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Abstract

In this paper we present the results of computer searches using
a variation of an energy minimization algorithm used by Kottwitz
for finding good spherical codes. We prove that exact codes exist
by representing the inner products between the vectors as algebraic
numbers. For selected interesting cases, we include detailed discussion
of the configurations. Of particular interest are the 20-point code in
R
6 and the 24-point code in R

7, which are both the union of two
cross polytopes in parallel hyperplanes. Finally, we catalogue all of
the codes we have found.
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1 Introduction

Given N points that lie on the unit sphere Sn−1 in R
n, we wish to determine

how they should be placed so that the minimal distance between any two
points is maximized. Any set of points on the unit sphere is called a spherical
code, and the problem of finding the best code has been proposed many
times and in many contexts (though usually only in three dimensions), from
packing circles on a sphere to distributing orifices on pollen-grains (e.g. [5],
[18]). The only known optimal solutions in three dimensions are for N ≤ 12
and N = 24, while in four dimensions only the cases N ≤ 8, N = 10 [1],
and N = 120 have been proven. The remaining known optimal codes are for
N ≤ 2n for any n, in which the points form either a simplex or a subset of
the cross polytope; certain codes derived from the Leech lattice and the E8

root system; and lastly an infinite family based on isotropic subspaces [2].
Excluding these few cases, the best known codes have been found either by
specific constructions or, more commonly, by computer searches using various
optimization algorithms. Given the difficulty of proving the optimality of
even very small codes, most work related to this problem has been in finding
close approximations to good configurations. The most extensive table of
codes was created by N. J. A. Sloane, with the collaboration of R. H. Hardin,
W. D. Smith and others, and is available electronically [17].

In this work we use the technique of energy minimization to find good
spherical codes. Leech first observed the possibility of such an approach,
and it has been used in previous work several times [13]. Kottwitz gave a
fairly comprehensive list of three-dimensional codes for up to 90 points [12],
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which was expanded later by Buddenhagen and Kottwitz while searching for
codes with multiplicity greater than one (i.e. codes for which there exist
distinct configurations that obtain the same optimal distance) [4]. Nurmela
investigated some global optimization methods based on energy minimiza-
tion and provided numerical results for codes in up to five dimensions [15],
but the most successful implementations have been based on using a large
number of random starts and a local optimization algorithm so that there
is a high probability that at least one of them converges to the global opti-
mum. Our algorithm has several changes to improve on old implementations
as well, such as reducing exponent bias and choosing a different local opti-
mization method. This has resulted in three improved spherical codes in four
dimensions as well as new higher dimensional codes, particularly in six and
seven dimensions, that exhibit interesting symmetries. Section 2 describes
our algorithm in detail and Section 3 gives a brief analysis of the improved
codes.

The remainder of this work focuses on providing rigorous analysis of
codes, particularly showing that the best known codes can be represented
as exact configurations in terms of algebraic numbers as opposed to close
estimates. This is an important step toward rigorizing computer solutions to
the problem and allows us to observe true equalities and relations between
points and edges in the code. Buddenhagen and Kottwitz did similar work
while looking for three-dimensional codes with multiplicity greater than one,
and provided detailed exact descriptions of the two distinct optimal 15-point
codes [4]. In several cases we were able to identify a considerable amount
of underlying symmetry and structure using the methods of Section 4. For
three particularly interesting cases we provide brief discussion of the config-
urations in Section 5. The final section gives tables of the exact codes, in
dimensions four through eight, based on their minimal polynomials.

2 Methodology

We consider an inverse power law potential function on the spherical code
C = {x1, x2, . . . , xN} ⊂ Sn−1 defined by

E =
∑

1≤i<j≤N

(

α

|xi − xj |

)s

, (1)
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where α is a constant to prevent overflow, s is the exponent of the inverse
power law, and |xi − xj | is the Euclidean distance between the two points
in R

n. As s → ∞, the smallest distance will be the dominating term in the
energy expression. Hence, minimizing this potential function over all possible
C will give approximate codes that get better as s increases. In certain highly
symmetrical cases, when s is sufficiently large, the method will produce the
actual optimal code, whereas in general it converges to the optimal code as
s → ∞.

