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Abstract

We investigate the problem of computing tensor product multiplicities for
complex semisimple Lie algebras. Even though computing these num-
bers is #P -hard in general, we show that if the rank of the Lie algebra is
assumed fixed, then there is a polynomial time algorithm, based on count-
ing the lattice points in polytopes. In fact, for Lie algebras of type Ar,
there is an algorithm, based on the ellipsoid algorithm, to decide when
the coefficients are nonzero in polynomial time for arbitrary rank. Our
experiments show that the lattice point algorithm is superior in practice
to the standard techniques for computing multiplicities when the weights
have large entries but small rank. Using an implementation of this algo-
rithm, we provide experimental evidence for conjectured generalizations
of the saturation property of Littlewood–Richardson coefficients. One of
these conjectures seems to be valid for types Bn, Cn, and Dn.

1 Introduction

Given highest weights λ, µ, and ν for a finite dimensional complex semisimple
Lie algebra, we denote by Cν

λµ the multiplicity of the irreducible representation
Vν in the tensor product of Vλ and Vµ; that is, we write

Vλ ⊗ Vµ =
⊕

ν

Cν
λµVν . (1)

In general, the numbers Cν
λµ are called Clebsch–Gordan coefficients. In the

specific case of type Ar Lie algebras, the values Cν
λµ defined in equation (1) are

called Littlewood–Richardson coefficients. When we are specifically discussing
the type Ar case, we will adhere to convention and write cν

λµ for Cν
λµ.
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The concrete computation of Clebsch–Gordan coefficients (sometimes known
as the Clebsch–Gordan problem [21]) has attracted a lot of attention from not
only representation theorists, but also from physicists, who employ them in the
study of quantum mechanics (e.g. [10, 37]). The importance of these coefficients
is also evidenced by their widespread appearance in other fields of mathematics
besides representation theory. For example, the Littlewood–Richardson coef-
ficients appear in combinatorics via symmetric functions and in enumerative
algebraic geometry via Schubert varieties and Grassmannians (see for instance
[33, 22]). More recently, Clebsch–Gordan coefficients are playing an important
role on the study of P vs. NP (see [26]). Very recently, Narayanan has proved
that the computations of Clebsch–Gordan coefficients is in general #P -complete
[27]. Here are our contributions:

(1) We combine the lattice point enumeration algorithm of Barvinok [3] with
polyhedral results due to Knutson and Tao [19] and Berenstein and Zelevinsky
[6] in the polyhedral realization of Clebsch–Gordan coefficients to produce a
new algorithm for computing these coefficients. Our main theoretical result is:

Theorem 1.1. For fixed rank r, if g is a complex semisimple Lie algebra of rank
r, then one can compute Clebsch–Gordan coefficients for g in time polynomial
in the input size of the defining weights.

Moreover, as a consequence of the polynomiality of linear programming and
the saturation property of Lie Algebras of type Ar, deciding whether cν

λµ = 0 can
be done in polynomial time, even when the rank is not fixed.

(2) We implemented the algorithm for types Ar, Br, Cr, and Dr (the so-called
“classical” Lie Algebras) using the software packages LattE and Maple. In
many instances, our implementation performs faster than standard methods,
such as those implemented in the software LiE. Our software is freely available
at http://math.ucdavis.edu/~tmcal.

(3) Via computer experiments, we explored general properties satisfied by the
Clebsch–Gordan coefficients for the classical Lie algebras under the operation of
stretching of multiplicities in the sense of [18]. On the basis of abundant exper-
imental evidence, we propose two conjectured generalizations of the Saturation
Theorem of Knutson and Tao [19]. One of them, which applies to all of the
classical root systems, is an extension of earlier work by King et al. ([18]).

Organization of the paper: In Section 2, after a review of the background mate-
rial, we prove Theorem 1.1. Section 3 explains our experiments comparing our
software, a mixture of Maple and LattE [13], with LiE. In Section 4, we present
the two conjectures, both of which, if true, would generalize the Saturation
Theorem of Knutson and Tao.
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2 Clebsch–Gordan coefficients: Polyhedral Al-
gorithms

As stated in the introduction, we are interested in the problem of efficiently
computing Cν

λµ in the tensor product expansion Vλ ⊗ Vµ =
⊕

ν Cν
λµVν . It

appears that the most common method used to compute the Clebsch–Gordan
coefficients is based on Klimyk’s formula (see lemma below). For example, it is
used in LiE [36] and the Maple [25] packages Coxeter and Weyl [34].

