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The Fischer decomposition on Rn gives the decomposition of
arbitrary homogeneous polynomials in n variables (x1, . . . , xn)

in terms of harmonic homogeneous polynomials. In classical
Clifford analysis a refinement was obtained, giving a decompo-
sition in terms of monogenic polynomials, i.e., homogeneous
null solutions for the Dirac operator (a vector-valued differen-
tial operator factorizing the Laplacian ∆n on Rn). In this paper
the building blocks for the Fischer decomposition in the Hermi-
tian Clifford setting are determined, yielding a new refinement
of harmonic analysis on R2n involving complex Dirac operators
commuting with the action of the unitary group.

1. INTRODUCTION

Clifford analysis is a function theory that is often con-
sidered as a generalization to higher dimensions of the
theory of complex holomorphic functions f(z) in the
plane. The analogue of the Cauchy–Riemann operator
∂z is the Dirac operator ∂, a vector-valued first-order
differential operator factorizing the Laplacian ∆n on Rn,
and generalized holomorphic functions are called mono-
genic functions. These are Clifford-algebra-valued func-
tions f(x) defined on open regions Ω ⊂ Rn satisfying
∂f = 0. This Clifford algebra is then defined as the 2n-
dimensional algebra obtained by endowing the orthog-
onal space (Rn, Qn), where Qn(x) = |x|2 =

∑n
i=1 x

2
i

for all x ∈ Rn, with the following multiplication rules:
eiej + ejei = −2δij . The resulting algebra, denoted by
Rn, is as a vector space isomorphic to the exterior algebra
Λ(Rn) under the canonical isomorphism ei1ei2 · · · eik

�→
dxi1dxi2 · · · dxik

, but it carries a richer multiplicative
structure.

The Dirac operator is then defined by ∂ =
∑n

i=1 ei∂xi
,

and in view of the multiplication rules we indeed have
that ∂2 = −∆n, which means that Clifford analysis is
a refinement of harmonic analysis on Rn. Since the op-
erator ∂ is invariant under rotations, Clifford analysis is
perfectly suited for studying the orthogonal group SO(n),
and in particular its double covering group Spin(n) (see
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[Brackx et al. 82, Delanghe et al. 92, Gilbert and Murray
91]).

In [Sabadini and Sommen 02] and [Brackx et al. 05],
the concept of Clifford analysis in the Hermitian setting
was introduced. The main idea is to start from an even-
dimensional space R2n and to rewrite the vector variable
in the following way:

x =
n∑

j=1

(
ejxj + ej+nxj+n

)
=

n∑

j=1

(
ejxj − i(iej+n)xj+n

)
.

If we set xj+n = yj and iej+n = εj , and introducing the
Witt basis {fj , f†j} (j = 1, . . . ,m),

fj =
ej − εj

2
and f†j =

ej + εj
2

,

this then gives rise to

x =
n∑

j=1

(fj−f†j)xj+i(fj+f†j)yj =
n∑

j=1

(
fjzj−f†jzj

)
= z−z†.

Note that both sets {fj}j and {f†j}j generate a maximal
isotropic n-dimensional subspace of R2n, and that the
Witt vectors satisfy the following multiplication rules:

fjfk + fkfj = 0 = f†jf
†
k + f†kf†j and fjf

†
k + f†kfj = δjk.

These Witt-basis vectors lead to an interesting char-
acterization of the spinor space S2n (the so-called Fock
realization), which arises in a natural way as an irre-
ducible representation space for the simple complex Clif-
ford algebra C2n. For that purpose, it suffices to define
the idempotent I = I1 · · · In, where Ij = fjf

†
j , and to

put S2n = AlgC(f†1, . . . , f
†
n)I = CΛ†

nI. We have hereby
defined the (Grassmann) algebra CΛ†

n, which will be re-
ferred to below. The subspace generated by products of
k elements will be denoted by (CΛ†

n)k.
In a completely similar way, we also have

∂ =
n∑

j=1

(fj − f†j)∂xj
+ i(fj + f†j)∂yj

= 2
n∑

j=1

(
fj∂zj

− f†j∂zj

)
= 2(∂z − ∂†z).

In Hermitian Clifford analysis, one then studies the first-
order differential operators ∂z and ∂†z, commuting with
the action of the unitary group on functions f(z, z†). In
view of the fact that

{∂z, ∂
†
z} = ∂z∂

†
z + ∂†z∂z = ∆z =

∑

j

∂zj
∂zj

=
1
4
∆2n

=
1
4

n∑

j=1

(∂2
xj

+ ∂2
yj

),

the associated function theory leads to a refinement of
harmonic analysis. To some extent, these operators were
studied in [Rocha-Chavez et al. 01] using the language of
forms. Part of the calculus was developed in [Sabadini
and Sommen 02], with an emphasis on the calculation
of resolutions of complexes in several complex variables.
In [Brackx et al. 05] the authors initiated the systematic
development of a basic function theory for the Hermi-
tian version of Clifford analysis, in the special Euclidean
setting.

In this paper we determine the building blocks for the
Fischer decomposition in the Hermitian setting. In order
to underline the importance of knowing these building
blocks, we recall that in the classical orthogonal case the
Fischer decomposition of an arbitrary homogeneous poly-
nomial is completely determined in terms of the Fischer
components of the reproducing kernel; see [Delanghe et
al. 92].

The starting point for the Hermitian Fischer decom-
position is again a reproducing kernel

Rk,l(z, z†;u, u†) =
{z, u†}k{z†, u}l

k!l!
,

in terms of which any (k, l)-homogeneous polynomial
Rk,l(z, z†) can be written using a Fischer-type inner
product. As for the orthogonal case, it would be of
great advantage to know the Fischer decomposition of
the (scalar) reproducing kernel Rk,l, since this would
allow one to calculate the Hermitian Fischer decom-
position of an arbitrary (k, l)-homogeneous polynomial
Rk,l(z, z†) in terms of (Hermitian) zonal building blocks
Zk,l(z, z†;u, u†).

An explicit form for these building blocks for the Her-
mitian Fischer decomposition of the kernel was formu-
lated as a claim in [Brackx et al. 05, Sections 3 through 5],
and the aim of this paper is to investigate this claim. This
is the first step toward explicit formulas for the Hermitian
Fischer decomposition.