Several issues arise, however, if one tries to minimize E using a large s
with a random configuration of points. There is an implementation problem,
in that α cannot be chosen well so that E neither overflows nor is too small.
It has no abstract mathematical role, but it is important to consider when
dealing with floating-point arithmetic. If a poor choice of α is used with a
power of s = 1, 000, 000 for example, a slight deviation in |xi−xj | from α by
only 0.001 will result in either 1.0011000000 ≈ 10434 or 0.9991000000 ≈ 10−435,
neither of which would be handled well by a computer. There is also a
problem regarding the behavior of the function E as s increases because the
number of local minima increases as well. Starting with a high exponent in
the inverse power interaction will usually converge quickly to a poor local
minimum.

Taking into consideration these problems, Kottwitz used the following
algorithm [12]:

1. Start with s = 80 and a random configuration of points;

2. Run a local optimization algorithm until convergence;

3. Double s and repeat the previous step starting from the local
optimum found, stopping after the optimization is run for s =
1, 310, 720.

This remedies the issues described because α can be chosen before each opti-
mization to reflect the minimal distance of the configuration, and the points
will tend toward a good code without getting stuck early on in a bad lo-
cal minimum. For our work we use a similar strategy, but to avoid the bias
introduced by fixing an initial exponent we start with a random exponent be-
tween 10 and 160 each time. Furthermore, we allow the doubling procedure
to continue until the exponent exceeds 100, 000, 000. Before each optimiza-
tion procedure, we choose α to be the exact minimal distance between all
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pairs of points, as done by Nurmela [15]. This is a good choice because as
the power increases the improvement in the minimal distance decreases, and
we have found that this balance keeps the energy expression in the desired
range.

While Kottwitz used gradient descent and Newton-Raphson methods to
optimize the energy function at each step [4], [12], we picked the nonlin-
ear conjugate gradient algorithm for several reasons. Firstly, it is easy to
implement yet much more effective than gradient descent. It also only re-
quires the gradient at each step and does not need to compute the Hessian,
which is costly and very complex especially as the dimension increases. We
experimented with three versions of the nonlinear conjugate gradient algo-
rithm: Fletcher-Reeves, Polak-Ribière, and Hestenes-Stiefel. We found that
the Hestenes-Stiefel formula for updating the conjugate direction was most
effective for our model, converging faster than Polak-Ribière and displaying
better results than Fletcher-Reeves.

We must also consider the constrained nature of optimization on a sphere,
as the conjugate gradient algorithm does not accommodate for constraints on
the domain. Our solution to this is to, after each movement in the conjugate
direction, simply scale each point in C back onto the sphere. We realize,
however, that as the code approaches a local minimum, the points will tend
to move almost directly away from the sphere because most of the movement
along the tangent space will be balanced by their neighbors. When scaled
they will consequently appear to have moved very little if at all, slowing con-
vergence and possibly even getting stuck before converging. To compensate
for this, when the exponent in the inverse power law interaction is high, for
each point we only look at the component of the gradient that lies in the
tangent space to the sphere at that point. We do not implement such a
procedure for lower exponents because the conjugate directions depend on
previous gradients as well so the magnitudes should be consistent relative to
each other.

Using the method that has been described, implemented in C++, we ran
the optimization with at least 1000 random starts. Taking the best result
of these runs, we then applied a similar optimization to the configuration
to improve the precision using a starting exponent of 10, 000, 000 and dou-
bling until 640, 000, 000. Once this converged we were able to obtain fairly
accurate results for our codes, but not accurate enough to find their exact
representations. Finally, we found the set of shortest edges to approximately
five or six decimal places and set them equal to each other, which determined
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a rigid structure solved using Newton-Raphson methods for a small number
of iterations to a precision of about 500 decimal digits. Then we placed the
remaining points, the rattlers, by moving them iteratively as far as possible
from the rigid points, again maximizing the minimal distance. We used the
PARI/GP software for the last two optimization steps.