Lemma 2.1. ([16], Exercise. 24.9) Fix a complex semisimple Lie algebra g,
and let W be the associated Weyl group. For each weight ν of g, let sgn(ν)
denote the parity of the minimum length of an element σ ∈ W such that σ(ν) is
a highest weight, and let {ν} denote that highest weight. Let δ be one-half the
sum of the positive simple roots of g. Finally, for each highest weight λ of g, let
Kλν be the multiplicity of ν in Vλ.

Then, given highest weights λ and µ of g, we have that

Vλ ⊗ Vµ =
⊕

ε

Kλε sgn(ε + µ + δ)V{ε+µ+δ}−δ,

where the sum is over weights ε of g with trivial stabilizer subgroup in W.

Implementations of Klimyk’s algorithm begin by computing the weight spaces
appearing with nonzero multiplicity in the representation Vλ. Then, for each
such weight ε with trivial stabilizer, one computes the Weyl group orbit of
ε + µ + δ. One then finds the dominant member of the orbit and notes the
number l of reflections needed to reach it. Finally, one adds (−1)lKλε to the
multiplicity of V{ε+µ+δ}−δ.

From the point of view of computational complexity, Klimyk’s algorithm has
two main disadvantages. First, it requires the computation of weight space mul-
tiplicities, which is in general a #P -hard problem [27]. The second disadvantage
is that the algorithm requires visiting all of the orbit members, which can be an
exponentially large set. Indeed, Klimyk’s formula above is exponential in the
size of the input weights. Thus, in practice, the sizes of λ, µ, and ν usually need
to be small. One can then ask for an algorithm that behaves well as the sizes of
the input weights increase, at least if some other parameter is fixed. Stembridge
also raised the challenge of crafting algorithms based on geometric ideas such as
Littelmann’s paths or Kashiwara’s crystal bases [23, 24] (see comment on page
29, section 7, of [35]). As we see below, there is such an algorithm, based on
the polyhedral geometry of the Clebsch–Gordan coefficients.

In 1992, Berenstein and Zelevinsky presented a combinatorial interpreta-
tion of the Littlewood–Richardson coefficients as the number of lattice points
in members of a certain family of polytopes [5]. In 1998, Knutson and Tao
introduced another family, the hive polytopes, which they used to prove the
Saturation Theorem (see [19] and Section 4). Each of the polytopes presented
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by Berenstein and Zelevinsky in 1992 is the image under an injective lattice-
preserving linear map of a hive polytope [28]. Therefore cν

λµ equals the number
of integer lattice points in a corresponding hive polytope Hν

λµ. Finally, in 2001,
Berenstein and Zelevinsky [6] introduced polytopes which enumerate Clebsch–
Gordan coefficients for any finite dimensional complex semisimple Lie algebra.
We refer to this last family of polytopes as the BZ–polytopes. We now give the
exact definition of the hive polytopes. These polytopes exist in the polyhedral
cone of hive patterns, which we now define.

Definition 2.2. Fix r ∈ Z≥0 and let H = {(i, j, k) ∈ Z3
≥0 : i + j + k = r}. A

hive pattern is a map

h : H → R≥0, (i, j, k) 7→ hijk,

satisfying the rhombus inequalities:

• hi,j−1,k+1 + hi−1,j+1,k ≤ hijk + hi−1,j,k+1,

• hijk + hi−1,j−1,k+2 ≤ hi,j−1,k+1 + hi−1,j,k+1,

• hi+1,j−1,k + hi−1,j,k+1 ≤ hijk + hi,j−1,k+1.

for (i, j, k) ∈ H, i, j ≥ 1.

Equivalently, a hive pattern of rank r is a triangular array of real numbers

h0,0,r

h1,0,r−1 h0,1,r−1

h2,0,r−2 h1,1,r−2 h0,2,r−2

. . .
...

