial centre if and only if it is isomorphic to(C2)k, for 2 � k � 4, C2 �C4, D12, D8, D8 �C2 or�.This list shows that [Szczepa�nski 1990, Theorem 1],where the group C4�C2�C2 is included in the listof �nite groups, is not correct. The given exampleof a Bieberbach group with such point-group andtrivial centre is in fact not torsion-free (for instance,the element c2b2a2 has order 4).By considering all 1060 groups, the theorem be-low, that lists the �nite groups that can be realizedas the point-group of a 5-dimensional Bieberbachgroup, agrees with [Szczepa�nski 1996, Theorem 1].



112 Experimental Mathematics, Vol. 10 (2001), No. 1 number of classesfamily symbol isomorphism type of point-group Q Z a�ne1; 1; 1; 1; 1 C2�C2 1 1 11; 1; 1; 1; 1 C2�C2 1 2 21; 1; 1; 1; 1 C2�C2�C2 2 3 171; 1; 1; 1; 1 C2�C2�C2; C2�C2�C2�C2 3 8 442-1; 2-1; 1 D8 1 1 12-1; 1; 1; 1 D8 2 3 32-1; 1; 1; 1 C2�C4; C2�D8; D8 6 13 252-1; 2-1; 1 � 2 2 42-2; 1; 1; 1 C2�S3 2 4 4total 20 37 101
TABLE 2. Five-dimensional Bieberbach groups with trivial centre (�rst Betti number zero).

Theorem 4.2. A �nite group P 6= feg can be realizedas point-group of a 5-dimensional Bieberbach groupif and only if it is isomorphic to Cn, for n = 2; : : : ; 6;8; 10; 12, (C2)k, for 2 � k � 4, C2�C4, C4�C2�C2,C3�C3, C6�C2, C6�C3, C6�C2�C2, C12�C2, S3,D8, D12, D8 � C2, S3 � C3, D12 �C2, A4, A4 � C2,A4 � C2 � C2, S4 or �.Tables 2 and 3 classify the 5-dimensional Bieberbachgroups, using the notation of [Opgenorth et al. 1998;Plesken and Schulz 2000].

5. SIX-DIMENSIONAL BIEBERBACH GROUPSTables 4 and 5 classify 6-dimensional Bieberbachgroups. As to the isomorphim types of point groups,the notation [n; k] refers to the classi�cation of solv-able groups with small order given in GAP [Sch�onertet al. 1994] and n stands for the order of the groupin question.Note that in the notation C3 o C4, C3 o C8 andC23 o C2 the top C2 acts by inverting, in the lattercase on both components.number of classesfamily symbol isomorphism type of point-group Q Z a�ne1; 1; 1; 1; 1 C1 1 1 11; 1; 1; 1; 1 C2 2 3 31; 1; 1; 1; 1 C2 2 5 51; 1; 1; 1; 1 C22 2 8 211; 1; 1; 1; 1 C22 2 9 311; 1; 1; 1; 1 C22 ; C32 4 43 2361; 1; 1; 1; 1 C32 ; C42 3 22 2902-10; 2-10; 1 C4 1 1 12-1; 1; 1; 1 C4 1 2 22-1; 1; 1; 1 C2�C4; C4; D8 8 36 682-1; 1; 1; 1 C22�C4; C2�C4; C2�D8; D8 8 62 1792-1; 2-1; 1 C2�C4; � 2 5 122-20; 2-20; 1 C2�C3; C3 2 2 22-2; 1; 1; 1 C2�C3; C3 2 3 32-2; 1; 1; 1 C22�C3; C2�C3; C2�S3; S3 10 27 312-2; 1; 1; 1 C32�C3; C22�C3; C22�S3; C2�S3 7 12 422-2; 2-1; 1 C2�C3�C4; C3�C4 3 3 32-2; 2-2; 1 C2�C3; C2�C23 ; C23 ; C3�S3 4 8 103; 1; 1 A4; C2�A4 2 4 43; 1; 1 C2�A4; C22�A4; S4 5 9 114-10; 1 C8 1 1 14-20; 1 C3�C4 1 1 14-30; 1 C2�C5; C5 2 2 2total 75 269 959
TABLE 3. Five-dimensional Bieberbach groups with nontrivial centre.



Cid and Schulz: Computation of Five- and Six-Dimensional Bieberbach Groups 113number of classesfamily symbol isomorphism type of point-group Q Z a�ne1; 1; 1; 1; 1; 1 C22 1 1 11; 1; 1; 1; 1; 1 C22 1 2 21; 1; 1; 1; 1; 1 C32 2 3 181; 1; 1; 1; 1; 1 C22 1 4 41; 1; 1; 1; 1; 1 C32 2 7 621; 1; 1; 1; 1; 1 Ci2; 3 � i � 4 5 36 7911; 1; 1; 1; 1; 1 Ci2; 3 � i � 5 6 49 27272-1; 2-1; 1; 1 D8 1 1 12-1; 2-1; 1; 1 C2�D8; D8 2 7 112-1; 1; 1; 1; 1 D8 2 3 32-1; 1; 1; 1; 1 D8 1 2 32-1; 1; 1; 1; 1 C2�C4; C2�D8; D8 15 67 1732-1; 1; 1; 1; 1 C22�C4; C22�D8; C2�D8 16 113 8832-1; 2-1; 1; 1 C2�D8; � 3 7 92-1; 2-1; 1; 1 C2�C4; C2�D8; C2��; �; [16;10]; [32;33]; [32;36] 20 74 1972-1; 2-1; 2-1 �; [32;33] 2 4 52-2; 1; 1; 1; 1 C22�S3; C2�S3 6 13 132-2; 1; 1; 1; 1 C22�S3 6 13 712-2; 2-1; 1; 1 D24; [24;11] 4 10 103; 1; 1; 1 C2�S4 3 3 43; 2-2; 1 C2�S4; S4 2 9 94-10; 1; 1 D16 1 1 14-1; 1; 1 [16;13]; [16;8]; [32;47] 3 3 34-1; 2-1 [32;46]; [64;250] 3 3 3total 108 435 5004
TABLE 4. Six-dimensional Bieberbach groups with trivial centre.