After the full procedure, our set of codes performed very well against
previous data. For the three-dimensional codes we ran our program on, we
reproduced the best known results in every case, while for four-dimensional
codes we were able to find three codes with 40, 68, and 71 points that im-
proved on the best previous results. In higher dimensions for smaller numbers
of points we are confident that we were able to find good (and most likely
optimal) configurations.

3 Improved Codes in R
4

Our work has improved on three codes in four dimensions, namely those with
40, 68, and 71 points. They are briefly examined in this section. Note that
the improvements are small – on the order of 1/1000th or less. A catalogue
of all of the codes can be found online at

http://www.aimath.org/data/paper/WangSphericalCode/.

The data available online reflects only results prior to the optimization done
in PARI/GP.

3.1 40 points

The maximal cosine of 0.65049780106271773133 . . . occurs 108 times, but is
the only inner product that occurs more than twice, suggesting that this
configuration is quite asymmetric.

3.2 68 points

The maximal cosine of 0.75104449257228207352 . . . occurs 196 times, and
there is one other inner product - 0.74925795575260304153 . . . - that occurs
three times. Every other edge length appears to be unique.
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3.3 71 points

The maximal cosine of 0.75637601134814761871 . . . occurs 199 times, and
there are three other inner products that occur three times each in the
code; they are 0.75152318440020477595 . . ., 0.75574916415250115097 . . ., and
0.75632115855377282465 . . .. The other edges are unique.

4 Properties for Identifying Codes

We examine some properties of spherical codes that can hopefully character-
ize them more substantially and rigorously than a list of floating-point coordi-
nates. First, we introduce the N×N Gram matrix G such that Gij = 〈xi, xj〉,
where 〈x, y〉 denotes the standard inner product between the unit vectors x
and y. Since all vectors on the unit sphere have magnitude one, we also have
Gij = cos (θij), where θij is the angle between the vectors xi and xj .

4.1 Edge Length Occurrences

One effective way of determining whether or not a spherical code has sym-
metry is to look at the number of occurrences of each edge length or the
number of unique edge lengths between distinct points, which we will call m.
Since the distance and inner product are related by

|xi − xj|2 = 2− 2〈xi, xj〉, (2)

this consists of simply looking at the unique entries of the Gram matrix
and the number of times each is repeated. We note that considering edge
length occurrences is a generic and flexible strategy for describing codes and
detecting overall symmetry, especially when m is small relatively to the code
size. To find more specific symmetries, we can look at the edge lengths
emanating from any one point in the code and check if any other points
shared these. In particular, we can often group vertices together as equivalent
if the lists of edge lengths emanating from them are exactly the same. We
note that this is a necessary but not sufficient condition for the vertices to
be equivalent under the action of the symmetry group of the configuration.
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4.2 Exact Algebraic Numbers

One inevitable concern that arises from computer searches for spherical codes
is whether or not the set of points found by the computer really exists.
Numerical results can be useful for recognizing the exact solutions, but with
finite precision it is not clear if all the distances are really what we think they
are. Consequently it is important to have some sort of method of converting
the work of computer approximations into definitive arrangements so that
they may be analyzed with more certainty and have hope of being proven
optimal as well.

