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On the one hand, it is well known that Jacobians of (hy-
per)elliptic curves defined over Q having a rational point of order
l can be used in many applications, for instance in the construc-
tion of class groups of quadratic fields with a nontrivial l-rank.
On the other hand, it is also well known that 11 is the least
prime number that is not the order of a rational point of an el-
liptic curve defined over Q. It is therefore interesting to look for
curves of higher genus whose Jacobians have a rational point of
order 11. This problem has already been addressed, and Flynn
found such a family Ft of genus-2 curves. Now it turns out that
the Jacobian J0(23) of the modular genus-2 curve X0(23) has
the required property, but does not belong to Ft. The study of
X0(23) leads to a method giving a partial solution of the consid-
ered problem. Our approach allows us to recover X0(23) and to
construct another 18 distinct explicit curves of genus 2 defined
over Q whose Jacobians have a rational point of order 11. Of
these 19 curves, 10 do not have any rational Weierstrass point,
and 9 have a rational Weierstrass point. None of these curves
are Q-isomorphic to each other, nor Q-isomorphic to an element
of Flynn’s family Ft. Finally, the Jacobians of these new curves
are absolutely simple.

1. INTRODUCTION

Elliptic curves defined over Q or Jacobians of hyperellip-
tic curves defined over Q with a rational point of order
l are of substantial interest. For example, they can be
used to construct quadratic fields K/Q with class groups
cl(K/Q) of l-rank ≥ 1, sometimes significantly greater
than 1.

According to Cohen–Lenstra’s heuristics, this is quite
rare. A general result due to Mordell–Weil states that
given a g-dimensional abelian variety A over Q, then
A(Q) is an abelian group of finite type. For g = 1 the
situation is completely described by a result of Mazur
[Mazur 77] that the torsion group of an elliptic curve de-
fined over Q is isomorphic to Z/nZ for 1 ≤ n ≤ 10 or
n = 12, or to Z/2Z ⊕ Z/2nZ for 1 ≤ n ≤ 4.
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Currently, there is no similar complete description of
the possible torsion groups of abelian varieties of dimen-
sion g ≥ 2, even under the assumption that the abelian
varieties under consideration are Jacobians of (hyperel-
liptic) curves of genus g ≥ 2. In particular, one does
not have a complete list of the finite groups that arise as
torsion groups of Jacobians of curves of genus g = 2.

Mazur’s result implies that 11 is the least prime num-
ber that is not the order of a rational point of an elliptic
curve defined over Q. However, Z/11Z turns out to be
the subgroup of the rational points of the Jacobian of the
genus-2 modular curve X0(23). It is therefore of interest
to search for curves of genus g = 2 whose Jacobians have
a rational point of order 11.

In this work we try to generalize the modular curve
X0(23) in the following sense: we look for a family of
genus-2 curves defined over Q whose Jacobians have a
rational point of order 11 for which a specialization leads
to the recovery of X0(23). Although this search was neg-
ative, we did find some new curves with the desired prop-
erties. In this article we describe our strategy and list the
new results. Those results support our conjecture that
such a family exists.

In Section 2, we briefly recall some useful concepts and
tools related to Jacobians of hyperelliptic curves.

In Section 3, we illustrate these concepts with Flynn’s
explicit family of curves Ft defined over Q whose Jaco-
bians have a rational point of order 11 (see [Flynn 90]).

In Section 4, we discuss the Jacobian J0(23) of the
modular genus-2 curve X0(23) with a rational point of
order 11 that actually comes from its two rational cusps
(see [Ogg 73]). It turns out that X0(23) does not be-
long to the family Ft. Beginning with this example, we
develop a more general method for constructing genus-2
curves defined over Q whose Jacobians have a rational
point of order 11.

As explained in the final section, this approach allows
us to recover X0(23) and to construct nine new explicit
curves of genus 2 defined over Q without any rational
Weierstrass point and whose Jacobians have a rational
point of order 11. Additionally, we find nine other genus-
2 curves defined over Q having a rational Weierstrass
point and whose Jacobians have a rational point of or-
der 11.

This information is important because one can use
simpler defining equations for hyperelliptic curves hav-
ing a rational Weierstrass point. The Jacobians of all
these new curves are absolutely simple, and these curves
are neither Q-isomorphic to each other nor Q-isomorphic
to an element of Flynn’s family Ft.