2. SPIN-EULER POLYNOMIALS OF TYPES
(k, 0) AND (0, k)

Throughout this paper, we will constantly encounter the
following specific Clifford number:

Definition 2.1. The spin-Euler operator β is defined as

β = ∂z[z] =
∑

j

f†j fj =
n

2
+
i

2

n∑

j=1

ejej+n.
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This Clifford number is called an operator, because its
action (through multiplication) on a spinor ψ ∈ (CΛ†

n)kI

is given by β[ψ] = kψ (for all k = 1, . . . , n).

In view of the fact that CΛ†
n =

⊕n
j=0(CΛ†

n)k, it is
immediately clear that this operator satisfies the equa-
tion β(β − 1) · · · (β − n) = 0. This polynomial expres-
sion in β expresses the fact that the spin-Euler opera-
tor can be considered as a root of the so-called falling
factorial function (x)k defined for all k ∈ N as (x)k =
x(x− 1)(x− 2) · · · (x− k+ 1); see, for example, [Graham
et al. 94].

They generate the Stirling numbers of the first kind
s(k, j) by means of (x)k =

∑k
j=0 s(k, j)x

j . The Stirling
number of the first kind is usually defined as the num-
ber s(k, j) such that the number of permutations of k
elements containing exactly j permutation cycles is pre-
cisely the nonnegative number |s(k, j)| = (−1)k−js(k, j).
This means that s(k, j) = 0 for j > k, s(k, k) = 1, and
s(k, 0) = δk,0.

In the case (k, l) = (k, 0), the expression that was
proposed in [Brackx et al. 05] reduces to

Zk,0(z, z†;u, u†) =
{z, u†}k

k!
+
zPk(β){z, u†}k−1u†

(k − 1)!
,

where Pk(β) denotes a polynomial of degree n in β. We
call this polynomial, depending on k ∈ N, the spin-Euler
polynomial of type (k, 0). To determine this polynomial,
we make use of the monogeneity conditions for the Hermi-
tian building blocks Zk,0(z, z†;u, u†). Since these depend
only on z and u†, we obtain ∂zZk,0 = 0 = Zk,0∂

†
u. It is

easily verified that this gives rise to the equation

1
(k − 1)!

(
1 + (k − 1 + β)Pk(β)

)
u†z u†{z, u†}k−2 = 0,

(2–1)

where we have made use of the following lemma, which
is easily proved by induction:

Lemma 2.2. If P (β) denotes a polynomial in β, we have
[P (β), u†z] = 0. This remains true for any combination
of a complex variable and the Hermitian conjugate of a
complex variable. We thus also have that (for example)

[P (β), z ∧ z†] = [P (β), u ∧ u†] = 0.

Note that we restrict ourselves to the cases k > 1 in
the equation for Pk(β).

In the case k = 1 it suffices to note that

(β)n+1 = 0 =⇒
(

(−1)nn! + βP1(β)
)
β = 0.

In general, the zero divisor β cannot be divided out, un-
less we multiply the right-hand side by u†, leading to

(
(−1)nn! + βP1(β)

)
u†(β + 1) = 0.

Remark 2.3. The condition Zk,0∂
†
u = 0 leads to the

same equations for Pk(β), in view of the symmetry. This
remains true in general: in view of the symmetry of
Zk,l(z, z†;u, u†) with respect to (z, u†) and (z†, u), the
defining relations for the spin-Euler polynomials will al-
ways follow from monogeneity conditions on z and z†

only.

In view of the claim, we then put Pk(β) =∑n
j=0 c

(k)
j βj , where the coefficients c(k)

j are to be deter-
mined. Plugging this polynomial into (2–1), we are led
to the following equation:

1 + (k − 1)
n∑

j=0

c
(k)
j βj +

n∑

j=0

c
(k)
j βj+1 = 0.

This looks like an overdetermined system, since we now
have (n + 2) equations for only (n + 1) unknowns, but
from the fact that (β)m = 0 it follows that βn+1 =
−∑n

j=0 s(n+ 1, j)βj , whence Equation (2–1) reduces to

1+
n∑

j=0

(
(k−1)c(k)

j −s(n+1, j)c(k)
n

)
βj +

n∑

j=1

c
(k)
j−1β

j = 0.

Arranging this equation into the matrix formalism, we
get MC = R with

M =

⎛

⎜⎜⎜⎝

k − 1 0 0 0 · · · −s(n + 1, 0)
1 k − 1 0 0 · · · −s(n + 1, 1)
0 1 k − 1 0 · · · −s(n + 2, 0)
0 0 1 k − 1 · · · −s(n + 3, 0)

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 0 · · · k − 1 − s(n + 1, n)

⎞

⎟⎟⎟⎠

with C = (c(k)
0 , . . . , c

(k)
n )T and R = (−1, 0, . . . , 0)T . The

existence of the spin-Euler polynomial Pk(β) thus de-
pends on the determinant of the matrix M , for which we
refer to the following lemma:

Lemma 2.4. The determinant of the matrix M is given
by

|M | =
n+1∑

j=0

|s(n+ 1, j)|(k − 1)j .

Proof: The result follows from an induction argument.
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Corollary 2.5. For all k > 1, the matrix M is invertible.
From this the existence of the spin-Euler polynomial of
type (k, 0), with k ∈ N0, immediately follows.

In order to obtain an expression for Pk(β), it suffices
to invert the matrix M . In view of the fact that we will
multiply M−1 by R, it suffices to determine only the first
column of this matrix. This is the subject of the follow-
ing lemma, which again follows from a straightforward
induction argument.

Lemma 2.6. The first column of the matrix M−1 is given
by

1
|M | (µ

−1)j,1 with j ∈ {1, . . . , n+ 1},

where

µ−1
j,1 = (−1)j−1

n+1∑

i=j

|s(n+ 1, i)|(k − 1)i−j .

This then leads to the following theorem.

Theorem 2.7. The zonal Hermitian complex polynomials
Zk,0(z, z†;u, u†) are given by

Zk,0(z, z†;u, u†) =
{z, u†}k

k!
+
zPk(β){z, u†}k−1u†

(k − 1)!
,

where the spin-Euler polynomials Pk(β) of type (k, 0) are
defined as follows:

P1(β) =
(−1)n

n!

n−1∑

j=0

s(n+ 1, j + 2)βj ,

Pk(β) =
n+1∑

j=1

(−1)j

(∑n+1
i=j |s(n+ 1, i)|(k − 1)i−j

∑n+1
i=0 |s(n+ 1, i)|(k − 1)i

)
βj−1,

k > 1. These polynomials solve the equations
(
1 + βP1(β)

)
u† = 0,

(
1 + (k − 1 + β)Pk(β)

)
= 0 (k > 1).

