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Abstract: We apply experimental-mathematical principles to analyze integrals

Cn,k :=
1
n!

∫ ∞

0

· · ·
∫ ∞

0

dx1 dx2 · · · dxn

(coshx1 + · · ·+ coshxn)k+1
.

These are generalizations of a previous integral Cn := Cn,1 relevant to the
Ising theory of solid-state physics [8]. We find representations of the Cn,k in
terms of Meijer G-functions and nested-Barnes integrals. Our investigations
began by computing 500-digit numerical values of Cn,k for all integers n, k
where n ∈ [2, 12] and k ∈ [0, 25]. We found that some Cn,k enjoy exact eval-
uations involving Dirichlet L-functions or the Riemann zeta function. In the
process of analyzing hypergeometric representations, we found—experimentally
and strikingly—that the Cn,k almost certainly satisfy certain inter-indicial re-
lations including discrete k-recursions. Using generating functions, differential
theory, complex analysis, and Wilf–Zeilberger algorithms we are able to prove
some central cases of these relations.
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1 Background and nomenclature

The primary entities on which the present work will focus are the n-dimensional
integrals

Cn,k :=
1
n!

∫ ∞

−∞
· · ·

∫ ∞

−∞

dx1 dx2 · · · dxn

(coshx1 + · · ·+ coshxn)k+1
. (1)

These integrals are well defined—in fact absolutely convergent—for any positive
integer n and any complex k ∈ K where we speak of the open half-plane

K := (z ∈ C : <(z) > −1) .

The integrals Cn,k can be traced back to the Ising theory of solid-state
physics. As summarized in a previous work [8], there is interest in giving closed
forms and growth bounds for n-dimensional Ising susceptibility integrals

Dn :=
4
n!

∫ ∞

0

· · ·
∫ ∞

0

∏
i<j

(
ui−uj

ui+uj

)2

(∑n
j=1(uj + 1/uj)

)2

du1

u1
· · · dun

un
. (2)

These Dn appear—with various normalizations—in the standard Ising litera-
ture [29, 30, 40, 41, 42, 43]. The quest for closed forms for Ising susceptibility
integrals thus led to a definition in [8] of a class of structurally similar integrals,
among which is the structure (2) but without the permutation product in the
integrand, namely

Cn :=
4
n!

∫ ∞

0

· · ·
∫ ∞

0

1(∑n
j=1(uj + 1/uj)

)2

du1

u1
· · · dun

un
, (3)

which, as can be seen via a transformation uk → exk is the case Cn,1 of the key
definition (1).

A brief digression here is worthwhile. There is an even more general class of
integrals that likewise admit of analytical promise. We may define, for integer
n, complex k, and an n-vector ~r := (r1, . . . , rn) of complex numbers the entities

Cn,k,~r :=
1
n!

∫ ∞

−∞
· · ·

∫ ∞

−∞

∏n
j=1 cosh(rjxj)

(coshx1 + · · ·+ coshxn)k+1
dx1 · · · dxn. (4)

Absolute convergence of the integral is assured on the condition that k lie in
the translated half-plane K + < (

∑
rj). Thus we can restrict indices to obtain

integrals of our primary interest, e.g.

Cn,k := Cn,k,~0, (5)
Cn := Cn,1 := Cn,1,~0. (6)

One reason to contemplate these generalized Cn,k,~r is that they enjoy certain
combinatorial relations when cast in so-called Bessel-kernel form, as we shall

2



later see in Section 7. In principle, one could also allow continuous n, and so
a prefactor 1/Γ(n + 1), with a fractional-dimensional integral defined in Bessel-
kernel terms; so there could be yet more useful generalization. We will some-
times write n! for the analytic quantity Γ(n + 1).

An outline of the paper is as follows. In §2 we examine hypergeometric and
related expressions for our integrals. Then in §3 we describe closed forms and
series for individual Cn,k. In §4 and §5 we explore recursion relations. In §6
related continued fractions are given, while in §7 we explore further analytic
properties of the Cn,k. Finally, in §8 we discuss our extreme-precision numerics
before concluding with some open problems.

2 Hypergeometric connections

It turns out that the Ising-class integrals Cn,k enjoy certain connections with hy-
pergeometric functions and their powerful generalization, the Meijer G-functions.
Such analysis gives rise to fascinating series representations, new closed forms,
and rational relations between certain pairs of integrals. (We refer the reader
also to our separate work on the quest for closed Ising forms [8].) Not sur-
prisingly, the collection (Cn,k : n ∈ Z+, k ∈ K) provides fertile ground for
experimental-mathematical discovery, not to mention clues as to what symbolic
behavior might be expected of Ising integrals in general. In addition, we derive
some evidently new exact evaluations of Meijer G-functions themselves.

A Bessel-kernel representation we developed in [8] likewise generalizes to

Cn,k =
2n

n!
1

Γ(k + 1)
cn,k, (7)

where we use Γ(k + 1) = k! to emphasize that k need not be integer, and where
the (lowercase) c definition is

cn,k :=
∫ ∞

0

tkK0(t)n dt. (8)

(here K0 is the modified Bessel function). This representation, as in [8], permits
us to calculate explicit values to very high precision (our 500-digit values are
available online [9]). Note that in regard to k-dependence cn,k differs from Cn,k

by a prefactor of Γ(k+1); this scaling will be convenient later, when we analyze
recurrence relations.

It is clear from the definition (1) that for fixed integer n, Cn,k is monotonic
decreasing in real k. The arguments of theorems in [8] regarding the original
Cn can be augmented to show first, that for fixed real k ≥ 1 the set (Cn,k)
is monotonic decreasing in n, and that for any fixed k we have the large-n
asymptote

Cn,k ∼
1

Γ(k + 1)
2k+1+n

(k + 1)n+1
e−(k+1)γ , (9)
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for which our original, canonical case in [8] reads Cn = Cn,1 ∼n 2e−2γ ≈
0.63047 . . .. This asymptotic behavior is revealed by extreme-precision numeri-
cal values for Cn. An example of the data downloadable at [9] is the following,
where the asymptote 2e−2γ is evident:

n Cn

4 0.70119986017642999981651392754834582794624200386529. . .
16 0.63050394617323726350529565756068741948431621720810. . .
64 0.63047350337438679648836208816533862535998880860015. . .

256 0.63047350337438679612204019271087890435458707871273. . .
1024 0.63047350337438679612204019271087890435458707871273. . .

Another observation on the generalization Cn,k,~r is in order. Some idea of
the power of Bessel representation such as (7) can be gleaned by the observation
that, for vector ~r := (p, p, . . . , p) = (p̄) we have again a 1-dimensional integral

Cn,k,(p̄) :=
2n

n!
1

Γ(k + 1)

∫ ∞

0

tkKp(t)n dt.

It is interesting that for p a half-odd integer, the Bessel function is elementary
and we routinely obtain closed forms. For example, for general complex k we
infer

C4,k,(3/2,3/2,3/2,3/2) =
21−2kπ2Γ(k − 5)

3Γ(k + 1)
(
k4 + 2k3 − 25k2 − 10k + 56

)
of which an instance is

C
4,6,(3/2)

= 103π2/552960.

Though such cases do not shed much light on our main theme—the Cn,k themselves—
these tractable cases do suggest such notions as analytic continuation (in k,
beyond the relevant half-plane) as well as the appearance of polynomials in k.

We shall be analyzing series representations and closed forms for various
Cn,k. To this end, we state some exact integrals based on the Adamchik algo-
rithm described in [2]:

c1,k =
∫ ∞

0

tkK0(t) dt = 2k−1Γ
(

k + 1
2

)2

, (10)

c2,k =
∫ ∞

0

tkK2
0 (t) dt =

√
π Γ

(
k+1
2

)3

4 Γ
(

k
2 + 1

) , (11)

c3,k =
∫ ∞

0

tkK3
0 (t) dt = 2k−2

√
π G3,2

3,3

(
4

∣∣∣∣ 1−k
2 , 1−k

2 , 1
2

0, 0, 0

)
, (12)
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where the relevant Meijer G-function here is

G :=
1

2πi

∫
C

Γ2((k + 1)/2− s)Γ3(s)
Γ(s + 1/2)

4−s ds.

