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Abstract

To study embeddings of tangles in knots, we use quandle cocycle
invariants. Computations are carried out for the tables of knots and
tangles, to investigate which tangles may or may not embed in knots
in the tables.

1 Introduction

A tangle is a pair (B,A) where A is a set of properly embedded arcs in a
3-ball B. A tangle will have four end points throughout the article, unless
otherwise specified. A tangle T is embedded in a link (or a knot) L if there
is an embedded ball B in 3-space such that T is equivalent to the pair
(B,B ∩ L). All maps are assumed to be smooth. Tangles are represented
by diagrams in a manner similar to knot diagrams.

Tangle embeddings have been studied by several authors recently. In [11],
the determinant was used in relation to evaluations of the Jones polynomial,
that have been further investigated in [5, 11, 12]. Topological interpreta-
tions were considered in [18, 19]. Tangles were also used to study DNA
recombinations [7].

In this article, we present a method of using quandle cocycle invariants as
obstructions to embedding tangles in knots, and examine their effectiveness
as obstructions by looking at the table of tangles presented in [10] and
the knot table in [13]. Quandles are self-distributive sets with additional
properties (see below for details), and have been used in the study of knots
since 1980s. A cohomology theory of quandles have been developed, and
their cocycles have been used as state-sum invariants of knots and knotted
surfaces [4]. Quandles are used to investigate tangles also in [6, 17].

∗Supported in part by NSF Grant DMS #0301089, #0603876.
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In this paper, we focus on effectiveness of quandle cocycle invariants as
obstructions. It will be shown that the invariants often provide effective
obstructions when a given tangle has non-trivial colorings by quandles.

The paper is organized as follows. After a review of preliminary material
in Section 2, colorings of tangles are defined in Section 3, and the tangles in
the table (see Fig. 6) that have non-trivial colorings by Alexander quandles
are listed. The main theorem is presented in Section 4. For tangles listed
in Section 3, it is examined which tangles may or may not embed in knots
in the knot table. In Section 5, embeddings of multiple disjoint copies of
tangles are discussed. Part of the results are based on the work in the Ph.D.
dissertation by Kheira Ameur [2].

2 Preliminaries

2.1 Tangles and their operations

The conventions described in this subsection are commonly found in the
literature (see for example, [1, 16]).

The four end points of a given tangle diagram T are located at four
corners of a circle in a plane at angles π/4, 3π/4, 5π/4 and 7π/4, when the
circle is placed with the origin as its center. These end points are labeled
by NE, NW, SW, and SE, respectively, representing North East, etc.

T 1 T 2

T 1 T 2+

Figure 1: Addition of tangles

The addition T1+T2 of two tangles T1, T2 is another tangle defined from
the original two as depicted in Fig. 1. There are two ways of closing the end
points of a tangle, called closures, the numerator N(T ) and denominator
D(T ) of a tangle T , defined as depicted in Fig. 2.

There is a family of “trivial” or “rational” tangles, some of which are
depicted in Fig. 3. These tangles are obtained from the trivial tangle of
two vertical straight arcs by successively twisting end points vertically and
horizontally. See again [1] or [16] for more details.
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T T

N(T) D(T)

Figure 2: Closures (numerator N(T ) and denominator D(T )) of tangles

R(1,1)

R(1,1,1)

R(0) R(1) R(2)

R(2,1) R(1,2)

Figure 3: Some rational tangles

In [10], prime tangles (with crossing number at most seven) are classified,
and a table of their diagrams is given. The table consists of a single 5 crossing
tangle followed by four 6 crossing tangles, and 18 tangles of 7 crossings. Some
multiple component tangles were also classified. The tangles are named in
a scheme similar to knots by integers with subscripts. Some of the tangles
are presented in Fig. 6.

2.2 Quandles, colorings, and cocycle invariants

A quandle, X, is a set with a binary operation (a, b) 7→ a ∗ b such that
(I) For any a ∈ X, a ∗ a = a,
(II) For any a, b ∈ X, there is a unique c ∈ X such that a = c ∗ b,
(III) For any a, b, c ∈ X, we have (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).

A rack is a set with a binary operation that satisfies (II) and (III). Racks
and quandles have been studied in, for example, [3, 8, 9, 14].

