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Abstract

A semi-presentation for a group G is a set of relations which charac-
terises a set of generators of G up to automorphism. We discuss some
techniques for finding semi-presentations and illustrate them by exhibit-
ing semi-presentations on standard generators for the 26 sporadic simple
groups and their automorphism groups. We then show how these semi-
presentations were used to check the data in the World Wide Web Atlas
of Group Representations.

1 Introduction and motivation

Given two groups G and H which are known to be isomorphic, it is often useful
to have an explicit isomorphism θ : G → H between them. For example, if G
is a small degree permutation group and H is a group of matrices of very large
dimension, we can use θ to turn difficult calculations in H into easy calculations
in G. As another example, suppose G and H are groups of matrices. We can
distinguish many conjugacy classes in G by looking at element orders and traces
in G, but it is often the case that there are non-conjugate elements t, u ∈ G
satisfying o(t) = o(u) and tr(t) = tr(u). If, however, tr(θ(t)) 6= tr(θ(u)) then
we know t and u cannot be G-conjugate. We can therefore distinguish more
conjugacy classes than we initially thought.

For this purpose, [Wilson, 1996] introduced the concept of standard gener-
ators for a group G, i.e. an n-tuple (x1, . . . xn) of generators which could be
specified up to group automorphisms by properties Rj(x1, . . . xn) (1 ≤ j ≤ m)
independent of the representation. Typically, the properties Rj would include
the conjugacy classes of each of the xi, and the orders of certain short words in
the xi.

Example 1.1. Standard generators of the Mathieu group G = M24 are ele-
ments x and y where x is in class 2B, y is in class 3A, xy has order 23 and
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xyxyxy2xyxy2xy2 has order 4. (We will follow Atlas [Conway et al., 1985]
conventions for naming groups and conjugacy classes throughout.) Thus if
x′, y′ are elements of H ∼= M24 with these properties, there is an isomorphism
θ : G → H induced by x 7→ x′, y 7→ y′. If we write elements of G as words
in x and y, then the corresponding element in H is the same word with primed
letters replacing unprimed ones.

For each group G with standard generators defined, the properties Rj have
been chosen so that in any group of the right isomorphism type, it is relatively
easy to find an n-tuple of standard generators. In this paper, we will consider
the inverse problem of checking whether a given n-tuple of elements of G forms
an n-tuple of standard generators of G. Note that this is not a trivial problem in
general: the properties Rj specify the conjugacy classes of each of the elements
of the n-tuple, and in some representations it may be difficult to tell apart
conjugacy classes containing elements of the same order. We can solve this
problem by providing characterisations of standard generators of G which only
specify the orders of group elements. We will call such characterisations semi-
presentations, and we will give a formal definition in section 2.

Our main motivation for considering this problem is so that we can check
data integrity in the World Wide Web Atlas of Group Representations [Wilson et al., 2004,
Wilson, 1998]. The Web Atlas includes explicit matrices for standard genera-
tors of hundreds of different groups in thousands of representations. With a
project of this size, it is very likely that mistakes will occur, and we wanted
an automated way of checking the representations in the Atlas. We do this by
converting each semi-presentation to a black box algorithm which can deter-
mine whether or not a pair of elements of G is a pair of standard generators:
this is straightforward. This black box algorithm can be applied to each repre-
sentation of G in the Web Atlas to check whether the correct generators have
been supplied. Once the semi-presentation has been found and converted to a
black box algorithm, a computer can easily be programmed to apply it to all the
representations for a given group and to report any representations that failed.

The main part of this paper is a collection of semi-presentations for the
sporadic simple groups (section 4) and their automorphism groups (section 5)
on standard generators. (These semi-presentations can now be found in the
Web Atlas in the form of black box algorithms.) In section 6 we summarise the
results of applying these semi-presentations to the representations given in the
Web Atlas, and show how some errors were uncovered.

2 Semi-presentations

Before giving a formal definition of semi-presentations, we will give an example.
Consider the simple Tits group G = 2F4(2)′ of order 17971200. A pair of
elements x, y ∈ G is a pair of standard generators if x is in class 2A, y has order
3 and xy has order 13. Call a pair (x, y) allowable if o(x) = 2, o(y) = 3 and
o(xy) = 13. Not all allowable pairs are pairs of standard generators, because x
could be an element of order 2 which is not in class 2A. To prove that a given
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allowable pair is actually a pair of standard generators, we use the following
facts about G (which can be derived from the character table and power maps
of G [Conway et al., 1985]):

1. The group G has exactly two conjugacy classes of elements of order 2.

2. If a, b ∈ G are both in class 2B, then ab must have order 1, 2, 3, 4, 5, 6,
8, 12 or 13.

3. If c is an element of order 6 or 12 in G, then c powers up to an involution
in class 2B.

Let x and y be standard generators of G. We can check (for example,
by using the 26-dimensional representation of G over GF(2)) that the element
z = xy2xyxy has order 12, so by fact 3, z6 is in class 2B. We can also check
that xz6 has order 10, so by fact 2, x is not in class 2B, and by fact 1, it must
be in class 2A.

Thus we have found some conditions on the orders of words in x, y ∈ G
which prove that x and y are standard generators. These conditions can be
tested in any representation of G, regardless of whether we can distinguish con-
jugacy classes. These conditions form a semi-presentation for G on its standard
generators, and we denote them with double angled brackets 〈〈 〉〉. In our case,
we write the semi-presentation as:

〈〈x, y, (z) | o(x) = 2, o(y) = 3, o(xy) = 13,

o(z) = 12, o(xz6) = 10; z := xy2xyxy〉〉

which should be thought of as a more readable form of:

〈〈x, y | o(x) = 2, o(y) = 3, o(xy) = 13,

o(xy2xyxy) = 12, o(x(xy2xyxy)6) = 10〉〉.

