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Abstract

Cohomology theory of links, introduced in [Kh1], is combinatorial.
Dror Bar-Natan recently wrote a program that found ranks of cohomology
groups of all prime knots with up to 11 crossings [BN]. His surprising
experimental data is discussed in this note.
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1 Notations

The Jones polynomial is determined by the skein relation

q2J(L1)− q−2J(L2) = (q − q−1)J(L3),

where Li are depicted in figure 1, and by the normalization J(unknot) = 1. This
standard normalization is different from the one in [Kh1,2].
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L 1 L 2 L 3

Figure 1:

Familiarity with [Kh1,2] or [BN] is assumed. Warning: we use the grading
conventions of [Kh2], and the cohomology group that we denote by Hi,j is
denoted Hi,−j in [BN] and [Kh1]. Let hi,j(K) (or simply hi,j) be the rank of
Hi,j(K). Ranks of cohomology groups satisfy (notice q−j , rather than qj)

(q + q−1)J(K) =
∑

i,j

(−1)iq−jhi,j(K). (1)

We use the Rolfsen enumeration for knots with 10 or fewer crossings. Knots
with more than 10 crossings are enumerated as in Knotscape, for instance, 11n77
denotes the 77th non-alternating 11-crossing knot.

2 Initial observations

There are 249 prime unoriented knots with at most 10 crossings (not counting
mirror images). From Bar-Natan [BN] we learn that for all but 12 of these knots
the nontrivial cohomology groups lie on two adjacent diagonals. Let us call such
knots homologically thin, or H-thin, for short. We have no clue why nearly all
small knots are H-thin. Figure 2 depicts 10117, an H-thin knot, and ranks of its
cohomology groups. hi,j is zero if the (i, j)-square is empty.

Squares with even j-coordinates are omitted from the picture, since coho-
mology groups Hi,2k(K), for a knot K, are always zero. By a diagonal we mean
a line 2i+ j = b, for some b, also referred to as the b-diagonal.

All H-thin knots with up to 10 crossings share the following properties
(i) cohomology groups are supported on (σ ± 1)-diagonals, where σ is the

signature of the knot;
(ii) after substracting 1 from h0,σ±1, the numbers on the upper diagonal

coincide with numbers on the lower diagonal after the (1,−4) shift;
(iii) the Jones polynomial is alternating: J(K) =

∑
ciq

2i, if cicj > 0 then
j ≡ i(mod 2), if cicj < 0 then j 6≡ i(mod 2). Unless the knot is a (2, n)-torus
knot, for n ∈ {3, 5, 7, 9}, the Jones polynomial has no gaps, i.e. ci 6= 0, ci+k 6= 0
implies ci+m 6= 0 for all m between 1 and k − 1.

(iv) The Alexander polynomial ∆(K) =
∑

ait
i is alternating and has no

gaps.
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Figure 2: 10117 and ranks of its cohomology groups

All alternating and the majority of non-alternating knots with up to 10 cross-
ings are H-thin. Knots that are not H-thin will be called H-thick (homologically
thick). The twelve H-thick knots with at most 10 crossings are

819, 942, 10124, 10128, 10132, 10136, 10139, 10145, 10152, 10153, 10154, 10161.

Figure 3 shows the knot 10132 and ranks of its cohomology groups.
Properties (i), (iii),and (iv) of H-thin knots (with at most 10 crossings) fail

on many of these knots. The 12 H-thick knots satisfy
(i’) cohomology groups are supported on three adjacent diagonals. Discard

the diagonal with the smallest total rank of cohomology groups supported on
it. The two remaining ones are (σ ± 1)-diagonals.

(ii’) if, for a suitable i, we substract 1 from h0,i and h0,i+2, the remaining
numbers can be arranged into pairs with the (1,−4) difference in the bigrading
(figure 4 does it for 10132).

(iii’) The Jones polynomials of 10124, 10139, 10145, 10152, 10153, 10154, 10161
are not alternating. The Jones polynomials of 819, 10124, 10132, 10139, 10145,
10152, 10153, 10154, 10161 have gaps.

(iv’) The Alexander polynomials of 819, 10124, 10128, 10139, 10145, 10152,
10153, 10154, 10161 are not alternating. The Alexander polynomials of 819, 10124,
10139, 10154, 10161 have gaps.

