Centrum voor Wiskunde en Informatica

REPORTRAPPORT

IMIAS

Modelling, Analysis and Simulation

fl Modelling, Analysis and Simulation

S New computations concerning the Cohen-Lenstra
heuristics

H.C. Williams, H.J.J. te Riele

ReporT MAS-R0215 June 30, 2002

CWI is the National Research Insfitute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI'is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)
Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2001, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 S Amsterdam (NL)

Telephone +31 20 592 9333

Telefax +31 20 592 4199

ISSN 1386-3703

New Computations Concerning the Cohen-Lenstra Heuristics

Hugh Williams
Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada T2N 1N4
williams@math.ucalgary.ca

Herman te Riele
CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

herman@cwi.nl

ABSTRACT

Let h(p) denote the class number of the real quadratic field formed by adjoining \/P, where p is a prime, to
the rationals. The Cohen-Lenstra heuristics suggest that the probability that h(p) = k (a given odd positive
integer) is given by Cw(k)/k, where C is an explicit constant and w(k) is an explicit arithmetic function.
For example, we expect that about 75.45% of the values of h(p) are 1, 12.57% are 3, and 3.77% are 5.
Furthermore, a conjecture of Hooley states that

H(z):= Zh(p) ~ z/8 as T — 00,

p<z

where the sum is taken over all primes congruent to 1 modulo 4. In this paper, we develop some fast techniques
for evaluating h(p) where p is not very large and provide some computational results in support of the Cohen-
Lenstra heuristics. We do this by computing h(p) for all p (= 1 mod 4) and p < 2 x 10*!. We also tabulate
H(z) up to 2 x 10"

2000 Mathematics Subject Classification: Primary 11R29. Secondary 11Y40.

1998 ACM Computing Classification System: F.2.1.

Keywords and Phrases: Distribution of class numbers, Cohen-Lenstra heuristics, Hooley’s conjecture.

Note: The research of Williams was partially supported by NSERC of Canada Grant #A7649. The research
of Te Riele was carried out under project MAS2.2 " Computational number theory and data security”.

1. INTRODUCTION
Let D denote a square-free positive integer and let £ = Q(\/B) be the quadratic field formed by
adjoining v/D to the rationals Q. Set

| 2 when D =1mod 4,
"=\ 1 otherwise.

If w=(r —14+/D)/r, then O = Z + wZ is the maximal order (the ring of algebraic integers) of K.
Let € (> 1) be the fundamental unit of I, R = log e be the regulator of I and h = h(D) be the class
number of K.

In [2, 3], Cohen and Lenstra developed some heuristics to explain the distribution of the odd part
of the class groups of quadratic fields. In particular, they gave reasons to expect that the probability
that h*(D) (the odd part of k(D)) is equal to a given positive odd integer k is given by

Prob(h*(D) = k) = Cw(k)/k, (1.1)

where C' = .754458173... and
w(k) ™! = H p* (1 - pil) (1 - p72) (l fpfo‘) .

p*||k

If D is a prime, then h*(D) = h(D). Also, it is not unreasonable to expect that quadratic fields with
prime values of D behave like any others with respect to the odd part of the class group; thus, we
would expect that

Prob(h(p) =1) = C,

when p is a prime. This suggests that for at least 3/4 of all primes we have h(p) = 1; it must, however,
be stressed here that it is not even known that there exists an infinitude of values of D for which
h(D) = 1. Nevertheless, computations performed by Stephens and Williams [11], Jacobson, Lukes,
and Williams [6], and Jacobson [5] provide much numerical evidence in support of the Cohen-Lenstra
heuristics.

We also mention that with some additional assumptions Cohen was able to show (assuming the
Cohen-Lenstra heuristics) that

H(z):= Y h(p)~a/s,

p<z
p=1lmod4

a result conjectured by Hooley [4]. This conjecture and (1.1) were tested for all primes p = 1 mod 4
up to 10° in [6]. It was found that H(z)/x seemed to be increasing at such a slow rate that it is
hard to predict whether it would reach 1/8, but that for small values of k, (1.1) gives a quite accurate
prediction of what actually happens for p < 10°.

In Van der Poorten, Te Riele, and Williams [9], some very fast methods were developed for com-
puting in real quadratic fields when D is not very large. These were used to verify the Ankeny-Artin-
Chowla conjecture for all primes p (= 1 mod 4) such that p < 10'1. In this paper we will show how
these ideas can be extended to the problem of testing the Cohen-Lenstra heuristics for the same (and
also larger) values of p and for testing Hooley’s conjecture for these p. As there are 4003 548 492
primes congruent to 1 modulo 4 up to 2 x 10!, it was necessary to develop very fast methods to
compute h(p) for p in this range.

We make use of the analytic class number formula

2h(p)R = /p L(1, xp), (1.2)

where L(1,,) is the Dirichlet L-function of the character x, evaluated at s = 1. We will let Ry =
log, € = (log, e)R. We will also assume the truth of the extended Riemann hypothesis (ERH) for
L(s, xp). Broadly speaking our algorithm to compute h(p) consists of two main components:

1. Computation of R,

(a) Find an integral multiple M of R,. This step is fully described in [9].

(b) Compute Ry from M or prove that Ry > M/P, where P is some small prime (e.g. 11 or
13).

(c) Given that Ry > M/P, find R,.
2. Find h = h(p)

(a) We use the approximation S(T',p) (for suitable T') of log L(1,xp), computed in Step la.
This satisfies, on the assumption of the ERH:

|10gL(17Xp) - S(Tap)| < A(Tap)a

where A(T,p) is an error bound discussed in Section 3.

Let Ne(z) denote the nearest odd integer to z, and put

s VD exp(S(T,p))
h := Ne (W) € N,

VP exp(S(T,p))

= —h 1).
o Rylog4 ho (ol <1)
(b) Try to compute h from h.
Put h1 =1.
Suppose hy > |g — 6|/2, where g € Z.
If h4+g=hy and
exp(A(T,p)) < 3h1/(h +6), (1.3)

thgnhzil—i—g.
If h+g>3hy and

(1.4)

exp(A(T, p)) < min{’”g“’“ hto }

h+6 "h+g—2h

then h = h + g. ~
If this procedure does not find h, then find some hy > 1 such that hy|h + g, h1|h, by >
lg — 4|/2 and try again.