The following are typical examples of quandles. A group G with conju-
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βC ( ) =

C ( γ ) = c=a   b*

C (α) = a b

Figure 4: Quandle relation at a crossing

gation as the quandle operation, a ∗ b = bab−1, is a quandle. Any Z[t, t−1]-
module M is a quandle with a ∗ b = ta+(1− t)b, a, b ∈M , that is called an
Alexander quandle. Let n be a positive integer, and for elements i, j ∈ Zn,
define i ∗ j ≡ 2j − i (mod n). Then ∗ defines a quandle structure called the
dihedral quandle, Rn.

Let X be a fixed quandle. Let K be a given oriented classical knot or
link diagram, and let R be the set of (over-)arcs. The normals (normal
vectors) are given in such a way that the ordered pair (tangent, normal)
agrees with the orientation of the plane, see Fig. 4. A (quandle) coloring C
is a map C : R → X such that at every crossing, the relation depicted in
Fig. 4 holds. Specifically, let β be the over-arc at a crossing, and let α and γ
be the under arcs, such that the normal of the over-arc points from α to γ,
then C(α) ∗ C(β) = C(γ) holds. The (ordered) colors (C(α), C(β)) are called
source colors. Let ColX(K) denote the set of colorings of a knot diagram K
by a quandle X.

Let K be a knot diagram on the plane. Let X be a finite quandle and
A be an abelian group. Let φ : X ×X → A be a quandle 2-cocycle, which
can be regarded as a function satisfying the 2-cocycle condition

φ(x, y)− φ(x, z) + φ(x ∗ y, z)− φ(x ∗ z, y ∗ z) = 0, ∀x, y, z ∈ X

and φ(x, x) = 0,∀x ∈ X. Let C be a coloring of a given knot diagram K by
X.

The Boltzmann weight B(C, τ) = Bφ(C, τ) at a crossing τ of K is then
defined by B(C, τ) = ǫ(τ)φ(xτ , yτ ), where (xτ , yτ ) is the source colors at τ
and ǫ(τ) is the sign (±1) of τ . Then the 2-cocycle invariant Φ(K) = Φφ(K)
in a multiset form is defined by

Φφ(K) =

{

∑

τ

B(C, τ)

∣

∣

∣

∣

∣

C ∈ ColX(K)

}

.

(A multiset is a collection of elements where a single element can be repeated
multiple times, such as {0, 0, 1, 1, 1}, which is also denoted by {⊔20,⊔31}).
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x

x y*

x z*

x y*( ) * z

x y* x z*( ) * ( )

y z

Figure 5: Region colors at a crossing

Let θ : X ×X ×X → A be a quandle 3-cocycle, which can be regarded
as a function satisfying

θ(x, z, w)− θ(x, y, w) + θ(x, y, z)− θ(x ∗ y, z, w)

+θ(x ∗ z, y ∗ z, w) − θ(x ∗ w, y ∗ w, z ∗ w) = 0, ∀x, y, z, w ∈ X,

and θ(x, x, y) = 0 = θ(x, y, y),∀x, y ∈ X.
Let C be a coloring of arcs and regions of a given diagram K. Specifically,

for a coloring C, there is a coloring of regions that extend C as depicted in
Fig. 5. Suppose that two regions R1 and R2 are separated by an arc colored
by y, and the normal of the arc points from R1 to R2. If R1 is colored by
x, then R2 receives the color x ∗ y. Let (xτ , yτ , zτ ) (called the ordered triple
of colors at a crossing τ ) be the colors near a crossing τ such that x is the
color of the region (called the source region) from which both orientation
normals of over- and under-arcs point, y is the color of the under-arc (called
the source under-arc) from which the normal of the over-arc points, and z is
the color of the over-arc. See Fig. 5. Let (xτ , yτ , zτ ) be the ordered triple of
colors at a crossing τ . Then the weight in this case is defined by B(C, τ) =
ǫ(τ)φ(xτ , yτ , zτ ). The 3-cocycle invariant is defined in a similar way to the
2-cocycle invariant by the multiset Φθ(K) = {

∑

τ B(C, τ) | C ∈ ColrX(K)},
where ColrX(K) denotes the set of colorings with region colors of K by X.