We verified (iii), (iii’), (iv), and (iv’) using the tables in [St].

For any knotK the Alexander polynomial at −1 equals the Jones polynomial
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Figure 4: Cohomology of 10132 arranged in pairs
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at
√
−1 :

∆−1(K) = J√−1(K) (2)

(because of our choice of variable q, the R.H.S. is J√−1(K) rather than the more
common J−1(K)).

Coefficient-wise, with notations from (iii),(iv),
∑

i

(−1)iai =
∑

i

(−1)ici.

Since Jones and Alexander polynomials of H-thin knots with at most 10 crossings
are alternating, for these knots we obtain

∑

i

|ai| =
∑

i

|ci|.

Properties (i) and (ii) imply that, in addition,

rankH(K)− 1 =
∑

i

|ci|

where rankH(K) =
∑

i,j h
i,j is the rank of total cohomology of the knot. To

summarize, H-thin knots with at most 10 crossings satisfy

rankH(K)− 1 =
∑

i

|ci| =
∑

i

|ai|. (3)

What about the twelve H-thick knots? For each of them the inequalities
hold

∑

i

|ai| ≤ rankH(K)− 3 ≥
∑

i

|ci|, (4)

(Note that
∑

i |ai| and
∑

i |ci| are odd for any knot and rank(H) is even.)

Alternating knots with at most 10 crossings are H-thin, and it was conjec-
tured in [BN] and [G] that all alternating knots are H-thin. This conjecture is
now a theorem, due to Eun Soo Lee [Lee]:

Theorem 1 Non-split alternating links are H-thin.

We now look at the data for 11-crossing knots [BN]. There are 367 alternating
and 185 non-alternating prime knots with 11 crossings. H-thick knots among
them number 41.

Properties (i)-(iv) continue to hold for H-thin knots with 11 crossings. There
are several 11-crossing knots with non-alternating Jones or Alexander polyno-
mial. All of them are H-thick. Likewise, 11-crossing knots with a gap in the
Alexander polynomial are H-thick.

Problem: Explain why so many non-alternating knots with 11 or fewer
crossings are H-thin.

5



3 A-module structure of knot cohomology

In this section we work over Q (rather than over Z, as in [Kh1, Section 7]).
In particular, the base ring is A = Q[X ]/(X2) and the chain complex C(D)
associated to a plane diagram D of a knot K is a complex of Q-vector spaces.
Cohomology groupsHi,j(D) are finite-dimensional Q-vector spaces, only finitely
many of them are nontrivial. Dimensions hi,j of these groups are invariants of
K.

Figure 5: Cobordism between circle ∪D and D

Choose a segment I of D that does not contain crossings. Place an unknot-
ted circle next to I and consider the cobordism that merges the circle and I
(figure 5). This cobordism induces a map of complexes A⊗ C(D) → C(D) and
makes C(D) into a complex of graded A-modules. A Reidemeister move from D
to D′ that happens away from I induces a chain homotopy equivalence between
complexes of A-modules C(D) and C(D′). Given two diagrams D1 and D2 of
K and two segments I1 and I2 in them, there is a sequence of Reidemeister
moves that takes (D1, I1) to (D2, I2) such that all moves happens away from
I1. Instead of moving an arc over or under I1 we can move it across the rest of
the plane (or S2). In other words, there are as many knots as one-component
(1, 1)-tangles.

We obtain an invariant of K, the complex C(D) of free A-modules up to
chain homotopy equivalence. The Krull-Schmidt theorem, valid for bounded
complexes of finite-dimensional modules over finite-dimensional algebras, tells
us that C(D) decomposes (uniquely up to an isomorphism) as direct sum of
an acyclic complex and indecomposable complexes with nontrivial cohomology.
The multiplicity of each indecomposable complex in this decomposition is an
invariant of K. Denote by Cn the complex

0 −→ A X−→ A{−2} X−→ · · · X−→ A{−2n+ 2} X−→ A{−2n} −→ 0, (5)

where the leftmost A is in cohomological degree 0.

Proposition 1 A non-acyclic indecomposable complex of free graded A-modules
is isomorphic to Cn[i]{j} for a unique triple (n, i, j), n ≥ 0.