Since a code is the solution to a number of polynomial equalities between
the shortest edges, the coordinates of each rigid point in the code are algebraic
and lie in a number field. Moreover, we then know that the inner products
are algebraic as well. Once we have determined the coordinates of the points
in the code to high precision we are able to effectively compute, using the
PARI/GP math software command algdep, the minimal polynomial for the
maximal inner product between two distinct vectors, i.e.,

u = max
1≤i<j≤N

〈xi, xj〉. (3)

This was done for a number of three-dimensional codes by Buddenhagen and
Kottwitz, and we extend their work. Just looking for a minimal polynomial
P so that P (u) ≈ 0 can be misleading, however, because even with high
precision it could be the case that u is in fact not the root of P , but just
very close. On the other hand, if we could show that the code with exactly
the root of P (closest to u, to be specific) as the maximal inner product does
exist, we would have an exact arrangement that is practically equivalent. We
have been able to do so for most codes that we could calculate the minimal
polynomial of.

To verify the existence of the codes, we first use the PARI/GP command
lindep to specify the elements of G in terms of polynomials in some primitive
element of the number field. Empirically we have found that u is often
sufficient for doing this, though in several cases this has not been true (in
particular for 22 points in three dimensions, 21 points in five dimensions, and
14 points in six dimensions). Once we have the exact Gram matrix, we may
check if G is indeed a Gram matrix of a set of points on the unit sphere in
R

n, namely that it satisfies the following properties: (a) G is symmetric; (b)
the diagonal elements of G are all equal to 1; (c) G has rank at most n; and
(d) G is positive semidefinite. If G satisfies each of these conditions, it must
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be the Gram matrix of a spherical code, and thus we are able to prove the
existence of such a code. The first two properties are easy to check, and the
last two can be tested by observing the characteristic polynomial pG(λ) of
G, which will be of degree N . Let

pG(λ) = aNλ
N + aN−1λ

N−1 + · · ·+ a1λ+ a0. (4)

It is known that G has rank at most n if and only if pG(λ) has a root at λ = 0
with multiplicity at least N −n, or equivalently a0 = a1 = · · · = aN−n−1 = 0.
Also, G is positive semidefinite if and only if the remaining coefficients are
nonzero and alternate in sign. This makes it relatively easy to check if G is
indeed a Gram matrix.

5 Discussion of Selected Cases

Here we present more detailed results of three cases which we found partic-
ularly interesting and which have not been previously described in the lit-
erature (except the last). Some brief discussion of other cases can be found
online at http://www.aimath.org/data/paper/WangSphericalCode/.

5.1 12 points in R
5

This is a very simple configuration, so it is not surprising that the Gram
matrix is quite simple as well, consisting of only five unique entries (excluding
the 1’s along the diagonal). It is shown here:









































1 u V V u u u u u W u −u
u 1 u V V u u u W u u −u
V u 1 u V u u W u u u −u
V V u 1 u u W u u u u −u
u V V u 1 W u u u u u −u
u u u u W 1 V u u V −u u
u u u W u V 1 V u u −u u
u u W u u u V 1 V u −u u
u W u u u u u V 1 V −u u
W u u u u V u u V 1 −u u
u u u u u −u −u −u −u −u 1 −1
−u −u −u −u −u u u u u u −1 1









































,
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where V and W satisfy V > W and are given in terms of u by

V = 5

2
u2 − u− 1

2
, W = −5u2 − 4u.

There are two aspects of this Gram matrix that are particularly intrigu-
ing. The first one that stands out is that all the edges between V1 and V2

correspond to an inner product of u or −u, which is a result of the points
in V2 being antipodal. The second is that every element is represented as
a polynomial in u of degree two or less. The minimal polynomial, however,
is 25u4 + 30u3 + 24u2 + 2u − 1, which has degree four. This is unusual be-
cause in most cases a significant number of elements of the Gram matrix
are polynomials in u of maximal degree, i.e. one less than the degree of the
minimal polynomial. While we do not have an explanation for this, it may
be significant to the structure of the code.