If the quandle X is finite, the invariant as a multiset can be written
by an expression similar to those for the state-sums; if a given multiset of
group elements is {⊔m1

g1, . . . ,⊔mℓ
gℓ}, then we use the polynomial nota-

tion m1u
g1 + · · · + mℓu

gℓ where u is a formal symbol. For example, the
multiset value of the invariant for a trefoil with the Alexander quandle
X = Z2[t, t

−1]/(t2 + t + 1) with the same coefficient A = X and a cer-
tain 2-cocycle is {⊔4(1),⊔12(t+ 1)}, and is denoted by 4 + 12u(t+1), where
we use the convention u0 = 1 and exponential rules apply.

For computing the invariants, one needs an explicit formula for cocy-
cles. Polynomial expressions were used first in [15], and investigated closely
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including higher dimensional cocycles in [2].

3 Boundary monochromatic colorings and the co-

cycle invariants of tangles

We use quandle cocycle invariants as obstructions to embedding tangles in
knots. We first define cocycle invariants for tangles.

Definition 3.1 Let T be a tangle and X be a quandle. A (boundary-
monochromatic) coloring C : A → X is a map from the set of arcs in a
diagram of T to X satisfying the same quandle coloring condition as for
knot diagrams at each crossing, such that the (four) boundary points of the
tangle diagram receive the same element of X.

For a coloring C of a tangle diagram T , a region colorings are defined in
a similar manner as in the knot case. In this case, we allow region colors to
change (not necessarily colored by the same element as the one assigned to
the boundary points).

Denote by Colx(T ) and ColX(T ) the set of boundary-monochromatic
colorings of T with the boundary color x ∈ X and the set of all boundary-
monochromatic colorings, respectively. Let Φ(T, x) =

∑

C∈Colx(T )

∏

τ B(C, τ).
Then the cocycle invariant for a tangle T is defined by Φφ(T ) =

∑

x∈X Φ(T, x).
The invariants with region colors are defined in a similar manner, by taking
sum over all colorings of regions as well as colorings of diagrams.

It is seen in a way similar to the knot case that the number of colorings
|ColX(T )| does not depend on a choice of a diagram of T . Any coloring C1
of a diagram of a tangle T is changed via a sequence of Reidemeister moves
(with boundary points fixed) to a coloring C2 of T . Given two diagrams D1

and D2 of a tangle T , there is one-to-one correspondence between the set of
colorings of D1 and the set of colorings of D2 and the cocycle invariant is
well-defined.

Table 1 summarizes the tangles in the tangle table that have non-trivial
boundary monochromatic colorings by some Alexander quandles. These
are found by hand calculations, occasionally assisted by Maple. Specifically,
variables xi, i = 1, 2, . . ., are assigned on arcs of tangle diagrams as indicated
in Fig. 6, and the coloring conditions of the form xk = txi + (1 − t)xj
are imposed corresponding to crossings, and the system of linear equations
in Z[t, t−1] are solved to find which Alexander quandles have non-trivial
colorings. These tangles with non-trivial colorings by Alexander quandles

6



Quandle Tangle colored

Zp[t, t
−1]/(t2 − t+ 1) 62, 63, 717(NW In, SW In).

Z2[t, t
−1]/(t2 + t+ 1) 62, 63, 717(NW In, SW In),

74(NW In, NE In), 75(NW In, NE In),
76(NW In, NE In), 77(NW In, NE In),

R3 62, 63, 716, 717.

R5 713, 718.

R7 715.

Table 1: Tangles with non-trivial colorings

are depicted in Fig. 6. This list compares with the original list in [10] as
follows. Their list starts with one 5-crossing tangle 51, which colors trivially
by Alexander quandles and is not listed in Fig. 6. There are four (61 − 64)
6-crossings tangles, three of which are in our list. Thirteen out of eighteen
7-crossing tangles are in our list.

4 Quandle cocycle invariants as obstructions to

tangle embeddings

The quandle 2- and 3-cocycle invariants are defined for tangles in a manner
similar to the knot case using the set of boundary monochromatic colorings,
and denoted by Φφ(T ). We use the multiset version of the invariant.

Definition 4.1 The inclusion of multisets is denoted by ⊂m. Specifically,
if an element x is repeated n times in a multiset, call n the multiplicity of
x, then M ⊂m N for multisets M , N means that if x ∈M , then x ∈ N and
the multiplicity of x in M is less than or equal to the multiplicity of x in N .