ELECTRONIC AVAILABILITYThe complete list of isomorphism types of Bieber-bach groups up to dimension 6 can be found athttp://wwwb.math.rwth-aachen.de/carat/.
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114 Experimental Mathematics, Vol. 10 (2001), No. 1 number of classesfamily symbol isomorphism type of point-group Q Z a�ne1; 1; 1; 1; 1; 1 C1 1 1 11; 1; 1; 1; 1; 1 C2 2 3 31; 1; 1; 1; 1; 1 C2 2 5 51; 1; 1; 1; 1; 1 C22 2 8 221; 1; 1; 1; 1; 1 C2 1 3 31; 1; 1; 1; 1; 1 C22 3 21 871; 1; 1; 1; 1; 1 Ci2; 2 � i � 3 4 55 4401; 1; 1; 1; 1; 1 C22 1 9 291; 1; 1; 1; 1; 1 Ci2; 2 � i � 3 4 98 10781; 1; 1; 1; 1; 1 Ci2; 3 � i � 4 7 214 84031; 1; 1; 1; 1; 1 Ci2; 3 � i � 5 5 158 138392-10; 2-10; 1; 1 C4 1 2 22-10; 2-10; 1; 1 C2�C4; C4 2 6 82-1; 2-1; 1; 1 D8 2 14 252-1; 1; 1; 1; 1 C4 1 2 22-1; 1; 1; 1; 1 C2�C4; C4; D8 8 37 892-1; 1; 1; 1; 1 C2�C4; C4; D8 4 38 882-1; 1; 1; 1; 1 C22�C4; C2�C4; C2�D8; D8 21 392 21872-1; 1; 1; 1; 1 C32�C4; C22�C4; C22�D8; C2�C4; C2�D8; D8 18 525 49722-1; 2-1; 1; 1 C2�C4; C24 ; [16;10]; � 4 24 712-1; 2-1; 1; 1 C22�C4; C2�C4; C2�D8; C2��; C24 ; 20 173 757C4�D8; [16;10]; �; [32;33]; [32;36]2-20; 2-20; 1; 1 C2�C3; C3 2 3 32-20; 2-20; 1; 1 C22�C3; C2�C3 3 4 42-2; 2-2; 1; 1 C2�S3; S3 2 7 72-2; 1; 1; 1; 1 C2�C3; C3 2 3 32-2; 1; 1; 1; 1 C22�C3; C2�C3; C2�S3; S3 10 27 332-2; 1; 1; 1; 1 C22�C3; C2�C3; C2�S3; S3 5 20 262-2; 1; 1; 1; 1 C32�C3; C22�C3; C22�S3; C2�S3 18 118 3912-2; 1; 1; 1; 1 Ci2�C3; 2 � i � 4; Ci2�S3; 1 � i � 3 15 107 6522-2; 2-1; 1; 1 C2�C3�C4; C3�C4 3 8 102-2; 2-1; 1; 1 C3oC4; C2�(C3oC4); Ci2�C3�C4; 0 � i � 2; C2�C3�D8; 26 98 140C2�C4�S3; C2�D24; C3�D8; C4�S3; D24; [24;11]2-2; 2-2; 1; 1 Ci2�Cj3 ; 1 � i; j � 2; C2�C3�S3; C23 ; C3�S3 8 21 322-2; 2-2; 1; 1 C23oC2; C2�(C23oC2); Ci2�Cj3 ; 1 � i; j � 2; 20 65 89C2�C3�S3; C2�S3; C3�S3; S3�S33; 1; 1; 1 A4; C2�A4 2 4 43; 1; 1; 1 C2�A4; C22�A4; C2�S4; S4 11 37 473; 1; 1; 1 C22�A4; C32�A4; C2�S4 8 18 573; 2-1; 1 C2�C4�A4; C4�A4 3 5 73; 2-2; 1 A4; C2�A4; C22�A4; C2�C3�A4; C3�A4; C3�S4 9 30 554-10; 1; 1 C8 1 2 24-10; 1; 1 C2�C8; C8; D16 3 8 114-1; 1; 1 (C3oC8); C3�Q8; Q8; [16;11]; [16;13]; [16;8]; [32;31] 8 15 234-20; 1; 1 C3�C4 1 1 14-20; 1; 1 C3�C4; D24 2 3 34-2; 1; 1 C3oC4; C2�C3�S3; C3�(C3oC4); C3�D8; C3�S3 5 10 124-30; 1; 1 C2�C5; C5 2 3 34-30; 1; 1 C22�C5; C2�C5; C2�D10; D10 5 8 85-1; 1 C2�[80;52]; [80;52] 2 3 8total 289 2416 33742
TABLE 5. Six-dimensional Bieberbach groups with nontrivial centre.
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