2. BACKGROUND

Let us briefly recall some well-known facts about the
arithmetic of Jacobians of hyperelliptic curves that will
be useful in the subsequent sections.

Let C be a hyperelliptic curve of genus g ≥ 1 defined
over a field K of characteristic �= 2, 3 (see, for example,
[Silverman 92] for most of this section). Such a curve can
be defined by an equation

y2 = f(x),

where f(x) ∈ K[x] is a priori of degree 2g + 2 with-
out multiple roots. If the leading coefficient of f(x) is a
square, then C admits two rational points +∞ and −∞.

If f has a rational root, then C admits a so-called
rational Weierstrass point. Hence f can be defined by
an equation of the form y2 = f̃(x), where f̃(x) ∈ K[x]
is monic, separable, and of degree 2g + 1. In this second
case, the curve has a unique point at ∞, which is rational.

A divisor of C is given by a formal sum

D =
∑
i∈N

ni[Pi],

where ni ∈ Z, ni = 0 for almost all values i, and Pi ∈
C(K). The quantity

∑
i∈N

ni defines the degree of the
divisor D. A divisor D is rational if Dσ = D for all σ ∈
Gal(K/K), where Dσ is defined by Dσ =

∑
i∈N

ni[P σ
i ].

As an example, one can associate to each function
ϕ(x, y) on the curve a divisor (ϕ) = (ϕ)0 − (ϕ)∞ given
by the divisor obtained by the zeros minus the poles of
ϕ. Computations show (see, for example, [Silverman 92,
Proposition 3.1]) that the degree of the divisor of a func-
tion is equal to 0.

The set Div0(C) of the divisors of degree 0 on the
curve C forms a group, and the set of the divisors of
the functions forms a subgroup of it. One defines the
Jacobian of the curve C as the quotient

Jac(C) = Div0(C)/{(ϕ), ϕ a function on C},

and Jac(C)(K) as the group of rational points of the
Jacobian of C, obtained as classes of the rational divisors
of degree 0.

If K is a number field, then the theorem of Mordell–
Weil mentioned in Section 1 states that Jac(C)(K) is
an abelian group of finite type. Let l be a prime such
that there is a rational divisor D = (P ) − (Q), with
P,Q ∈ C(K), and l[D] = 0 ∈ Jac(C)(K). Then the
order of [D] is exactly l. Indeed, otherwise, C would be
isomorphic to P1, and hence of genus 0, which is excluded.
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One important issue is to distinguish curves that are
actuallyK-isomorphic to each other. One has a complete
answer to this question in the situation of genus g = 1, 2,
as explained below.

In the genus-1 case, i.e., if E is an elliptic curve defined
over K by the equation

y2 = x3 + ax+ b,

then the j-invariant of E is defined as

j(E) = 1728
4a3

4a3 + 27b2
.

It turns out that two elliptic curves E and Ẽ defined over
K are K-isomorphic if and only if j(E) = j(Ẽ).

In the genus-2 case, the Igusa invariants α, β, γ play a
similar role (see [Igusa 60]). More precisely, two genus-
2 curves C and C̃ defined over K are K-isomorphic if
and only if α(C) = α(C̃), β(C) = β(C̃), and γ(C) =
γ(C̃). These invariants are elements of K. Although
their equations can be explicitly computed, they are quite
complicated and are therefore not reproduced here.

A final important issue is to check whether the Jaco-
bian of a genus-2 curve C defined over K by an equation
y2 = f(x) is absolutely simple or whether it is isoge-
nous, over an extension of K, to the product of two el-
liptic curves. We use here an explicit criterion in the
case K = Q (see [Leprévost 95]). Let us consider a
model of C such that f(x) ∈ Z[x], p is a prime that does
not divide the discriminant of f(x), and N1 = #C(Fp),
N2 = #C(Fp2). Let

Gf (z) = z4 + (N1 − p− 1)z3

+
(
N2

1 +N2

2
−N1(p+ 1) + p

)
z2

+ p(N1 − p− 1)z + p2.

If Gal(Gf ) � D4, where D4 denotes the dihedral group
with eight elements, then the Jacobian of C is absolutely
simple.