. . .

hr,0,0 hr−1,1,0 · · · h1,r−1,0 h0,r,0

such that, in every “little rhombus” of entries

c b

a d
,

c

a b

d

,
a c

d b

we have a + b ≥ c + d.
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Here is example of a hive pattern with r = 5:

0
5 8

8 12 13
11 15 17 18

12 16 18 20 20

Recall that when g is of type Ar, so that g ∼= slr+1(C) for some r ≥ 2, the
highest weights are (with respect to the canonical basis) partitions of length r,
i.e., sequences λ of integers λ1 ≥ · · · ≥ λn ≥ 0. We write |λ| for

∑
i λi, the size

of the partition λ.

Definition 2.3. Given partitions λ, µ, ν ∈ Zn
≥0, the hive polytope Hν

λµ is the
set of hive patterns with boundary entries fixed as below.

0
ν1 = • • = λ1

ν1 + ν2 = • • • = λ1 + λ2

ν1 + ν2 + ν3 = • • • • = λ1 + λ2 + λ3

. . .
...

. . .
|ν| = • · · · • =

|λ|+
µ
1 +

µ
2 +

µ
3

• =
|λ|+

µ
1 +

µ
2

• =
|λ|+

µ
1

• = |λ|

Note that, for fixed r, the input size of a hive polytope Hν
λµ grows linearly

with the input sizes of the weights λ, µ, and ν. We will need the following result:

Lemma 2.4. ([20]) The Littlewood–Richardson coefficient cν
λµ equals the num-

ber of integer lattice points in the hive polytope Hν
λµ.

Unfortunately, the description of the BZ-polytopes is more involved than
that of the hive polytopes above. Therefore, we refer the reader to Theorems
2.5 and 2.6 of [6], which give their description as systems of linear equalities and
inequalities in terms of the root systems Br, Cr, and Dr. The reader may also
view the contents of our maple notebook, available at http://math.ucdavis.
edu/~tmcal, for completely explicit descriptions of the necessary inequalities.
The specific properties of the BZ-polytopes that we need to prove our theorem
are (1) for fixed rank r, the dimensions of the BZ-polytopes are bounded above
by a constant, (2) the input size of a BZ-polytope grows linearly with the input
sizes of the weights λ, µ, and ν, and (3) the following result describing the
relationship between BZ-polytopes and Clebsch–Gordan coefficients:
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Lemma 2.5. (Theorem 2.4 of [6]) Fix a finite dimensional complex semi-simple
Lie algebra g and a triple of highest weights (λ, µ, ν) for g. Then the Clebsch–
Gordan coefficient Cν

λµ equals the number of integer lattice points in the corre-
sponding BZ-polytope.

Finally, the last ingredient necessary is A. Barvinok’s algorithm for counting
lattice points in polytopes in polynomial time for fixed dimension. Several de-
tailed descriptions of the algorithm in Lemma 2.6 are now available the literature
(see [12] and all the references therein).

Lemma 2.6. ([3]) Fix d ∈ Z≥0. Then, given a system of equalities and inequal-
ities defining a rational convex polytope P ⊂ Rd, we can compute #(P ∩Zd) in
time polynomial in the input size of the polytope.

Proof of Theorem 1.1: First, if we fix the rank of the Lie algebra, then we fix an
upper bound on the dimension of the hive or BZ polytope. Moreover, the input
sizes of these polytopes grow linearly with the input sizes of the weights. Thus,
by Barvinok’s theorem (Lemma 2.6 stated above), their lattice points can be
computed in time polynomial in the input sizes of the weights. Therefore, the
theorem follows by Lemmas 2.4 and 2.5.

For the second part of the theorem regarding type Ar, the hive polytopes
provide a very fast method for determining whether cν

λµ = 0. According to the
Saturation Theorem (see Section 4), cν

λµ = 0 if and only if the corresponding hive
polytope is empty. Hence, it suffices to check whether the system of inequalities
defining the hive polytope is feasible, which can be done in polynomial time for
arbitrary dimension as a corollary of the polynomiality of linear programming
via Khachian’s ellipsoid algorithm (see [30]).

It is useful to notice that every Kostka number Kλµ is a Littlewood–Richardson
coefficient for some choice of highest weights. One short bijection is given by
Kλµ = cτ

σλ, where{
τi = µi + µi+1 + · · ·
σi = µi+1 + µi+2 + · · ·

for i = 1, 2, . . . , r.