(c) If h can not be found in Step 2b, treat it as a separate case, to be dealt with later.

Evidently, this method is a variant of Lenstra’s [8] algorithm for evaluating R and h(p). This is of
computational complexity O(pl/ 5+¢) under the ERH. What we need to do here is make the process
execute as rapidly as possible for values of p that are relatively small, in our case p < 2 x 10!,

2. DETERMINATION OF THE REGULATOR Ry FROM AN INTEGRAL MULTIPLE M OF Ry
For the sake of brevity we will make use of the same notation as that used in [9] as well as several
results used there. If b is any reduced principal integral ideal of O, we let

by(=b),ba, b3, .., by, ... (2.1)

be the sequence of reduced principal ideals produced by applying the continued fraction algorithm to
b (see [9]). We let ¥; =1 and

j—1
v =[]
=1

have the same meaning as that assumed in [9] and we have b; = (¥;)b;. We define ¢; = ((b;),

pj = p(b;) by
267 < Wy < 299 p; =25 /W,

Lemma 2.1 1 < p; < 2.
Proof. Follows easily from the definition of p;. a

Lemma 2.2 If by = (1) and m is the least positive integer (> 1) such that b,, = (1), then

Ry = G — logy pm-

Proof. Follows from the fact that ¥,,, = € and the definition of ¢; and p;. a
If > 0 is a real number, we define b(z) to be that ideal in the sequence (2.1) such that ¥; < 2%
and ¥, > 2%. We also define p(z) = 27 /¥;.

Let B = [logz(Q\/B/r)—‘ and recall from [9] that logy(L(b;)¢:) < B and logy(L(b(z))p(z)) < B.

Here L(b) denotes the least positive rational integer in the ideal b. If b is a reduced ideal, then
L(b) = N(b), where N(b) is the norm of b. Let ¢t be any positive real such that t > 2B + 1 and let £
be the list of ideals

{b1,b,... b1}, (2.2)

where m is the least positive integer such that (,, >t + B + 1. Assume that by is the only ideal b in
L such that b = (1). Under these circumstances we have the following Lemma and Theorems.

Lemma 2.3 ¢ > 2.
Proof. We know that ¢ = ¥, and 7 > m, so that e = ¥, > ¥, > 26m~1 > 2t+B, m|
Theorem 2.4 There must exist some i > 1 such that either b(2it) € L or b(2it) € L.
Proof. Since € > 2!, there is a unique n € Z such that n > 2 and
2=t < ¢ < ont,

If 2|n, put i = n/2 and by, = b(nt) = b(2it). Here, we may assume that by = (¥;) where ¥, <
2™ W, g > 2™, Tt follows that since e = ¥, and ¥,. < 2™, we must have r < k; hence, ¢ < ¥,.. If we
consider § = ¥re™ !, we have § > 1 and

0 < 27(n71)t2nt — 2t‘
Since by, is a reduced ideal, so is (8) (= by). Hence, (§) = b, and b; = (¥;), where
1<U; <2=20" <2l = (;<t+1=b;€L.

If 21 n, put i = (n—1)/2 and by = b(2it). Now consider § = ¢[U;|. We know that U |¥;| =
L(b(2it)) := Ly, € Z". Hence,

2(n71)th

0= ELk/\I/k > 92it =L; > 1.

Also,
2nth
0 < g ¥k <2'2VD/r). (Lithx <2VD/r)
Now () = by, is reduced; thus, (6) = b; = (¥;) and 1 < ¥; < 2¢(2v/D/r). Also,

2607 <V, =(—-1<t+B=(<t+B+1=b;cL.

Theorem 2.5 Let i be the least integer (> 1) such that either b(2it) € L or b(2it) € L.
If b(2it) € £ and b(2it) = b;, then

Ry = 2it — (j — log,y(p(2it)/p;)-
If b(2it) € £ and b(2it) = b;, then

Ry = 2it + ; — logy(p(2it)p; L(b(2it))).

Proof. As before, define n (> 2) by
2=t < ¢ < ont,
We use the same notation as in the previous theorem. Put

- Tl/2 if 2|n
’—{ (n—1)/2 if 2fn.

We know that either b(2i't) or b(2i't) € L by the previous theorem. Hence i < . If i = ¢/, then
€ = ¥, /¥; when b(2i't) = b; € L, or e = ¥, ¥;/L;, when b(2:'t) = b; € £. Thus, we may assume
that t <¢' —1=>mn—12>2i.

If b(2it) € L, then n = ¥ /¥; < 2% is a unit and

- \I/k: 22it

£ S > 22it737§'j Z 22t737<j > 22thf(t+B+1) _ 2t72371 Z 1
;o Y

n

Thus, n =€ (I > 1). If | = 1, we are done. If [> 1, then n > ¢? and

22%it > 92(n=1)t > 94it " 5 contradiction.

If b(2it) € L, then n = ¥}, ¥;/L; is a unit and
n=WUW; /Ly > ¥;2%% Lyapy, > 228 > 1,
Again, we have n = ¢ (I > 1). If [> 1, then > €% and
;22 > g > 92(n=Dt > gt

Since U; < 26 < 2t¥B+1 we get t < B + 1, a contradiction. Thus, in the first case we get

1 1 .)
€=UV, = 22”/)(2#) /241 P Ry = 2it — (; — log,(p(2it)/pj).
J

In the second case we get

e = U0, /Ly = Ry = 2it + (; — logy(p(2it)p; L(b(2it)).

The following corollary to Theorem 2.5 will be useful in a subsequent section.

Corollary 2.6 Ifn,i,i’ are defined as in the Theorem, then i =i when 2{n, andi=1i ori —1 if
2|n.

Proof.
Case 1. 2|n.
In this case we have n = 2’ and € > 22" "1t Now if e = U}, /¥;, we get

e <y, < 2%,
It follows that 2it > (2¢' — 1)¢; hence,

20>2' —1=i>i =>i=17

(recall that ¢ < 7¢'). If e = ¥, ¥; /Ly, then

€< 22it+t+B+1 .

