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Based on our method for determining endomorphism rings
[Lux and Szőke 03], we describe an algorithm to compute de-
compositions of modules of finite-dimensional algebras over fi-
nite fields. The algorithm is implemented in the C-Meat-Axe
[Ringe 94].

1. INTRODUCTION

In this paper we describe a method for computing a de-
composition of an A-module M of a finite-dimensional
algebra A over a finite field F into indecomposable di-
rect summands. More precisely, we are interested in
constructing indecomposable A-submodules M1, . . . ,Mr

of M such that M is the (internal) direct sum of
M1, . . . , Mr:

M = M1 ⊕M2 ⊕ · · · ⊕Mr.

The algorithm assumes that a generating system of
EndA(M), the endomorphism ring of M , is given. This
can be achieved by following [Lux and Szőke 03], where
an algorithm to compute an F -basis of EndA(M) is de-
scribed. In the present paper we give an algebra version
of the spinning algorithm to determine a (small) algebra-
generating system of EndA(M); see Algorithm 6.1.

Our algorithm-computing decomposition uses the
close relationship between the endomorphism ring and
decompositions of M into direct summands. This well-
known relationship is described in Section 2. In Section 3
we show how particular elements in EndA(M) lead to
a decomposition of M into indecomposable summands.
The algorithm is described in Section 4. Section 5 is ded-
icated to a detailed description of the implementation of
the corresponding algorithm in the C-Meat-Axe. More-
over, timings for some test cases are given at the end
of this section. Finally, in Section 6.2 we show how the
approach can be used to test constructively whether two
given indecomposable A-modules are isomorphic.
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2. DECOMPOSITIONS AND LEFT IDEALS

In this section we study the relationship between de-
compositions of an A-module M into a direct sum of
A-submodules and decompositions of the endomorphism
ring E = EndA(M) into a direct sum of left ideals.

Definition 2.1. Let M be a nonzero A-module. We
define a decomposition of M into a direct sum as a list of
A-submodules M1, . . . ,Mr satisfying the following two
conditions: Firstly

∑r
i=1Mi = M and secondly Mi ∩∑

j �=iMj = 0 for i = 1, . . . , r. We write

M = M1 ⊕M2 ⊕ · · · ⊕Mr

for the decomposition of M . The submodules Mi are
called direct summands of M (for i = 1, . . . , r). The
set of decompositions of M into A-submodules will be
denoted by D(MA).

Definition 2.2. For an A-submodule N of M , we define

I(N) = {ϕ ∈ E | Mϕ ⊆ N}
as the set of all endomorphisms of M whose images lie
in N .

Note that I(N) is a left ideal of E.

Theorem 2.3. Decompositions of M into a direct sum of
A-submodules correspond bijectively to decompositions of
E into a direct sum of left ideals: Define the following
two maps:

Φ: D(MA) −→ D(EE)

M1, . . . ,Mr �−→ I(M1), . . . , I(Mr)

and

Ψ: D(EE) −→ D(MA)

I1, . . . , Ir �−→MI1, . . . ,MIr.

The maps Φ and Ψ are bijections, one being the inverse
of the other.

A direct summand Mi in the above decomposition of
M is indecomposable if and only if the corresponding left
ideal I(Mi) is indecomposable as a left E-module.

Proof: For the proof, see [Nagao and Tsushima 88, The-
orems 4.2, 5.4, and 5.5].

Note that the ideals I(Mi) occurring in Theorem 2.3
are projective left E-modules, that is, direct summands

of a free left E-module (in this case of the regular module
EE itself).

We remark that Theorem 2.3 is a consequence of a
more general theorem: even a Morita equivalence can be
given between the categories of the direct sums of direct
summands of MA and of all finitely generated projective
left E-modules, as described in [Curtis and Reiner 81,
Proposition 6.3].

Remark 2.4. Let M = M1 ⊕ · · · ⊕Mr. For 1 � i � r we
define a projection πi onto Mi with respect to the above
decomposition as follows: Mjπi = {0} for all j �= i, while
πi acts as the identity on Mi. Then πi is an idempotent
of E for i = 1, . . . , r, which is primitive if and only if
Mi is indecomposable. Moreover, I(Mi) = Mπi for all
1 � i � r.

We now investigate in further detail the relationship
between decompositions ofM and the structure of the en-
domorphism algebra E. Let J(E) be the Jacobson radical
of E, the intersection of the maximal left ideals of E. We
consider the quotient algebra Ē = E/J(E). Note that Ē
is the largest semisimple factor of E. Denote the image
under the canonical projection of E � Ē of an element
σ ∈ E in Ē by σ̄.