For those familiar with the enumeration of semi-standard Young tableaux
and Littlewood–Richardson tableaux by Kostka numbers and Littlewood–Rich-
ardson coefficients respectively (see, e.g., [32]), the bijection is straightforward:
Given a semi-standard Young tableau Y with shape λ and content µ, construct
a Littlewood–Richardson tableau L with shape τ/σ and content λ by filling the
boxes as follows. Start with a skew Young diagram D with shape τ/σ. For
j = 1, . . . , r, and for each entry i in the jth row of Y , place a j in the ith row
of D. Let L be the tableau produced by filling the boxes of D in this fashion.
(See Figure 1.) It is not hard to see that, under this map, the column-strictness
condition on Y is equivalent to the lattice permutation condition on L. It follows
that the map just described is a bijection between semi-standard Young tableaux
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1 1 2 4
2 2 3
4

7−→
1 1

1 2 2
2

1 3

Figure 1: Corresponding semi-standard Young and Littlewood–Richardson
tableaux

with shape λ and content µ and Littlewood–Richardson tableaux with shape
τ/σ and content λ. Thus, computing Kostka numbers reduces to computing
Littlewood–Richardson coefficients.

As a corollary, we get a similar result for the computation of Kostka numbers
based on polyhedral methods.

Corollary 2.7. For fixed rank r, the Kostka number Kλµ can be computed in
polynomial time in the size of the input weights λ and µ. For arbitrary rank
one can decide in polynomial time in the size of the weights whether Kλµ = 0
or not.

3 Using the Algorithm in Practice

Using the explicit definitions for the hive and BZ-polytopes as the sets of solu-
tions to systems of linear inequalities and equalities, we wrote a Maple notebook
which, when given a triple of highest weights, produces the corresponding hive
or BZ–polytope in LattE readable input format. The notebook is available from
http://math.ucdavis.edu/~tmcal. All computations were done on a Linux
PC with a 2 GHZ CPU and 4 Gigabytes of memory.

From our experiments, we conclude that (1) The polyhedral method of com-
puting tensor product multiplicities complements the method employed in LiE.
LiE is effective for larger ranks (up to r = 10, say), but the sizes of the weights
must be kept small. This is because LiE uses the Klimyk formula to generate the
entire direct sum decomposition of the tensor product, after which it dispenses
with all but the single desired term. However, computing all of the terms in
the direct sum decomposition is not feasible when the sizes of the entries in the
weights grow into the 100s. On the other hand, (2) Lattice point enumeration is
often effective for very large weights (in particular, the algorithm is suitable for
investigating the stretching properties of Section 4). However, the rank must
be relatively low (roughly r ≤ 6) because lattice point enumeration complexity
grows exponentially in the dimension of the polytope, and the dimensions of
these polytopes grow quadratically with the rank of the Lie algebra. Together,
the two algorithms cover a larger range of problems.

We would also like to mention that other authors are also using lattice points
in polytopes to compute Clebsch–Gordan coefficients, this time via the calcu-
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lation of vector partition functions for classical root systems [2, 8, 9]. These
authors report that, like us, they can compute with large sizes of weight entries.

3.1 Experiments for type Ar

In the tables below, we express highest weights in terms of the canonical basis
e1, . . . , er, so that the highest weights are partitions with r parts.

Experiments indicate that lattice point enumeration is very efficient for com-
puting Littlewood–Richardson numbers when r ≤ 5. First, we computed over
30 instances with randomly generated weights with leading entries larger than
40 with our approach and with LiE. In all cases our algorithm was faster. After
that, we did a “worst case” sampling for the table in Figure 2 comparing the
computation times of LattE and LiE. To produce the ith row of that table,
we selected uniformly at random 1000 triples of weights (λ, µ, ν) in which the
largest parts of λ and µ were bounded above by 10i and |ν| = |λ| + |µ| (this
is a necessary condition for cν

λ,µ 6= 0). Then we evaluated the corresponding
hive polytopes with LattE. The LattE input files are created with our Maple
program. The weight triple in the ith row is the one that LattE took the longest
time to compute. We then computed the same tensor product multiplicity with
LiE. The table in Figure 3, shows the running time needed when using LattE
to compute weight triples with entries in the thousands or millions.