We get

(2 — 1)t < (2i+1)t+B+1
and B

27 —1<2i+1+ il <242
Thus,

21 —1<21+1

and

i <i+l=i=1i or i/ -1
Case 2. 2{n.

In this case we have n = 2i’ + 1 and € > 221t If ¢ = U, ¥; /Ly, then
2it+t+ B+1>2i't

and
204+2>2% =i+1>d=i>i =i=7.

If e = ¥ /¥ , then
22t 5 ¢ > 9%t >yl i — g,

We can now make use of the following algorithms to find Rz, given an integral multiple M of Rq.
1) Select a prime P such that P2B < M. In our computations, we used P = 11.
2) Put K = M/P, t = fc (see [9, p. 1325].

Algorithm 2.7 (compute Ry or prove that Ry > K)
1) Compute the list £ (2.2). If b; = (1) for b; € L, compute Ry = (; — log, p; and terminate.
2)Fori=1,2,...,[(K + 2B + 1)/2¢], compute b(2it).
If b(2it) = b; € L, then Ry = 2it — (; — log,(p(2it)/p;) and terminate.
If b(2it) = b; € L, then Ry = 2it + (; — log,(p(2it)p,; L(b(2it))) and terminate.
End for
Ry > K.

Proof (of correctness). Clearly, when Ry is computed, it is correct by Lemma 2.2 and Theorem
2.5. Suppose Rs is not computed by the algorithm; we know that for some ¢ we must have either

Ry = 2it — (; — log,(p(2it)/p;)

or

Ry = 2it + (5 — log,y(p(2it) p; L(b(21t)))
and ¢ > [(K + 2B + 1)/2t]. In the first case we have

K+2B+1
R2><¥

5 >2t+2t—(t+B—|—l)—B>K.

In the second KBl
R2 > 2t <¥

-B+1>K.
) B

O
We let {pi(= 3),p2,p3,---,p;} be the ordered set of all primes < P. Then p;;; = P. We can now
use the following algorithm to compute Ry when Algorithm 2.7 fails to do so.

Algorithm 2.8 (given that Ry > K, find R»)
1) by =(1),i+ 1,M' + M.
2) while i < j
compute b(M’'/p;)
if b(M’/p,) = bl
M’ « M'/p;
else
1 1+1
end if
end while
Ry = M'.

Proof (of correctness). We first note that if M’ is an integral multiple of Ry, say M’ = sRa,
and b(M'/p) = by for some prime p < P, then by = (¥;) = b(M'/p), where ¥}, = ¢ (¢t > 0),
et > 2M'/p and € < (2\/1_)/1“)2M’/p. It follows that eP* > 2M' = ¢ and pt > s. Furthermore, since
Pt < (2v/D/r)Pe*, we get (2v/D/r)P > eP*~5, If pt — s > 1, then pB > Ry and PB > K = M/P, a
contradiction. Thus we must have tp = s, which means that M'/p is an integral multiple of Rs.

We also note that at the end of the algorithm we have M’ = sRy,s € Z and p; { s for all i < j. Then,
M' =Ry or s > pj 1 = P. Now

M>M' =5sRy = Ry, < M/P=K,
a contradiction. Thus, Ry = M. |

3. A MODIFICATION OF BACH’S RESULT
In [1] Bach provided (under the ERH) explicit constants A, B such that if

A'(T,p) = (Alogp + B)/(VT1logT), (3.1)
then
T-1
log L(L, xp) — Y _ ailog B(T +1i)| < A'(T,p),
=0

where a; = (z + i) log(z +1)/S(x), S(z) = Zf;ol(a: +1)log(z +1) and B(z) =[], (1 - xp(2)/9) L.
This allows us to get an estimate for L(1, x,) which is very useful for determining h(p) once Ry has
been computed. Since most of the values of h(p) tend to be small, we found it useful to try to improve
Bach’s results. Our improvement is only a very slight one, but it proved to be very effective for
determining h(p) for many values of p. As the technique of deriving this improvement is analogous to
the treatment given by Jacobson and Williams [7] for estimating L(2,x), we will only sketch it here.

As in [1], we put
Bla,y) = [[—%~, B@x) =] —+~

))
s 4 x(a) e 1= x(a)

where the products are taken over prime values of ¢ and x is a nonprincipal character modulo m.

Since
x—1

z—1 z—1
log L(1,x) = Z a;log L(1,x) = Z a;B(x +1,x) + Z a;B(z +1,x),
i=0 i=0 i=0

we need to bound the value of

xz—1
E(x,x) = Zai log B(x + 4, X)-
i=0
As in [1], we get
z—1 -1
Uz +i Yz + 14, X)(log(:c—i—z)—i— 1)

E <
Bz < ;a(w—i—z)log :v—i—z 2; (z +i)?(log(z +1))?

= ©wl(t,x) [2 3 2
§ a; ’ dt
* ~ “ /w t3 <logt + (logt)? + (logt)3>

+ D aT(z+i,x)

The method of Lemma 5.1 of [1] can be used to prove that

2 2
(2,)| < 20(L3 /) ,

z/2logz log?2

where C' = 1.25506. Hence,

— a; 30
T i < 4C - e
(x+i,x)| < ;(x+i)1/zlog(x+i)+10g2x
z—1
4C 1 3¢
< 12 L T2 =203,
< 5w 2 (z+14)7°+ log2m
As noted in [7],
z—1
Z(m + i)1/2 < \z3/?
=0

where A = 2(2%/2 — 1)/3 ~ 1.2189514; hence,

z—1
, 4C | 4 3¢ _
, <« 2Y 32 %Y -2s
;alT(m +i,x)| < S Az®le + 10g2x
Also,
z—1
S(x) >U(z) := / (t + z) log(t + z)dt
0

= % {(Qx —1)° (log(Q:U —-1) - %) -z’ <10gx — %)] :

Since, under the ERH, we have
V' (z,x) < e(m)z®? + h(z),

c(m) = % <logm + 2)

h(z) = zlogz + 2(c(m) + 1)z + 3¢(m) + 1,

where

and

we can use the reasoning of [1] to find that:

st
— :c—f—z 10gas—+—z)