Theorem 2.5. Let M = M1⊕· · ·⊕Mr be a decomposition
of M into indecomposable summands and let Ii = I(Mi)
for i = 1, . . . , r. Then the following are equivalent:

(i) Mi and Mj are isomorphic as A-modules.

(ii) Ii and Ij are isomorphic as left E-modules.

(iii) Īi and Īj are isomorphic as left E-modules.

In particular, the multiplicity of the indecomposable direct
summand Mi as a summand in the above decomposition
is equal to the dimension of the corresponding simple E-
module Īi over its endomorphism ring.

Proof: For the proof, see [Nagao and Tsushima 88, part
iii of Theorem 5.4 and Theorem 4.5].

3. FINDING A DECOMPOSITION

In the previous section we indicated that a decomposition
of M can be derived once we have a decomposition of E
into left ideals. By Remark 2.4 these ideals are cyclic,
that is, they are generated by a single element, namely,
a projection. However, these ideals contain more single
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generators than projections. So our aim is to find en-
domorphisms of M determining an ideal decomposition
of E. In other words, we want to find elements of E
whose images as A-endomorphisms of M are the inde-
composable direct summands in a decomposition of M .
We are now going to describe how we construct such ele-
ments. Instead of looking for such elements in E we first
choose nonnilpotent generators for simple left ideals in
Ē = E/J(E) such that Ē is the direct sum of these sim-
ple left ideals. We then show that M is the direct sum
of the images of sufficiently high powers of the preimages
in E of these generators.

Now suppose we are given a decomposition of Ē into
r (simple) left ideals:

Ē = L1 ⊕ · · · ⊕ Lr.

According to [Nagao and Tsushima 88, Theorem 4.11],
there exist left ideals Ii of E for i = 1, . . . , r such that

E = I1 ⊕ · · · ⊕ Ir
and Li = Īi for all i.

Lemma 3.1. Fix 1 � i � r. Let βi,1, . . . , βi,di
be elements

of E such that β̄i,j (for j = 1, . . . , di) form a basis of
Li. Then there is at least one ji such that βi,ji

is not
nilpotent.

Proof: Let 1Ē = e1 + · · ·+ er according to the decompo-
sition of Ē. Note that e1, . . . , er are mutually orthogonal
primitive idempotents of Ē. There exist λ1, . . . , λdi

∈ F
such that

ei =
di∑

j=1

λj β̄i,j .

Hence

ei = eieiei =
di∑

j=1

λjeiβ̄i,jei.

Thus, for some ji, σ̄ := eiβ̄i,ji
ei �= 0. Furthermore, eiĒei

is a division ring with identity element ei, so σ̄ is invert-
ible in eiĒei. Note that β̄i,ji

= β̄i,ji
ei. Thus

eiβ̄
n
i,ji

= (eiβ̄i,ji
)n = σ̄n �= 0

for each natural number n. Hence βi,ji
is not nilpotent.

By Fitting’s lemma, we can choose ni for i = 1, . . . , r
such that M �= Ker(βni

i,ji
) = Ker(βni+1

i,ji
), or equivalently,

Im(βni
i,ji

) = Im(βni+1
i,ji

). Define εi = βni
i,ji

. Then M =
Im(εi)⊕Ker(εi). We call Mεi the stable image of βi,ji

.

Theorem 3.2. The elements εi for i = 1, . . . , r have the
following properties:

(i) Ēε̄i = Li.

(ii) Eεi is a projective indecomposable left E-module.

(iii) EE = Eε1 ⊕ · · · ⊕Eεr.

Proof: (i) By construction, εi is not nilpotent, so εi �∈
J(E). Hence 0 �= Ēε̄i ⊆ Li. Since Li is simple, equality
holds.

(ii) We first show that Eεi = I(Im εi); see Definition
2.2. Since ImEεi = Im εi, we have the containment
Eεi ⊆ I(Im εi). Let us prove the reverse containment.
By definition, Im ε2i = Im εi, so εi is invertible on its im-
age. Let δ ∈ E be the endomorphism of M having kernel
Ker εi and acting as the inverse of εi on Im εi. Then for
each σ ∈ I(Im εi) we have σ = σδεi, so I(Im εi) ⊆ Eεi.

Now, since M = Im εi ⊕ Ker εi, by Theorem 2.3, Eεi

is a projective E-module. Therefore,

Eεi/J(Eεi) = Eεi/ (J(E) ∩ Eεi) = Ēε̄i = Li.

So Eεi is indecomposable.

(iii) Since Ē = L1 ⊕ · · · ⊕ Lr = Ēε̄1 ⊕ · · · ⊕ Ēε̄r, we
conclude that

E = Eε1 + · · ·+ Eεr + J(E).