Finally, we have

c4,k =
∫ ∞

0

tkK4
0 (t) dt =

1
8
πG3,3

4,4

(
1

∣∣∣∣ 1, 1, 1, k+2
2

k+1
2 , k+1

2 , k+1
2 , 1

2

)
, (13)

where in this case the relevant Meijer G-function is

G :=
1

2πi

∫
C

Γ3(−s)Γ3((k + 1)/2 + s)
Γ(1 + k/2 + s)Γ(1/2− s)

ds.

In the above cases n = 3, 4 the contour C encompasses all poles of the first Γ form
in the numerator, but no other poles, as is consistent with formal definitions of
the Meijer G’s as given in [2, 32]. In our study, said contour can always be taken
as a vertical run, upward, and intersecting the real s-axis at an appropriate place,
say s = −1/2. It is unknown how to generalize such Meijer formulae beyond
the 4-th power of the Bessel-K—i.e., once again, as happened in the work [8],
we encounter a kind of theoretical blockade for n ≥ 5.

In spite of the blockade for n ≥ 5 in regard to Meijer-G representations, we
shall still be able to represent, in our Section 7, arbitrary Cn,k via yet more
complicated structures.

3 Closed forms and series for individual Cn,k

3.1 Evaluations of C1,k

Immediately from relations (7, 10) we have

C1,k =
2k Γ

(
k+1
2

)2

Γ(k + 1)
. (14)

The first few exact evaluations are (C1,0, C1,1, C1,2, C1,3, . . . ) = (π, 2, π/2, 4/3, . . . ).
It is evident that for any k ≥ 1,

C1,k = p1,k + q1,k π,

where the p, q coefficients are always rational, with q vanishing for odd k and p
vanishing for even k. This observation about the character of the p, q is trivial,
but as we shall eventually see, such a “p + qx” pattern for larger n becomes
radically more profound.
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n k Cn,k

1 any
2kΓ( k+1

2 )2

k! = p1,k + q1,k π

2 any
√

πΓ( k+1
2 )3

2Γ( k
2 +1)Γ(k+1)

= p2,k + q2,k π2

3 0 Elliptic form (21)

3 1 C3 = L−3(2) (see [8])

3 2 Elliptic form (24)

3 3 C3,3 = 2
9 L−3(2)− 4

27

3 any odd p3,k + q3,k L−3(2), Series (16)

3 any even Order-2 recursion (Thm. 5), Series (17)

3 any complex Meijer integral (12)

4 0 Series (31)

4 1 C4 = 7
12 ζ(3) (see [8])

4 3 C4,3 = 7
288 ζ(3)− 1

48

4 any odd p4,k + q4,k ζ(3)

4 any even Order-2 recursion (Thm. 5)

4 any complex Meijer integral (13)

5 any complex Nested-Barnes integral (55), Series (58)

large fixed ∼ 1
k!

2k+1+n

(k+1)n+1 e−(k+1)γ

Table 1: Proven closed forms, series, and relations for the Cn,k. Every

p or q coefficient above is proven rational, with the q having explicit finite forms.

Our searches have uncovered no other closed forms, or pairwise rational relations not

implicit above. Conjecture 1 gives a general recursion relation for complex k.
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3.2 Evaluations of C2,k

Next, from relations (7, 11) we obtain

C2,k =
√

π Γ
(

k+1
2

)3

2 Γ
(

k
2 + 1

)
Γ(k + 1)

, (15)

with the first few being (C2,0, C2,1, C2,2, C2,3, . . . ) = (π2/2, 1, π2/32, 1/9, . . . ).
In this n = 2 case we have

C2,k = p2,k + q2,k π2,

with the same vanishing rule on the rational p, q multipliers as for n = 1.

3.3 Evaluations of C3,k

After resolving all Cn,k for n = 1, 2 as above, the case n = 3 on Cn,k suddenly
becomes nontrivial, yet there are various approaches that yield new insight; at
the very least, new closed-form evaluations of the appropriate Meijer-G. Choos-
ing a contour and performing residue calculus (we leave out the intricate details)
on the Meijer-G for identity (12), one may obtain quite efficient series develop-
ments. To summarize, define µ := b(k − 2)/2c and a polynomial

Pµ(x) :=
µ∏

a=0

(x− a)2,

and an alternating harmonic number

H(−1)
c := 1− 1

2
+

1
3
− · · · ± 1

c

with H
(−1)
0 := 0. Then, for odd k, the residue calculus yields a linearly conver-

gent series

C3,k =
2k
√

π

3!k!

∞∑
h=µ+1

Pµ(h)
4h

Γ(h + 1)
Γ(h + 3/2)

(
H

(−1)
2h+1 −

1
2

P ′µ(h)
Pµ(h)

)
. (16)

Similarly, for even k, one obtains

C3,k =
2k+1

√
π

3!k!

∞∑
h=µ+1

Pµ(h)
4h

Γ3(h + 1/2)
Γ3(h + 1)

(
4 log 2− 3H

(−1)
2h − 1

2
P ′µ(h)
Pµ(h)

)
. (17)

3.3.1 The C3,even integrals

Yet another surprise in the world of Ising-class integrals is that the C3,even seem
to be more mysterious than the C3,odd. One way to think of this dichotomy is
to observe the way that gamma functions appear in the respective series (16,
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17). One may employ special hypergeometric identities, which we found in
Mathematica and reconfirmed in Maple, such as

∞∑
h=0

Γ(h + 1)
Γ(h + 3/2)

sin2h θ =
4√
π

θ

sin(2θ)
, (18)

σ0(θ) :=
∞∑

h=0

Γ3(h + 1/2)
Γ3(h + 1)

sin2h θ =
4√
π

K2

(
sin

θ

2

)
, (19)

where in the second identity K(k) is the (complete) elliptic integral of the first
kind with modulus k.1 We may also employ an integral identity

4 log 2− 3H
(−1)
2h =

∫ 1

0

1 + 3t2h

1 + t
dt = log 2 + 3

∫ 1

0

t2h

1 + t
dt.

Putting this all together for the special case

C3,0 =
√

π

3

∞∑
h=0

1
4h

Γ3(h + 1/2)
Γ3(h + 1)

(
4 log 2− 3H

(−1)
2h

)
(20)

we arrive at the peculiar elliptic representation

C3,0 =
4
3
K2

(
sin

π

12

)
log 2 + 8

∫ π/6

0

K2
(
sin θ

2

)
cos θ

1 + 2 sin θ
dθ. (21)

Moreover

K2
(
sin

π

12

)
=

2
27

√
3 3
√

2 π4

Γ6 (2/3)
=

3
√

2
√

3
24

β2

(
1
3
,
1
3

)
is the integral at the third singular value, k3 [16]. Correspondingly, the Clausen
product identity [15, p. 50] shows

8
∫ π/6

0

K2
(
sin θ

2

)
cos θ

1 + 2 sin θ
dθ = π2

∫ 1

0
3F2

(
1/2, 1/2, 1/2

1, 1 ;
x2

4

)
dx

x + 1
.

This elliptic-cum-hypergeometric form is a rather erudite result for the relatively
innocent-looking integral

C3,0 :=
1
6

∫
R3

dx dy dz

coshx + cosh y + cosh z
.

There are other attractive representations equivalent to the elliptic form (21)
such as

C3,0 = π

∫ ∞

0

∫ ∞

0

1
√

x2 + 1
√

y2 + 1
√

(x + y)2 + 1
dx dy.

1Here we use the convention K(k) =
R π/2
0 (1 − k2 sin2 s)−1/2 ds. See [15, pg 199-200].

One should beware: Some symbolic systems use m := k2 as the argument; for example in
Mathematica one has EllipticK[m] := K(

√
m).
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We next observe that C3,2 possesses a corresponding closed form which also
involves the elliptic integral of the second kind E(k3), [18]. This may be similarly
derived from (17) as follows.