The formal definition is as follows:

Definition 2.1. A semi-presentation for G on an n-tuple (g1, . . . gn) of gener-
ators of G is a finite k-tuple of words wi(x1, . . . xn), 1 ≤ i ≤ k together with a
finite k-tuple of positive integers oi, 1 ≤ i ≤ k such that:

1. o(wi(g1, . . . gn)) = oi for 1 ≤ i ≤ k; and

2. for each n-tuple h = (h1, . . . hn) of elements of G satisfying

o(wi(h1, . . . hn)) = oi (1 ≤ i ≤ k)

there is a group automorphism θ : G→ G such that

θ(hj) = gj (1 ≤ j ≤ n)

(the universality condition).

3



We will be fairly informal in our descriptions of semi-presentations, but it
will always be clear how to convert a description into a formal semi-presentation
as defined above. If P is a semi-presentation for G, we write G ≈ P .

Our choice of the term ‘semi-presentation’ comes from the fact that a presen-
tation for G on a set of generators gives a semi-presentation very easily, provided
G is simple. Suppose the presentation is:

G ∼= 〈x1, . . . xn | pi(x1, . . . xn) = 1, 1 ≤ i ≤ k〉 (1)

Firstly, we rewrite the presentation in a more helpful format. For 1 ≤ i ≤ k,
choose a word wi(x1, . . . xn) as short as possible such that pi is some power of
wi (possibly pi = wi). Let oi be the actual order of wi(x1, . . . xn) in G; if the
presentation has been written irredundantly, we will have pi = woii . Then we
certainly have:

G ∼= 〈x1, . . . xn |wi(x1, . . . xn)oi = 1, 1 ≤ i ≤ k〉 (2)

Lemma 2.2. If G is simple and oj 6= 1 for some 1 ≤ j ≤ k, then we have:

G ≈ 〈〈x1, . . . xn | o(wi(x1, . . . xn)) = oi, 1 ≤ i ≤ k〉〉. (3)

Proof. If Y = (y1, . . . yn) is an n-tuple of elements of G satisfying the conditions

o(wi(y1, . . . yn)) = oi (1 ≤ i ≤ k),

then by equation (2), the map

θ : G→ 〈Y 〉, xi 7→ yi (1 ≤ i ≤ k)

is a surjective homomorphism. Since o(wj(y1, . . . yn)) 6= 1, 〈Y 〉 is not the trivial
group, and since G is simple, θ must be an isomorphism. Thus the relations in
equation (3) specify the set of generators up to automorphism.

Semi-presentations are in general much easier to find than presentations, but
they provide less information.

Example 2.3. The Web Atlas [Wilson et al., 2004] gives the following presen-
tation for L2(7) on its standard generators:

L2(7) ' 〈x, y |x2 = y3 = (xy)7 = [x, y]4 = 1〉

This leads to the following semi-presentation on the same generators:

L2(7) ≈ 〈〈x, y | o(x) = 2, o(y) = 3, o(xy) = 7, o([x, y]) = 4〉〉.

In fact, we can drop the last relation:

〈〈x, y | o(x) = 2, o(y) = 3, o(xy) = 7〉〉. (4)

However, (4) is also a valid semi-presentation for L2(8) on its standard genera-
tors, showing that two non-isomorphic groups can have the same semi-presentation
(in contrast to the situation with presentations). Observe that if we turn (4) into
a presentation:

〈x, y |x2 = y3 = (xy)7 = 1〉
then we obtain an infinite group.
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2.1 The standard relations

We will fix some notation. Let G be a group, and let x and y be standard
generators for G (for simpler notation, we will assume n = 2 from now on).
We seek a semi-presentation for G on x and y. The properties Rj which define
standard generators for G give the conjugacy classes of x and y: call them C1 and
C2. Moreover, they give the orders o1, . . . ot of various words w1(x, y), . . . wt(x, y)
in x and y. In all cases, we fix:

w1(x, y) = x,

w2(x, y) = y,

w3(x, y) = xy.

although there may be some extra words. These words wi and orders oi give us
a good start for a semi-presentation for G on x and y. We call them the standard
relations, and in a semi-presentation, they will be abbreviated to ‘std’.

Example 2.4. From the Web Atlas or Table 2 on page 11, standard generators
of the Fischer group Fi22 are x and y where x is in class 2A, y has order 13,
xy has order 11 and (xy)3xy2xy(xy2)2 has order 12. In our notation we have
C1 = 2A, C2 = 13A, o1 = 2, o2 = 3, o3 = 11, o4 = 12 and

w4(x, y) = (xy)3xy2xy(xy2)2.

The semi-presentation that we give in section 4.13 is:

Fi22 ≈ 〈〈x, y, (z) | std, o(z) = 30, o(xz15) = 3; z := xyxy2xy2〉〉.

This is an abbreviation for:

Fi22 ≈ 〈〈x, y, (z) | o(x) = 2, o(y) = 13, o(xy) = 11,

o((xy)3xy2xy(xy2)2) = 12, o(z) = 30,

o(xz15) = 3; z := xyxy2xy2〉〉.

Once we have the standard relations, to complete the semi-presentation we
only need to check x ∈ C1 and y ∈ C2. If G has unique conjugacy classes of
elements of orders o1 and o2 then the standard relations alone give a semi-
presentation. Otherwise, we have some work to do: we either need to prove
that the standard relations are sufficient to give a semi-presentation, or we need
to find some extra relations.

2.2 Some notation for pairs

Let a, b, c be positive integers. An (a, b)-pair is a pair (x, y) of elements of G
such that x has order a and y has order b. An (a, b, c)-pair is an (a, b)-pair (x, y)
with the additional property that xy has order c. We call an (o1, o2, o3)-pair an
allowable pair.

We also use this notation to allow specific conjugacy classes as well as element
orders. For instance, a (2A, 13, 11)-pair in G = Fi22 is a pair (x, y) of elements
of G such that x is in conjugacy class 2A, y has order 13 and xy has order 11.
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2.3 Structure constants

In most of what follows, we will assume that it is practical to perform simple
computations with the group G and that the character table and power maps
of G are known. In particular, this means that the (symmetrised) structure
constants:

ξ(Ci, Cj , Ck) =
|G|

|CG(gi)||CG(gj)||CG(gk)|
∑

χ∈Irr(G)

χ(gi)χ(gj)χ(gk)
χ(1)

(5)

can be calculated for any triple (Ci, Cj , Ck) of G-conjugacy classes with repre-
sentatives gi, gj and gk respectively. These numbers are important because of
the well-known formula:

ξ(Ci, Cj , Ck) =
∑ 1
|CG(〈gi, gj , gk〉)|

(6)

where the sum is over conjugacy classes of triples gi, gj , gk from classes Ci, Cj ,
Ck respectively satisfying gigjgk = 1. See [James and Liebeck, 1993, chapter 28]
and [Isaacs, 1994, problem (3.9)].