When r ≥ 6, the running time under LattE begins to blow up. Still, for
r = 6, all examples we attempted could be computed in under 30 minutes
using LattE, and most could be computed in under 5 minutes. For example,
among 54 nonempty hive polytopes chosen uniformly at random among those
in which the weights had entries less than 100, all but seven could be computed
in under 5 minutes with LattE, and the remaining seven could all be computed
in under 30 minutes. None of these Littlewood–Richardson coefficients could be
computed with LiE. At r = 7, lattice point enumeration becomes less effective,
with examples typically taking several hours or more to evaluate.

3.2 Experiments for types Br, Cr, and Dr

To compute Clebsch–Gordan coefficients in types Br, Cr, and Dr, we used the
BZ-polytopes. In the tables that follow, all weights are given in the basis of
fundamental weights for the corresponding Lie algebra.

Our experiments followed the same process we used for Ar: First, for each
root system, we computed over 30 instances with randomly generated weights
with entries larger than 40 with our approach and with LiE. In all cases our
algorithm was faster. After that, we did a “worst case” sampling to produce the
tables in Figure 4 comparing the computation times of LattE and LiE. As in
Section 3.1, these weight triples were the ones which LattE took the longest to
evaluate among thousands of instances generated with the following procedure:
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First, to produce line i of a table, we set an upper bound Ui for the entries of
each weight. Then, we generated 1000 random weight triples with entry sizes no
larger than Ui. Here are the specific values of Ui used in each of the three tables
in Figure 4. For type Br, the bounds Ui were 50, 60, 70, and 10,000, respectively.
For type Cr, the bounds Ui were 50, 60, 80, and 10,000, respectively. Finally,
for type Dr, the bounds Ui were 20, 30, 40, and 10,000, respectively. For each
generated triple of weights, we produced the associated BZ-polytopes (using our
Maple notebook) and counted their lattice points with LattE. In the table are
those instances that were slowest in LattE. We also recorded in the table the
time taken by LiE for the same instances. One can see the running time needed
by LattE is hardly affected by growth in the size of the input weights, while the
time needed by LiE grows rapidly.

We found that for types Br and Cr, lattice point enumeration with the BZ-
polytopes is very effective when r ≤ 3. Each of the many thousands of examples
we generated could be evaluated by LattE in under 10 seconds (the examples
in Figure 4 were the worst cases). When r = 4, the computation time begins to
blow up, with examples typically taking half an hour or more to compute. The
polyhedral method is also reasonably efficient for type D Lie algebras with rank
4, the lowest rank in which they are defined. All of the examples we generated
could be evaluated by LattE in under 5 minutes.

4 Two Conjectures that Could Generalize the
Saturation Theorem

In 1998, Knutson and Tao used the hive polytopes to prove the Saturation
Theorem. Buch has written a very clear exposition of this proof in [7].

Theorem 4.1 ([19]). (Saturation) Given highest weights λ, µ, and ν for a
Lie algebra of type Ar, and given an integer n > 0, the Littlewood–Richardson
coefficient cν

λµ satisfies

cν
λµ 6= 0 ⇐⇒ cnν

nλ,nµ 6= 0.

In hive polytope language, the Saturation Theorem can be restated as

#
(
Hν

λµ ∩ Zd
)
6= ∅ ⇐⇒ #

(
Hnν

nλ,nµ ∩ Zd
)
6= ∅,

where d =
(
r+2
2

)
. The definition of hive polytopes (see Definition 2.3 above)

implies that Hnν
nλ,nµ = n Hν

λµ, so the Saturation Theorem is equivalent to the
existence of a lattice point inside each hive polytope Hν

λµ. Now we would like
to state two conjectures that generalize this theorem.
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4.1 First Conjecture

To show that every hive polytope contains an integral point, Knutson and Tao
actually proved that every hive polytope contains an integral vertex. Our idea
was to take a different approach to show a generalization of this last result
using the basic theory of triangulations of semigroups. To develop this idea,
observe that the boundary equalities and rhombus inequalities that define a
hive polytope may be expressed as the set of solutions to a system of matrix
equalities and inequalities:

Hν
λµ =

{
h ∈ R(r+1)(r+2)/2 :

Bh = b(λ, µ, ν),
Rh ≤ 0

}
, (2)

where B and R are integral matrices (depending on r), and b(λ, µ, ν) is a integral
vector depending on λ, µ, and ν. Here we think of a hive pattern h as a column
vector of dimension (r +1)(r +2)/2. Note that there is some degree of choice in
how the boundary equalities and rhombus inequalities are encoded as matrices B
and R, respectively. However, all such encodings are equivalent for our purposes.