Note that in the case k = 1, the factor u† cannot be
omitted.

In order to determine the spin-Euler polynomials of
type (0, k), which we will denote by P k(β), it suffices to
note that up to the subtle difference between the vari-
ables z and z† encoded in the equations

∂z[z] = β ←→ ∂†z[z
†] = n− β,

the defining equations will be completely similar. This
immediately leads to the following conclusion:

Theorem 2.8. The zonal Hermitian complex polynomials
Z0,k(z, z†;u, u†) are given by

Z0,k(z, z†;u, u†) =
{z†, u}k

k!
+
z†P k(β){z†, u}k−1u

(k − 1)!
,

where the spin-Euler polynomials P k(β) of type (0, k) are
defined by P k(β) = Pk(n − β). These polynomials solve
the equations

(
1 + (n− β)P 1(β)

)
u = 0,

(
1 + (k − 1 + n− β)P k(β)

)
= 0 (k > 1).

3. COMMUTATION BEHAVIOR OF
SPIN-EULER POLYNOMIALS

In this section, we investigate the way in which a poly-
nomial in β behaves under commutation with a complex
variable or the Hermitian conjugate of a complex vari-
able.

Lemma 3.1. For all j ∈ N, we have

[u, βj+1] =
j∑

k=0

βk(1 + β)j−ku =
j∑

l=0

{
l∑

i=0

(
j − i
l − i

)}
βlu

=
j∑

l=0

(
j + 1
l

)
βlu.

In this expression, u may be replaced by any complex
variable.

Proof: The first statement is easily proved by induction
on the power j. In order to prove the second equality, it
suffices to note that if we write

j∑

k=0

βk(1 + β)j−k =
j∑

l=0

clβ
l,

there is a contribution to each power βl from all βk(1 +
β)j−k with k ≤ l. This contribution, which is the coeffi-
cient of βl−k in (1 + β)j−k, is given by

(
j−k
l−k

)
. To prove

the third equality, we use induction on the parameter l.

Corollary 3.2. If P (β) =
∑n

j=0 cjβ
j denotes a polynomial

of degree n in β, the commutator of this polynomial with
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u is given by

[u, P (β)] =
n∑

j=1

cj [u, βj ] =
n−1∑

i=0

( n∑

j=i+1

(
j

i

)
cj

)
βiu.

In what follows, we will denote the coefficients of this
polynomial by γ

(c)
i . The index c refers here to the fact

that these coefficients γi depend on the coefficients cj of
the given polynomial. Because we will often encounter
the commutator of a (spin-Euler) polynomial with a vari-
able u (or z) in what follows, we introduce the following
notation:

Definition 3.3. If a polynomial P (β) =
∑n

j=0 cjβ
j is

commuted with a complex variable (for example u or z),
this gives rise to a polynomial of degree (n − 1) in β,
denoted by

[P ](β) =
n−1∑

i=0

γ
(c)
i βi =

n−1∑

i=0

( n∑

j=i+1

(
j

i

)
cj

)
βi.

We thus, for example, have that [u, P (β)] = [P ](β)u.

In a similar way, the following lemma can be proved:

Lemma 3.4. For all j ∈ N we have

[u†, βj+1] = −
j∑

l=0

(−1)l+j
{ l∑

i=0

(
j + i− l

i

)}
βlu†

= (−1)j+1

j∑

l=0

(−1)l

(
j + 1
l

)
βlu†.

A similar expression is of course obtained if u† is replaced
by the Hermitian conjugate of any complex variable.

Corollary 3.5. If P (β) =
∑n

j=0 cjβ
j denotes a polynomial

of degree n in β, the commutator of this polynomial with
u† is given by

[u†, P (β)] =
n∑

j=1

cj [u†, βj ]

=
n−1∑

i=0

( n∑

j=i+1

(−1)i+j

(
j

i

)
cj
)
βiu†.

In what follows, we will denote the coefficients of this
polynomial by δ

(c)
i . The index c refers to the fact that

these coefficients depend on the coefficients cj of the given

polynomial. Again in view of the fact that we will often
encounter the commutator of a polynomial in β with a
conjugated variable u† (or z†) in what follows, we intro-
duce the following notation:

Definition 3.6. If a polynomial P (β) =
∑n

j=0 cjβ
j is

commuted with the Hermitian conjugate of a complex
variable (for example u† or z†), this gives rise to a poly-
nomial of degree (n− 1) in β, denoted by

[P ]†(β) =
n−1∑

i=0

δ
(c)
i βi =

n−1∑

i=0

( n∑

j=i+1

(−1)i+j

(
j

i

)
cj

)
βi.

We thus, for example, have that

[u†, P (β)] = [P ]†(β)u†.

Note that in view of the fact that β† = β, there is no
need to consider the Hermitian conjugate of the polyno-
mial [P ](β) defined earlier, whence the notation [P ]†(β)
is unambiguous.

From the previous lemmas, we easily prove the follow-
ing lemma:

Lemma 3.7. If P (β) denotes an arbitrary polynomial in
β, we have
[
P (β), u

]
= u [P ]†(β) and

[
P (β), u†

]
= u†[P ](β).

Lemma 3.8. For all j ∈ N, we have

[u, (n− β)j+1] = −
j∑

k=0

(n− β)j−k(n− β − 1)ku

= (−1)j+1

j∑

l=0

(−1)l

(
j + 1
l

)
(n− β)lu,

[u†, (n− β)j+1] =
j∑

k=0

(n− β)k(1 + n− β)j−ku†

=
j∑

l=0

(
j + 1
l

)
(n− β)lu†,

where u and u† may of course be replaced by z and z†.

Corollary 3.9. If P (β) =
∑n

j=0 cjβ
j denotes a polynomial

of degree n in β, the previous lemma can be rewritten in
such a way that the duality between β and (n − β) may
be observed from the following commutators:

[u, P (β)] = [P ](β)u←→ [u, P (n− β)] = [P ]†(n− β)u,

[u†, P (β)] = [P ]†(β)u† ←→ [u†, P (n− β)] = [P ](n− β)u†.
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To end this section, we also mention the following re-
sult.

Lemma 3.10. If P (β) denotes an arbitrary polynomial in
β, we have

[P (n− β), u] = u [P ](n− β),
[
P (n− β), u†

]
= u†[P ]†(n− β).