5.2 20 points in R
6

This configuration, the first especially nice one, is highly symmetric; each
point in the entire configuration is equivalent to every other one. Each point
is at the minimal distance with 11 other points in the code. Furthermore,
since the minimal polynomial is 14u − 3, all of the entries in the Gram
matrix are rational numbers, specifically multiples of 1

14
. The dot products

corresponding to the edges that emanate from any point are (in order from
largest to smallest)

{

1,
3

14
, 0,− 1

14
,− 5

14
,−3

7
,−4

7
,− 9

14

}

. (5)

The only repetitions are
3

14
, which shows up 11 times, and − 9

14
, which shows

up three times.
It turns out that this code is the union of two five-dimensional cross

polytopes in parallel hyperplanes. We can orient them with respect to one
another: if we choose coordinates to allow one of the cross-polytopes to
be given by plus or minus the standard orthonormal basis vectors, then
after projection into the equatorial hyperplane and rescaling, the other cross
polytope is given by
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±
(

2

11
,− 6

11
,− 6

11
,
3

11
,− 6

11

)

±
(

6

11
,
2

11
,
6

11
,
6

11
,− 3

11

)

±
(

− 3

11
,− 6

11
,
2

11
,
6

11
,
6

11

)

±
(

6

11
,
3

11
,− 6

11
,
2

11
,
6

11

)

±
(

6

11
,− 6

11
,
3

11
,− 6

11
,
2

11

)

The way the orientation is determined is still unknown, but there is evi-
dence of some sort of underlying structure that is worth investigating further.

5.3 24 points in R
7

This is the other particularly nice configuration. All 24 points in this code
are symmetric with respect to one another and the minimal polynomial is
19u2 + 2u − 1, so the Gram matrix has very few entries and they are all
simple. The only entries other than the 1’s along the diagonal are u, −u,
−3u, and 2u − 1. Each vector has inner product u with 15 other vectors,
−u with 2 other vectors, −3u with 5 other vectors, and 2u− 1 with a single
other vector. This configuration appears to be a very good code as both the
22- and 23-point codes are the same as this with points removed.

It is very similar to the 20-point code in R
6 as it also consists of two cross-

polytopes in parallel hyperplanes. As with the other case, we can orient the
cross polytopes relative to each other by setting one to be plus or minus
the standard orthonormal basis vectors. After projection into the equato-
rial hyperplane and rescaling, the other cross polytope is then given by the
following vectors:
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±
(

0,
1√
5
,− 1√

5
,− 1√

5
,
1√
5
,
1√
5

)

±
(

1√
5
, 0,

1√
5
,− 1√

5
,− 1√

5
,
1√
5

)

±
(

− 1√
5
,
1√
5
, 0,

1√
5
,− 1√

5
,
1√
5

)

±
(

− 1√
5
,− 1√

5
,
1√
5
, 0,

1√
5
,
1√
5

)

±
(

1√
5
,− 1√

5
,− 1√

5
,
1√
5
, 0,

1√
5

)

±
(

1√
5
,
1√
5
,
1√
5
,
1√
5
,
1√
5
, 0

)

This is a very structured set of vectors, but also differs from the vectors
in the six dimensional case. It would be an interesting question to determine
how in general the cross polytopes should be arranged relative to each other
to maximize the minimal distance.

6 Catalogue of Exact Configurations

We present several tables of results for newly calculated exact spherical codes
in dimensions four through eight, specifically the maximal inner product u
and the minimal polynomial. In each dimension, we attempted to calculate
a minimal polynomial for the maximum inner product of the configurations
for up to 24 points (27 in four and six dimensions). We were able to do so
for quite a few, but there are a still a number of codes that we were unable
to do this for. In general we attempted this calculation using 500 decimal
places of the maximum inner product.

Moreover, for the minimal polynomials we calculated, we were able to
verify all but two of them using the methods of Section 4. These are 21
points in five dimensions and 14 points in six dimensions, both of which have
polynomials of high degree. The case of 27 points in four dimensions should
also be noted because it has three rattlers, and since their positions are not
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fixed relative to the other points we did not include them in our verification
of the minimal polynomial.