A polytope defined by such a system of equalities and inequalities may be
homogenized by adding “slack variables”. This produces an equivalent poly-
tope defined as the set of nonnegative solutions to a system linear equalities.
Following this procedure, we define the homogenized hive polytope H̃ν

λµ by

H̃ν
λ,µ =

{
h̃ :

[
B 0
R I

]
h̃ =

[
b(λ, µ, ν)

0

]
, h̃ ≥ 0

}
(where I is the identity matrix). The equivalence between Hν

λµ and H̃ν
λµ is given

by the linear map

h 7→
[

h
−Rh

]
.

Note that this linear map preserves vertices and integrality. Therefore, to prove
the Saturation Theorem, it suffices to show that every homogenized hive poly-
tope contains an integral vertex. Proceeding with this idea, we make the fol-
lowing definitions.

Definition 4.2. Fix r ∈ Z. Define the homogenized hive matrix to be

M =
[
B 0
R I

]
(where B and R are as in equation (2)). Given an integral vector b with dimen-
sion equal to the number of rows in M , define the generalized hive polytope or
g-hive polytope Hb by

Hb =
{

h̃ : Mh̃ = b, h̃ ≥ 0
}

. (3)
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Note that the homogenized hive polytopes are g-hive polytopes which satisfy
additional restrictions to the right-hand side vector (such has the final entries
of b being 0).

We now state some very basic facts about vertices of polyhedra expressed
in the form {x : Ax = b, x ≥ 0}. Let a finite collection of integral points
{a1, . . . , an} ⊂ Zm be given, and let A be the matrix with columns a1, . . . , an.
Define cone A to be the cone in Rm generated by the point-set {a1, . . . , an}:

cone A = {x1a1 + · · ·+ xnan : x1, . . . , xn ≥ 0}.

Then, for each vector b ∈ Zm, we have a polytope

Pb = {x : Ax = b, x ≥ 0},

and Pb 6= ∅ if and only if b ∈ cone A. In other words, there is a correspondence
between nonempty polytopes Pb, b ∈ Zm, and the elements of the semigroup
generated by the columns of A. The crucial property for our purposes is the
following.

Lemma 4.3. If b ∈ (cone A′) ∩ Zm for some m × m submatrix A′ of A with
det A′ = ±1, then Pb has an integral vertex.

Proof. Suppose that b ∈ (cone A′)∩Zm for some m×m submatrix A′ of A with
det A′ = ±1.

Let the columns of A′ be ai1 , . . . , aim
, and let J = {i1, . . . , im} be the indices

of these columns. Then there is a vector x = (x1, . . . , xn)T ∈ Rn
≥0 such that

Ax = b and xi = 0 for each i /∈ J . Letting x′ = (xi1 , . . . , xim
) and using

Crammer’s rule to solve for x′ in A′x′ = b, we find that x is an integral vector.
Thus, x is an integral lattice point in the polytope Pb.

To see that x is in fact a vertex of Pb, Recall that the codimension (with
respect to the ambient space) of the face containing a solution to a system of
linear equalities and inequalities is the number of linearly independent equalities
or inequalities satisfied with equality. Observe that x is a solution to the system
of n equalities {

Ax = b

xi = 0, i /∈ J.

We claim that this is a linearly independent system of equalities. For suppose
otherwise. Then the zero vector is a nontrivial linear combination of the rows
of A and the row-vectors ei, i /∈ J . But this implies that the zero vector is
a nontrivial linear combination of the rows of A′, which is impossible because
det A′ 6= 0.

Thus, having shown that x satisfies the n linearly independent equalities
above, we have shown that x lies in a codimension-n face of Pb, i.e., x is a
vertex.

13



We say that ai1 , . . . , aim is a unimodular subset if the submatrix A′ of A
with columns ai1 , . . . , aim satisfies det A′ = ±1. We say that the matrix A has a
unimodular cover (resp. unimodular triangulation) if the point set {a1, . . . , an}
has a unimodular cover (resp. unimodular triangulation).

Corollary 4.4. If A has a unimodular cover, then Pb has an integral vertex for
every integral b ∈ cone(A).

Our conjecture is that this corollary applies to the homogenized hive matrix.
More precisely, we conjecture the following.