(1 + 23/2)¢(m)xz3/? N h(z) + h(2z)
U(x) z2logz

z—1

Uz + 14, x) (log(x +1) +1)
Z (2 +i)2(log(z +14))2

*wl(t,x) [2 N 3 N 2 "
— Ja 3 logt (logt)? (logt)?3

2c(m))\a:3/2 - 3 N 2 +/°°@ 2 N 3 N 2 5
U(x) logz (logz)? . 3 \logt (logt)? (logt)3)

We can next deduce (again using the reasoning in [1]) that

c(m)Az3/? c(m)A h(z)(1 + log z)
U(z) + z'/2(log x)? + z2(log x)?2

=0

h(z) + h(2z) n h(z)(1+ logz) N /°° h(t) (2 3 n 2 it
xz?logz z?%(log z)? t3 \logt (logt)? (logt)?
< ¢(m) 12 8 " 4 n 12 n 15 n 3
=AMz logz z(logz)? z(logz)® z2logx 2z%(logz)? z2(logz)3
6 10+ 2log2 6 2 4 5 1

x zlogz z(log z)? + z(logx)3 + z2logx + 222 (log)2 + r2(log)3’

On combining our previous results, we see that

T-1
log L(1,x) — _ a;log B(T +1i,x) < A(T,m),
=0
where
A(T,m) = ¢(m)G(T) + H(T), (3.2)
z/? A 4X
G(z) = 1+ 2%/2 _A
(@) U(z) [+ logz (logz)?
n 12 n 8 n 4 n 12 n 15 n 3
zlogx z(logz)? z(logz)® x2logx 2z2(logz)? z2(logz)3’
4C\z3/? 3C 6 10+ 2log2 6
H(x) = -
(@) U(z) + (log 2)x2/3 tet zlogx z(log :c)2+
2 4 5 1

+a:(logar:)3 + z2logx + 222 (log)2 + r2(logz)3’

and U(zx), C, A, ¢(m) have been defined above.
In our case, we have m = p and we set

T-1
B(T+i) = B(T +i,%p), S(T,p)=_ a;log B(T +1).

i=0
Putting E(T,p) = log L(1, xp) — S(T,p), we get

|E(T,p)| < A(T,p).

10

Since

exp(E(T,p) + S(T,p)) = L(1,xp),

we have by (1.2)

where

and

eZTP) (b + 6) = h(= h(p)),

- S(T,p)
i = Ne [Y2
R2 log 4

\/Z_)eS(Tvp)
" Rylog4

Suppose we suspect that i + g (odd) is the value of h, where |g] is a small even integer (we used
lg] < 4). We also assume that we have an odd factor hy (> 1) of h + g which must also divide h.
This will be explained in the next section. Assume further that hy > |g — d|/2 and put he = h/h;.

Evidently,

We consider two cases.

Case 1. E(T,p) > 0.
In this case, we see from (3.3) that

If

then

and from (3.3)

Since (g — 0)/h1 < 2, we get

(3.3)

h+6
eE(T’p) < h +~g + 2h]_
h+46
h
hy < ;rlg+2.
ﬁ+g ﬁ+g
—2<h 2.
I < hg < Iy +

It follows that, because hy must be odd, hy = (h + g)/hy or h = h + g.

Case 2. E(T,p) < 0.
In this case we get

i~1+g
h1

g—20
hy

ha <

from (3.3). Suppose (h + g)/hy > 3. If

h+§

A(T,p) e
h+g—2h

e

11

then ~
ATy o g = 2h
h+9d

and . B .
htg -2< e_A(T’p)—h+6 < eE(T’p)—h+5 =h
1 1 1

Since (g — 0)/hy > —2, we get

2.

h h
+g*2<h2< *9
1 1

and h = h+g. If (h+g)/h1 < 3, then h+ g = hy. If hy > 3, then

+ 2

eE(T’p) Z ~3h]_ _ 3h]_ Z 1
h+8 hi—g+9d

)

a contradiction. Hence hy =1 and h + g =h.
Recapitulating, we have shown that if h + g > 3hy, |g — 6| < 2h; and

eA(T;P)<min{h+g+2h1 h+o },

h+6 "h4+g-—2m

then h = h + g. Also, if h+ g = hy, |g — 6| < 2h; and

then h = h + g. Thus, as long as we have some h; such that 2h; > |g — §| and some T such that
exp(A(T,p)) is sufficiently small, we can find the value of h. As we wish to limit the amount of work
to evaluate S(T, p) (that is, keep T as small as possible), it is important to be able to have the smallest
possible bound on E(T,p). Notice that while our formula for A(T,p) is rather complicated, it is easy
to compute because the values of G(T') and H(T) can be easily tabulated for various values of T' in
advance.

In Table 1, we compare our error bound A(T,p) on |log L(1, x,) — S(T', p)| (given below (3.2)) with
Bach’s error bound A'(T,p) (given in (3.1) and in Table 3 of [1], with A and B taken from the third
and fourth column of that table). The ratio A(T,p)/A’(T,p) varies slowly (with p and T') near 0.78
so we conclude that our error bound is about 22% sharper than Bach’s error bound.

In order to test the effect of this improvement on the efficiency of our algorithm, we compared the
use of both bounds for the computation of the class numbers of the 157 987 primes = 1 mod 4 in the
interval [5000000,10000000]. For T"= 1000 and f = 10, in the case of our bound, our algorithm
determined the class number h(p) = 3 with Step 2b (see Section 1), from A = 3, by = 1 in 18169
cases, because (1.4) was satisfied. For these 18 169 cases this inequality was not satisfied with the use
of Bach’s error bound A’(T,p). Most of these cases were handled in the follow-up of Step 2b, namely
where a divisor hy of h is found, but this increased the CPU time. In the case of our bound, our
algorithm took 115 CPU seconds while 516 cases were left undetermined (those are treated with higher
values of T and f, see Section 5). In case of Bach’s bound, our algorithm took 149 CPU seconds, while
3070 cases were left undetermined. We conclude that the use of our error bound A(T,p) increases the
efficiency of our program with at least 20% compared with the use of Bach’s error bound.

4. FINDING A DIVISOR OF h

In this section we will explain how to find a divisor of the class number h when we have an expectation
as to what A is. In order to do this, we must first derive a technique for detecting whether or not a
given reduced ideal is principal.