4. SPIN-EULER POLYNOMIALS OF TYPE (k, k)

4.1 A First Special Case: k = 1

We begin this section with the calculations for
Z1,1(z, z†;u, u†) in order to illustrate how the case in
which both k and l are nonzero differs substantially from
the previous calculations. By definition, we put

Z1,1(z, z†;u, u†)

= {z, u†}{z†, u}

+
(
zP

(1)
1,1 (β){z†, u}u† + z†P (2)

1,1 (β){z, u†}u
)

+
(
z ∧ z†P (3)

1,1 (β)u ∧ u† + z ∧ z†P (4)
1,1 (β)|u|2

+ |z|2P (5)
1,1 (β)u ∧ u†

)

+ |z|2P (6)
1,1 (β)|u|2,

where all the polynomials P (i)
1,1(β), with i ∈ {1, . . . , 6},

are to be determined. The monogeneity conditions for
Z1,1 will give rise to six equations. In order to derive
these, we use the following lemma:

Lemma 4.1. The variables z and z† satisfy the following
relations:

∂z z ∧ z† =
(
β − 1

2

)
z†

and

∂†z z ∧ z† =
(
β +

1
2
− n

)
z.

The actions of ∂z and ∂†z give rise to the following
terms:

∂z → u†{z†, u}+

{
βP

(1)
1,1 {z†, u}u†

u†z†P (2)
1,1 u

+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(β − 1
2 )z†P (3)

1,1 u ∧ u†
(β − 1

2 )z†P (4)
1,1 |u|2

z†P (5)
1,1 u ∧ u†

z†P (6)
1,1 |u|2

and

∂†z → u{z, u†}+

{
(n− β)P (2)

1,1 {z, u†}u
u zP

(1)
1,1 u

†

+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(β + 1
2 − n)zP (3)

1,1 u ∧ u†
(β + 1

2 − n)zP (4)
1,1 |u|2

zP
(5)
1,1 u ∧ u†

zP
(6)
1,1 |u|2

.

Apart from the terms u†z†P (2)
1,1 u and u zP (1)

1,1 u
†, it is im-

mediately clear how to arrange these terms into a system
of six equations. These two exceptional terms will give
contributions to the equations in z†(u ∧ u†) and z†|u|2
(and similar terms with z). This eventually gives rise to
the following equations:

(
1 + βP

(1)
1,1

)
u†{z†, u} = 0,

(
1 + (n− β)P (2)

1,1

)
u{z, u†} = 0,

z†
(
(β +

1
2
)P (3)

1,1 + P
(5)
1,1 + P

(2)
1,1 + [P (2)

1,1 ]+
)
u ∧ u† = 0,

z
(
(β − 1

2
− n)P (3)

1,1 + P
(5)
1,1 − P (1)

1,1 − [P (1)
1,1 ]
)
u ∧ u† = 0,

z†
(
(β +

1
2
)P (4)

1,1 + P
(6)
1,1 −

1
2
P

(2)
1,1 −

1
2
[P (2)

1,1 ]+
)|u|2 = 0,

z
(
(β − 1

2
− n)P (4)

1,1 + P
(6)
1,1 −

1
2
P

(1)
1,1 −

1
2
[P (1)

1,1 ]
)|u|2 = 0.

It follows immediately that P
(1)
1,1 (β) = P1(β) and

P
(2)
1,1 (β) = P 1(β). Before determining the other poly-

nomials, we first prove the following lemma.

Lemma 4.2. For each k ∈ N we have

Pk(β) + [Pk](β) = Pk+1(β)

and
P k(β) + [P k]†(β) = P k+1(β).

Proof: It suffices to observe that
(
1 + (β + k − 1)Pk

)
u† = 0

⇐⇒ u†
(
1 + (β + k)(Pk + [Pk])

)
= 0,

together with the fact that there is a unique polynomial
solution of degree n. The other statement is proved in a
similar way.

Subtracting the third and fourth (respectively fifth
and sixth) equations above, we obtain

(n+ 1)P (3)
1,1 (β) + P2(β) + P2(n− β) = 0

=⇒ P
(3)
1,1 (β) = −P2(β) + P2(n− β)

n+ 1
,
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respectively

(n+ 1)P (4)
1,1 (β)− 1

2
(
P2(n− β)− P2(β)

)
= 0

=⇒ P
(4)
1,1 (β) =

P2(n− β)− P2(β)
2(n+ 1)

.

Plugging these expressions back into the third and
fourth (fifth and sixth) equations, we finally obtain

P
(5)
1,1 (β) = −P2(n− β) +

(
β +

1
2

)
P2(β) + P2(n− β)

n+ 1

and

P
(6)
1,1 (β)

=
1
2

(
P2(n− β) +

(
β +

1
2

)
P2(β)− P2(n− β)

(n+ 1)

)
.

4.2 A Second Special Case: k = 2

Before turning to the most general case, it will be useful
to consider Z2,2(z, z†;u, u†) as a special case as well. The
reason for this comes from the fact that the case (2, 2)
leads to some peculiar features that could not be observed
in the simpler case (1, 1). We first introduce the following
definition:

Definition 4.3. For arbitrary (a, b) ∈ N2 we define

S(a, b) =
{z, u†}a{z†, u}b

a!b!
,

where S refers to the fact that this factor is scalar.

Note that ∂zS(a, b) = u†S(a − 1, b) and ∂†zS(a, b) =
uS(a, b − 1), two relations that will be useful in what
follows.

Let Z2,2(z, z†;u, u†) be defined by

|z|0|u|0
(

cS(2, 2) +
(

zP
(1)
2,2

S(1, 2)u† + z†P
(2)
2,2

S(2, 1)u

)

S(1, 1)
(

z ∧ z†P
(3)
2,2

u ∧ u† + z ∧ z†P
(4)
2,2

|u|2 + |z|2P
(5)
2,2

u ∧ u†
)
)

|z|2|u|2
(

cP
(6)
2,2

S(1, 1) +
(

zP
(7)
2,2

S(0, 1)u† + z†P
(8)
2,2

S(1, 0)u

)
(

z ∧ z†P
(9)
2,2

u ∧ u† + z ∧ z†P
(10)
2,2

|u|2 + |z|2P
(11)
2,2

u ∧ u†
)
)

|z|4|u|4P (12)
2,2 .

This time, there are 12 spin-Euler polynomials of type
(2, 2) to be determined. To do so we have to rearrange
all contributions coming from the action of ∂z and ∂†z
into a system of equations. Let us work out the action of
∂z. The action of ∂†z will give rise to similar terms. When
acting on the zeroth row (by which we mean the terms
multiplied by |z|0|u|0), we first of all get the following

terms, which are more or less the analogues of the terms
obtained for the case (1, 1):

S(1, 2)u† +

{
(1 + β)P (1)

2,2S(1, 2)u†

S(1, 1)u†z†P (2)
2,2 u

+ S(1, 1)

⎧
⎪⎨

⎪⎩

z†(β + 1
2 )P (3)

2,2 u ∧ u†
z†(β + 1

2 )P (4)
2,2 |u|2

z†P (5)
2,2 u ∧ u†

.