Theorem 4.2 Let T be a tangle and X a quandle. Suppose T embeds in a
link L. Then we have the inclusion Φφ(T ) ⊂m Φφ(L).

Proof. Suppose a diagram of T embeds in a diagram of L. We continue to
use T and L for these diagrams. For a coloring C of T , let x be the color
of the boundary points. Then there is a unique coloring C′ of L such that
the restriction of C′ on T is C and all the arcs of L outside of T receive the
color x. Then the contribution of

∑

τ∈T B(C, τ) to Φφ(T ) is equal to the
contribution

∑

τ∈LB(C′, τ) to Φφ(L), and the theorem follows. The same
argument works for region colors and 3-cocycle invariants. �
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Figure 6: Tangles with non-trivial colorings by Alexander quandles
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In Table 2, a summary is presented for the tangles that color non-trivially
by Alexander quandles. In the left column of the table, the tangles that
appear in Table 1 are listed. In the middle column, knots that we found
to embed a given tangle are listed. The third column lists the knots for
which we could not exclude the possibility of embedding of the given tangle
using cocycle invariants. The tangles are specified by the notation T (62),
for example, for the tangle numbered 62 to distinguish them from knots. We
note that there are 84 knots in the table up to (including) 9-crossing knots.
For the tangle T (63), for example, all except 3 out of 84 are detected by the
cocycle invariants that they do not embed the tangle. It is checked by hand
that these remaining three do embed it.

To demonstrate how we obtain these results, we state and prove the
following.

Proposition 4.3 The tangle T (62) with the orientation of the NW arc in-
ward and the SW arc outward does not embed in the knots in the table up to
9 crossings except, possibly, for 818,, 929, 938.

Proof. With this orientation, the tangle is of the form of two copies of the
mirror of the trefoil, and is colored non-trivially by the quandle Zp[t]/(t

2 −
t+ 1).

We exhibit a method to determine the invariant from the table in [21].
For p = 2, the table of quandle cocycle invariants in [21] gives 16 + 48ut

as the invariant for trefoil with the 3-cocycle φ(x, y, z) = (x − y)(y − z)2.
This implies that any non-trivial coloring contributes t to the invariant.
Its mirror has the same property. With two copies, any non-trivial col-
oring of the tangle contributes 2t = 0 when p = 2. Hence the invariant
value of the tangle is 64. From the table this does not embed in knots
up to 9 crossings except for the following possibilities : 85, 810, 815, 818,
819, 820, 821, 916, 922, 924, 925, 928, 929, 930, 936, 938, 939, 940, 941, 942, 943, 944,
945, 949.

For p = 3, the invariant table gives 243 + 486u(2t+2) as the invariant
for trefoil. This implies that 486 non-trivial colorings contributes 2t + 2 to
the invariant. Its mirror contributes t+1. With two copies, 486 non-trivial
colorings of the tangle contributes 2t + 2. Hence the invariant value of the
tangle is 243 + 486u(2t+2) . From the table this does not embed in knots up
to 9 crossings except for: 31, 818, 92, 94, 929, 934, 938.

For p = 5, the table gives

625 + 3750u(t+3) + 3750u(4t+2) + 3750u(3t+4) + 3750u(2t+1)

9



Tangle Embeds in: May embed in:

62 (NW In, SW Out) (85)
∗ = N(T (62) +R(−2)) 818, 929, 938.

62 (NW In, SW In) (31) = N(T (62) +R(−1)) 31, 74, 77, 818, 910, 929,
935, 937, 938, 946, 948.

63 (NW In, SW Out) (810) = N(T (63) +R(2, 1))∗

(820) = N(T (63) +R(2))∗ 810, 820, 924.
(924) = N(T (63) +R(2, 2))∗

74 (NW In, NE In) (41) = (N(T (74) +R(−1)) 31, 41, 72, 73, 81, 84, 811,
813, 818, 91, 96, 912, 913,
914, 921, 923, 935, 937, 940.

75 (NW In, NE In) (73)
∗ = N(T (75) +R(−1)) Same as 74(NW In, NE In).

76 (NW In, NE In) 85, 810, 815, 818 − 821, 916,
922, 924, 925, 928 − 930, 936,
938, 939, 941 − 945, 949.

77 (NW In, NE In) Same as 76(NW In, NE In).