12

P T A(T,p) A(T,p) A(T,p)/A(T,p)

9999999937 100 4.5704 3.5820 0.7837
500 1.3418 1.0476 0.7808

1000 0.8256 0.6450 0.7813

5000 0.2841 0.2224 0.7827

99999999977 100 4.9685 3.8766 0.7802
500 1.4596 1.1332 0.7764

1000 0.8983 0.6978 0.7768

5000 0.3094 0.2407 0.7779

199999999949 100 5.0884 3.9653 0.7793
500 1.4950 1.1590 0.7752

1000 0.9201 0.7136 0.7756

5000 0.3169 0.2462 0.7767

Table 1: Comparison of A'(T,p) and A(T,p).

We define, as before,
L= {bl(: (1))7 ba, .., bmfl}v

where (,, >t+ B+ 1 and (,,—1 <t+ B+ 1. Suppose a is any reduced ideal. We define
L:(Cl) = {al(: (Cl)), ag,..., Clm’—l}

where ;11 is obtained from a; by the continued fraction algorithm. Here, ¢/, > 2t+ B+1, (/. ; <
2t + B+ 1.

Lemma 4.1 If a is a reduced principal ideal and a = () with 1 < a < ¢, then if by & L(a), we have
€> a2,

Proof. We have a; = (¥})ay, where a; = a = (o) with 1 < @ < e. Since a is principal and reduced,
so are all the ideals in £L(a)

= a1 = bg, 02 =bgy1,. -, 01 = bpppr 2

for some k € Z*. If ¢ = ¥}a, we must have a; = b; = (¢) = (1). Since b; & L(a), it follows that
i>m'—1and

e>a¥ll , | =a¥, /i) > a2Sm Tl > a2 Byl s 022

m/—1

(W, <2B). =

m/—1

Now suppose that a is principal. Without loss of generality, a = (a) (1 < a < €). Suppose also

)
that a ¢ £. In this case we must have o > 2!. We can define k € Z (k > 2) by
2(k—1)t S a < 2kt.

Since
2(n71)t S €< 2nt

we get
2(n—k—1)t < 6/0{ < 2(n—k+1)t‘

If by & £(a), we see by Lemma 4.1 that €/a > 22¢; hence

ZA<(n—k+lt=>n—-k+1>2=k<n-1

13

Theorem 4.2 If j = [£], then b(2jt) € L(a).
Proof. Let b(2jt) = (¥;), where
U, < 2% Wy > 2%,

Consider ¥;/c.. We know that o = ¥, for some ¢ (we are assuming that a is principal and reduced)
and since]
2(k71)t <a< 2kt S 22Jt’

we see that '
U, <29 = ¢ <1= T /a=T,/T, > 1.

Also,
\Ill/a S 22jt/2(k71)t — 2(2j7k)t+t < 22t‘

Now ¥; = a¥’, and 1 < ¥/, < 22!; consequently,
a, = (¥y)ay = (Yia) = (V1) = b(251).
Also, since 1 < ¥/, < 2% we have a5 € L(a). a

We note that if 2|n, then k¥ = n — 2 means that k is even; thus,

k
j=lol=21=4¢-1<;,
2|~ 2

by Corollary 2.6. If k¥ < n — 2 then &k < n — 3; hence,

<1

n
2
and
T L PR
J= =3 .

<iq - <i =i

|

by Corollary 2.6. Thus, if we put B = {bi(= b(0)), b(2t), b(4¢),...,b(2it)}, we have the following
theorem.

Theorem 4.3 If a is any reduced ideal and a & L, then a is principal if and only if
BN L(a) #0.

Proof. Certainly, if a is not principal, then BN £(a) = (. If a is principal and a ¢ £, we have seen
already that b(2jt) € L(a) for some j such that 0 < j < 4. Hence, BN L(a) # 0. O

We now have our algorithm for principality testing.

Algorithm 4.4 (Determine whether or not a given reduced ideal a is principal.)

1. If a € L, then a is principal and the algorithm terminates.

2. Compute a1, az,... and check whether a; € B (¢ =1,2,...,m’ —1). (Note that when we need to
execute this algorithm, we usually have Ry < M/P; hence B has been computed previously in our

14

Algorithm 2.7.
3. If a, € B, then a is principal. If BN £(a) = @, then a is nonprincipal.

Suppose ¢ is a prime and ¢* || h+ g. We can produce an algorithm which often determines a
nontrivial divisor of A.

Algorithm 4.5 (Determine that h+ g # h or find a nontrivial divisor of h.)

1. Select a new ideal s from a stock S (to be described later) of reduced ideals.

2. Test if s is principal. If so, return to Step 1. If a reduced ideal t equivalent to sh+9 is not principal,
we know that h # h+ g and we terminate the algorithm. (Of course, if s"*9 is principal, this causes
us to suspect even more that h = h + g.)

3. If s(F+9)/4% is principal, go back to Step 1.

4. Compute the least value of 5(> 0) such that s(h+9)/4” ig not principal. Then ¢* #*! is a nontrivial
divisor of h.

Proof (of correctness). Clearly, if t is not principal, then h # h + g. If s"9 is principal, we let
w be the least positive integer such that 5% is principal (w > 1). We know that since s" is principal,
we must have w|h. Now w|(h +¢)/¢° ! and w [(h + g)/q°. Hence, q7||w, where ¢7||(h + g)/q° .
Since v > a — S+ 1 and a > 3, we have proved the correctness of Algorithm 4.5. a

The ideals in the stock S can be easily developed from a table of small odd primes R = {r{,r2,...,7},
r1 = 3,72 =5,.... (In the computations described in Section 5, we used n = 34.) For each r € R the
table should contain a list of all the quadratic residues a of r and the odd square root x of a mod r
which is between 0 and r. To create S for a given p, we need only find the value of r such that

p = amodr. Then s = [r, z+2‘/5} is an ideal of Q(/p) and since r < /p/2, s is reduced already.

Although, in principle, Algorithm 4.5 might not find a divisor of h (this would certainly be the case
ifh+g # h), in practice we found that it worked very well. Thus, if we know the primes that divide
h + g, we can often find a nontrivial divisor hy of h. If we are unsuccessful in this effort, we change
the value of g and try again. If this fails for all even |g| < 4, we put the prime p into a special set of
primes P and deal with them separately.