Since P0(x) = x2, the building blocks for C3,2 are

σ1(θ) :=
∞∑

h=0

h Γ3 (h + 1/2)
Γ3 (h + 1)

sin2h θ (22)

=
4√

π cos θ

{
(E K)

(
sin

θ

2

)
− (cos2

θ

2
) K2

(
sin

θ

2

)}
and

√
π σ2(θ) :=

√
π

∞∑
h=0

h2 Γ3 (h + 1/2)
Γ3 (h + 1)

sin2h θ (23)

=
(cos θ + 1)

(
cos2 θ + cos θ − 1

)
cos3 θ

K2

(
sin

θ

2

)
− 2

(cos θ + 1) (2 cos θ − 1)
cos3 θ

(E K)
(

sin
θ

2

)
+

2
cos2 θ

E2

(
sin

θ

2

)
.

Thus, we may use (17) to write

C3,2 =
2 log 2

3
√

π σ2

(π

6

)
− 2

3
√

π σ1

(π

6

)
+ 4

∫ π/6

0

√
π σ2 (θ)

cos θ

1 + 2 sin θ
dθ.

(24)

Also, for θ = π/6, we have EK =
(
π + (2 + 2

√
3)K2

)√
3, see [18]. Thus,

using (24) we will get two more-complicated terms like the ones in C3,0 but now
involving both E and K. Note that cos π/12 = (

√
3 + 1)/

√
8 and sin π/12 =

(
√

3− 1)/
√

8 are reciprocals. Thus,
√

π σ1

(π

6

)
= −2

3
K2

(
sin

π

12

)
+

2
3

π,

and
√

π σ2

(π

6

)
=

1
9

K2
(
sin

π

12

)
+

π2

18
K−2

(
sin

π

12

)
.

In consequence of Theorem 5 below, all C3,even are superpositions of C3,0 and
C3,2 with polynomial (in k) weights; thus, the C3,even can only involve algebraic
combinations of the numbers above, such as log 2, π and the elliptic evalua-
tions/integrals. PSLQ suggests no relations exist between the seven monomials
implicit in (24).

3.3.2 The C3,odd integrals

A first observation on the cases Ck,odd is as follows. We recall the exact L-
function evaluation given in [8].:

C3 := C3,1 = L−3(2) :=
∑
m≥0

(
1

(3m + 1)2
− 1

(3m + 2)2

)
.
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This knowledge on C3,1 leads, via (16), to the remarkable L-function identity

L−3(2) =
2
3

∞∑
h=0

1
h + 1

1(
2h + 1

h

) (
1− 1

2
+

1
3
− · · ·+ 1

2h + 1

)
.

Observe that, via relation (12), this resolves the relevant Meijer-G in terms of
an L-function, which Meijer-G identity we believe to be new.

Now, the C3,odd seem to be pairwise rationally related, in the following sense.
We discovered via numerical experiments the conjectures2

C3,3
?= − 4

27
+

2
9
L−3(2),

C3,5
?= − 92

1215
+

8
81

L−3(2),

and several more, suggesting rational relations aC3,k+bC3,k′ = c for any distinct
odd pair (k, k′), with a, b, c rational, a 6= b. These (n = 3, odd k) conjectures
were subsequently proven, as below. We should mention that we found no such
rational relations whatever between pairs of C3,even (see Conjecture 3).

One might conceivably use the residue expansion (16) to prove our experi-
mentally detected relations. However there is another route, one that leads to
an efficient algorithm for resolving the closed form of any C3,odd. We harken
back to the dimensional-reduction methods in [8] and reduce to a 2-dimensional
integral

C3,k =
√

π

3!
Γ

(
k+1
2

)
Γ

(
k
2 + 1

) ∫ ∞

0

∫ ∞

0

dx dy

x y

1

{(1 + x + y)(1 + 1/x + 1/y)}(k+1)/2
.

Now for odd k we may assign m := (k − 1)/2 and write∫ ∞

0

∫ ∞

0

dx dy

xy

1

{(1 + x + y)(1 + 1/x + 1/y)}(k+1)/2
=

1
m!2

(
∂

∂α

∂

∂β

)m ∫ ∞

0

∫ ∞

0

dx dy

x y

1
(α + x + y)(β + 1/x + 1/y)

∣∣
α,β=1

The integral over x, say, may then be done, after which we put y = z/β to
reveal that, remarkably, the α, β-dependent integral is really a function only of
the product c := αβ. In fact,∫ ∞

0

∫ ∞

0

dx dy

x y

1
(α + x + y)(β + 1/x + 1/y)

=
∫ ∞

0

log(1 + 1/z) + log(c + z)
z2 + cz + c

dz

=
∫ 1

0

log c− 2 log t

t2 − ct + c
dt,

2The notation
?
= means we experimentally suspect a given equality in absence of rigorous

proof. Of course, we shall prove these C3,odd closed forms, but we prefer to use
?
= when

reporting on initial numerical discovery.

10



the final integral being obtained by making the substitutions 1 + 1/z = 1/t and
c + z = c/t respectively in the two parts of the preceding integral. Thus C3,k

reduces to

C3,k =
2k+1

3! k!

(
∂

∂α

∂

∂β

)m

Υ(αβ)
∣∣
α,β=1

, (25)

where

Υ(c) :=
∫ 1

0

log
√

c− log t

t2 − ct + c
dt

=
1

r+ − r−

(
−1

2
log(r+r−) log

1− 1/r−
1− 1/r+

+ Li2(1/r−)− Li2(1/r+)
)

,

with

r± :=
c±

√
c2 − 4c

2
.

Sure enough, for k = 1, and so m = 0 and no differentiation in (25), we obtain
our original case C3 := C3,1 = (2/3)Υ(1) = L−3(2).

More generally, our finite representation (25) leads to a proof of the eval-
uations above for C3,3 and C3,5 and indeed to a proof of our rational-relation
conjecture. To this end, note that we can use the operator identity

∂2

∂α∂β
=

∂

∂c
c

∂

∂c
.

valid on functions f where c = αβ. In expanded form this means(
∂

∂α

∂

∂β

)m

f(c) =
m∑

k=0

(
m

k

)
m!
k!

ckf (m+k)(c).

From the above relations one may now derive, for nonnegative integers m,

C3,2m+1 =
22m+1

3(2m + 1)
(
2m
m

) m∑
k=0

(
m

k

)(
m + k

k

)
(−1)m+k+1I(m + k), (26)

where

I(ν) :=
∫ 1

0

tν log t

(t2 − t + 1)ν+1
dt. (27)

These observations lead us to

Theorem 1 For odd k ≥ 1, we have

C3,k = p3,k + q3,kL−3(2),

with the p, q coefficients always being rational, q3,k being given explicitly by (30)
below.
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Proof. In terms of the I function in (27), establishing the recursion

νI(ν − 1) + (2ν + 1)I(ν)− 3(ν + 1)I(ν + 1) +
1
ν

= 0 (28)

is enough to prove the theorem, because

I(0) = −3
2
L−3(2), I(1) = −1

2
L−3(2). (29)

One may also derive
I(ν) = aν + bνL−3(2)

with rational aν , bν satisfying the recursions

νaν−1 + (2ν + 1)aν − 3(ν + 1)aν+1 +
1
ν

= 0, a0 = a1 = 0;

νbν−1 + (2ν + 1)bν − 3(ν + 1)bν+1 +
1
ν

= 0, b0 = −3
2
, b1 = −1

2
.

So we now prove the recursion (28). For x ∈ (−1, 1) we have

y(x) :=
∞∑

ν=0

I(ν)xν =
∫ 1

0

log t

t2 − t(1 + x) + 1
dt.