However, in contrast to the case (1, 1), there is another
contribution coming from the terms in the first row: this
is due to the presence of the factor S(1, 1) in front of the
second set of parentheses. These terms are given by

u†S(0, 1)
(
z∧z†P (3)

2,2 u∧u†+z∧z†P (4)
2,2 |u|2+|z|2P (5)

2,2 u∧u†
)
.

In view of the fact that

u†S(0, 1)|z|2P (5)
2,2 u ∧ u† =

1
2
|z|2|u|2S(0, 1)u†P (5)

2,2 ,

the last term will contribute to equations coming from
the action of ∂z acting on the first row (this will become
clear in a moment). The two remaining terms are new,
when compared with the case (1, 1), and will give rise to
additional equations. First of all, note that they are not
independent, for the simple reason that

u†(z ∧ z†)(u ∧ u†)

=
1
2
u†|u|2z ∧ z† − S(1, 0)z†

(
1
2
|u|2 − u ∧ u†

)
.

In other words, besides another contribution to
S(1, 1)z† u ∧ u† and S(1, 1)z†|u|2, there are also terms

S(0, 1)u†|u|2z ∧ z†
(

1
2
P

(3)
2,2 + P

(4)
2,2

)
.

Next, we consider the action of ∂z on the first row.
The obvious contribution is now given by

|z|2|u|2
(
S(0, 1)u†P (6)

2,2 +

{
βP

(7)
2,2S(0, 1)u†

u†z†P (8)
2,2 u

+

⎧
⎪⎨

⎪⎩

z†(β + 1
2 )P (9)

2,2 u ∧ u†
z†(β + 1

2 )P (10)
2,2 |u|2

z†P (11)
2,2 u ∧ u†

)
,

while the new contribution, again in comparison to the
case (1, 1), comes from the action of ∂z on the scalar
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factor |z|2|u|2. This gives

S(1, 1)z†P (6)
2,2 |u|2

+ S(0, 1)
(

1
2
|z|2|u|2P (7)

2,2 u
† − |u|2P (7)

2,2 z ∧ z†u†
)

+ |z|2|u|2
(

1
2
z†P (9)

2,2 u ∧ u† +
1
2
z†P (10)

2,2 |u|2

+ z†P (11)
2,2 u ∧ u†

)
.

This means that all terms, except for the first and the
third one, can be added to one of the terms coming from
the obvious contribution. The first term must be added
to terms coming from the zeroth row, while the third
term can be rewritten as

S(0, 1)|u|2P (7)
2,2 (z† ∧ z)u†

= S(1, 1)P (7)
2,2 z

†|u|2

− S(0, 1)u†|u|2z ∧ z†
(
P

(7)
2,2 + [P (7)

2,2 ]
)
.

In the end, this means that the contributions of ∂z give
rise to six equations that can be considered as the ana-
logues of the equations found for the case (1, 1), to-
gether with a new equation coming from the terms in
u†|u|2z ∧ z†.

Since the equations coming from ∂†z are very similar,
we continue by giving the system of equations determin-
ing the spin-Euler polynomials of type (2, 2). The equa-
tions coming from the first row are given by

1 + (1 + β)P (1)
2,2 = 0,

(
3
2

+ β

)
P

(3)
2,2 + P

(5)
2,2 + P

(2)
2,2 + [P (2)

2,2 ]† = 0,

and
(

1
2

+ β

)
P

(4)
2,2 + P

(6)
2,2 −

1
2
P

(2)
2,2 −

1
2
[P (2)

2,2 ]†

=
1
2
P

(3)
2,2 −

(
P

(7)
2,2 + [P (7)

2,2 ]
)
.

The third and sixth equations seem a bit strange, but the
right-hand side is precisely taken care of by the equa-
tion coming from the exceptional terms u†(z ∧ z†) and
u(z ∧ z†):

1
2
P

(3)
2,2 + P

(4)
2,2 −

(
P

(7)
2,2 + [P (7)

2,2 ]
)

= 0.

Indeed, this turns the third equation into
(

3
2

+ β

)
P

(4)
2,2 + P

(6)
2,2 −

1
2
P

(2)
2,2 −

1
2
[P (2)

2,2 ]† = 0.

The equations from the second row are given by

1
2
P

(5)
2,2 + P

(6)
2,2 +

(
β +

3
2

)(
P

(7)
2,2 + [P (7)

2,2 ]
)

= 0,

(1 + β)P (9)
2,2 + 2P (11)

2,2 +
(
P

(8)
2,2 + [P (8)

2,2 ]†
)

= 0,

(1 + β)P (10)
2,2 + 2P (12)

2,2 −
1
2
(
P

(8)
2,2 + [P (8)

2,2 ]†
)

= 0.

In a completely similar way, the equations coming from
the action of ∂†z can be derived:

1 + (1 + n− β)P (2)
2,2 = 0,

(
β − n− 3

2

)
P

(3)
2,2 + P

(5)
2,2 − P (1)

2,2 − [P (1)
2,2 ] = 0,

(
β − n− 3

2

)
P

(4)
2,2 + P

(6)
2,2 −

1
2
P

(1)
2,2 −

1
2
[P (1)

2,2 ] = 0,

−1
2
P

(5)
2,2 + P

(6)
2,2 +

(
n− 1

2
− β

)(
P

(8)
2,2 + [P (8)

2,2 ]†
)

= 0,

(β − n− 1)P (9)
2,2 + 2P (11)

2,2 −
(
P

(7)
2,2 + [P (7)

2,2 ]
)

= 0,

(β − n− 1)P (10)
2,2 + 2P (12)

2,2 −
(

1
2
P

(7)
2,2 +

1
2
[P (7)

2,2 ]
)

= 0,

where we have already used the exceptional equation

P
(4)
2,2 −

1
2
P

(3)
2,2 +

(
P

(8)
2,2 + [P (8)

2,2 ]†
)

= 0.

We immediately get that P (1)
2,2 = P2(β) and P

(2)
2,2 =

P2(n− β). The polynomials P (3)
2,2 , . . . , P

(6)
2,2 are easily ob-

tained and have the same structure as the ones found in
the (1, 1) case.