3 Identifying conjugacy classes

As we have remarked, the standard relations establish all the properties required
for the pair (x, y) to be standard generators except for their conjugacy classes.
In this section, we will describe some techniques we can use to prove that x and
y are in the correct conjugacy classes.

3.1 Fingerprinting

This is the method of choice if G is fairly small because it leads to very short
semi-presentations. For larger groups, it usually requires too much computer
time or memory, and we are forced to use other methods. The basic idea is to
find an invariant for each automorphism class of pairs (x, y) and show that there
is a particular value of this invariant which is only taken by standard generators.
This invariant then gives one or more relations which are added to the set of
standard relations to give a semi-presentation for G on its standard generators.

In some cases, fingerprinting was carried out when standard generators for
G were first being defined: [Wilson, 1996] illustrates the case G = J1. The
fingerprinting that we carry out will usually involve many more cases, as we
may have to consider all the conjugacy classes containing elements of a given
order.

Let F2 be a free group with free generators t and u. Given elements x, y of
G, there is a homomorphism φx,y : F2 → G given by t 7→ x, u 7→ y. Fix an
n-tuple W = (w1, . . . wn) of elements of F2. We define the W -fingerprint (or
simply fingerprint) of the pair (x, y) to be the n-tuple of integers (fi)ni=1 where
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C2 o(xy2) o(xyxy2) o([x, y]) o(xyxyxy2) o(xyxy2xy3)
4A 5 11 6 11 5
4A 6 8 5 8 5
4B 5 11 5 11 6
4B 6 7 4 7 5
4B 4 8 6 6 6
4B 6 7 4 7 6

Table 1: W -fingerprints for allowable pairs in M22

fi = o(φx,y(wi)). Clearly, automorphic pairs give rise to the same fingerprint,
so we can talk about the fingerprint of an automorphism class of pairs.

If we wish to fingerprint the classes of allowable pairs (an important special
case), we proceed as follows. Let C1 and C2 be conjugacy classes containing
elements of orders o1 and o2 respectively.

1. Find representatives a, b in conjugacy classes C1 and C2 respectively.

2. Choose random elements g ∈ G until o(abg) = o3.

3. Calculate the W -fingerprint of (a, bg). If it has been seen before, go back
to step 2.

4. Add the W -fingerprint to the list of fingerprints. If we have seen the right
number of fingerprints (see below), then stop. Otherwise go back to step
2.

We do this for all possible choices of C1 and C2. If the procedure appears not to
be terminating, it may mean that the set W is too small. In this case, we need
to start again with a larger set.

Example 3.1. Let G = M22. In this case, the allowable pairs are the (2, 4, 11)-
pairs. Let:

W = (tu2, tutu2, [t, u], tututu2, tutu2tu3).

Then the 6 W -fingerprints for allowable pairs are given in Table 1.

In each case, we need to knowK, the number ofW -fingerprints for (C1, C2, o3)-
pairs (when W is sufficiently large). This information is partly provided by ξ:
the sum of the (C1, C2, C3) symmetrised structure constants (where the sum is
over conjugacy classes C3 of elements of order o3). There is a positive con-
tribution to ξ for each conjugacy class of allowable pairs: if an allowable pair
generates a subgroup which has centralizer of order c in G, then this class con-
tributes 1/c to the value of ξ: see equation (6). Note however that automorphic
pairs always have the same W -fingerprint, even though the sum for ξ counts
non-conjugate automorphic pairs separately. There are additional discrepancies
if there are two allowable pairs which generate subgroups H1, H2 which are
isomorphic but non-conjugate. In this case, there may be only one fingerprint,
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even though the two allowable pairs are not automorphic in G. We sometimes
have to examine structure constants in subgroups of G so that we can be sure
of the correct value of K.

Once we have a complete set of fingerprints for all allowable pairs, we pick
out a subset of W which characterises the fingerprint corresponding to the
standard generators. This, together with the standard relations, gives a semi-
presentation. Occasionally, one of the standard relations is redundant because
of the extra conditions we supply.

We make the obvious changes to the method if we wish to find fingerprints of
another type (say, if there are too many fingerprints of allowable pairs to find).

Example 3.2. Let G = Co1, considered in section 4.12. We are able to find
conditions that establish x ∈ 2B quite easily, using the method in section 3.2
below. To find conditions showing y ∈ 3C, we could try fingerprinting the
(2, 3, 40)-pairs, but there are a lot of them, and they are hard to analyse because
not all of them generate G. Instead, we find a 2A-element t and a (2A, 3, 36)
pair (t, yg) and find fingerprints for all such. This enables us to find conditions
which prove that y is a 3C-element.

3.2 Involutions

The following simple lemma is extremely useful for identifying conjugacy classes
of involutions.

Lemma 3.3. If a, b ∈ G are involutions such that ab has odd order, then a is
G-conjugate to b.

The typical application of Lemma 3.3 is to establish the conjugacy class of
an involution a. We find a reference involution b which is known to be in class C
(usually by powering up an element of suitable order), and then find a conjugate
bg of b such that abg has odd order. Then by the lemma, a ∈ C. This turns
out to be quite useful, as we frequently have o1 = 2. Indeed, for the sporadic
groups, the only exception is G = Co3.

Example 3.4. For the Harada-Norton group G = HN considered in section 4.22
below, we can find a condition that checks that x is in class 2A as follows. All
elements of order 22 power up to class 2A, and we know by the standard relations
that xy has order 22. Thus we can take (xy)11 as our reference involution.
Now we search for z ∈ G such that x[(xy)11]z has odd order; we can take
z = xy2xyxyxyxy2 (which gives order 5).