5. IMPLEMENTATION AND COMPUTATIONAL RESULTS

5.1 Implementation

We implemented our algorithm for computing h(p) for primes p = 1 mod 4 in Fortran 77 and we
tested and ran it on one processor of CWI’s SGI Origin 2000 computer system.! Here, we describe
the six different steps.

Step la (find an integral multiple M of Ry)

This step is fully described in [9]. First, an approximation S(T',p) of L(1, x,) is computed, for suitable
T, and then an approximation of a multiple of Ry using the analytic class number formula (1.2). Next,
with Algorithm 5.4 of [9], an integral multiple M of Rs is computed from this approximation.

Step 1b (compute Ry from M or prove that Ry > M/P, where P is some small prime)
This step is carried out with help of Algorithm 2.7 as given in Section 2, for suitable f. Some experi-
ments revealed that P = 11 was sufficient for our purpose.

Step 1c (given that Ry > M/11, find Ry)

1This system consists of 16 R10000/250 MHz processors and 16 R12000/300 MHz processors. In our runs, we did
not distinguish between the two types of processors so fluctuations of about 20% in CPU times in comparable jobs were
accepted as being caused by the two different types of processors.

15

This step is carried out with help of Algorithm 2.8 as given in Section 2.

Step 2a (compute an approximation h of h)

This is done with help of the approximation S(T,p) of log L(1, x,) as computed in Step la, and the
class number formula (1.2). We take & to be the nearest odd integer to vPexp(S(T,p))/(Rzlog4)
and § to be the difference \/pexp(S(T,p))/(Rzlog4) — h, with || < 1.

Step 2b (try to compute h from h)

This is the crucial step in our algorithm. We start to carry out this step, as described in Section 1,
with g = 0. If this does not lead to the conclusion that h = h+ g, we repeat Step 2b with g = 2.
The next tries, as long as we do not find the value of h, are done for, successively, g = —2, g = 4, and
g = —4. If unsuccessful at this stage, we turn to Step 2c.

In Step 2b, an odd divisor h; > 1 of A + g has to be found. This is done with the help of Algorithm
4.5, described in Section 4. This, in turn, needs to test whether a given reduced ideal is principal.
Algorithm 4.5, described in Section 4, does this job.

Step 2c (treat the remaining primes)

For these ‘stubborn’ cases, we resort to the PARI-GP package, namely, the function quadclassunit.
This is much slower than our algorithm, but the number of primes left to be treated here is so small
compared with those for which our algorithm could compute the class number, that the total CPU
time needed for Step 2c remains small compared with the CPU time needed for our algorithm.

5.2 Results

We computed h(p) for all the primes p = 1 mod 4 below the bound 2 x 10*!. We made 200 runs, each
covering an interval of length 10°. In each run we first applied our algorithm with T = 3000, f = 3.
For the 200 intervals which we checked, this was always successful for more than 99% of the primes and
consumed a corresponding portion of the total CPU time for this run. For the remaining primes, we
repeated our algorithm nine times with increasing values of T and f, namely with 7' = 3000+ j x 500,
f=34+5xj,forj=1,2,...,9. This further decreased the number of primes for which our algorithm
could not compute the class number. For example, the interval [199 x 10%, 200 x 10°] contains 19 217 740
primes which are = 1 mod 4. The numbers of primes left after each of the above ten steps was: 99309,
35016, 31396, 28690, 25193, 23366, 21808, 20566, 16060, and 3677, respectively. The CPU times for
these ten steps were: 63663, 590, 319, 362, 410, 415, 441, 468, 483, and 1116 seconds, respectively.
The 3677 primes left after the tenth step were treated with the PARI-GP package and this required
2650 CPU seconds.

The total CPU-time per run varied between 10 CPU hours for the 25423491 primes which are
= 1 mod 4 in the interval [1,10°] and 20 CPU hours for the 19217 740 primes which are = 1 mod 4 in
the interval [199 x 10,200 x 10°]. Total CPU time was about 3000 CPU hours. Usually, we executed
four runs in parallel on four processors of CWI’s Origin 2000 system. The number of primes treated
in Step 2c with the PARI-GP function quadclassunit was about 2000 for the (first) interval [1, 107]
and about 3700 for the (last) interval [199 x 109,200 x 10°]. The CPU times for these primes varied
between 500 and 2700 CPU seconds. Total CPU time with PARI-GP for Step 2c was about 120 CPU
hours. For the last interval [199 x 10°,200 x 10°] the average CPU time per prime for the primes
treated in Steps 1la—2b was 3.5 msec. and the average CPU time per prime treated in Step 2c¢ (with
PARI-GP) was 0.72 sec. (slower by a factor of about 200).

Let

ma1(x) = #{p <z | p=1mod 4, p prime}

and
Ta1n(x) = #{p < z | p=1mod 4, p prime, h(p) = n}.

For the class numbers h(p) < 29, in Table 2 we compare their frequencies of occurrence with those

16

z m4,1(2) () r3() r5() r7(z) ro(z) ru(z)
109 25423491 1.00976 0.95830 1.00239 1.00646 0.93604 1.00508

2 x 10° 49109660 1.00865 0.96285 1.00125 1.00561 0.94171 1.00521
5 x 10° 117474981 1.00739 0.96765 1.00110 1.00501 0.94989 1.00530
1010 227523275 1.00654 0.97103 1.00108 1.00426 0.95473 1.00472

2 x 1010 441101890 1.00578 0.97417 1.00128 1.00371 0.95981 1.00415
5 x 1010 1059822165 1.00494 0.97768 1.00128 1.00317 0.96569 1.00363
1011 2059020280 1.00437 0.98001 1.00139 1.00319 0.96930 1.00303

2 x 101 4003548492 1.00387 0.98214 1.00143 1.00289 0.97265 1.00306

r13(7) T15(7) ri7(z) r19(7) r21(z) r23(z) ro5(z) r27(7) T29(7)

1.00583 0.95228 1.00483 1.01174 0.95320 1.00873 0.99246 0.92706 1.01402
1.00835 0.95546 1.00647 1.01194 0.95647 1.00717 0.99228 0.93598 1.01220
1.00554 0.96120 1.00602 1.00765 0.96160 1.00750 0.99597 0.94677 1.01042
1.00515 0.96590 1.00650 1.00676 0.96732 1.00639 0.99816 0.95184 1.01074
1.00503 0.96923 1.00535 1.00444 0.97047 1.00575 0.99828 0.95707 1.00800
1.00420 0.97349 1.00465 1.00396 0.97573 1.00488 0.99909 0.96238 1.00642
1.00411 0.97681 1.00434 1.00410 0.97814 1.00506 0.99937 0.96578 1.00434
1.00362 0.97972 1.00368 1.00382 0.98074 1.00403 1.00019 0.96932 1.00348

Table 2: Comparison of class number frequencies with the Cohen-Lenstra heuristics.