3. FLYNN’S FAMILY OF CURVES Ft

We illustrate the previous section with a particular fam-
ily of curves. In [Flynn 90] (see also [Flynn 91]), Flynn
obtained the family of genus-2 curves Ft,

y2 = x6+2x5+(2t+3)x4+2x3+(t2+1)x2+2t(1−t)x+t2,

whose Jacobians have a rational point of order 11. This
point is given by the class of the divisor

D∞ = (+∞) − (−∞).

The curves Ft define a family of curves, because the first
Igusa invariant is

α(Ft) =
16t6 + 448t5 + 944t4 − 1120t3 + 640t2 − 120t+ 9

16(4t3 + 56t2 − 16t+ 3)2

�∈ K,

supplementing Flynn’s paper [Flynn 91]. For later refer-
ence, let us also compute the third Igusa invariant of Ft:

γ(Ft) =
t7(16t3 + 432t2 − 104t+ 9)

8(4t3 + 56t2 − 16t+ 3)5
.

Finally, the Jacobians of these curves are generically
absolutely simple. Indeed, the specialization t = 1 leads
to

Gal(GF1(z)) � D4,

and the criterion stated in the previous section applies.

4. THE GENUS-2 CURVE X0(23)

Let H = {z = x+ iy ∈ C | x, y ∈ R, y > 0} be Poincaré’s
upper half-plane. The group

SL2(Z) =
{(

a b
c d

)
a, b, c, d ∈ Z, ad− bc = 1

}

acts on H via
(
a b
c d

)
· z =

az + b

cz + d
.

Let N ≥ 1 be an integer, and

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z)

∣∣∣ c ≡ 0 mod N
}
.

The subgroup Γ0(N) acts on H as well, and one de-
notes by X0(N) the Riemann compact surface obtained
by adding the cusps (arising from the extended action of
Γ0(N) on Q ∪ {i∞}) to the variety Γ0(N) \ H:

X0(N)(C) = ̂Γ0(N) \ H.

These curves can be defined by equations over Q. They
classify pairs (E,E′) of generalized elliptic curves to-
gether with a cyclic isogeny E −→ E′ of degree N .

Let J0(N) be the Jacobian of X0(N), and suppose
now that N is an odd prime number. A result due to
Ogg [Ogg 73] asserts that J0(N)tors(Q) is generated by
the class of the divisor (0)− (∞), where 0 and ∞ are the
two rational cusps, and that the order of this group is
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equal to l = N−1
gcd(N−1,12) . More precisely, for τ ∈ H, one

defines the functions

Δ(τ) = q
∏
i≥1

(1 − qi)24,

ΔN (τ) = Δ(Nτ) = qN
∏
i≥1

(1 − qiN )24,

q = exp(2iπτ). Then the function

ϕN =
(

Δ
ΔN

)1/gcd(N−1,12)

is a modular form of Γ0(N), whose divisor is precisely
l ((0) − (∞)).

Let us consider the particular case N = 23. An equa-
tion (see [Rovira 91]) of X0(23) is

y2 = x6 − 8x5 + 2x4 + 2x3 − 11x2 + 10x− 7

= (x3 − x+ 1)(x3 − 8x2 + 3x− 7).

Ogg’s result shows that the divisor (+∞) − (−∞) de-
fines a point of J0(23)(Q) of order 11. Note that another
defining equation for X0(23) is

y2 =
(
x3 − x2 − x

13
− 191

2197

)2

− 4
(

8
13

)2 (
x2 +

15
169

)2

.

These observations are the starting point of the following
method for constructing genus-2 curves defined over Q

whose Jacobians have a rational point of order 11.

5. OUR METHOD

We intend to calculate new genus-2 curves defined over
Q whose Jacobians have a rational point of order 11. (In
that sense they generalize the modular curve X0(23).)
The observations made within the previous section, es-
pecially at the end, lead us to the following approach.
Let K be a field of characteristic 0, and for a, b, c, d ∈ K,
let R = x3 −x2 + ax+ b and S = x2 + d be such that the
curve Ca,b,c,d defined by

y2 = F (x) = R2(x) − 4c2S2(x)

is of genus 2 (see also [Leprévost et al. 04] for a slightly
different approach). Let δ =

√−d ∈ K and δ = −δ.
Then S(x) = (x − δ)(x − δ). Let Pδ = (δ,R(δ)) and
Pδ = (δ,R(δ)). Let us consider the rational divisors

Dδ = (Pδ) + (Pδ) − (+∞) − (−∞)

and
D∞ = (+∞) − (−∞).