3.3 Elements of even order

If we are fortunate, we may be able to distinguish classes of even order by
powering them up to involutions and using Lemma 3.3. This does not work if
the classes power up to the same conjugacy class of involutions, but we may be
able to use their centralizers to distinguish them.
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Suppose a is an element of order 2n, C and C′ are conjugacy classes of
elements of order 2n, and p is a prime which divides |CG(C)| but not |CG(C′)|.
Suppose further that we know that a is either in C or C′, and we wish to prove
that it is in C. We will try to find an element b of order divisible by p which
commutes with a; because of the centralizer orders, this will show that a is in
C.

Our strategy is:

1. Find words in standard generators which generate the involution central-
izer CG(t), t = an (or a sufficiently large subgroup thereof).

2. Find words in the generators of CG(t) which commute with a, generating
a sufficiently large subgroup of CG(a).

3. Find an element in CG(a) with order divisible by p. By the centralizer
orders, we must have that a is in C.

This strategy is feasible because it is easy to find elements in an involution
centralizer:

Lemma 3.5 ([Bray, 2000]). Let t, g ∈ G, with t an involution. Let n be the
order of the element t.tg. Define:

z =

{
(t.tg)n/2 if n is even
g(t.tg)(n−1)/2 if n is odd

(7)

Then z commutes with t.

Usually, a few iterations of this lemma with several elements g ∈ G gives a
set of generators for CG(t).

3.4 Zero-valued structure constants

Sometimes structure constants can be used to establish the conjugacy class of
an element. A typical case is when we have classes C1, C2, C′2 and C3 where C2
and C′2 contain elements of the same order and:

ξ(C1, C2, C3) > 0
ξ(C1, C′2, C3) = 0

Thus if x ∈ C1 and y ∈ C2 ∪ C′2, we can establish that y ∈ C2 if we can find a
conjugate yg of y such that xyg ∈ C3.

This can be seen as a special case of the fingerprinting method described in
section 3.1.

Example 3.6. The group G = Fi23 treated in section 4.14 has standard gener-
ators x ∈ 2B and y ∈ 3D such that xy has order 28. Suppose we have checked
that all the orders are correct, and that we are also able to establish that x is
in class 2B Then because ξG(2B, 3A, 28) = 0, we know that y cannot be in 3A.
For the same reason, y cannot be in 3B or 3C. Thus y must be in 3D, and no
further checking is needed.
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4 The sporadic simple groups

In this section, we will give semi-presentations for the 26 sporadic simple groups
on their standard generators. In each case, we will omit the standard relations
(abbreviated std), but they can easily be extracted from Table 2 which gives
the definitions of standard generators [Wilson et al., 2004, Wilson, 1996]. The
full semi-presentations can be found in the Web Atlas in the form of black box
algorithms.

The computer programs we used to find and check these semi-presentations
were written in GAP [GAP, 2004] except for those involving the Monster group
M, which were written in C [Kernighan and Ritchie, 1988]. These programs can
be found on the first author’s website (see section 7).

4.1 Mathieu group M11

There are unique conjugacy classes of elements of orders 2 and 4, so the standard
relations suffice to give a semi-presentation. We have:

M11 ≈ 〈〈x, y | std〉〉.

4.2 Mathieu group M12

There are 4 autormorphism classes of (2, 3, 11)-pairs, only one of which is a
(2B, 3B, 11)-pair. We have:

M12 ≈ 〈〈x, y | std, o(xyxyxy2) = 6〉〉.

4.3 Mathieu group M22

We need to show that y is in class 4A rather than 4B. There are 2 automor-
phism classes of (2, 4A, 11)-pairs and 4 classes of (2, 4B, 11)-pairs. We found
fingerprints for all of these in Example 3.1. We have:

M22 ≈ 〈〈x, y | std, o([x, y]) = 6〉〉.

4.4 Mathieu group M23

There are unique conjugacy classes of elements of orders 2 and 4, so the standard
relations suffice to give a semi-presentation. We have:

M23 ≈ 〈〈x, y | std〉〉.

4.5 Mathieu group M24

The (2B, 3B, 23) structure constants are entirely accounted for by the subgroup
L2(23), so we only have one fingerprint for this class of pairs. There are 2
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G C1 C2 o3 w4 o4

M11 2A 4A 11 xyxy2xy3 5
M12 2B 3B 11
M22 2A 4A 11 xyxy2 11
M23 2A 4A 23 (xy)3xy2xy(xy2)2 8
M24 2B 3A 23 (xy)2xy2xy(xy2)2 4
J1 2A 3A 7 xyxy2 19
J2 2B 3B 7 xyxy2 12
J3 2A 3A 19 xyxy2 9
J4 2A 4A 37 xyxy2 10
Co3 3A 4A 14
Co2 2A 5A 28
Co1 2B 3C 40 xyxy2 6
Fi22 2A 13AB 11 (xy)3xy2xy(xy2)2 12
Fi23 2B 3D 28
Fi′24 2A 3E 29 xyxyxy2 33
HS 2A 5A 11
Suz 2B 3B 13 xyxy2 15
McL 2A 5A 11 (xy)3xy2xy(xy2)2 7
He 2A 7C 17
Ru 2B 4A 13
O’N 2A 4A 11
HN 2A 3B 22 xyxy2 5
Th 2A 3A 19
Ly 2A 5A 14 xyxyxy2 67
B 2C 3A 55 (xy)3xy2xy(xy2)2 23
M 2A 3B 29
M12.2 2C 3A 12 xyxy2 11
M22.2 2B 4C 11
J2.2 2C 5AB 14
J3.2 2B 3A 24 xyxy2 9
Fi22.2 2A 18E 42
Fi24 2C 8D 29
HS.2 2C 5C 30
Suz.2 2C 3B 28
McL.2 2B 3B 22 (xy)3xy2xy(xy2)2 24
He.2 2B 6C 30
O’N.2 2B 4A 22
HN.2 2C 5A 42

Table 2: Standard generators for the sporadic almost-simple groups
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fingerprints for (2B, 3A, 23)-pairs (one of which gives standard generators) and
2 fingerprints for (2A, 3B, 23)-pairs. We have:

M24 ≈ 〈〈x, y | std, o(xyxyxy2) = 12〉〉.