Conjecture 4.5. For each r, the homogenized hive matrix has a unimodular
triangulation. Consequently, every g-hive polytope has an integral vertex.

Since the hive polytopes are special cases of the g-hive polytopes, Conjecture
4.5 generalizes the Saturation Theorem.

Theorem 4.6. Conjecture (4.5) is true for r ≤ 6.

To compute the unimodular triangulations that provide a proof of Theo-
rem 4.6 we used the software topcom [29]. It may be worth noting that the
triangulations used to prove Theorem 4.6 were all placing triangulations.

4.2 Second Conjecture

For our second conjecture, we looked at general properties satisfied by the tensor
product multiplicities for semisimple Lie Algebras of types Br, Cr, and Dr under
the operation of stretching of multiplicities. By stretching of multiplicities, we
refer to the function e : Z>0 → Z≥0 defined by e(n) = Cnν

nλ,nµ.

It follows from the definitions of the BZ-polytopes that, given any highest
weights λ, µ, ν of a semisimple Lie algebra, Cnν

nλ,nµ = e(n) is a quasi-polynomial
in n. Indeed, e(n) is, in polyhedral language, the Ehrhart quasi-polynomial of
the corresponding BZ-polytope. We recall the basic theory of Ehrhart quasi-
polynomials. Its origins can be traced to the work of Ehrhart [15] in the 1960’s
(see Chapter 4 of [31] for an excellent introduction).

Given a convex polytope P , let

nP = {x : (1/n)x ∈ P}, n = 1, 2, . . . .

If P is a d-dimensional rational polytope in Rk, then the counting function
iP (n) = #(nP ∩ Zk) is a quasi-polynomial function of degree d; that is, there
are polynomials f1(n), . . . , fN (n) of degree d s.t.

iP (n) =


f1(n) if n ≡ 1 modN,
...
fN (n) if n ≡ N modN.
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If we put P = Hν
λµ, then the Ehrhart quasi-polynomial of P is just the

stretched Littlewood–Richardson coefficient cnν
nλ,nµ. The Ehrhart quasi-polyno-

mials of hive polytopes have been studied by several authors. Our experiments
support the conjecture of King et al [18] that the coefficients are in fact positive.
Since large weights can be computed with lattice point enumeration, it is possi-
ble to produce the Ehrhart quasi-polynomials for the stretched Clebsch–Gordan
coefficients in the other types. See Figures 5–7 for some sample examples out of
the many hundreds generated. Our experiments motivate the following “stretch-
ing conjecture”.

Conjecture 4.7. (Stretching Conjecture) Given highest weights λ, µ, ν of a Lie
algebra of type Ar, Br, Cr, or Dr, let

Cnν
nλ,nµ =


f1(n) if n ≡ 1 modN,
...
fN (n) if n ≡ N modN

be the quasi-polynomial representation of the stretched Clebsch–Gordan coeffi-
cient Cnν

nλ,nµ. Then the coefficients of each polynomial fi are all nonnegative.

The type Ar case of this conjecture was made by King, Tollu, and Toumazet
in [18]. That Conjecture 4.7 implies the Saturation Theorem follows from a
result of Derksen and Weyman [11] showing that the Ehrhart quasi-polynomials
of Hive polytopes are in fact just polynomials.

We should remark that the saturation property is known not to hold in the
root systems Br, Cr, and Dr. A simple example in B2, due to Kapovich, Leeb,
and Millson [17], is given by setting λ = µ = ν = (1, 0) (with respect to the
basis of fundamental weights). In this case we have

Cnν
nλ,nµ =

{
0 if n is odd,

1 if n is even.

This example also demonstrates why the Stretching Conjecture is not contra-
dicted by the failure of the saturation property in the root systems Br, Cr, or
Dr. Since the stretched multiplicities are not necessarily polynomials in these
cases, it is possible for them to evaluate to zero for some nonnegative integer
while still having all nonnegative coefficients.

Acknowledgements: We are thankful to Arkady Berenstein, Charles Co-
chet, Misha Kapovich, Allen Knutson, Peter Littelmann, Ezra Miller, Hariharan
Narayanan, Jörg Rambau, Francisco Santos, Anna Schilling, Etienne Rassart,
Michèle Vergne, and Andrei Zelevinsky for useful comments.
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