The recursion (28) thus holds if and only if

(x + 1)
∞∑

ν=0

I(ν)xν +
(

x + 2− 3
x

) ∞∑
ν=0

νI(ν)xν = I(0)− 3I(1) + log(1− x)

which is equivalent to y satisfying the differential equation

(x + 1)y + (x2 + 2x− 3)y′ = log(1− x)− 3L−3(2),

subject to the initial condition

y(0) = −3
2
L−3(2).

Maple verifies that y(x) is indeed a solution. QED

It turns out to be possible to give a finite expression for the q3,k rational in
Theorem 1. What may be called the terminal term of the chain differentiation
in (25), namely{

Li2

(
1
r−

)
− Li2

(
1
r +

)}
·
(

∂

∂α

∂

∂β

)m 1
r+ − r−

∣∣
α,β=1

,

gives the rational coefficient of L−3(2) as

q3,k =
√

3
2k−1

k!

(
∂

∂α

∂

∂β

)m 1
(αβ(4− αβ))1/2

∣∣
α,β=1

.

12



In particular, a finite expression for the general q coefficient is, with m :=
(k − 1)/2,

q3,k =
2k−1

k!

m∑
j=0

(
m

j

)
(−1)m+j m!

j!

m+j∑
i=0

(
m + j

i

) (
1
2

)
i

(
1
2

)
m+j−i

(
−1

3

)i

(30)

=
√

3
22m−1 m!
(2m− 1)!

m∑
j=0

(−1)m+j (
m
j

)
j! 2F1

(
1
2 , 1

2
1
2 −m− j

;
1
4

) j∏
i=0

(
1
2

+ m + i

)
.

The above analysis provides closed forms for the relevant Meijer G-functions.
The method also provides an algorithm for exact evaluation of any C3,odd rather
efficiently.3 One may arrive quickly at such instances as

C3,15 :=
1
3!

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

dx dy dz

(coshx + cosh y + cosh z)16

= − 11884272896
837856594575

+
4139008

227988189
L−3(2).

3.4 Evaluations of C4,k

We begin with the first case of (13). Residue calculus—again we omit the
intricacies—gives series such as

C4,0 =
1
24

∑
h=0

(
Γ4(h + 1/2)
Γ4(h + 1)

)′′
(31)

=
1
3

∞∑
h=0

Γ4(h + 1/2)
Γ4(h + 1)

(
8

(
− log 2 + H

(−1)
2h

)2

+ ζ(2)− 2H
(−2)
2h

)
,

where the double-derivative ′′ is with respect to h, and the new sum is

H(−2)
µ := 1− 1/22 + 1/32 − · · · ± 1/µ2

with H
(−2)
0 := 0. However, just is with the C3,even cases of the previous section,

we know not a single closed form for C4,even and again, we found experimentally
that C4,odd are pairwise rationally related, meaning (see Table 1 for C4 := C4,1)
that every C4,odd would be p + qζ(3) for rational p, q.

3One may explicitly differentiate and simplify in (25), but a faster algorithm is to use the
finite expression for q3,k given after Theorem 1, an extreme-precision evaluation of series (16),
then a function such as Mathematica’s Rationalize[ ] to resolve p3,k. This amounts to an
interesting, systematic use of extreme precision within a general algorithm.
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The finite-form evaluation of any C4,odd is achieved as follows. Define inte-
grals

Uh :=
iπ

2

∫ ∞

−∞

sinhπt

cosh3 πt

(
−1

2
+ it

)h

dt = (−1)h+1h(h− 1)
ζ(2− h)

2π
.

This later identity actually holds, for any integer h, with U1 := 1/(2π). Note
that under the further constraint h ≥ 0, the quantity πUh for h ≥ 0 is rational,
as follows from the fact of known evaluations of ζ(2− h).

The relevance of the Uh is that a Meijer contour-integral as in (13) can be
developed like so:

G :=
1

2πi

∫
C

Γ3(−s)Γ3((k + 1)/2 + s)
Γ(1 + k/2 + s)Γ(1/2− s)

ds

=
iπ

2

∫ ∞

−∞

sinhπt

cosh3 πt
F

(
−1

2
+ it

)
dt,

where

F (s) :=
Γ3((1 + k)/2 + s)Γ(1/2 + s)

Γ3(1 + s)Γ(1 + k/2 + s)
.

Now the key is, if we write

F (s) = f(s) + φ(s),

where we express F (s) =
∑

j fjs
j as a polynomial and an error term φ(s) = o(s),

then we can resolve the original Meijer-G by employing the Uh identity on the
monomials fjs

j , and using residue calculus for the φ term, to write

G =
∑

j

fjUj +
1
2π

∞∑
h=0

φ′′(h). (32)

This analysis now leads to a proof of the experimentally discovered conjecture
on rational relations for any pair of C4,odd:

Theorem 2 For odd k ≥ 1, we have

C4,k = p4,k + q4,k ζ(3),

with the p, q coefficients always being rational. In particular, a finite expression
for the general q coefficient is, with m := (k − 1)/2,

q4,k =
7
12

(2m)!3

k! · 64m m!4

m∑
j=0

(
m
j

)4

(
2m
2j

)3 . (33)
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Proof. For fixed odd k the function F is indeed polynomial plus a decay term,
namely, set m := (k − 1)/2 and write

F (s) =
(1 + s)3(2 + s)3 · · · (m + s)3

(s + 1/2)(s + 3/2) · · · (s + m + 1/2)

=
2m−1∑
j=0

fjs
j +

m∑
j=0

Aj

s + j + 1/2
.

Here, the coefficients (fj) and (Aj) are all rational, and can be calculated ex-
actly, using polynomial remaindering and partial-fraction expansion, respec-
tively. Thus the original Meijer G-function from (13) is given exactly by the
result (32)

G =
2m−1∑
j=0

fjUj +
1
2π

m∑
j=0

Ajζ(2, j + 1/2),

where ζ(s, a) :=
∑

h≥0 1/(h + a)s is the Hurwitz zeta-function.
Now, being as each Uj here is (rational)/π, each ζ(2, j + 1/2) is (rational)

+ (rational)ζ(3), and each C4,odd is (rational)πG, the theorem follows. The
explicit evaluation of q4,k arises from the natural partial-fraction evaluation of
the Aj terms and the accumulation of all normalizing factors. QED

This result amounts to a closed-form resolution of the Meijer G-function in
(13) for any odd k in terms of ζ(3), π, and rationals. Moreover,

m∑
j=0

(
m
j

)4

(
2m
2j

)3 = 4F3

(
1/2, 1/2, 1/2, 1

−m + 1/2,−m + 1/2,−m + 1/2 ;−1
)

−
(

m
m+1

)3(
2 m

2 m+2

)3 4F3

(
m + 3/2,m + 3/2,m + 3/2, 1

3/2, 3/2, 3/2 ;−1
)

.

In this way, as for n = 3, polynomial-remaindering and rational-arithmetic
algorithms quickly yield exact evaluations such as

C4,15 :=
1
4!

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

dw dx dy dz

(coshw + coshx + cosh y + cosh z)16

= − 1744313209
578605547520000

+
67697

26990346240
ζ(3).

In general the odd Meijer-G form for n = 4 can be written explicitly as

C4,2k+1 =
1

(2k + 1)!
π2

24

∫ ∞

−∞

sinh (π t)
t cosh3 (π t)

k∏
j=1

(t− i (j − 1/2))3

t− ij
dt (34)
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while the even form, and those for n = 3, offers less purchase. In particular,
integration by parts in (34) yields

C4,1 =
π2

12

∫ ∞

0

tanh (t) sech2 (t)
t

dt =
π

24

∫ ∞

0

tanh2 (πt)
t2

dt.

We next substitute the partial fraction expansion

tanh(π y)
y

=
4
π

∞∑
n=0

2 y

4y2 + (2n + 1)2
,

and expand, then interchange integration and summation to obtain from∫ ∞

0

4 y2

(4y2 + (2n + 1)2)(4y2 + (2m + 1)2)
dy =

π

(2n + 1)(2m + 1)(2n + 2m + 2)
,

that

C4,1 =
2
3

∞∑
n=0

∞∑
m=0

1
(2n + 1)(2m + 1)(2n + 2m + 2)

.