‘predicted’ by the Cohen-Lenstra heuristics, namely, by listing the values of

7T4717h($) Cw(h)
7T4,1($) / h ’

71'4,1(.’17) and rp(x):=

for various choices of z. The ratios ry(x) seem to tend to 1 with growing z, so Table 2 provides
numerical support for the Cohen-Lenstra heuristics. Notice that for h = 1 and for h prime, the
frequencies 74,15 (2) /74,1 (x) seem to tend to their Cohen-Lenstra limit Cw(h)/h from above, whereas
for composite values of h, this pattern is reversed. Moreover, the speed of convergence is higher for
h =1 and h prime than for composite h.

Together with the class numbers, we computed the function H(z). Table 3 tabulates H(z) for
various values of z, together with 8 x H(z)/z, which should tend to 1, according to Hooley’s conjecture.
Figure 1 plots the function 8 x H(z)/z for x =i x 10%,3 = 1,2,...,200. The scattered points show
the ‘local contributions’ to this function, namely the values

8H(i % 10%) — H((i — 1) * 10°)
109

, fori=1,...,200.

Table 3 and Figure 1 confirm that the function 8 x H(z)/z increases on the interval where we have
computed it. The majority of the local contributions lie above the ‘average’ 8 x H(z)/z, and Figure
1 does not give any clue that this ‘behaviour’ would change after our bound 2 x 10'!. Figure 1 also
illustrates that if the function 8 x H(z)/x converges to 1, it converges extremely slowly.

5.3 Examples
Example 1 We take p = 97843343893 as in [9] with 7" = 1000 and f = 10. Step la finds
S(T,p) = 0.3765342 and M = 329944.5389420387 for the integral multiple of Ry.2

2The value of kR2 reported in [9] is three times the value given here, because of a mistake HtR made in [9] in the
programming of the Kronecker symbol. This is explained and corrected in [10]. The consequence of this mistake is that

x H(z) 8 x H(x)/x
10° 101284007 0.81027
2 x10% 203601670 0.81441
5x10% 511808671 0.81889
100 1027420829 0.82194
2 x 1019 2062604790 0.82504
5x 10 5175931981 0.82815
10t 10386588068 0.83093
2 x 1011 20841205517 0.83365

Table 3: Some values of H(z) and 8 x H(z)/x.

0.84

0.83 1

082+ °

081+ *

0.8 1

5e+10

le+11

1.5e+11

2e+11

Figure 1: Plot of 8 x H(z)/z and its local contributions

for 2 =1ix10°i=1,2,...,200

17

18

In Step 1b, Algorithm 2.7 is carried out, i.e., first the list £ is computed. In step 2 of Algo-
rithm 2.7, we did not find a match of b(2it) neither of b(2it) with some element of £, for i =
1,2,...,[(K + 2B +1)/2t], so this shows that Ry > K with K = M/11 = 29994.9580856399.
In Step lc, Algorithm 2.8 is carried out, i.e., it is verified that b(M/p) # by, for p = 3,5,7. It follows
that

Ry = R/log(2) = M = 329944.5389420387.

In Step 2a, we compute \/pexp(S(T,p))/(Rzlog4) = 0.9965428, so that h = 1 and § = —0.0034572.
In Step 2b, with g = 0, for the function A(T, m) described in Section 3, we find that A(1000,p) =
0.6972602, so that exp(A(1000,p)) = 2.008243. With h; = 1, we have 3k, /(h + §) = 3.010407 so that
exp(A(T,p)) < 3h1/(h + §) and we conclude that 7(97 843343893) = h = 1.

Example 2 We take p = 990000 388 129 with 7" = 1000 and f = 10.
Step 1la finds S(T,p) = 1.895771 and M = 4729385.900492189.
In Step 1b, Algorithm 2.7 computes the list £, and no match is found of b(2it) nor of b(2it) with some
element in this list, for s = 1,2,..., [(K + 2B + 1)/2t], so this shows that Ry > M/11.
In Step 1c it is verified that b(M/p) # by for p = 3,7, but b(M/5) = by and b(M/25) # by. It follows
that

Ry = R/log(2) = M/5 = 945877.1800984377.

Step 2a computes /pexp(S(T,p))/(Rzlog4) = 5.0518490, so that h =5 and § = 0.0518490.
In Step 2b, with g = 0, we find exp(A(1000,p)) = 2.117520. For hy =1, h+ g > 3hy and

-) -
min AF9H2Mm _ ht0 = 1.385631,

so no conclusion for A is possible and we try to find a divisor of h with Algorithm 4.5. We try the divi-
sor ¢ = 5 of h+ g (of course). For the first ideal s = [6/2, (14 ,/p)/2] from the stock S, Algorithm 4.4
finds that it is not principal. Step 2 of Algorithm 4.5 now finds a reduced ideal t = [486/2, (61+./p)/2]

which is equivalent to sh*t9 = §° This ideal t is found to be principal with help of Algorithm 4.4.
For 5 =1, s(h+9)/4” — g is not principal, as we already know, and we conclude that ¢®#*! =5 is a
nontrivial divisor of A.

Now we repeat Step 2b with k; = 5 (and still g = 0). We have A+ g = hy = 5 and 3hy/(h + 6) =
2.969210, so that exp(A(1000,p)) < 3hy/(h + &) and we conclude that h(990000 388129) = h = 5.