Therefore, E = Eε1 + · · · + Eεr by Nakayama’s lemma;
see [Nagao and Tsushima 88, part (i) of Theorem 3.6].
Since Eεi/J(Eεi) ∼= Li, we know

EE ∼=
r

�
i=1

Eεi,

the outer direct sum of Eε1, . . . , Eεr. Then a dimension
argument shows that

E = Eε1 ⊕ · · · ⊕Eεr.

Corollary 3.3. Keeping the notation of the present sec-
tion, we obtain that the A-module M has the following
decomposition into indecomposable direct summands:

M = Mε1 ⊕Mε2 ⊕ · · · ⊕Mεr.

Proof: The result follows from Theorems 2.3 and 3.2.
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4. THE ALGORITHM

By the results of Sections 2 and 3, we have the follow-
ing algorithm for computing a decomposition of an A-
module M :

Algorithm 4.1. (Decomposing an A-module M .)

Input: An A-module M .

Calculation:

• Compute a basis B and an algebra-generating sys-
tem G of the endomorphism ring E of M and the
left regular representation of E as the action of the
generators in G with respect to the basis B.

• Determine the composition factors of the regular
module EE.

• Compute a basis C of EE consisting of a basis
CJ(E) of the radical of EE and liftings C1, . . . , Cr of
bases C̄1, . . . , C̄r of the respective direct summands
L1, . . . , Lr of EĒ. The basis elements in C are given
by their coefficients with respect to the basis B of E.

• For each simple direct summand Li of the head of
EE do

– For all elements b of Ci do

∗ Calculate the endomorphism β of M de-
scribed by b.

∗ Calculate the characteristic polynomial
χM

β of the action of β on M .

∗ If χM
β �= xdimF M , then

· εi := β.
While Ker(εi) � Ker(ε2i ) do

+ εi := ε2i
End of while-loop.

· Exit the inner for-loop.

∗ End if.

– End for.

– Compute a basis of Im εi in M , which is the
corresponding direct summand of M .

• End for.

• Compute the action of A on the direct summands.

Output: The direct summands of M and a basis trans-
formation corresponding to the resulting decomposition
of M .

5. THE IMPLEMENTATION

The above algorithm has been implemented by the sec-
ond author in the C-Meat-Axe [Parker 84, Ringe 94]. It
is now a standard program of version 2.4.

The actual computations are done by the program
decomp. Its input is the module (given by matrices of
the action of a generating system of the algebra in ques-
tion) and the following information about its endomor-
phism ring: a basis, an algebra-generating system, the
left regular representation corresponding to it, a basis of
the radical, and lifts of the bases of the simple direct
summands of the semisimple factor. The endomorphism
ring together with its regular representation is made by
our previous program mkhom (see [Lux and Szőke 03] and
Section 6.1 of the present paper). Since the C-Meat-Axe
deals with right modules, the radical series has to be
computed with a program computing socle series. It can
be computed by an algorithm of the first author and M.
Wiegelmann [Lux and Wiegelmann 01].

The output of the program decomp is a basis of the
module reflecting the decomposition. Optionally, decomp
computes the matrices of the action of the algebra on
the module in this new basis and that on the direct sum-
mands of the module.

Note that isomorphic indecomposable direct sum-
mands can be recognized by Theorem 2.5. This is re-
flected by the naming of the direct summands in the out-
put.

We compare our programs with the Magma procedure
IndecomposableSummands [Bosma and Cannon 98, Sec-
tion 41.10.3, vol. III] in the following. The computa-
tions were done with Magma, version 2.8. Since the algo-
rithm used by Magma has not been published, we do not
know how the computation in IndecomposableSummands

is carried out. We used the following script:

load "<Mfile>";

V := RModule(<field>, <Mdim>);

M := RModule(V, <Malg>);

IndecomposableSummands(M);

Here, Mfile contains the matrix algebra Malg over the
field field, which is a representation of the algebra A

describing the module M to be decomposed.
For the C-Meat-Axe, we used the following procedure:

chop -g <numAgens> <Mname>

pwkond -t <Mname>

rad -l 1 <Mname>

mkhom -H <headdim> -l <Mname> <Nname> <Endoname>

chop -g <numEndogens> <Endoname>.lrr
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Magma C-Meat-Axe
algebra n dim nns ns t m t1 t2 t m
c(F2J1) 3 93 3 3 1.3s 4.4 0.13s 0.06s 0.2s 0.76
c(F4J1) 3 93 4 4 6s 4.7 0.24s 0.09s 0.33s 0.9
c(F2J2) 5 252 2 2 1.9s 5.5 0.7s 0.08 0.78s 0.9

F3GL4(3) 2 361 4 4 8.95s 6.9 3.64s 0.29s 3.9s 1.2
c(F3M23) 4 344 7 17 365s 36 49.7s 8.3s 58s 27
c(F3HS) 6 683 6 24 234m 443 18m28s 95s 20m 304

c(F25HN) 2 800 14 21 90.5h 406 12m20s 67s 13m 268
c(F25HN) 2 1564 11 19 ? ? 163m 14m 177m 852

TABLE 1. A comparison of the running times of the Magma and C-Meat-Axe algorithms.

pwkond -t <Endoname>.lrr

soc -l 1 <Endoname>.lrr

decomp <Mname> <Endoname>

For our programs, the running times are divided into
two parts: the whole time for computing the endomor-
phism ring with its regular representation and the rest,
namely, computing the radical of the endomorphism ring
and then the decomposition.