This double sum is a Tornheim double sum or a Witten ζ-value, see [14], and
equals

∫ 1

0

arctanh2 (x)
x

dx =
∫ 1

0

log2
√

1−x
1+x

x
dx =

1
2

∫ 1

0

log2 t

1− t2
dt

=
∞∑

n=1

1
(2n− 1)3

=
7
8

ζ (3) ,

where the first integral and penultimate sum are obtained on integrating termwise.
Thus,

C4,1 =
7
12

ζ(3),

as before. Similar machinations lead to a corresponding evaluation of C4,3.

4 Recursion relations–experiment

Based on extensive computational work we conjecture that:

Conjecture 1 For given n ∈ Z+ with M := b(n + 1)/2c, The integrals (Cn,k)
enjoy an order-M recursion involving M+1 terms with coefficients being integral
polynomials Pn,j each of degree n, that is

Pn,0(k)Cn,k + Pn,1(k)Cn,k+2 + · · ·+ Pn,M (k)Cn,k+2M = 0.

Moreover, this holds for all complex k in the sense of analytic continuation (the
existence of poles in the k-plane is admitted).
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We shall eventually be able to prove certain instances of Conjecture 1; specif-
ically, recursion relations amongst the Cn,k with fixed n = 1, 2, 3, 4. The first
open cases of Conjecture 1 are n = 5, 6, specifically:

0 ?= (k + 1)5C5,k − (k + 2)
(
35k4 + 280k3 + 882k2 + 1288k + 731

)
C5,k+2

+(k + 2)(k + 3)(k + 4)
(
259k2 + 1554k + 2435

)
C5,k+4

−225(k + 2)(k + 3)(k + 4)(k + 5)(k + 6)C5,k+6 (35)

and

0 ?= (k + 1)6C6,k − 8(k + 2)2
(
7k4 + 56k3 + 182k2 + 280k + 171

)
C6,k+2

+16(k + 2)(k + 3)2(k + 4)
(
49k2 + 294k + 500

)
C6,k+4

−2304(k + 2)(k + 3)(k + 4)2(k + 5)(k + 6)C6,k+6 (36)

where as before the question mark is used to emphasize the fact that we have
no formal proof.

Note that, on this conjecture, our renormalized (lowercase-notated) cn,k =
Γ(k + 1) n! 2−nCn,k of equation (8) then satisfies a recursion with a straightfor-
ward polynomial adjustment:

M∑
i=0

(−1)i pn,i(k + i + 1) cn,k+2i = 0. (37)

We write the “little-c” recursion in this way for convenient connection with ex-
perimental results; for example, we have always encountered natural alternating
signs, and some obvious factors of the polynomials p implicitly defined by (37).
Note, for instance, that the experimental recursions (35) and (36) can be recast
compactly in the form of (37) by defining

p5,0(x) = x6 p6,0(x) = x7

p5,1(x) = 35x4 + 42x2 + 3 p6,1(x) = x(56x4 + 112x2 + 24)
p5,2(x) = 259x2 + 104 p6,2(x) = x(784x2 + 944)
p5,3(x) = 225 p6,3(x) = 2304x.

(38)

Table 2 has many other pn,i polynomials that we have found experimentally.
There is actually a substantial literature on such recursions. Most authors

abide by the nomenclature as we do, namely, the order of the recursion is M ,
meaning there are M +1 different C terms (and M +1 polynomial coefficients).
Some researchers refer to any sequence such as C, satisfying such a recursion,
as holonomic, and observe that a generating function will satisfy a similar re-
currence relation in its derivatives [37, 47, 20].

Two more conjectures also experimentally motivated are

Conjecture 2 Fix n and a complex rational k0. Then for k lying in the arith-
metic progression . . . , k0 − 4, k0 − 2, k0, k0 + 2, k0 + 4, . . . , the set (Cn,k : k ∈
k0 + 2Z) is rationally generated by any M := b(n + 1)/2c distinct elements, but
no fewer.
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Conjecture 3 For distinct complex pair (k, k′) the rational relation pCn,k +
qCn,k′ = r with p, q, r complex rationals, p 6= q, is impossible for n ≥ 5. For
n = 3, 4 the rational relation is only possible for both k, k′ odd integers.

Since all of these conjectures have been experimentally motivated, we hereby
start our recursion discussion in the historical spirit, with experimental results
first (and knowing that some of the tabulated recursions in the present section
are proven and some are not). We give our substantial evidence in Table 2,
where cn,k (lowercase notation) is defined in (8), and in Table 3.

An example of our experimental forays runs as follows. The form of the
non-trivial coefficients for a possible recursion for the C3,k and C4,k was as-
sisted by consulting Sloane’s Online Encyclopedia4 which for C4,k connected
the coefficients to the sequence A063495.5 Having found these recursions, it
was then reasonable to assume the coefficients were polynomials of the conjec-
tured degree; and the Tables were then built by numerical interpolation after
the use of PSLQ. The predicted recursions were then numerically checked to
extreme-precision at various values of k.

Table 2 shows recursions for the renormalized cn,k := k!n! 2−nCn,k, for
1 ≤ n ≤ 12 and integer k. Using the recursion form (37) we end up with
simple (odd or even, positive) polynomials pn,i. The explicit polynomials pn,i

that we have found experimentally are shown in Tables 2 and 3.

In particular we conjecture from Table 3 that

pn,0(x) = xn+1

pn,1(x) =
M∑

j=1

j

(
n + 2
2j + 1

)
xn+1−2j

=
1
4

(n + 1 + x) (x− 1)n+1 +
1
4

(x + 1)n+1 (n + 1− x)

pn,2(x) =
M−1∑
j=1

j4j−1((2j + 3)(n + 2) + j + 1
j + 2

·
(

n + 2
2j + 3

)
xn−1−2j

=
1
32

(
(n + x + 2)2 − 7n

2
− 11(x + 2)

4

)
(x− 2)n+1

+
1
32

(
(n− x + 2)2 − 7n

2
+

11(x− 2)
4

)
(x + 2)n+1

− 1
16

xn+1
(
x2 − (n + 2)2

)
· · ·
· · ·

pn,M (x) =


M∏

j=0

(n− 2j)2

 xn−2M .

4See www.research.att.com/∼njas/sequences/index.html.
5Consult A063495 which makes reference to equation (10) in [24].
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n i = 1

1 1
2 4x
3 2 + 10x2

4 x(12 + 20x2)
5 3 + 42x2 + 35x4

6 x(24 + 112x2 + 56x4)
7 4 + 108x2 + 252x4 + 84x6

8 x(40 + 360x2 + 504x4 + 120x6)
9 5 + 220x2 + 990x4 + 924x6 + 165x8

10 x(60 + 880x2 + 2376x4 + 1584x6 + 220x8)
11 6 + 390x2 + 2860x4 + 5148x6 + 2574x8 + 286x10

12 x(84 + 1820x2 + 8008x4 + 10296x6 + 4004x8 + 364x10)

n i = 2

3 9
4 64x
5 104 + 259x2

6 x(944 + 784x2)
7 816 + 4752x2 + 1974x4

8 x(9024 + 17520x2 + 4368x4)
9 5376 + 54384x2 + 52800x4 + 8778x6

10 x(70144 + 236544x2 + 137808x4 + 16368x6)
11 32000 + 492544x2 + 830544x4 + 322608x6 + 28743x8

12 x(481280 + 2469376x2 + 2498496x4 + 693264x6 + 48048x8)

n i = 3

5 225
6 2304x
7 7796 + 12916x2

8 x(94976 + 52480x2)
9 170298 + 625196x2 + 172810x4

10 x(2409216 + 2949056x2 + 489280x4)
11 2999076 + 18232188x2 + 11161436x4 + 1234948x6