4.6 Janko group J1

There are unique conjugacy classes of elements of orders 2 and 3, so the standard
relations suffice to give a semi-presentation. We have:

J1 ≈ 〈〈x, y | std〉〉.

4.7 Janko group J2

The only non-zero (2, 3, 7)-structure constants in J2 are from (2A, 3B, 7A) (which
are accounted for L2(7), a group which contains no elements of order 12) and
(2B, 3B, 7A). Thus the standard relation o(xyxy2) = 12 is sufficient to ensure
that the pair is (2B, 3B):

J2 ≈ 〈〈x, y | std〉〉.

4.8 Janko group J3

The (2A, 3B, 19)-structure constant in J3.2 is 5, but there are only 4 fingerprints
because two of the automorphism classes of pairs generate L2(19), which has
an outer automorphism not realised in J3.2. There are 2 classes of (2A, 3A, 19)-
pairs, one of which gives standard generators. We have:

J3 ≈ 〈〈x, y | std, o(xyxyxy2) = 17〉〉.

In fact, the standard relation o(xyxy2) = 9 is superfluous in the above.

4.9 Janko group J4

We use Lemma 3.3 to show that x is a 2A-element (we find our reference 2A-
element by powering up an element of order 24). To show that y is in 4A, we
follow the method in section 3.3 and find an element in CG(y) with order 20
(the centralizers of elements in classes 4B and 4C have orders not divisible by
5). We have:

J4 ≈ 〈〈x, y, (z, c, d, e, f, g) | std, o(z) = 24, o(x(z12)xy
3xy3

) = 11,

o(g) = 20, o([g, y]) = 1; z := xyxyxy2, c := xyxy3xyxy,

d := xy2xy3xy2xy, e := c(y2(y2)c)5,

f := d(y2)(y2)d, g := (efe)3(fe)4f〉〉.
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4.10 Conway group Co3

The structure constants are quite large for this group, so we try to eliminate as
many cases as we can before fingerprinting. Firstly we check that x is not in 3B
by checking o(xy2) = 24 (all elements of order 4 have their squares in 2A, so
y2 is in 2A, and the (2A, 3B, 24)-structure constant is zero). Secondly we show
that y is in 4A by finding an element w in its centralizer which has order 5. This
leaves the single class of (3A, 4A, 14)-pairs and 341 classes of (3C, 4A, 14)-pairs,
for which we found fingerprints. It turns out that the relations we added so far
eliminate all the (3C, 4A, 14)-pairs. We have:

Co3 ≈ 〈〈x, y, (u, v, w) | std, o(xy2) = 24,

o(w) = 5, o([w, y]) = 1;u := (y2(y2)xy
2
)3,

v := xyxy3x2(y2(y2)xyxy
3x2

)2, w := (uv2)3(uv)6〉〉.

4.11 Conway group Co2

We can show that x is a 2A-element by using Lemma 3.3 (where the reference
2A-element is obtained by powering up xy, which is known to have order 28).

Structure constants and fingerprinting show that there is a single automor-
phism class of pairs of type (2A, 5A, 28) corresponding to standard generators
and a single class of pairs of type (2A, 5B, 28) generating a subgroup of N(2A).
It turns out that we do not need to add any relations to those we have found
already to eliminate this second possibility. We have:

Co2 ≈ 〈〈x, y | std, o(x(xy)14) = 3〉〉.

4.12 Conway group Co1

We can show that x is a 2B-element by using Lemma 3.3 (where the reference
2B-element is obtained by powering up an element of order 42). The structure
constant (2B, 3D, 40) is quite large, and to show that y is a 3C-element, it is
easier to look at (2A, 3, 36)-pairs (see Example 3.2 above). We can find a 2A-
element by powering up xy (which is known to be of order 40). There are only
two fingerprints to consider here: one for 3C (which generates a subgroup of
N(2A) and has centralizer 2 in G) and one for 3D (which generates U6(2) : 3,
with centralizer 1). We have:

Co1 ≈ 〈〈x, y, (z, a, b) | std, o(z) = 42, o(xy
2
z21) = 11, o(ab) = 36,

o(ab2abab) = 18; z := xy(xyxy2)2,

a := (xy)20, b := yxyxyxyxy
2
〉〉.

4.13 Fischer group Fi22

All that needs to be checked is that x is a 2A-element. We can use Lemma 3.3,
taking the 15th power of an element of order 30 as the reference involution. We
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have:

Fi22 ≈ 〈〈x, y, (z) | std, o(z) = 30, o(xz15) = 3; z := xyxy2xy2〉〉.

4.14 Fischer group Fi23

The (2B, C, 28) structure constant is zero for C = 3A, 3B, 3C, so we only need
to show that x is a 2B-element (see Example 3.6 above). We can do this by
using Lemma 3.3, taking the 14th power of xy (having order 28) as the reference
involution. We have:

Fi23 ≈ 〈〈x, y | std, o(xy
2
(xy)14) = 5〉〉.

4.15 Fischer group Fi′24

The only non-zero structure constant ξ(2A, C, 29) for a conjugacy class C con-
taining elements of order 3 is for C = 3E. Thus it suffices to check that x is in
2A. We can do this by using Lemma 3.3, taking the 30th power of an element
z of order 60 as the reference involution. We have:

Fi′24 ≈ 〈〈x, y, (z) | std, o(z) = 60, o(x(z30)xyxy) = 5; z := (xy)6y〉〉.

4.16 Higman-Sims group HS

We found representatives of the classes 2A, 2B, 5A, 5B and 5C and found
fingerprints for all the automorphism classes of (2, 5, 11)-pairs. There are 84 in
total. We have:

HS ≈ 〈〈x, y | std, o(xy2) = 10, o(xyxy2) = 15〉〉.

4.17 Suzuki group Suz

We have to consider (2A, 3C, 13)-pairs (3 fingerprints), (2B, 3B, 13)-pairs (5
fingerprints) and (2B, 3C, 13)-pairs (63 fingerprints). Note that there are 6
automorphism classes of (2B, 3C, 13)-pairs generating L2(25), but there are only
3 fingerprints for these because L2(25) has an extra outer automorphism which
is not realised in Aut(Suz) ∼= Suz.2. Thus the (2B, 3C, 13) structure constant is
66 rather than 63. We have:

Suz ≈ 〈〈x, y | std, o(xyxyxy2) = 12〉〉.