The computations were done on an Intel Pentium 4
computer with two 3.20-GHz processors and 2 GB main
memory under Linux 2.6.7.

In Table 1, we list the following data:

1. the algebra,

2. the number of its generators (n),

3. the dimension of the module (dim),

4. the number of nonisomorphic indecomposable sum-
mands (nns),

5. the number of all indecomposable summands (ns),

6. the running times (t) and the memory use (m) for
Magma and the C-Meat-Axe, and the two parts of
running times (t1 and t2) for the C-Meat-Axe.

For the algebra, a letter c indicates that it is a conden-
sation of the group algebra. The memory use is always
given in megabytes. All the modules are available on the
home page of the first author (http://www.math.arizona.
edu/∼klux).

We remark that we let the program Magma run once
more in the case of the module of the Higman–Sims
group, but it was not able to compute a decomposition in
about 10 days. In this case, Magma used about 100 MB.

In the case of the module of dimension 1564 of the
Harada–Norton group, Magma was unable to do the com-
putation, because all virtual memory was exhausted.

6. APPENDIX

6.1 An Algebra Spinning Algorithm

In this section we present an algorithm to compute an
algebra-generating system of an algebra E if a basis of
E is given. The procedure is the spinning algorithm for
modules [Lux and Szőke 03, Algorithm 3.1], applied to
algebras, so we do not give a proof of its correctness.

Algorithm 6.1. (Algebra Spinning.)

Input: A basis Bas of the algebra E.

Calculation:

• AlgGens := [ ], SpinBas := [ ], randel := 0.

• While Length(SpinBas) < Length(Bas) do

– Make a random linear combination randel of
Bas that is independent of SpinBas.

– Append randel to AlgGens.

– Append randel to SpinBas.

– t := Length(SpinBas).

– Do until t > Length(SpinBas).

∗ For i := 1 to Length(AlgGens) do
· a := SpinBas[t] ·AlgGens[i].
· If a �∈ 〈SpinBas〉, then append a to
SpinBas.
· a := AlgGens[i] · SpinBas[t].
· If a �∈ 〈SpinBas〉, then append a to
SpinBas.

∗ End for.
∗ Increment t by 1.

– End do.

• End do.

Output: An algebra-generating system AlgGens and the
spinning basis SpinBas of E.
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6.2 An Isomorphism Test

In this last section, we study how to determine whether
two indecomposable modules are isomorphic.

Lemma 6.2. Let M be an indecomposable A-module with
endomorphism ring E := EndA(M). Let β1, . . . , βm

be an F -basis of E. Then βi is invertible for some
1 � i � m.

Proof: By [Nagao and Tsushima 88, Theorem 5.10], since
E is a local ring, all elements of E \ J(E) are invertible.
Since J(E) cannot contain all basis elements, one of them
is invertible.

We can generalize the above lemma to determine
whether two indecomposable modules are isomorphic.

Theorem 6.3. (Isomorphism test.)
Let M and N be indecomposable A-modules and let
ϕ1, . . . , ϕm be a basis of the homomorphism space
HomA(M,N). Then M and N are isomorphic as A-
modules if and only if ϕi is an isomorphism for some
1 � i � m.

Proof: If M and N are not isomorphic, then there is no
isomorphism from M onto N . Assume M ∼= N and let
σ : N →M be an isomorphism. Then

EndA(M) = HomA(M,N) · σ,

and the elements ϕiσ form a basis of EndA(M). Hence,
by Lemma 6.2, ϕiσ is invertible for some 1 � i � m.
Therefore, ϕi is invertible for the same i.

By Theorem 6.3, we can easily test whether two inde-
composable modules of the same dimension are isomor-
phic, provided that a basis of the homomorphism space
is given. We have only to calculate the dimension of the
null space of the basis elements. This can be done by the
program znu of the C-Meat-Axe.

This procedure can be extended to not necessarily in-
decomposable modules: as a first step, we decompose
both modules and then test whether a bijection between
their direct summands can be given such that corre-
sponding direct summands are isomorphic.
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