Example: If K is a (2, 2m+ 1)-torus knot, C(K) is a direct sum of C0{2m}
and C1[2i+ 1]{4i+ 2m+ 2}, 1 ≤ i ≤ m.

6



Proposition 2 C(K1#K2) ∼= C(K1)⊗A C(K2).

Proof: Obvious. �

Define homological width of K, denoted hw(K), as the minimal number m
such that cohomology of K lie on m adjacent diagonals. The homological width
of a knot is at least 2, since cohomology groups of indecomposable complexes
Cn lie on 2 adjacent diagonals, and any knot has nontrivial cohomology (since
the Jones polynomial does not vanish). According to our definitions, a knot is
H-thin if and only if it has homological width 2.

Proposition 2 implies

Proposition 3 hw(K1#K2) = hw(K1) + hw(K2)− 2.

Corollary 1 K1#K2 is H-thin if and only if both K1 and K2 are H-thin.

Reduced cohomology

Let Q = A/XA be the one-dimensional representation of A. Define the
reduced complex of D by

C̃(D) = C(D)⊗A Q.

This is a complex of graded Q-vector spaces. We call its cohomology the reduced
cohomology of D (and K) and denote by H̃(D) and H̃(K), the latter are defined

up to isomorphism. Ranks of cohomology groups H̃i,j(D) are invariants of K.

The Euler characteristic of H̃ is the Jones polynomial (compare to (1)):

J(K) =
∑

i,j

(−1)iq−j rank(H̃i,j(K)),

therefore,

rankH̃(K) ≥ |J√−1(K)| = |∆−1(K)|.

Proposition 4 Reduced cohomology groups H̃i,j(K) lie on one diagonal (2i+ j
is constant) if and only if K is H-thin.

Corollary 2 The Jones polynomial of an H-thin knot is alternating. The ab-
solute values of its coefficients are dimensions of reduced cohomology groups.

H-restricted knots

Properties (ii),(ii’) admit a homological interpretation. We say that a knot
K is H-restricted if non-acyclic indecomposable summands of the A-module
complex C(K) are one A{i}, for some i, and one or several C1[j]{k}, for j, k ∈ Z.
Cohomology groups of aH-restricted knot can be paired up as in (ii’). Existence
of such pairing, however, does not imply that a knot is H-restricted.

(2, 2m+1)-torus knots areH-restricted. The figure eight knot isH-restricted.

7



Proposition 5 If K1 and K2 are H-restricted then K1#K2 is H-restricted.

Conjecture 1 All knots are H-restricted.

This is a homological counterpart of Conjecture 1 in [BN] about KhQ.

Proposition 6 If K is H-restricted then rankH(K) = rankH̃(K)− 1.

4 Cohomology with Z2-coefficients

Let us now work over Z rather that Q, so that A = Z[X ]/(X2). A computation
in [Kh1, Section 6.2] implies that C(K), where K is a (2, 2m + 1)-torus knot,
is isomorphic to the direct sum (modulo acyclic complexes) of the complex
0 −→ A{2m} −→ 0 and m complexes C′

1

0 −→ A 2X−→ A{−2} −→ 0 (6)

with various shifts.
Cohomology of C′

1⊗ZQ is two-dimensional (over Q), and is a matching pair
of cohomology groups in bidegrees that differ by (1,−4).

Now change the base field to Z2. In characteristic 2 the differential in (6)
is 0, and the dimension of cohomology groups of C′

1 ⊗Z Z2 is 4 (as a Z2-vector
space), see figure 6.

1

1

1

1 1

1

over  Q over  Z
2

Figure 6: Dimensions of cohomology of C′
1 over Q and Z2

According to the tables in Bar-Natan [BN], the same patterns relates rational
and Z2-cohomology of any prime knot with at most seven crossings. Pair up
the rational cohomology groups as in (ii), so that all but one pair look as on the
left hand side of figure 6, and change each on them to the quadruple of 1’s on
the right hand side. We get ranks of Z2-cohomology groups.

It is likely that for any knot K with at most 7 crossings C(K) decomposes
as a direct sum of

• an acyclic complex,
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• complex 0 −→ A{i} −→ 0 for some i ∈ Z,

• complexes 0 −→ A{j} 2kX−→ A{j − 2} −→ 0 for j, k ∈ Z.