4.18 McLaughlin group McL

We have to consider (2A, 5A, 11)-pairs and (2A, 5B, 11)-pairs. There are 2 fin-
gerprints for the former type, one of which gives standard generators. We found
52 fingerprints for the latter type: 34 from pairs generating McL, 14 from pairs
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generating M22, 2 from pairs generating M11 and 2 from pairs generating L2(11).
We account for the structure constant:

ξMcL.2(2A, 5B, 11) = 65 = 34 + 14× 2 +
1
2

(2 + 2× 2)

by observing that:

• the 14 pairs generating M22 are counted twice (because M22 has an outer
automorphism not realised in McL.2);

• the subgroups M11 and L2(11) have centralizer of order 2 in McL.2; and

• the subgroup L2(11) has an outer automorphism not realised in McL.2.

We have:
McL ≈ 〈〈x, y | std, o(xy2) = 12〉〉.

4.19 Held group He

We check that x is a 2A-element by using Lemma 3.3, taking the 5th power
of an element of order 10 as the reference 2A-element. We then consider
(2A, 7A/B, 17)-pairs (2 fingerprints, corresponding to the 2 classes of 17 el-
ements), the single (2A, 7C, 17)-pair and the (2A, 7D/E, 17)-pairs (28 finger-
prints, 14 for each class of 17-elements). It turns out that the relations we have
already are enough to prove that y is in 7C. We have:

He ≈ 〈〈x, y, (z) | std, o(z) = 10, o(xz5) = 3; z := xy2xyxy2xy2〉〉.

4.20 Rudvalis group Ru

The structure constants (2, 4, 13) for G = Ru are fairly complicated, as there
are a number of different subgroups of G which can be generated in this way.
The only such subgroups which have non-trivial centralizer in G are Sz(8) and
2× Sz(8). Each is contained in a maximal subgroup (22 × Sz(8)) : 3, so each is
centralized by a subgroup 22. Both Sz(8) and 2×Sz(8) can be (2, 4, 13)-generated
in 4 different ways (up to automorphisms), but because the automorphism of
order 3 acts simultaneously on 22 and Sz(8), there are 12 automorphism classes
of (2, 4, 13)-pairs in Ru generating 2 × Sz(8) and only 4 such for Sz(8). This
information, together with the structure constants for Ru and its subgroups,
tells us how many fingerprints there should be. The details are given in Table
3; overall there are 118 fingerprints to find. We have:

Ru ≈ 〈〈x, y | std, o(xy2) = 14, o(xyxy2) = 29〉〉.

15



C1 C2 Number of fingerprints Subgroups
(C1, C2, 13) arising

2A 4A 5 L3(3) :2, L2(25)
2A 4B 4 Sz(8)
2A 4C 7 Ru, 2F4(2)′

2A 4D 29 Ru, L3(3), 2F4(2)′, L2(25).2
2B 4A 1 Ru
2B 4B 10 Ru, L2(13).2
2B 4C 32 Ru
2B 4D 30 Ru, 2× Sz(8)

Table 3: Fingerprints for Ru

4.21 O’Nan group O’N

Here it is sufficient to show that y is a 4A-element. We can do this by using the
method of section 3.3: we find an element z of order divisible by 3, 5 or 7 in
its centralizer (as |CG(4B)| = 28). In fact CG(4A) has index 2 in the involution
centralizer CG(2A), so it is fairly easy to find such an element. We have:

O’N ≈ 〈〈x, y, (z) | std, o(z) = 5, [y, z] = 1; z := xyxy(y2(y2)xyxy)5〉〉.

4.22 Harada-Norton group HN

We have ξ(2A, 3A, 22) = 0, so it is sufficient to show that x is in 2A: see Example
3.4 above. We have:

HN ≈ 〈〈x, y | std, o(x[(xy)11]xy
2xyxyxyxy2

) = 5〉〉.

4.23 Thompson group Th

Here it is sufficient to show that y is a 3A-element. Observe that:

A4
∼= 〈g, h | g3 = h3 = (gh)2 = 1〉 (8)

and g is conjugate to h−1 in A4. Thus we can show y is a 3A-element by taking
another 3A-element v−1 (we take the 7th power of an element z of order 21)
and then finding an element w such that yvw has order 2. We have:

Th ≈ 〈〈x, y, (z, v, w) | std, o(z) = 21, o(yvw) = 2; z := (xy)3y,

v := z7, w := xy2(xy)4(xy2)2(xy)2(xy2)5(xy)3〉〉.

4.24 Lyons group Ly

We must show that y is a 5A-element. To reduce the number of fingerprints to
search, we instead look for (3A, 5, 14)-pairs (r, s). We can find a 3A-element r
by powering up an element of order 42.
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We have:

ξLy(3A, 5A, 14) = 1/3 (9)
ξLy(3A, 5B, 14) = 38/3 (10)

These structure constants are entirely accounted for by the maximal subgroup
3·McL:2. All the (3A, 5, 14)-pairs in McL:2 generate McL, so all the (3A, 5, 14)-
pairs in Ly generate 3 ·McL, which is centralized by a group of order 3 in Ly.
The structure constants (9) and (10) then show that there is just 1 fingerprint
for 5A and 38 for 5B. We have:

Ly ≈ 〈〈x, y, (z, r, s) | std, o(z) = 42, o(rs) = 14, o(rsrs2) = 30;

z := (xy)5(xy2)2, r := z14, s := yxyxy
2xyxyxy2

〉〉.

4.25 Baby Monster group B

To show that x is in 2C, we use Lemma 3.3, taking the 26th power of an element
of order 52 as our reference 2C-element.