Lastly, we have a single new minimal polynomial in three dimensions,
concerning the 22-point code. The minimal polynomial we found is 486u18+
13113u17 + 114996u16 + 117476u15 + 658256u14 + 378752u13 − 347056u12 −
121388u11 + 81724u10 − 70886u9 − 55992u8 + 12716u7 + 6528u6 − 2392u5 −
208u4+284u3+14u2+5u+4. But as in the two cases mentioned previously,
we have been unable to verify this through finding an exact Gram matrix.

Note that Tables 1 and 2 are the same codes as recorded in [17] but
with minimal polynomials associated with them. Also, some codes predate
references to [8], but it is a convenient, systematic reference work.

Table 1: Four-Dimensional Codes
N u (20 decimal places) Minimal Polynomial Ref
9 0.16201519961163454918 16u3 − 16u2 − 4u+ 1 [8]
10 0.16666666666666666667 6u− 1 [8]
11 0.23040556359455544174 8u3 − 12u2 − 2u+ 1
12 0.25000000000000000000 4u− 1 [8]
13 0.30729565398102882233 5632u9 + 9472u8 − 3072u7 − 5888u6 + 544u5+

944u4 + 152u3 − 44u2 − 14u− 1
14 0.31951859421260363550 58u7 + 174u6 + 140u5 − 16u4−

54u3 − 10u2 + 4u+ 1
15 0.35099217594534630330 36u4 − 18u3 + 10u2 − 1
16 0.38762817712253427776 256u10 + 1024u9 + 256u8 − 1152u7 + 160u6+

176u5 − 144u4 + 36u3 + 37u2 − 6u− 3
17 0.41226632322755925382 Unknown
18 0.42281941407305934403 14424u16 + 42932u15 + 18232u14 − 62100u13−

53831u12 + 41528u11 + 46442u10 − 18248u9−
20977u8 + 6180u7 + 5372u6 − 1556u5−

721u4 + 240u3 + 34u2 − 16u+ 1
19 0.43425854591066488219 3u2 + u− 1
20 0.43425854591066488219 3u2 + u− 1 [8]
21 0.47138085850731791682 16u8 − 128u7 − 64u6 + 32u5+

72u4 + 32u3 − 16u2 − 8u+ 1
22 0.49788413084355235629 Unknown
23 0.50000000000000000000 2u− 1
24 0.50000000000000000000 2u− 1 [8]
25 0.53731605665507787660 Unknown
26 0.54078961769753707673 3392u6 + 2112u5 − 496u4−

656u3 − 132u2 + 6u− 1
27 0.55759135118017018253 794u5 + 393u4 − 344u3 − 82u2 + 6u+ 1

13



Table 2: Five-Dimensional Codes
N u (20 decimal places) Minimal Polynomial Ref
11 0.13285354259858991809 45u3 − 25u2 − 5u+ 1 [8]
12 0.15393160503302123095 25u4 + 30u3 + 24u2 + 2u− 1
13 0.18725985188285358702 17u3 − 5u2 − 5u+ 1
14 0.20000000000000000000 5u− 1
15 0.20000000000000000000 5u− 1
16 0.20000000000000000000 5u− 1 [8]
17 0.27047583526857362209 9u4 − 16u3 − 10u2 + 1
18 0.27550174165981923839 484u5 − 488u4 + 97u3 + 17u2 − u− 1
19 0.29182239902449014615 57u6 − 38u5 − 109u4 + 32u3 + 23u2 − 10u+ 1
20 0.29938569289912478230 5u3 + 13u2 − u− 1
21 0.31491695717530346285 869312u14 + 8798656u13 − 1062776u12−

10586775u11 − 968269u10 + 3532907u9+
188249u8 − 659974u7 − 11746u6 + 72246u5−

806u4 − 5267u3 − 97u2 + 207u+ 21
22 0.35499503416625620683 Unknown
23 0.36977269694307633377 Unknown
24 0.37423298246516725173 1620u10 + 5508u9 − 5751u8 − 2406u7 + 2055u6+

276u5 + 559u4 − 210u3 − 127u2 + 48u− 4
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