This would explain the observed relation between rational and Z2-cohomology
of these knots.

5 Cohomology of adequate knots

For a link diagram D denote by s+D (respectively s−D) the diagram obtained
by taking 0-resolution (respectively 1-resolution) of each crossing of D, see fig-
ure 7.

0-resolution 1-resolution

Figure 7: Two resolutions of a crossing

We say that D is adequate if

• for any crossing of D the two segments of s+D that replace this crossing
belong to distinct components of s+D,

• for any crossing of D the two segments of s−D that replace this crossing
belong to distinct components of s−D.

A reduced alternating link diagram is adequate. A link admitting an ade-
quate diagram is called adequate. For further information about adequate links
see Thistlethwaite [Th] and Lickorish [Li, Chapter 5].

Proposition 7 Adequate non-alternating knots are H-thick.

Proof: Assume D is an adequate non-alternating diagram of a knot K. We
continue to use cohomology with integer coefficients. Recall from [Kh1, Chapter
7] that

H0
(D) 6= 0 6= Hn

(D)

where n is the number of crossing of D. More precisely,

H0,|s+D|
(D) ∼= Z, H0,i

(D) ∼= 0, if i > |s+D|, (7)

Hn,−|s
−
D|−n

(D) ∼= Z, H0,i
(D) ∼= 0, if i < −|s−D| − n, (8)

where |s+D| is the number of components of s+D, etc.

9



From discussion is Section 3 we know that rational cohomology groups come
in pairs (complex (5) contributes Q ⊕ Q to cohomology, in two degrees that

differ by (n,−2n − 2)). The companion of H0,|s+D|
(D) ⊗ Q ∼= Q will lie one

diagonal below it, while the companion of Hn,−|s
−
D|−n⊗Q will lie one diagonal

above it. This is illustrated in figure 8, which unintentionally shows the case
n = |s+D|+ |s−D|.

+
s  D| |

-
s D| |-n-

1

1

1

0 1 2 n

1

Figure 8:

If K is H-thin, these two pairs of cohomology groups must lie on two adjan-
cent diagonals. This implies n+ 2 = |s+D|+ |s−D|.
Lemma 1 If D is adequate, non-alternating and prime then n+ 2 > |s+D|+
|s−D|. If D is alternating then n+ 2 = |s+D|+ |s−D|.
This lemma is proved in [Li, Chapter 5]. �

Therefore, if D is prime, K is H-thick. The case of composite D follows
from Corollary 1. �

There are no adequate non-alternating knots with 9 or fewer crossings, 3
adequate non-alternating knots with 10 crossings: 10152, 10153, 10154, and 15
adequate non-alternating 11-crossing knots.

6 Cohomology of positive and braid positive knots

Positive knots

We say that a knot is positive if it has a diagram with only positive crossings
(figure 9).

Proposition 8 If K is a positive knot then Hi,j(K) = 0 if i < 0,

H0,j(K) =

{
Z if j = s− n− 1± 1
0 otherwise,

and Hi,j = 0 if i > 0 and j ≥ s−n, where s is the number of Seifert circles and
n the number of crossings in a positive diagram of K.

10



Figure 9: A positive crossing

Proof: Left to the reader. �
Note that n−s+1

2 is the genus of K.

Braid positive knots

819 is a (3, 4)-torus knot, 10124 is a (3, 5)-torus knot. Both are H-thick. If
n,m are odd, the (n,m)-torus knot is H-thick since its Jones polynomial is not
alternating. We expect that (n,m)-torus knots, 2 < n < m, are H-thick.

Torus knots are examples of braid positive knots, i.e. knots that are closures
of positive braids.

Braid positive prime knots with at most 10 crossings are (2, n)-torus knots,
for n ∈ {3, 5, 7, 9}, and the four H-thick knots 819, 10124, 10139, 10152.

There are two braid positive prime 11-crossing knots: the (2, 11)-torus knot
and 11n77, the closure of the braid σ2

1σ
2
2σ1σ3σ

3
2σ

2
3 . The latter is H-thick [BN].

There are 7 braid positive prime knots with 12 crossings. All of them are
H-thick, since their Jones polynomials are not alternating.