12 x(48354048 + 98000448x2 + 36003968x4 + 2846272x6)

n i = 4

7 11025
8 147456x
9 851976 + 1057221x2

10 x(13036544 + 5395456x2)
11 39605040 + 106102880x2 + 21967231x4

12 x(683253760 + 610355200x2 + 75851776x4)

n i = 5

9 893025
10 14745600x
11 129879846 + 128816766x2

12 x(2393358336 + 791691264x2)

n i = 6

11 108056025
12 2123366400x

Table 2: Experimental polynomials pn,i for 1 ≤ i ≤ 6 and 1 ≤ n ≤ 12.
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n i = 0 i = 1 i = 2 i = 3

1 x2 1
2 x3 4x

3 x4 2 + 10x2 9
4 x5 x(12 + 20x2) 64x

5 x6 3 + 42x2 + 35x4 104 + 259x2 225
6 x7 x(24 + 112x2 + 56x4) x(944 + 784x2) 2304x

7 x8 4 + 108x2 + 252x4 + 84x6 816 + 4752x2 + 1974x4 7796 + 12916x2

8 x9 x(40 + 360x2 + 504x4 + 120x6) x(9024 + 17520x2 + 4368x4) x(94976 + 52480x2)

Table 3: Polynomials pn,i for 0 ≤ i ≤ 3 and 1 ≤ n ≤ 8. Note the coefficient
of the rightmost polynomial is (1 · 3 · · · · · n)2 or (2 · 4 · · · · · n)2 respectively.
Correspondingly, the bold numbers are of the form

(
n
3

)
, while the overlined

numbers are of the form 2
(
n
5

)
, etc. Generally, MacMahon’s numbers, see Sloane’s

A008955, seem closely related: T (n, k) = T (n, k − 1) + k2 T (n− 1, k − 1).

Recall that M := b(n + 1)/2c is the recursion order and we set pn,i = 0 for
i ≥ M . If we consider the graded generating function we equivalently conjecture
that

Gi(x, y) :=
∞∑

n=1

pn,i(x)yn, (39)

we obtain

G0(x, y) =
x

1− xy

G1(x, y) =
1

(xy + y − 1)2(xy − y − 1)2

G2(x, y) =
y3(−(1− xy)3 + 10(1− xy)2 + 4y2(1− xy)− 8y2)

(xy + 2y − 1)3(1− xy)3(xy − 2y − 1)3
, (40)

but have no idea what the general pattern should be.

5 Recursion relations–theory

5.1 Direct methods

An immediate but demonstrative result that does not require experimental
mathematics is

Theorem 3 Conjecture 1 is true for n = 1, 2. In fact, for any complex k,

(k + 1) C1,k − (k + 2) C1,k+2 = 0 (41)

and

(k + 1)2 C2,k − 4 (k + 2)2 C2,k+2 = 0. (42)
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Proof. The desired recursions follow immediately and analytically from (14)
and (15) respectively. QED

As intimated in Section 4, PSLQ in tandem with Sloane suggests that the
C3,k satisfy a definite recursion, at least for integers k. We can get a foothold
on this, with a view to the general analytic Conjecture 1, with

Theorem 4 Set n = 3, whence for positive odd integers k we have

0 = (k + 1)3C3,k − 2(k + 2)
(
5(k + 2)2 + 1

)
C3,k+2 (43)

+ 9(k + 2)(k + 3)(k + 4)C3,k+4.

Remark. We shall eventually prove the recursion for general complex k; how-
ever, the two “direct” methods of proof here for odd k are instructive and have,
indeed, led us into the more general analytical forays to follow.

Proof (first method). For nonnegative integer m, we begin with the formulae
for C3,2m+1 and I(ν), namely (26, 27) respectively. We now make the crucial
observation that

n∑
k=0

(
n
k

)(
n+k

k

)
tn+k log t

(t− t2 − 1)n+k+1
= Pn

(
1− 2t

−t + t2 + 1

)
tn log t

(t− t2 − 1)n+1 , (44)

and so

C3,2m+1 =
1
3

22 m+1

(2 m + 1)
(
2 m
m

) ∫ 1

0

Pm

(
1− 2t

t2 − t + 1

)
tm log t

(t− t2 − 1)m+1 dt (45)

where Pn is the n-th Legendre polynomial with ordinary generating function,
see [1],

∞∑
n=0

Pn (x) yn =
1√

1− 2 xy + y2
. (46)

Let Jm denote the integral on the right-hand side of (45). From (45) and (46),
on justifying the exchange of sum and integral, we obtain that the generating
function for Jm is

J(x) :=
∑
µ≥0

Jµxµ =
∫ 1

0

log t√
(−t + t2 + 1 + tx)2 − 4 t2x

dt.

Now, our hypothesized recursion, when written for Jm is

m2Jm−1 −
(
3 + 10 m2 + 10 m

)
Jm + 9 (m + 1)2 Jm+1 = 0 (47)

Thus it suffices to show that J = v satisfies the ODE

(x− 3) v +
(
3 x2 − 20 x + 9

)
v′ +

(
x3 − 10 x2 + 9 x

)
v′′ = 3. (48)
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This is indeed the case. Maple easily confirms that the value of the left-hand
side of (48) is 3. QED

Proof (second method). Alternatively we observe that (26) writes C3,2m+1 =
amJm where a (0) = 2/3 and

(−2 m− 2) a (m) + (2 m + 3) a (m + 1) = 0,

while Jm satisfies (47)—or via the proven recursion

(n + 1)2 u (n) + (n + 1) (2 n + 3)u (n + 1)− 3 (n + 2) (n + 1) u (n + 2) = −1,

for I. The INRIA-designed Maple package ‘gfun’ provides an algorithm which
will then produce a recursion for C3,2n+1 which simplifies to the vanishing of

4 (m− 1)3 Jm−2−2 (2m− 1)
(
3 + 10 m2 − 10 m

)
Jm−1+9 (2 m + 1) (2 m− 1) mJn

which Maple easily confirms to be as claimed. This proof also can be obtained
in Mathematica using Carsten Schneider’s ‘Sigma’ package available from Risc-
Linz, [33]. Both programs can certify the result, for example in Mathematica
using ‘CreativeTelescoping’. QED

The coefficients Jm are interesting in their own right. In fact,

Jm = qmL−3(2)− pm →m 0

where for m ≥ 1

qm =
1
2
−

m−1∑
k=1

9−k
2F2

(
1
2 ,−k,−k

1, 2 ; 4
)

.

The first 6 values of pm and qm respectively are

(p0, . . . , p5) =
1
3
,

23
108

,
145
972

,
1331
11664

,
242353
2624400

,
5495507
70858800

,

and
(q0, . . . , q5) =

1
2
,

5
18

,
31
162

,
71
486

,
517
4374

,
11723
118098

.

5.2 Analytic method

Presumably there are direct methods, analogous to those used for Theorem
4, that would establish the experimentally motivated recursion for the C4,odd.
However, it turns out that an analytic approach handles both C3,k and C4,k

recursions and moreover, does this for general complex k. Incidentally, by “gen-
eral complex k” here and elsewhere, we mean either that Cn,k is defined as its
original integral (1) and all k ∈ K are being considered, or we are contemplat-
ing the analytic continuation Cn,k over the entire complex k-plane (and at poles
recursions still make divergent sense).

The following method of proof, relying on a contour-integral application of
the Zeilberger algorithm [39, 12, 48], was suggested to us by W. Zudilin [50].
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Theorem 5 The recursion in Theorem 4 for C3,odd k extends to complex k;
moreover, there is a recursion of the same order (M = 2) for the C4,k. Explic-
itly, both of the recursions

(k + 1)3C3,k − 2(k + 2)
(
5(k + 2)2 + 1

)
C3,k+2 + 9(k + 2)(k + 3)(k + 4)C3,k+4

= 0,

(k + 1)4C4,k − 4(k + 2)2(5(k + 2)2 + 3)C4,k+2 + 64(k + 2)(k + 3)2(k + 4)C4,k+4

= 0,

hold for general complex k.