Example 3 p = 199999913 213, the largest prime < 2 x 10" for which our algorithm could compute
the class number, with 7' = 7500, f = 48.

Step 1la finds S(T,p) = —0.4557187 and M = 211269.9174290152.

In Step 1b, Algorithm 2.7 then finds that

Ry = R/1og(2) = 454.3439084494522.

In Step 2a, we compute /p exp(S(T,p))/(Rzlog4) = 450.1514159, so that h = 451 and § =
—0.80966325.)
In Step 2b, with g = 0, we find exp(A(7500,p)) = 1.209404. For hy = 1, h + g > 3h; and

h+6 "h+g-2m
for all the primes which are = 5 mod 8, our computed value of kR in [9] is too large by a factor of 3. Fortunately, this

does not affect the result of [9], namely that the Ankeny-Artin-Chowla conjecture is true for all the primes p = 1 mod 4
below 10 since for the verification of this conjecture any multiple of Ra will suffice, as long as this does not exceed 8p.

min{h+g+2h1 h+d } — 1.002564,

19

so no conclusion for A is possible. Therefore, we try to find a divisor of A with Algorithm 4.5. We start
with ¢ = 11, the smallest prime divisor of h+g = 451. For the first ideal s = [14/2, (3 + V/P)/2] in the
stock S, Algorithm 4.4 finds that it is not principal, so Step 2 of Algorithm 4.5 now finds a reduced
ideal t = [11738/2, (439771 + \/p)/2] which is equivalent to "9 = %51, With help of Algorithm 4.4,
this ideal is found to be nonprincipal, so we conclude that h # h+ g.

Step 2b is repeated now with g = —2 so iz—i—g = 449. With hy =1, (1.4) is not satisfied, so no conclu-
sion for h can be drawn. Therefore, we try to find a divisor of h. Since 449 is prime, we try ¢ = 449
in Algorithm 4.5. For the first ideal s = [14/2, (3 +/p)/2] in the stock S, Algorithm 4.4 finds that it
is not principal, so Step 2 of Algorithm 4.5 now finds a reduced ideal t = [380938/2, (367115 + ,/p)/2]
which is equivalent to sht9 = 449 With help of Algorithm 4.4, this ideal is found to be principal. For
B=1, s(h+9)/4” = g is not principal, as we already know, and we may conclude that ¢® #*! = 449 is
a nontrivial divisor of h.

Now we repeat Step 2b with hy = 449 (and still g = —2). We have h+g = hy = 449 and 3h~1/(}~z—|—5) =
2.992068, so that exp(A(7500,p)) < 3h1/(h+d) and we conclude that h(199999 913 213) = h+g = 449.

Example 4 p = 199999649533 (the largest prime < 2 x 10! for which our algorithm could not
compute the class number) with 7' = 7500, f = 48.

Step 1a finds S(T,p) = —0.3602558 and M = 228674.1622363300.

In Step 1b, Algorithm 2.7 then finds that

Ry = R/log(2) = 47.12987680055535.

In Step 2a, we compute /p exp(S(T,p))/(Rzlog4) = 4774.2565225, so that h = 4775 and § =
—0.74347755. ~
In Step 2b, with g = 0, we find exp(A(7500,p)) = 1.209404. For hy = 1, h + g > 3h; and

min { htgt2hm h+o } — 1.000263,

so no conclusion for h is possible. Therefore, we try to find a divisor of A with Algorithm 4.5. We start
with ¢ = 5, the smallest prime divisor of h+ g = 4775. For the first ideal 5 = [6/2, (1 +,/p)/2] in the
stock S, Algorithm 4.4 finds that it is not principal, so Step 2 of Algorithm 4.5 now finds a reduced
ideal t = [60238/2, (430595 + /p) /2] which is equivalent to s"t9 = 4775, With help of Algorithm 4.4,
this ideal is found to be nonprincipal, so we conclude that h # h+ g.

Step 2b is repeated now with, successively, g = —2,2, —4,4, but similarly as for g = 0, this leads to
the conclusion that h #£ 4773, 4777, 4771, 4779.

Step 2c now resorts to PARI-GP’s function quadclassunit which returns /(199999 649 533) = 4785.

20

10.

11.

References

E. Bach, Improved approximations for Euler products, Number Theory, CMS Conference Pro-
ceedings, vol. 15, Amer. Math. Soc., Providence, RI, 1995, 13-28.

H. Cohen and H.W. Lenstra, Jr., Heuristics on class groups, Number Theory, Lecture Notes in
Mathematics 1052, Springer, Berlin, 1984, 26-36.

H. Cohen and H.W. Lenstra, Jr., Heuristics on class groups of number fields, Number Theory,
Lecture Notes in Mathematics 1068, Springer, Berlin, 1984, pp. 33-62.

C. Hooley, On the Pellian equation and the class number of indefinite binary quadratic forms, J.
reine angew. Math., 353(1984), 98-131.

M.J. Jacobson, Jr., Experimental results on class groups of real quadratic fields (extended ab-
stract), Algorithmic Number Theory - ANTS-III (Portland, Oregon), Lecture Notes in Computer
Science 1423, Springer-Verlag, Berlin, 1998, pp. 463-474.

M.J. Jacobson, Jr., R.F. Lukes and H.C. Williams, An investigation of bounds for the regulator
of quadratic fields, Experimental Math. 4(1995), 211-225.

M.J. Jacobson, Jr. and H.C. Williams, New quadratic polynomials with high densities of prime
values, Math. Comp., to appear.

H.W. Lenstra, Jr., On the calculation of regulators and class numbers of quadratic fields, London
Math. Soc. Lecture Note Series, 56(1982), 123-150.

A.J. van der Poorten, H. te Riele and H.C. Williams, Computer verification of the Ankeny-Artin-
Chowla conjecture for all primes less than 100000000000, Math. Comp, 70(2001), 1311-1328.

H. te Riele and H.C. Williams, Corrigenda and addition to: “Computer verification of the Ankeny-
Artin-Chowla conjecture for all primes less than 100 000 000 000”, to appear in Math. Comp.

A.J. Stephens and H.C. Williams, Computation of real quadratic fields with class number one,
Math. Comp. 51(1988), 809-824.