To show that y is in 3A, we observe that all (2A, 3, 8)-pairs in B are (2A, 3A, 8)-
pairs (as can be seen from the structure constants). We found an element z ∈ 2A
by taking the 19th power of an element of order 38 and then found a conjugate
yg of y such that zyg has order 8. (Orders 2, 4 or 14 would also have worked.)
Hence (z, yg) is a (2A, 3, 8)-pair, so y must be in 3A. We have:

B ≈ 〈〈x, y, (u, v) | std, o(u) = 52, o(xu26) = 35, o(v) = 38, o(v19yx) = 8;

u := (xyxy2)2(xy)2(xyxy2)2;

v := (xy)3(xy2xy)2xy(xyxy2)2xy2〉〉.

4.26 Monster group M

The smallest non-trivial representation ofM over any field has dimension 196882,
and while standard generators of M in the 196882-dimensional representation
over GF(2) have been computed, it is prohibitively slow and expensive in terms
of storage to perform calculations with such enormous matrices. Instead, we use
the computer construction in [Linton et al., 1998] with an implementation by
Parker and the second author in the C programming language [Kernighan and Ritchie, 1988].

Before performing any calculations in the computer construction, we came
up with the following strategy for finding a semi-presentation:

1. Find standard generators x, y of M.

2. Find a word c in x and y whose order is in:

S = {34, 38, 50, 54, 62, 68, 94, 104, 110}

and power it up to a give an element d ∈ 2A.
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3. Find a word e such that o(xde) is in:

U = {1, 3, 5}.

This would prove that x is a 2A-element, and also that y is not a 3A-
element (because o(xy) = 29).

4. Find a word f such that o(xyf ) is in:

V = {19, 25, 31, 34, 50, 55, 68, 94}.

The structure constants for M then imply that y is not a 3C-element, so
it must be a 3B-element.

To find standard generators, we powered up a representative of class 4B from
[Barraclough, 2003] to give an involution x, and then looked for conjugates y of
a 3B class representative b from [Wilson, 2001] such that o(xy) = 29. (We will
be able to prove retrospectively that x and y are in the correct classes.) We
used:

x = (DC3D2CD2CD2CD2CDCDCDC)2

b = (ABABAB2AB)7

y = ((ABABAB2AB)7)TBC
3BT

where the elements A,B,C,D, T ∈M are as described in [Linton et al., 1998].
We then followed the strategy described above. We have:

M ≈ 〈〈x, y, (c, d, f) | std, o(c) = 50, o(xd) = 5, o(xyf ) = 34;

c := (xy)4(xy2)2, d := c25, f := xyxyxyxyxy2〉〉.

Notice that step 3 turned out to be unnecessary, as we can take e = 1.

5 The sporadic automorphism groups

In this section, we will give semi-presentations for the 12 almost-simple groups
G which are not simple themselves but have a sporadic simple group as their
derived subgroup. As before, we abbreviate the standard relations to ‘std’.

5.1 Mathieu group M12.2

Here we know that xy is an outer element (it has order 12) and y is inner (it has
order 3), and so x must be outer, and hence must be a 2C-element. There are
3 fingerprints for (2C, 3A, 12)-pairs (corresponding to the 3 conjugacy classes of
elements of order 12) and 7 fingerprints for (2C, 3B, 12)-pairs. We have:

M12.2 ≈ 〈〈x, y | std, o((xy)3xy2) = 6〉〉.

The relation o(xyxy2) = 11 becomes redundant when this extra condition is
added.
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5.2 Mathieu group M22.2

There are 13 automorphism classes of (2, 4, 11)-pairs to consider, arising from the
different combinations of classes of elements of orders 2 and 4. The subgroups
generated in this way have trivial centralizer. We have:

M22.2 ≈ 〈〈x, y | std, o(xyxy2) = 10〉〉.

5.3 Higman-Sims group HS.2

We found 29 fingerprints for (2, 5, 30)-pairs; the two subgroups generated with a
(2C, 5B, 30)-pair are 5×S5 and 2×A8; they have centralizers of orders 5 and 2
(respectively) in G. All other subgroups thus generated have trivial centralizers
inG. The structure constants then show that there are exactly 29 automorphism
classes of (2, 5, 30)-pairs. We have:

HS.2 ≈ 〈〈x, y | std, o([x, y]) = 3〉〉.

5.4 Janko group J2.2

There are 5 automorphism classes of (2, 5, 14)-pairs to find: a unique class of
(2C, 5AB, 14)-pairs (the standard generators) and 4 classes of (2C, 5CD, 14)-
pairs. All these pairs generate J2.2. We have:

J2.2 ≈ 〈〈x, y | std, o(xy2) = 24〉〉.

5.5 Janko group J3.2

By considering element orders in J3, x must be in class 2B. There are 8 au-
tomorphism classes of (2B, 3, 24)-pairs, 2 of which correspond to class 3A. All
the pairs generate J3.2. We have:

J3.2 ≈ 〈〈x, y | std, o(xyxyxyxy2) = 9〉〉.

The standard relation o(xyxy2) = 9 is redundant.

5.6 McLaughlin group McL.2

The only non-zero (2, 3, 22) structure constants come from (2B, 3B)-pairs, so
the elements must be in the correct conjugacy classes. We have:

McL.2 ≈ 〈〈x, y | std〉〉.

5.7 Suzuki group Suz.2

There are 32 automorphism classes of (2, 3, 28)-pairs, 31 of which generate Suz.2,
and 1 of which (the unique class of (2C, 3C, 28)-pairs) generates the subgroup
S4 × L3(2). We have:

Suz.2 ≈ 〈〈x, y | std, o(xyxyxy2xy2) = 7〉〉.
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5.8 Held group He.2

We can show that x is a 2B-element by using Lemma 3.3, taking the 12th power
of an element of order 24 as our reference involution. This then implies that y
must be an outer element of order 6.

To show that y is in 6C, we will use the method of section 3.3 and find
an element of order 15 which commutes with y (the classes 6D and 6E have
centralizers whose orders are not divisible by 5). We have:

He.2 ≈ 〈〈x, y, (z, t) | std, o(z) = 24, o(xz12) = 17, o(t) = 15, o([t, y]) = 1;

z := xy2xy2xy, t := (y3(y3)x)4((y3(y3)xy
2xy)2〉〉.