Proof. (i) We focus on the n = 4 case—the n = 3 case follows the same logic—
using a representation based on the Meijer form (13) and its associated contour
integral. Contemplating t as a complex variable, we have

C4,2t−1 = − π2

24πi

∫ −1/2+i∞

−1/2−i∞
F4(t, s)

cos πs

sin3 πs
ds,

with the definition

F4(t, s) :=
Γ(s + 1/2)Γ(s + t)3

Γ(2t)Γ(s + 1)3Γ(1/2 + s + t)
.

If one then employs the Zeilberger algorithm6 one finds that the definition

G4(t, s) := s3 12t3 + 16t− 2 + 26st2 − 26t2 − 37ts + 11s + 18s2t + 4s3 − 12s2

(t− 1)(2s + 2t− 1)
F4(t, s),

leads to

16t2(2t + 1)(2t− 1)F4(t + 1, s)− (2t− 1)2(5t2 − 5t + 2)F4(t, s)

+(t− 1)4F4(t− 1, s) = G4(t, s + 1)−G4(t, s).

Inserting this F,G relation into the contour integral yields

16t2(2t + 1)(2t− 1)C4,2t+1 − (2t− 1)2(5t2 − 5t + 2)C4,2t−1 + (t− 1)4C4,2t−3

=
π2

24πi

Z
C

G4(t, s)
cos πs

sin3 πs
ds, (49)

where now the contour C is an infinitely tall, thin rectangle running vertically
through −1/2 + 0i and 1/2 + 0i.

However, this rectangular integral is zero, since the only singularity is at
s = 0, and as we saw in our previous Meijer analysis for C4,k, the residue
contribution is proportional to ∂2G4(t, s)/∂s2|s=0, which is zero. Thus, the
recursion (49) holds in an analytic sense, and upon t → (k + 3)/2 becomes the
order-2 recursion desired.

6Say, by calling in Maple zeil(F4(t-1,s),s,t,N,2).

23



(ii) For n = 3, the same procedure goes through; we first harken back to
Meijer representation (12) then define

F3(t, s) :=
Γ(s + 1/2)Γ(s + t)2

Γ(2t)Γ(s + 1)3
,

then run the Zeilberger algorithm to achieve

G3(t, s) := s3 12t3 − 17t2 + 14st2 − 10st + 6t + 4s2t− s2 + 2s− 1
2t(t− 1)

F3(t, s)

and

(4t + 1)(2t + 1)(2t− 1)(4t− 1)F3(t + 1, s)− t(2t− 1)(10t2 − 10t + 3)F3(t, s)

+t(t− 1)3F3(t− 1, s) = G3(t, s + 1)−G3(t, s).

Then, as with the n = 4 case above, we observe the vanishing of the relevant
contour integral and arrive at the correct recursion involving C3,2t−1. QED

6 Continued fractions

It will have occurred to many readers that the order M = 2 recurrences, namely
for the C3,k and C4,k, should give rise to continued fractions, being as such frac-
tions are also governed by order-2 recurrences. The classical Pincherle theorem
[23, Theorem 7, p.202], [19] runs like so:

Theorem 6 (Pincherle) Let (aN : N ∈ Z+), (bN : N ∈ Z+), (GN : N =
−1, 0, 1, 2, . . . ) be sequences of complex numbers related for all N ∈ Z+ by

GN = bNGN−1 + aNGN−2,

with each aN 6= 0. Denote by PN/QN the convergents to the continued fraction

x :=
a1

b1 + a2
b2+...

.

If limN GN/QN = 0 then the fraction converges and has the value

x = − G0

G−1
.

The Pincherle theorem may be applied to recursions of the form in Conjecture
1 when n = 3 or 4, as established in Theorem 5. For these n we have order-2
recursions:

Pn,0(k)Cn,k + Pn,1(k)Cn,k+2 + Pn,2(k)Cn,k+4 = 0.

24



If we identify GN := Cn,2N+2 the Pincherle theorem applies with

bN := −Pn,1(2N − 2)
Pn,2(2N − 2)

,

aN := −Pn,0(2N − 2)
Pn,2(2N − 2)

,

and we obtain a continued fraction with value x = −Cn,2/Cn,0. Similarly,
setting GN := Cn,2N+3 and suitably modifying the definitions of aN , bN gives
us a fraction with value −Cn,3/Cn,1.

These machinations result in at least four attractive continued fractions hav-
ing integer elements. Even though we do not know a single individual value of
C3,even, we nevertheless have a fraction for the ratio C3,2/C3,0; specifically,

18
C3,2

C3,0
=

9 · 14

d(1)−
9 · 34

. . . −
9 · (2N − 1)4

d(N)− . . .

(50)

where d(N) := 40N2 + 2. The very form of the fraction elements suggests that
this ratio could well be a rational multiple of some brand of L-function, but we
have not extensively searched for such.

For the L-function that appears in C3,odd evaluations, we obtain

2
L−3(2)

= 3−
9 · 14

f(1)−
9 · 24

. . . −
9 ·N4

f(N)− . . .

(51)

with f(N) := 10N2 + 10N + 3, and so f(0) = 3.
Along the same lines one derives a fraction

16
C4,2

C4,0
=

16

e(1)−
36

. . . −
(2N − 1)6

e(N)− . . .

(52)

where e(N) := N(20N2 + 3).
Finally, for the C4,odd we arrive at a fraction for ζ(3):

12
7 ζ(3)

= 2−
16 · 16

g(1)−
16 · 26

. . . −
16 ·N6

g(N)− · · ·

, (53)
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where g(N) := (2N + 1)(5N2 + 5N + 2), and so g(0) = 2. This fraction is
structurally reminiscent of the Apéry continued fraction for ζ(3). (See [17] and
the references therein.) However, the arguments presented in [44]—where are
derived Catalan-constant and ζ(4) fractions structurally similar to our L and
ζ(3) fractions above—suggest that irrationality proofs using such fractions are
rare. Typically, certain number-theoretical properties of a recursion must be
satisfied for an irrationality proof to be achievable.

Indeed there are many literature connections involving recursions, continued
fractions, and irrationality [5, 26, 45, 31, 38, 46, 48]. Indeed, our recursion for
C4,k in Theorem 5 (essentially a recursion relevant to ζ(3)) can be found in the
literature [4, p.23], and another one for the C3,k, and so relevant to L−3(2) can
be found also [49]. We note that irrationality proofs of Apéry type do not appear
to arise from the recursions of the present paper. Indeed, to our knowledge the
number L−3(2) has never been proven irrational.

7 Further analytic properties of the Cn,k

We have investigated interindicial relations of k-variant form, i.e. recursion
relations, but now we turn to relations where the first index, n, varies.

7.1 Analytic convolution

On another idea of W. Zudilin [50], we sought relations on the first index,
namely the n of Cn,k. One result is an analytic convolution theorem, where we
recall the definition of the half-plane K from Section 1, and the renormalization
cn,k := Γ(k + 1)2−nn! Cn,k:

Theorem 7 For complex k ∈ K, positive integer n, and integer q ∈ [1, n − 1]
we have

cn,k =
1

2πi

∫
C

cn−q,k+scq,−1−s ds,

where the contour C runs vertically over (λ− i∞, λ + i∞) with <(λ) ∈ (−1, 0).

Remark. There are at least two remarkable features of this result. First,
this is a kind of recursion on the first index of the cn,k in contrast with the
k-recursions; and second, the convolution surprisingly takes the same form for
any (legal) indicial offset q.

Proof. Write our original definition (1) in the form

Cn,k :=
1
n!

∫
dx1 · · · dxn(A + B)−k−1 =

1
n!

∫
dx1 · · · dxnA−k−1(1 + B/A)−k−1

where A is the sum of the first (n − q) cosh terms, and B is the sum of the
remaining q cosh terms. We then invoke the hypergeometric form of the binomial
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theorem, namely

(1 + B/A)−k−1 =
1

Γ(k + 1)
1

2πi

∫
C

Γ(1 + k + s)Γ(−s)(B/A)s ds.