Not counting the (2, 13)-torus knot, there are 12 braid positive prime 13-
crossing knots. At least 10 are H-thick (the Jones polynomial is not alternating).
We don’t know if the remaining knots 13n4587 and 13n5016 are H-thick.

There are 17 braid positive prime knots with 14 crossings. All but 3 have
non-alternating Jones polynomial.

Problem: Are all braid positive prime knots other than (2, n)-torus knots
H-thick?

Problem: If K is braid positive, is H1,j(K) = 0 for all j?

7 Alexander polynomial and cohomology

We say that a prime knot is Ap-special if its Alexander polynomial is not alter-
nating or has a gap. A well-known theorem of Murasugi [Mu] can be restated
as

Proposition 9 Ap-special knots are not alternating.

Few small knots are Ap-special, and all or nearly all small Ap-special knots
are H-thick:

11



• There are 9 Ap-special knots with at most 10 crossings. All of them are
H-thick.

• There are 19 Ap-special knots with 11 crossings. All of them are H-thick.

• There are 104 Ap-special knots with 12 crossings. For all but 8 of them
the Jones polynomial is not alternating, so that at least 96 of these knots
are H-thick.

• There are 115 knots with 13 crossings and a gap in the Alexander poly-
nomial. All but 13 have non-alternating Jones polynomial, thus, at least
102 of these knots are H-thick.

Problem: Is any Ap-special knot H-thick?

Knots with non-alternating Jones polynomial are a minority among non-
alternating knots with at most 14 crossings, as seen in the table below.

crossings ≤ 9 10 11 12 13 14
non− alternating 11 42 185 888 5110 27110

Jones not alternating 0 7 26 169 1154 7075
H− thick 2 10 41 ≥ 169 ≥ 1154 ≥ 7075

For instance, the fifth column says that there are 888 prime non-alternating
knots with 12 crossings (not distinguishing mirror images); among them 169
have non-alternating Jones polynomial, and, therefore, at least 169 are H-thick.
On the other hand, there is no doubt that for large n most n-crossing knots are
H-thick.

The following examples provide another experimental relation between the
Alexander polynomial and knot cohomology.

1. The only knot with the trivial Alexander polynomial and at most 10 cross-
ings is the unknot. There are two 11-crossing, two 12-crossing, fifteen
13-crossing and thirty-six 14-crossing knots with the trivial Alexander
polynomial. All of them are H-thick (since their Jones polynomials are
not alternating).

2. The Alexander polynomial of the trefoil is t−1 − 1+ t. There are no other
knots with at most 12 crossings and this Alexander polynomial. There are
eight 13-crossing knots and seventeen prime 14-crossing knots with this
Alexander polynomial. All of them are H-thick (for the same reason).

3. The figure eight knot is the only one with less than 13 crossings and
Alexander polynomial −t−1 + 3− t. There are two 13-crossing knots and
fifteen 14-crossing knots with this Alexander polynomial. All are H-thick.

12



4. ∆(52) = 2t−1 − 3 + 2t. There are no other knots with this Alexander
polynomial and less than 12 crossings. Four 12-crossing, three 13-crossing,
and nine 14-crossing knots have Alexander polynomial 2t−1 − 3 + 2t. All
of these knots are H-thick.

5. Consider knots with at most 14 crossings and Alexander polynomial−2t−1+
5 − 2t. Four of them: 61, 946, 11

n
139, and 13n3523 are H-thin (these knots

are examples of (n,−3, 3)-pretzel knots; any (n,−3, 3)-pretzel knot is
slice, H-thin, and its cohomology has rank 10). The remaining two 11-
crossing knots, four 12-crossing knots, eleven 13-crossing knots, and fifty
14-crossing knots with this polynomial are H-thick.

6. ∆(51) = ∆(10132) = t−2 − t−1 + 1− t+ t2. 51 is the (2, 5)-torus knot and
is H-thin. 10132 is H-thick. There are no 11 and 12-crossing knots with
this Alexander polynomial. Two 13-crossing knots and twelve 14-crossing
knots have this Alexander polynomial. All are H-thick.