Computations show that the divisor of the function
ϕ(x, y) = y −R(x) is

(ϕ) = 2Dδ +D∞.

Suppose now that there exists a rational function
ψ(x, y) = yU(x) − V (x) such that its divisor is

(ψ) = Dδ − 5D∞.

Then one has (
ϕ

ψ2

)
= 11D∞.

This establishes that the class of the rational divisor D∞
defines a rational point of the Jacobian of Ca,b,c,d of order
dividing 11, hence exactly 11 (see Section 2).

The function ψ(x, y) we are looking for belongs to the
linear space

L(6(+∞)) ⊂ L(6((+∞) + (−∞)))

=
〈{

1, x, x2, x3, x4, x5, x6, y, xy, x2y, x3y
}〉
.

This leads to ψ(x, y) = yU(x) − V (x), where U and V

are the following monic polynomials:

U(x) = x3 + u2x
2 + u1x+ u0

and

V (x) = x6 + v5x
5 + v4x

4 + v3x
3 + v2x

2 + v1x+ v0.

The condition on the zeros of ψ(x, y) now leads to the
equation

F (x)U2(x) − V 2(x) − tS(x) = 0, t ∈ K∗.

A priori, the left-hand side of the preceding equation is
a polynomial

G(x) =
11∑

i=0

tix
i

of degree 11. One chooses the values (ui)0≤i≤2,
(vj)0≤j≤5, and t such that (after clearing the denomi-
nators)

G(x) = t1(a, b, c, d)x+ t0(a, b, c, d) ∈ K[a, b, c, d][x].

Finally, we need to determine appropriate a, b, c, d

such that t0 and t1 vanish simultaneously. This amounts
to finding zeros of the resultant of t1 and t0 with respect
to b because b is the variable arising with the lowest de-
gree in t0 and t1. This resultant admits a factorization,
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i a b c d α(Ci) γ(Ci)

1 −101/48 −61/48 1/4 −5/12 7·11·13·46573841
24·1931472 − 29·319·72·73·109

1931475

2 473/147 −4013/343 6/7 207/49 7·547·76169029
24·2312692 − 221·321·72·11·29

2312695

3 8/49 −134/49 3/7 47/49 10106939·41843
24·57121232 − 232·312·139·521

5712235

4 1159/81 261607/2187 40/9 13/27 8689·272630161267
24·3·1812 ·2940132 − 211·58·43·67·73·6311872 ·24095051·2083

36·11·1815 ·2940135

5 −1/13 −191/2197 8/13 15/169 4092

24·112·132 − 236

23·115·135

6 −28/169 103/2197 3/13 −4/169 2332 ·5932

24·1812·8292
312·116 ·432

23·1815 ·8295

7 594/1805 13348/34295 8/19 −64/361 97·131·761122823·212621
24·9200174712 − 217·314·57·116·29·307·967

9200174715

8 208/867 1338/4913 5/17 −39/289 66150707372809
24·72·112·292·372·1932 − 27·37·514·53·2729

75·115·295·375·1935

9 415/1089 −2207/1089 8/33 119/121 139·84737·89641667
24·3472 ·862932 − 214·317·513·17·103·389

3475 ·862935

10 4989/2500 −13599/12500 27/50 −81/250 4339·9995849·47460779
24·72·2641043392 − 27·317·56·1317 ·71·701

74·2641043395

j a b c d α(C̃j) γ(C̃j)

1 −3 59 4 −7 148023553
24·32·37972

27·11·89·10612 ·3529
37·37975

2 −163/1215 −367/3645 2/3 13/243 − 109·2207·5557
24·391132

212·313·57·7·139
391135

3 −13/18 71/6 5/3 −13/3 653·3431783
24·72·365992 − 36·512·743

22·75·365995

4 −2287/27 −1171/9 10/3 −323/3 13·51004311730341481
26·52·72·12592 ·96492

37·29·672 ·313·107183·82457·162591012 ·16067
214·52·75·12595 ·96495

5 121/147 −141/343 2/7 15/49 2543
27·72

37·53
221·75

6 −13/18 71/6 15/9 −13/3 653·3431783
24·72·365992 − 36·512·743

27·75·365995

7 −1494/847 19480/9317 2/11 −256/121 31·127·5189·357293
24·15051672 − 29·315·56·77·11·6911