5.9 O’Nan group O’N.2

By the orders of y and xy, we know that x is an outer element, so it must be
in class 2B. There are 2 classes containing elements of order 4, and we want to
show that y is in 4A. Because the (2B, 4B, 22) structure constant is rather large,
we chose not to find fingerprints. Instead we used the method of section 3.3,
and found an element z of order 5 which commutes with y. Since |C(4B)| = 512
is not divisible by 5, y must be a 4A-element. We have:

O’N.2 ≈ 〈〈x, y, (t, z) | std, o(z) = 5, o([y, z]) = 1;

z := (t(y2(y2)t)7)2, t := xy2xyx〉〉.

5.10 Fischer group Fi22.2

We show that x is in class 2A by using Lemma 3.3, taking our reference 2A-
element as the 11th power of an element of order 22.

Because x is an inner element and xy has order 42, y must be an outer
element, so it is in one of the classes 18E, 18F , 18G and 18H. We can show that
it is either 18E or 18F by considering the 9th power map. The element xy has
order 42, so (xy)21 is a 2D-element. Lemma 3.3 then allows us to show that y9

is a 2D-element, so y is in class 18E or 18F . This leaves 5 automorphism classes
of (2A, 18E/F, 42)-pairs to test, 2 of which generate the subgroup 3× U4(3).22

with a centralizer of order 3 in G. Each fingerprint gives a different value of
o(xy8), but it turns out that the relations added so far already eliminate the
possibility that y is in class 18F . We have:

Fi22.2 ≈ 〈〈x, y, (z) | std, o(z) = 22, o(xz11) = 3,

o((y9)xy
3
(xy)21) = 3; z := xyxy5xy4〉〉.

5.11 Fischer group Fi24

We check that x is a 2C-element by using Lemma 3.3 (taking the 27th power
of an element of order 54 as the reference involution).

The (2C, 8, 29) structure constants are zero except for 8D (ξ = 1) and 8F
(ξ = 10). The only maximal subgroup of Fi24 containing an element of order
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29 is 29 : 28, so all the (2C, 8, 29)-pairs generate Fi24. Thus we need to find 11
different fingerprints. We have:

Fi24 ≈ 〈〈x, y, (z) | std, o(z) = 54, o(xz27) = 3, o(xy2) = 20; z := xyxy6〉〉.

5.12 Harada-Norton group HN.2

By considering element orders, we know that y is an inner element and xy is
an outer element. Hence x is an outer element of order 2, so it must be in class
2C.

To show that y is in 5A, we consider (2A, 5, 22)-pairs. We have:

ξHN.2(2A, 5A, 22) = 1/4
ξHN.2(2A, 5B, 22) = 0

ξHN.2(2A, 5CD, 22) = 1
ξHN.2(2A, 5E, 22) = 25/4 = 4 + 9/4

We claim that there are (respectively) 1, 0, 1 and 13 classes of (2, 5, 22)-pairs
for the classes 5A, 5B, 5CD and 5E. We can easily find this many fingerprints;
we will show that there cannot be any more.

Certainly any (2A, 5, 22)-pair must be contained in HN. The only maxi-
mal subgroup of HN to contain elements of order 22 is 2.HS.2. Any (2, 5, 22)-
subgroup of 2.HS.2 has centralizer of order 4 in HN.2, because we have:

2.HS.2 < 4.HS.2 < HN.2

and any subgroup of HS containing elements of orders 11 and 5 must have
trivial centralizer in HS. Thus each class of pairs either contributes 1/4 (if it is
contained in 2.HS.2) or 1 (if it generates HN).

We consider each class in turn:

• The structure constant shows that there is exactly 1 class of (2A, 5A, 22)-
pairs.

• There are no (2A, 5B, 22)-pairs, because the structure constant is zero.

• By considering the fusion between 2.HS.2 and HN and the structure con-
stants in 2.HS.2, we know that all (2A, 5CD, 22)-pairs generates HN. So
there is only 1 class of (2A, 5CD, 22)-pairs.

• We observe that 4 of the fingerprints for the (2A, 5E, 22)-pairs have el-
ement orders in the set {9, 19, 21, 25, 35}, showing that they cannot be
contained in 2.HS.2 and must therefore generate HN. This leaves a con-
tribution of 25/4 − 4 = 9/4, and there are 13 − 4 = 9 fingerprints unac-
counted for, so there must be exactly 9 classes generating subgroups of
2.HS.2.
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After fingerprinting, it turns out that if (a, b) is a (2A, 5, 22)-pair then:

b ∈ 5A⇔ o(ab2(ab)3) = 22 (11)

We can find a 2A-element t by powering up an element z of order 60. Then
we can look for g ∈ G such that (t, yg) is a (2A, 5, 22)-pair. We then use the
criterion in equation (11) to check that yg (and hence y) is a 5A element. We
have:

HN.2 ≈ 〈〈x, y, (t, z) | std, o(z) = 60, o(ty) = 22,

o(ty2(ty)3) = 22; z := xy3(xy)4, t := z30〉〉.

6 Results of testing the representations in the
Web Atlas

We used our semi-presentations to test the representations of sporadic simple
and almost-simple groups given in the Web Atlas. As we expected, the vast
majority of the representations satisfied the relevant semi-presentations, but a
few mistakes were discovered:

• Matrices purporting to generate a 483-dimensional representation of M23

over GF(7) were included, but they failed to satisfy the semi-presentation.
In fact no such representation of M23 exists [Jansen et al., 1995].

• One of the 896-dimensional representations of HS over GF(4) was incor-
rect, as the product of the two generators had order exceeding 100.

• Matrices purporting to generate a 104-dimensional representation of He.2
over GF(5) in fact generated a group of order 30240.

• The 924-dimensional representation of Fi22.2 over GF(3) had non-standard
generators; the second generator given was xy rather than y.

7 Supplementary information

The main GAP programs that were used to prepare this paper can be found at:

http://www.expmath.org/expmath/volumes/VOL#/VOL#.ISS#/AUTHOR/FILE.EXT

We also include human-readable and computer-readable tables giving represen-
tatives for the pairs involved in fingerprinting (as words in standard generators).
These tables are intended for researchers who wish to reproduce the results in
this paper.
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