713 (NW In, NE Out) (74) = N(T (713))
(816) = N(T (713) +R(1))
(939) = N(T (713) +R(1, 1)) 41, 74, 924, 937, 939, 940, 949.
(949) = N(T (713)

+R(−1,−1))

715 (NW In, SW In) (52) = N(T (715) +R(−1)) 52, 816, 941, 942.

715 (NW In, SW Out) (77) = D(T (715)) 71, 77, 85, 94, 912, 941.
(941) = N(T (715) +R(2))

716 (NW In, NE In) (77)
∗ = D(T (716)) 85, 815, 818, 819, 821, 92, 94,

911, 915, 916, 928, 934, 937,
940, 946, 947.

716 (NW In, NE Out) (74) = N(T (716)) Same as 62(NW In, SW In).

717 (NW In, SW In) (818) = N(T (717) +R(1)) 818, 940.

717 (NW In, SW Out) Same as 716(NW In, NE In).

718 (NW In, SW In) (821) = N(T (718) +R(1)) 51, 818, 821, 92, 912, 923, 931,
940, 949.

718 (NW In, SW Out) (51) = D(T (718)) Same as 718(NW In, SW In).

Table 2: Summary of the results
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as the invariant for the trefoil. As in the previous cases, the tangle has the
invariant value

625 + 3750u(3t+4) + 3750u(2t+1) + 3750u(4t+2) + 3750u(t+3)

(for example, for the contribution t+3 of trefoil, the mirror contributes 4t+2,
its double contributes 3t+ 4). From the table this does not embed in knots
up to 9 crossings except for: 31, 83, 85, 811, 815, 818, 819, 821, 91, 95, 96, 916, 919,
923, 928, 929, 938, 940.

For p = 7, the trefoil has 117649 as the invariant value, and so does the
tangle. From the table this does not embed in knots up to 9 crossings except
for: 31, 85, 810, 811, 815, 818, 819, 820, 821, 91, 96, 916, 923, 928, 929, 938, 940.

From all these information combined, this tangle does not embed in knots
up to 9 crossings except for the only possibilities of 818, 929, 938. �

We have not been able to determine whether the tangle T (62) actually
embeds in these three knots that the invariant failed to exclude. In the next
example, however, we were able to determine completely the embedding
problem up to 9 crossings.

Proposition 4.4 The knots in the table up to 9 crossings in which the
tangle T (63) embeds are exactly 810, 820, 924. Here, the orientation of the
tangle is such that the end point NW is oriented inward and the SW end
point is oriented outward.

Proof. The tangle T (63) is written as the addition R(3)+R(−3). Hence it is
colored non-trivially by Zp[t]/(t

2− t+1) for any p ∈ Z (we use only primes),
as well as the dihedral quandle R3. For the quandle Zp[t]/(t

2−t+1) we used
the 3-cocycle f(x, y, z) = (x − y)(y − z)p. The colors of the source region
for these two copies of the trefoil diagrams (R(3) and R(−3)) coincide. The
signs of the crossings are opposite. Hence the invariant is trivial, (p2)3 copies
of 0, for Zp[t]/(t

2 − t+1). For p = 5, in particular, from the calculations in
[21], Theorem 4.2 implies that this tangle may embed, among knots in the
table up to 9 crossings, only in: 810, 812, 818, 820, 924. The invariant with
R3 further excludes 812 and 818. Therefore the tangle may embed only in
810, 820, and 924.

On the other hand, it is seen that

(810) = N(T (63) +R(2, 1))∗,

(820) = N(T (63) +R(2))∗,

(924) = N(T (63) +R(2, 2))∗,

11



where K∗ denotes the mirror image of a knot K, and R denotes the rational
tangles. Note that this tangle T (63) is equivalent to its mirror. Therefore we
have shown that the tangle T (63) does indeed embed in these three knots.
�

Remark 4.5 In general the orientation needs to be specified to define the
quandle cocycle invariants. (In our case only the dihedral quandles can be
used for the invariant without specifying the orientations [20].) Further-
more, the mirror images of a given knot in the table may be different. Thus
all of our results are stated for oriented tangles and oriented knots, and do
not include their mirror images. Our convention for specifying orientations
of tangles are already explained. For knots in the table, we used Livingston’s
table [13], which includes particular choices of mirrors if a knot is not am-
phicheiral. For the orientations, we used the braid form in [13], for our
calculations, so that the orientations are specified by downward orientations
of the braids.