7. 10153 is the only knot with at most 11 crossing and Alexander polynomial
t−3 − t−2 − t−1 + 1− t− t2 + t3. Four 12-crossing, seven 13-crossing and
and nineteen 14-crossing knots have this Alexander polynomial. All are
H-thick. Unlike other examples, this Alexander polynomial is not alter-
nating.

These examples suggest that knots with small Alexander polynomial relative
to the crossing number tend to be H-thick.

8 Volume and cohomology

H-thick knots with few crossings tend to have small hyperbolic volume or to be
non-hyperbolic:

• 819 is the only H-thick knot with 8 crossings and the only non-hyperbolic
knot with 8 crossings (it is the (3, 4)-torus knot).

• The H-thick knot 10124 is the (3, 5)-torus knot and the only non-hyperbolic
10-crossing knot.

• 942, the only H-thick 9-crossing knot, has the second smallest volume (≈
4.05686) among all 48 hyperbolic knots with 9 crossings (and the smallest
determinant (= 7) among all 9-crossing knots). 942 has the same volume
as 10132, another H-thick knot. The latter has the smallest volume among
all hyperbolic knots with 10 crossings. Among known pairs of knots with
the same volume, (942, 10132) is the pair with the second smallest volume.
The pair with the smallest volume (≈ 2.8281) consists of 52 and the famous
(−2, 3, 7)-pretzel knot. Knot 52 is H-thin, while the (−2, 3, 7)-pretzel knot
is H-thick, since its Jones polynomial is not alternating.
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• Three out of the four hyperbolic 10-crossing knots with the smallest vol-
umes are H-thick, even though among 164 hyperbolic 10-crossing knots
only 9 are H-thick.

Determinant det(K) of a knot K is the determinant of the matrix M +MT

where M is a Seifert matrix of K. Determinant is a common specialization of
the Alexander and Jones polynomials:

det(K) = ∆−1(K) = J√−1(K)

|det(K)| is also the number of elements in the first homology group of the double
cover of S3 branched over K.

Nathan Dunfield documents a fascinating relation between determinants and
volumes of hyperbolic knots [D]. First, he plots log |det(K)| versus the volume of
K for all alternating knots K with a fixed number of crossings. Amazingly, the
points cluster around a straight line. Next, he combines the pictures into one

by plotting log |det(K)|
log(degJ(K)) versus the volume of K for all alternating knots with at

most 13 crossings and samples of 14-16 crossing alternating knots. Again, all
points stay close to a straight line.

Dunfield comments: ”log(J(−1)) is one of the first terms in Kashaev’s con-
jecture about the relationship between the colored Jones polynomial and hy-
perbolic volume. However, the above doesn’t appear to simply be saying that
you have fast convergence in Kashaev’s conjecture as the slope of the line is not
what you would expect.”

When non-alternating knots are included, the plots become less impressive.
The majority of points still lie close to the coveted straight line, but there
are defections. For instance, there are hyperbolic knots with det(K) = ±1, and
points assigned to them will lie on the x-axis, far away from where we would like
them to. This is illustrated in figures 10, 11, where we plot (vol(K), log |det(K)|)
for all hyperbolic non-alternating knots with 10 and 11 crossings (for 12, 13
crossings consult [D]).

To save the day, we change from det(K) to the rank of the reduced coho-
mology group of K. The inequality

rankH̃(K) ≥ |det(K)|

is valid for all knots, and turns into equality for H-thin knots. If the knot is
H-restricted (and we expect that all knots are), rankH̃(K) = rankH(K) − 1.
In figures 12, 13 we plot (vol(K), log(rankH(K) − 1)) for all hyperbolic non-
alternating knots with 10 and 11 crossings (there are 41, respectively 185, such
knots).

Clearly, for non-alternating knots with 10 and 11 crossings the correlation
between the volume and the rank of cohomology is even better than the one
between the volume and the determinant. Somehow vol(K) and rankH(K) are
successful in spying on each other. We have no explanation for this behaviour.
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Figure 10: Volume versus log |det(K)| for 10-crossing non-alternating knots
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Figure 11: Volume versus log |det(K)| for 11-crossing non-alternating knots
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Figure 12: Volume versus log(rankH(K) − 1) for 10-crossing non-alternating
knots
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Figure 13: Volume versus log(rankH(K) − 1) for 11-crossing non-alternating
knots
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