P
(3)
2,2 = −P3(β) + P3(n− β)

(n+ 3)
,

P
(4)
2,2 =

P3(n− β)− P3(β)
2(n+ 3)

,

P
(5)
2,2 = −P3(n− β) +

(
β +

3
2

)
P3(β) + P3(n− β)

(n+ 3)
,

P
(6)
2,2 =

1
2

(
P3(n− β) +

(
β +

3
2

)
P3(β)− P3(n− β)

(n+ 3)

)
.

From the exceptional equations, it follows that P (7)
2,2 +

[P (7)
2,2 ] = 1

n+3P3(β), leading to

P
(7)
2,2 (β) = −P2(β)

n+ 3
.

In a completely similar way, it is immediately found
that

P
(8)
2,2 (β) = −P2(n− β)

n+ 3
.
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Manipulating the other equations, we then obtain

P
(9)
2,2 =

P2(β) + P2(n− β)
(n+ 3)(n+ 2)

= − P
(3)
2,2

n+ 2
,

P
(10)
2,2 =

P2(β)− P2(n− β)
2(n+ 3)(n+ 2)

= − P
(4)
2,2

n+ 2
,

P
(11)
2,2 =

1
2(n+ 3)

(
P2(n− β)

− (1 + β)
P2(β) + P2(n− β)

(n+ 2)

)
,

P
(12)
2,2 = − 1

4(n+ 3)

(
P2(n− β)

+ (1 + β)
P2(β)− P2(n− β)

(n+ 2)

)
.

4.3 The General Case

We first introduce notation for all spin-Euler polynomi-
als occurring in the expression for Zk,k(z, z†;u, u†). We
will label these polynomials P (j)

k,k, where j goes from 1 to
6k, according to the scheme below. Let the Hermitian
polynomial Zk,k(z, z†;u, u†) be given by

k∑

j=0

|z|2j |u|2j

×

⎛

⎜⎝

P
(6j)
k,k

S(k − j, k − j)(
zP

(6j+1)
k,k

S(k − j − 1, k − j)u† + z†P
(6j+2)
k,k

S(k − j, k − j − 1)u

)

S(k − j − 1, k − j − 1)z ∧ z†P
(6j+3)
k,k

u ∧ u†

S(k − j − 1, k − j − 1)
(

z ∧ z†P
(6j+4)
k,k

|u|2 + |z|2P
(6j+5)
k,k

u ∧ u†
)

⎞

⎟⎠ .

A few words of explanation might be useful here:

• Zk,k(z, z†;u, u†) is defined in terms of 6k polyno-
mials. In order to determine these, we expect 6k
equations (we will find more equations, but they
can be reduced to a system of 6k equations). In-
spired by the previous cases, we expect a rearrange-
ment of all terms into k times 6 equations E(l)

j (with
j ∈ {0, . . . , k − 1} and l ∈ {1, . . . , 6}):

u†E(1)
j S(k − j − 1, k − j) = 0,

uE
(2)
j S(k − j, k − j − 1) = 0,

z†E(3)
j u ∧ u†S(k − j − 1, k − j − 1) = 0,

zE
(4)
j u ∧ u†S(k − j − 1, k − j − 1) = 0,

z†E(5)
j |u|2S(k − j − 1, k − j − 1) = 0,

zE
(6)
j |u|2S(k − j − 1, k − j − 1) = 0.

Each E
(l)
j represents an equation containing spin-

Euler polynomials P
(i)
k,k and polynomials [P (i)

k,k] or

[P (i)
k,k]+ coming from a commutator with u or u†.

In view of the equations that were found for (k, k) =
(2, 2), we also expect additional exceptional equa-
tions, allowing us to simplify the equations E

(l)
j .

These will be labeled by Ej and E†j , where j refers
to the fact that these equations come from

u†z ∧ z†|u|2S(k − j − 2, k − j − 1)Ej
u z ∧ z†|u|2S(k − j − 1, k − j − 2)E†j .

• The polynomials P
(6j+1)
k,k (β), . . . , P (6j+5)

k,k (β) (with
j = 0, . . . , k−1) always belong together, in the sense
that these have a factor (|z|2|u|2)j in common. We
call these the polynomials of the jth row. Note that
the kth row has only one term |z|2k|u|2kP

(6k)
k,k , due

to the fact that we put S(a, b) = 0 as soon as one of
these indices becomes zero.

• Given an index l = 6j + r ∈ {1, 2, . . . , 6k}, it is
always possible to determine to which term the cor-
responding polynomial P (l)

k,k belongs by means of the
following procedure:

r = 0 −→ S(k − j, k − j),
r = 1 −→ z u†S(k − j − 1, k − j),
r = 2 −→ z†uS(k − j, k − j − 1),

r = 3 −→ z ∧ z†u ∧ u†S(k − j − 1, k − j − 1),

r = 4 −→ z ∧ z†|u|2S(k − j − 1, k − j − 1),

r = 5 −→ |z|2u ∧ u†S(k − j − 1, k − j − 1).

To determine these polynomials, we consider the ac-
tion of ∂z and ∂†z on Zk,k(z, z†;u, u†). Let us start with
row zero (we prefer to count the rows from zero, in view
of the power j of the scalar factor |u|2|z|2). In what fol-
lows, all terms coming from the action of the operator ∂z

are listed, and the equation to which it will contribute is
given in the second column:

S(k − 1, k)u† → E
(1)
0 ,

(β + k − 1)P (1)
k,kS(k − 1, k)u† → E

(1)
0 ,

−z†
(
P

(2)
k,k + [P (2)

k,k ]†
)
S(k − 1, k − 1)u†u→ E

(3)
0 /E

(5)
0 ,

z†
(
β +

1
2

)
P

(3)
k,kS(k − 1, k − 1)u ∧ u† → E

(3)
0 ,

u†z ∧ z†P (3)
k,kS(k − 2, k − 1)u ∧ u† → ?,
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z†
(
β +

1
2

)
P

(4)
k,kS(k − 1, k − 1)|u|2 → E

(5)
0 ,

u†z ∧ z†P (4)
k,kS(k − 2, k − 1)|u|2 → ?,

z†P (5)
k,kS(k − 1, k − 1)u ∧ u† → E

(3)
0 ,

u†|z|2P (5)
k,kS(k − 2, k − 1)u ∧ u† → ? .