15051675

8 125/121 −223/1331 6/11 29/121 1512·2521
24·112·62692

213·312·56·72·113
115·65695

9 187/361 −649/6859 6/19 23/361 63067
26·1992

314·7·19
214·1995

TABLE 1. Results.

and we calculate explicitly the factor Res(a, c, d) of this
resultant, which vanishes at the values a, c, d correspond-
ing to the modular curve X0(23):

Res(a, c, d) = A28(c2, d)a28 + · · ·+A1(c2, d)a+A0(c2, d),

with A28(c2, d) = d + 9 and for 0 ≤ i ≤ 27, Ai(c2, d) ∈
Z[c, d] of degree 29 − i in c2 and in d.

The strategy is to find suitable values a, c, d with

Res(a, c, d) = 0.

For those triples (a, c, d) we deduce the value b for which
t0(a, b, c, d) and t1(a, b, c, d) vanish simultaneously. Then
we check whether the genus of Ca,b,c,d is still 2.

Note that Res(a, c, d) satisfies the following properties:

Res(c2 + 1, c, 0) = Res(c2 − 1, c,−1) = 0,

so that one can write

Res(a, c, d) = (d+ 1)(a− 1 − c2)M(a, c, d)

− d(a+ 1 − c2)N(a, c, d)

with explicit polynomials M,N ∈ K[a, c, d]. In principle,
one should be able to use this remark for calculating a
family of genus-2 curves defined over Q whose Jacobians
have a rational point of order 11. Our efforts in this
direction have yet to be successful.

6. RESULTS

The parameters a, b, c, d are chosen as follows:

1. We set c = c1
c2

with c1, c2 integers such that 0 <

c1, c2 ≤ 50 and gcd(c1, c2) = 1.

2. We set d = d1
d2

with relatively prime integers d1, d2

subject to the conditions −B ≤ d1 ≤ B, 1 ≤ d2 ≤ B

for B = 400.
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3. For fixed values c and d we obtain a from those resul-
tants Res(a, c, d) admitting a linear factor aa2 − a1

with a, a1, a2 ∈ Z.

4. The value b is then deduced as described above.

We store the values b ∈ Q for which Ca,b,c,d is a genus-
2 curve.

Table 1 contains the parameters a, b, c, d that lead to
19 genus-2 curves Ca,b,c,d whose Jacobians have a rational
point of order 11. The first 10 curves, which we denote by
Ci, do not have a Weierstrass rational point. The last 9
curves, denoted by C̃j , have a rational Weierstrass point.

Note that C5 coincides with X0(23). Table 1 also con-
tains the first and third Igusa invariants α(Ci) and γ(Ci)
(respectively α(C̃j) and γ(C̃j)). It is obvious that the
values α(Ci), α(C̃j) are distinct; hence the curves Ci, C̃j

are not Q-isomorphic. Our computations also show that
none of the Ci’s and C̃j ’s belong to Flynn’s family Ft.

Indeed, one can compute the two polynomials

I1,i(t) = Numer(α(Ft) − α(Ci)),

I2,i(t) = Numer(γ(Ft) − γ(Ci)),

where Numer(z) denotes the numerator of z ∈ Q(t).
Then we verify that the resultant of I1,i and I2,i with
respect to t is nonzero (mutatis mutandis with Ĩ1,j(t) =
Numer(α(Ft) − α(C̃j)) and Ĩ2,j(t) = Numer(γ(Ft) −
γ(C̃j))).

Finally, from the criterion of Section 2, computations
show that the Jacobians of all the curves (Ci)1≤i≤10 and
(C̃i)1≤i≤9 are absolutely simple. It is likely that one can
find other genus-2 curves with the required properties by
enlarging the search box.

A perhaps more geometric way to present our results is
to consider M2, the moduli variety of the genus-2 curves.
Flynn’s family of curves Ft is a line on M2, and the curves
(Ci)1≤i≤10, and (C̃j)1≤j≤9 are distinct points on M2 not
belonging to the line Ft.
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