5 Embedding disjoint tangles

In this section we discuss embeddings of disjoint union of tangles in knots.
We prove a theorem that will be used as obstruction to embedding disjoint
union of tangles and give some examples.

Let C =
∑k

i=1miu
ci , D =

∑ℓ
j=1 nju

dj be polynomial expressions of
multisets values of the invariants, where mi, nj ∈ Z+, ci, dj ∈ A, where A
is the coefficient abelian group. Then we define C ×D =

∑

i,jminju
ci+dj .

Let |X| denote the number of elements of a quandle X.
The quandle cocycle invariants are defined for disjoint union of tangles

T1 ⊔ · · · ⊔ Tk in a manner similar to tangles requiring that all the boundary
points of T1, . . . , Tk receive the same color. Let φ be a 2-cocycle of a quandle
X and we define

Φφ(T1 ⊔ · · · ⊔ Tk) =
∑

xj∈X

k
∏

i=1

Φφ(Ti, xj).

Proposition 5.1 Let φ be a 2-cocycle. Let T1, . . . , Tk be a disjoint union
of tangles such that for all i = 1, . . . , k, the condition Φφ(Ti, x) = Φφ(Ti, y)
holds for all x, y ∈ X. Then we have

Φφ(T1 ⊔ · · · ⊔ Tk) =
1

|X|k−1
Φφ(T1)× · · · × Φφ(Tk).

12



Furthermore if a disjoint union of T1, . . . , Tk embed in a link L, then

Φφ(T1 ⊔ · · · ⊔ Tk) ⊂m Φφ(L).

Proof. We compute

Φφ(T1 ⊔ · · · ⊔ Tk) =
∑

xj∈X

k
∏

i=1

Φ(Ti, xj) = |X|

k
∏

i=1

Φ(Ti, x)

for any fixed x ∈ X since Φ(Ti, x) = Φ(Ti, y) for all x, y ∈ X. The condition

also implies that Φ(Ti, x) =
1

|X|
Φφ(Ti) for all i = 1, . . . , k. Hence

Φφ(T1 ⊔ · · · ⊔ Tk) =
1

|X|k−1
Φφ(T1)× · · · × Φφ(Tk).

Thus by the same argument as the proof of Theorem 4.2, if T1 ⊔ · · · ⊔ Tk
embeds in a link L, we have

1

|X|k−1
Φφ(T1)× Φφ(T2)× · · · × Φφ(Tk) ⊂m Φφ(L). �

Example 5.2 For the following examples, we consider the quandle X =
Z2[t, t

−1]/(t2 + t + 1), and the 2-cocycle f(x, y) = (x − y)2y. The invari-
ant values for this quandle are available in [21] (here we used knots up to
9-crossings). It is seen that the following tangles satisfy the condition re-
quired in Proposition 5.1 by direct calculations. Alternatively, either of the
triviality of the invariant, or the property that only the trivial colorings
make trivial contributions to the invariant, implies the condition required.

(a) We compute Φf (T (62) ⊔ T (62)) = 1
4(16 × 16) = 64 (Proposition 4.3).

Using [21] we compare this invariant to the cocycle invariant of knots in the
knot table, and conclude that T (62) ⊔ T (62) does not embed in any knot in
the knot table up to 9 crossings.

The invariant value of T (63) is Φf (T (63)) = 16 by an argument similar
to those used for 3-cocycles in the proof of Proposition 4.4. By theorem 5.1
Φf (T (63)⊔ T (63)) =

1
4 (16× 16) = 64. Hence T (63)⊔ T (63) does not embed

in any knot in the knot table up to 9 crossings.
The disjoint union T (62) ⊔ T (63) also has the same invariant value 64,

hence the same conclusion holds.

(b) The invariant of the tangle T (75) with orientation (NW In, NE In)
is Φf (T (75)) = 4 + 12u(t+1). This can be seen from the fact that T (75)
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embeds in the knot (73)
∗ and the number of colorings by this quandle is the

same for T (75) and (73)
∗, so that by an argument similar to the proof of

Proposition 4.3, the tangle has the same invariant value as (73)
∗ (see [21]).

Hence by Theorem 5.1 we obtain

Φf (T (75) ⊔ T (75)) =
1

4
(4 + 12u(t+1))2 = 40 + 24u(t+1).