There are three terms for which the corresponding equa-
tion is not a priori clear. The last one, given by

u†|z|2P (5)
k,kS(k − 2, k − 1)u ∧ u†

=
1
2
|z|2|u|2S(k − 2, k − 1)u†P (5)

k,k ,

contributes to the equation E
(1)
1 . In other words, the

action of the operator ∂z on the jth row will always give
a term that mixes up with the unknown polynomials of
the (j+1)th row (except of course for the last row). Using
the fact that

u†(z ∧ z†)(u ∧ u†)

=
1
2
u†|u|2z ∧ z† − S(1, 0)z†

(
1
2
|u|2 − u ∧ u†

)
,

it is clear that the remaining terms will contribute to
equations E(3)

0 and E(5)
0 , and to equation E0:

|u|2u†z ∧ z†S(k − 2, k − 1)
(

1
2
P

(3)
k,k + P

(4)
k,k

)
. (4–1)

Similar conclusions will of course hold for the terms com-
ing from the action of the operator ∂†z.

Let us now consider the jth row (with j > 0), i.e.,
the scalar factor |z|2j |u|2j multiplied by the (six) terms
inside parentheses. We again focus on the action of ∂z.
This operator acts on the scalar term |u|2j |z|2j as

∂z

(
|z|2|u|2

)j

= jz†|z|2j−2|u|2j , (4–2)

and on the terms in parentheses. When acting on the
terms in parentheses, we get at most three kinds of terms:
terms contributing to equations E(l)

j , a term contributing

to E(1)
j+1, and two exceptional terms contributing to Ej .

For j = k − 1 and j = k, however, the situation is
different, since there will be no exceptional terms there.
That is why in the special case (1, 1) we didn’t observe
this peculiar behavior.

Since the term in (4–2) is still to be multiplied
by the six terms in parentheses, we get the following

contributions:

j(|z|2|u|2)j−1z†P (6j)
k,k S(k − j, k − j)|u|2,

j(|z|2|u|2)j−1

(
1
2
|z|2 − z ∧ z†

)
P

(6j+1)
k,k

× S(k − j − 1, k − j)u†|u|2,
j(|z|2|u|2)jz†P (6j+3)

k,k S(k − j − 1, k − j − 1)u ∧ u†,
j(|z|2|u|2)jz†P (6j+4)

k,k S(k − j − 1, k − j − 1)|u|2,
j(|z|2|u|2)jz†P (6j+5)

k,k S(k − j − 1, k − j − 1)u ∧ u†.

The first term reintroduces P (6j)
k,k , into equation E

(5)
j−1.

All the other terms, except the third one, contribute to
the equations E(l)

j . Using the fact that (z ∧ z†)u† =
S(1, 0)z† − u†z ∧ z†, we can see that the third term will
eventually contribute to E(5)

j−1 and Ej−1.
Straightforward (albeit elaborate) calculations yield

the following global form for all spin-Euler polynomials
of type (k, k), up to the first two equations:

E
(1)
0 : 1 + (β + k − 1)P

(1)
k,k

= 0,

E
(2)
0 : 1 + (n − β + k − 1)P

(2)
k,k

= 0,

E
(1)
i :

1

2
P

(6i−1)
k,k

+ P
(6i)
k,k

+

(
β +

2k − i

2

)(
P

(6i+1)
k,k

+ [P
(6i+1)
k,k

]
)

= 0,

E
(2)
i : −1

2
P

(6i−1)
k,k

+ P
(6i)
k,k

+

(
n − β +

2k − i

2

)(
P

(6i+2)
k,k

+ [P
(6i+2)
k,k

]†
)

= 0,

E
(3)
i :

(
β +

2k − i − 1

2

)
P

(6i+3)
k,k

+ (i + 1)P
(6i+5)
k,k

+
(
P

(6i+2)
k,k

+ [P
(6i+2)
k,k

]†
)

= 0,

E
(4)
i :

(
β − n − 2k − i − 1

2

)
P

(6i+3)
k,k

+ (i + 1)P
(6i+5)
k,k

−
(
P

(6i+1)
k,k

+ [P
(6i+1)
k,k

]
)

= 0,

E
(5)
i :

(
β +

i + 1

2

)
P

(6i+4)
k,k

+ (i + 1)P
(6i+6)
k,k

− 1

2

(
P

(6i+2)
k,k

+ [P
(6i+2)
k,k

]†
)

+ (i + 1)(k − i − 1)
(
P

(6i+7)
k,k

+ [P
(6i+7)
k,k

]
)

− k − i − 1

2
P

(6i+3)
k,k

= 0,

E
(6)
i :

(
β − n − i + 1

2

)
P

(6i+4)
k,k

+ (i + 1)P
(6i+6)
k,k

− 1

2

(
P

(6i+1)
k,k

+ [P
(6i+1)
k,k

]
)

+ (i + 1)(k − i − 1)
(
P

(6i+8)
k,k

+ [P
(6i+8)
k,k

]†
)

− k − i − 1

2
P

(6i+3)
k,k

= 0,
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Ei : −(i + 1)
(
P

(6i+7)
k,k

+ [P
(6i+7)
k,k

]
)

+ P
(6i+4)
k,k

+
1

2
P

(6i+3)
k,k

= 0,

E+
i : (i + 1)

(
P

(6i+8)
k,k

+ [P
(6i+8)
k,k

]†
)

+ P
(6i+4)
k,k

− 1

2
P

(6i+3)
k,k

= 0.

This system is then solved recursively:

P
(1)
k,k(β) = Pk(β),

P
(2)
k,k(β) = P k(β) = Pk(n− β).

It is easily shown (by induction) that

P
(6i+1)
k,k

=
(−1)iΓ(n + 2k − i)

i!Γ(n + 2k)
Pk(β),

P
(6i+2)
k,k

=
(−1)iΓ(n + 2k − i)

i!Γ(n + 2k)
Pk(n − β),

P
(6i+3)
k,k

=
(−1)i+1Γ(n + 2k − i − 1)

i!Γ(n + 2k)

(
Pk+1(β) + Pk+1(n − β)

)
,

P
(6i+4)
k,k

=
(−1)i+1Γ(n + 2k − i − 1)

2i!Γ(n + 2k)

(
Pk+1(β) − Pk+1(n − β)

)
,

P
(6i+5)
k,k

=
(−1)iΓ(n + 2k − i)

(i + 1)!Γ(n + 2k)

(
− Pk+1(n − β)

+

(
β +

2k − i − 1

2

)
Pk+1(β) + Pk+1(n − β)

n + 2k − i − 1

)
,

P
(6i+6)
k,k

=
(−1)iΓ(n + 2k − i)

2(i + 1)!Γ(n + 2k)

(
Pk+1(n − β)

+

(
β +

2k − i − 1

2

)
Pk+1(β) − Pk+1(n − β)

n + 2k − i − 1

)
.