We can then contemplate integration of A terms over dx1 · · · dxn−q, and B terms
over dxn−q+1 · · · dxn, to obtain

Cn,k =
1(
n
q

) 1
Γ(k + 1)

1
2πi

∫
C

Γ(k + 1 + s)Γ(−s)Cn−q,k+sCq,−1−s ds.

But upon renormalization to the little-c forms, this is the statement of the
theorem. QED

We have not explored all of the implications of this theorem. However, we
can use it to extend the reach, if you will, of Meijer-G analysis. Though we
encountered in Section 2 a certain blockade at n = 5—namely we “ran out” of
Meijer representations—we can nevertheless cast Cn,k as an order-b(n − 1)/2c
nested-Barnes integral. Evidently, then, the Meijer representations (12, 13)
can be considered in the larger scheme of things as the nested-Barnes cases for
n = 3, 4.

The first nontrivial case of this “Meijer–Barnes extension” uses Theorem 7
with n = 5, q = 2 to yield

c5,k =
1

2πi

∫
Cs

c2,k+sc3,−1−s ds

= − 1
4π2

∫
Cs

∫
Ct

c2,k+sc2,−1−s+tc2,−1−t ds, (54)

using the contours

Cs := (λ− i∞, λ + i∞) and Ct := (ρ− i∞, ρ + i∞)

where conditions simultaneously sufficient for these contours are:

<(k) + λ > −1,−1 + λ + ρ ∈ (−1, 0),−1 + ρ ∈ (−1, 0).

Using the explicit resolutions (14, 15) we arrive at the following 2-fold nested-
Barnes integral (we also here have transformed (s, t) 7→ (2s, 2t) for notational
convenience, and intentionally reverted back to “big-C” notation):

C5,k = − 1
240π

∫
2Cs

∫
2Ct

ds dt
Γ3(s + (1 + k)/2)Γ3(t− s)

Γ(s + 1 + k/2)Γ(t− s + 1/2)
4−tΓ2(−t). (55)

It is of interest that another 2-dimensional integral—but evidently of markedly
different character—was derivable for C5 := C5,1 in the separate treatment [8].
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7.2 Measure-theoretic representation

Again starting from the original definition (1) we denote the sum of cosh terms
as U , and develop a measure-theoretic form:

Cn,k =
1
n!

∫ ∞

n

dU

Uk+1

∂

∂U

∫
P

cosh xk≤U

dx1 · · · dxn,

or, upon integration by parts,

Cn,k =
k + 1

n!
2n+2

∫ ∞

0

r Vn(r)
(2r2 + n)k+2

dr,

where the volume Vn is that of a “hyper-ellipsoid” of “radius” r:

Vn(r) :=
∫
P

sinh2 yk≤r2
dy1 · · · dyn. (56)

A test case is n = 1, for which V1(r) = 2 arcsinh r, and this measure-theoretic
form agrees with (14).

This approach has not been taken further; however, note that we always
have a 1-dimensional integral, for any n—an advantage shared by the Bessel-
kernel representations. In the measure-theoretic case here, though, all involved
functions are elementary. It is also interesting that if we had omniscience in
regard to the properties of the hyper-ellipsoid, we would settle many questions
about the Cn,k.

7.3 An n-variant recursion and the elusive C5

Presumably the convolution Theorem 7 could be invoked, the resulting residue
calculus giving us relations between the cn,k and entities cp,j with p < n. How-
ever there is a much more direct way to establish an n-variant recursion (i.e.,
now we have the first index n changing on cn,k). The Bessel-kernel representa-
tion (7) together with the insertion of one copy of K0 in the form of an ascending
series

K
(asc)
0 (t) =

∑
k≥0

t2k

4kk!2
{Hk − γ − log(t/2)} , (57)

see [1, 8], immediately yields an n-variant recursion (recall cn,k := Γ(k +
1)2−nn!Cn,k):

cn,k =
∑
m≥0

1
4m

1
m!2

{
(H(1)

m − γ + log 2) cn−1,k+2m − c′n−1,k+2m

}
, (58)

where the derivative is with respect to the second index, i.e. c′n,q := ∂cn,q/∂q.
Interestingly, for the problematic Ising integral C5 := C5,1 = c5,1/450, we ac-
tually know all of the c4,2m+1 in principle, from Theorem 2 and the resulting
algorithm. Unfortunately we still do not have a convenient representation for
c′4,2m+1, but at least we have derived a computational series involving, say,
numerical differentiation, for C5.
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7.4 Bessel-moment relation

Using an integration by parts, namely

1
Γ(k + 1)

∫ ∞

0

tkKn
0 (t) dt =

1
Γ(k + 3)

∫ ∞

0

tk+2 (Kn
0 (t))′′ dt

in the original definition (1), we can iterate in view of the recursion Conjecture 1
to write an equivalent conjecture as a Bessel-moment phenomenon—with M :=
b(n + 1)/2c as in the conjecture:

0 ?=
∫ ∞

0

tk+2M
(
PM (k)Kn

0 + PM−1(k)(Kn
0 )′′ + · · ·+ P0(k)(Kn

0 )(2M)
)

dt.

It is remarkable that polynomials P0, . . . , PM exist such that this moment in-
tegral appears to vanish for general complex k ∈ K (of course, the equivalent
recursion relations are likewise remarkable). Note that the suspected vanishing
of the above moment integral has been proven for n = 1, 2, 3, 4 and appropriate
respective polynomials.

We have not taken this moment relation any further than to make the fol-
lowing observation. Using the asymptotic series [1]:

K
(asy)
0 (t) ∼

√
π

2t
e−t

∞∑
m=0

(−1)m((2m)!)2

m!3(32t)m
, (59)

one may ask how the Bessel-moment integral above behaves when the asymp-
totic form is (naively, perhaps illegally) simply inserted into the integral. Sur-
prisingly, if one truncates the sum (59) at a high enough m, and solves for the
polynomials that minimize the k-degree of the moment integral, one evidently
finds the correct polynomials exactly.

For example, we took the summation index m up through 18, and solved
symbolically for the higher powers of k in the moment integral’s result to vanish,
and found we had detected this relation (36) previously, numerically, so it was
pleasing to find the same polynomials via this admittedly nonrigorous handling
of the moment integral. The fascinating nuance here is that, evidently, the
recursion polynomials depend in some profound sense on the coefficients of the
asymptotic expansion in (59).

8 Extreme-precision numerics

Using the Bessel-kernel representation (7), we have calculated to 500-digit ac-
curacy values of Cn,k for all integers n, k, where n ∈ [2, 12] and k ∈ [0, 25]. This
was done using the ARPREC arbitrary precision software [10] and the tanh-sinh
quadrature scheme [11]. We have placed a listing of these numerical values on
a website [9]. These were the raw data on which most of our discoveries were
based.
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9 Conclusion and open problems

We wish to emphasize that the interaction of sophisticated numeric and sym-
bolic computing has played an irreplaceable role in the work described herein.
Indeed, we believe that these results would have been much more difficult,
if not impossible, to deduce without reliance on heavy-duty computer power
and sophisticated algorithms. Some of the techniques we employed include
extreme-precision quadrature, PSLQ integer relation detection programs, gen-
erating function packages, high-accuracy least-squares polynomial fitting, and
Wilf–Zeilberger theorem-proving software. We wish to thank those who have
provided both the hardware and the software we have used.

We finish by recording some of the open problems we find the most com-
pelling.

• While Conjectures 2 and 3 are probably out of current reach, what progress
is possible on Conjecture 1. Specifically:

• How might one prove the conjectured recursion for n = 5, from (35),
using, say, the nested-Barnes representation (55)? This might amount to
a higher-dimensional application of Wilf–Zeilberger methods [39].

• Is there a reasonable closed form for some or all of the following constants:
C5,1, C4,0, C3,2/C3,0, C4,2/C4,0?

Acknowledgments. We are indebted to V. Adamchik, P. Paule, C. Schneider,
P. Wellin, and A. van der Poorten. We give special acknowledgment to to
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