Using [21], we compare this invariant to the cocycle invariant of knots in
the table, and we conclude that T (75) ⊔ T (75) does not embed in any knot
in the table up to 9 crossings.

(c) Again by Theorem 5.1,

Φf (T (62) ⊔ T (75)) =
1

4
16(4 + 12u(t+1)) = 16 + 48u(t+1).

We find that T (62) ⊔ T (75) does not embed in any knot in the knot table
up to 9 crossings with possible exceptions of 818 and 940.

Since the invariant value for T (63)⊔ T (75) is the same as T (62)⊔ T (75),
we obtain the same conclusion.

Let ψ be a 3-cocycle of a quandle X with coefficient group A. Denote by
Φψ(T, x, s) the 3-cocycle invariant with the boundary color x ∈ X and the
color of the leftmost region s ∈ X. Then the 3-cocycle invariant for disjoint
union of tangles ⊔ki=1Ti is defined if Ti satisfy the condition Φψ(Ti, x, s) =
Φψ(Ti, x

′, s′) for all x, x′, s, s′ ∈ X for all i = 1, . . . , k, and is defined in this
case by

Φψ(T1 ⊔ · · · ⊔ Tk) =
∑

xj∈X,s∈X

k
∏

i=1

Φφ(Ti, xj , s) = |X|
∑

xj∈X

k
∏

i=1

Φφ(Ti, xj , s)

for a fixed s ∈ X (and the invariant does not depend on this choice of s).
Note that the invariant does not depend on a fixed region color s because
of the above assumption. Then the same argument as the proof of the
preceding theorem can be applied to show the following.

Proposition 5.3 Let ψ be a 3-cocycle. Let T1, . . . , Tk be a disjoint union of
tangles such that for all i = 1, . . . , k, the condition Φψ(Ti, x, s) = Φψ(Ti, x

′, s′)
holds for all x, x′, s, s′ ∈ X. Then we have

Φψ(T1 ⊔ · · · ⊔ Tk) =
1

|X|2(k−1)
Φψ(T1)× · · · × Φψ(Tk).
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Furthermore if a disjoint union of T1, . . . , Tk embed in a link L, then

Φψ(T1 ⊔ · · · ⊔ Tk) ⊂m Φψ(L).

Example 5.4 We used dihedral quandles Rp with Mochizuki’s cocycle [15]

ψ(x, y, z) = (1/p)(x − y)[ (2zp − yp)− (2z − y)p ] (mod p).

The invariant values are available in [21] up to 12-crossing knots for p = 3, 5.
By arguments similar to those in Example 5.2, it is seen that the following
tangles satisfy the condition required in Proposition 5.3.

(a) For the dihedral quandle R3 and the Mochizuki’s 3-cocycle ψ, the tangle
T (62) satisfies the condition in Theorem 5.3. This is because T (62) is the
sum of two copies of part of trefoil diagrams, and the trefoil has the property
that any non-trivial coloring gives the same non-trivial contribution to the
cocycle invariant. Since Φψ(T (62)) = 9(1 + 2u), by Theorem 5.1 we obtain
Φψ(T (62) ⊔ T (62)) =

1
32
81(1 + 4u + 4u2) = 9 + 36u + 36u2. Using [21] we

compare this invariant to the cocycle invariant of knots in the knot table,
and we find that T (62) ⊔ T (62) does not embed in any knot in the knot
table up to 11 crossings (there are 801) except, possibly, 818 and 11a314.
From the invariant value, the number of colorings of T (62) ⊔ T (62) is 81,
and among 801 knots in the table up to 11 crossings, there are 40 with at
least 81 colorings. Hence the number of colorings alone can exclude all but
40 knots, but the cocycle invariant is able to exclude all but 2.

(b) Φψ(T (63) ⊔ T (63)) =
1
32
3333 = 81 with R3, and T (63) ⊔ T (63) does not

embed in any knot in the knot table up to 11 crossings, except possibly 1099,
hence the cocycle invariant excludes all 801 knots but one.

(c) For the quandle R5 and tangles T (713) and T (718) both have invariant
25(1+2u+2u3), hence T (713)⊔T (718) has invariant 25(5+u+4u2+2u3+4u4).
Thus it does not embed in any knot in the knot table up to 11 crossings,
except possibly 10103, 10155, 11a317, 11n148.
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