5. SPIN-EULER POLYNOMIALS OF TYPE
(k, l) ∈ N2

0 (k �= l)

The last cases are those in which the indices differ: k 
= l.
Note that the case in which one of them is equal to zero
has already been treated. We start from the following
expression for Zk,l(z, z†;u, u†) (where we first consider
the case k > l):

l∑

j=0

(|z|2|u|2)j

×

⎛

⎜⎝

S(k − j, l − j)P
(6j)
k,l

S(1 + k − l, 1)(
zP

(6j+1)
k,l

S(k − j − 1, l − j)u† + z†P
(6j+2)
k,l

S(k − j, l − j − 1)u

)

S(k − j − 1, l − j − 1)z ∧ z†P
(6j+3)
k,l

u ∧ u†

S(k − j − 1, l − j − 1)
(

z ∧ z†P
(6j+4)
k,l

|u|2 + |z|2P
(6j+5)
k,l

u ∧ u†
)

⎞

⎟⎠ .

Given an index l = 6j + r ∈ {1, 2, . . . , 6l + 1}, one can
easily determine to which term this polynomial belongs
in the expansion for Zk,l(z, z†;u, u†), using the following
procedure:

r = 0 −→ S(k − j, l − j),
r = 1 −→ z u†S(k − j − 1, l − j),

r = 2 −→ z†uS(k − j, l − j − 1),

r = 3 −→ z ∧ z†u ∧ u†S(k − j − 1, l − j − 1),

r = 4 −→ z ∧ z†|u|2S(k − j − 1, l − j − 1),

r = 5 −→ |z|2u ∧ u†S(k − j − 1, l − j − 1).

To determine all these polynomials, we have to let ∂z

and ∂†z act on Zk,l. The calculations are very similar to
those performed for the case (k, k), up to some minor
changes in the coefficients. Apart from the equations
E

(1)
0 and E(2)

0 , given by

E
(1)
0 : 1 + (β + k − 1)P (1)

k,l = 0,

E
(2)
0 : 1 + (n− β + l − 1)P (2)

k,l = 0,

and the fact that there is no equation E†l−1 (which is due

to the fact that k > l), all equations E(r)
j , Ej , and E†j

(with j = 0, . . . , l − 1 and r = 1, . . . , 6) are given by

E
(1)
i :

1

2
P

(6i−1)
k,l

+ P
(6i)
k,l

+

(
β +

2k − i

2

)(
P

(6i+1)
k,l

+ [P
(6i+1)
k,l

]
)

= 0,

E
(2)
i : −1

2
P

(6i−1)
k,l

+ P
(6i)
k,l

+

(
n − β +

2l − i

2

)(
P

(6i+2)
k,l

+ [P
(6i+2)
k,l

]†
)

= 0,

E
(3)
i :

(
β +

2k − i − 1

2

)
P

(6i+3)
k,l

+ (i + 1)P
(6i+5)
k,l

+
(
P

(6i+2)
k,l

+ [P
(6i+2)
k,l

]†
)

= 0,

E
(4)
i :

(
β − n − 2l − i − 1

2

)
P

(6i+3)
k,l

+ (i + 1)P
(6i+5)
k,l

−
(
P

(6i+1)
k,l

+ [P
(6i+1)
k,l

]
)

= 0,

E
(5)
i :

(
β +

i + 1

2

)
P

(6i+4)
k,l

+ (i + 1)P
(6i+6)
k,l

− 1

2

(
P

(6i+2)
k,l

+ [P
(6i+2)
k,l

]†
)

+ (i + 1)(k − i − 1)
(
P

(6i+7)
k,l

+ [P
(6i+7)
k,l

]
)

− k − i − 1

2
P

(6i+3)
k,l

= 0,

E
(6)
i :

(
β − n − i + 1

2

)
P

(6i+4)
k,l

+ (i + 1)P
(6i+6)
k,l

− 1

2

(
P

(6i+1)
k,l

+ [P
(6i+1)
k,l

]
)

+ (i + 1)(l − i − 1)
(
P

(6i+8)
k,l

+ [P
(6i+8)
k,l

]†
)

− l − i − 1

2
P

(6i+3)
k,l

= 0,

Ei : −(i + 1)
(
P

(6i+7)
k,l

+ [P
(6i+7)
k,l

]
)

+ P
(6i+4)
k,l

+
1

2
P

(6i+3)
k,l

= 0,

E+
i : (i + 1)

(
P

(6i+8)
k,l

+ [P
(6i+8)
k,l

]†
)

+ P
(6i+4)
k,l

− 1

2
P

(6i+3)
k,l

= 0.
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This system of equations can then easily be solved
recursively, which gives rise to

P
(6i+1)
k,l

=
(−1)iΓ(n + k + l − i)

i!Γ(n + k + l)
Pk(β),

P
(6i+2)
k,l

=
(−1)iΓ(n + k + l − i)

i!Γ(n + k + l)
Pl(n − β),

P
(6i+3)
k,l

=
(−1)i+1Γ(n + k + l − i − 1)

i!Γ(n + k + l)

(
Pk+1(β) + Pl+1(n − β)

)
,

P
(6i+4)
k,l

=
(−1)i+1Γ(n + k + l − i − 1)

2i!Γ(n + k + l)

(
Pk+1(β) − Pl+1(n − β)

)
,

P
(6i+5)
k,l

=
(−1)iΓ(n + k + l − i)

(i + 1)!Γ(n + k + l)

(
− Pl+1(n − β)

+

(
β +

2k − i − 1

2

)
Pk+1(β) + Pl+1(n − β)

n + k + l − i − 1

)
,

P
(6i+6)
k,l

=
(−1)iΓ(n + k + l − i)

2(i + 1)!Γ(n + k + l)

(
Pl+1(n − β)

+

(
β +

2k − i − 1

2

)
Pk+1(β) − Pl+1(n − β)

n + k + l − i − 1

)
.

For the case k < l, we of course get exactly the same
polynomials.

We may then conclude this section with the following
theorem:

Theorem 5.1. The building blocks for the Hermi-
tian Fischer decomposition of the reproducing kernel
Rk,l(z, z†;u, u†) can all be expressed in terms of the spin-
Euler polynomials Pk(β) and Pk(n− β). For the explicit
formulas, we refer to the previous sections.
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