MODULAR FORMS ON NONCONGRUENCE SUBGROUPS AND ATKIN-SWINNERTON-DYER RELATIONS

LIQUN FANG, J. WILLIAM HOFFMAN, BENJAMIN LINOWITZ, ANDREW RUPINSKI, HELENA VERRILL

Abstract

We give new examples of noncongruence subgroups $\Gamma \subset$ $\mathrm{SL}_{2}(\mathbf{Z})$ whose space of weight 3 cusp forms $S_{3}(\Gamma)$ admits a basis satisfying the Atkin-Swinnerton-Dyer congruence relations with respect to a weight 3 newform for a certain congruence subgroup.

1. Introduction

A finite index subgroup of $\mathrm{SL}_{2}(\mathbf{Z})$ is noncongruence if it does not contain $\Gamma(N)$ for any $N \geq 1$. The study of modular forms on such subgroups was initiated by Atkin and Swinnerton-Dyer who discovered experimentally the congruences now bearing their names [ASwD71]. Subsequently, Scholl proved congruences satisfied by the coefficients of modular forms on noncongruence subgroups [Sch85i, Sch85ii, Sch87, Sch88, Sch93]. A refined conjecture has recently been put forward by Atkin, Li, Long and Yang [LLY03], ALL05], LL]. See [LLY05] for a general survey of this.

In this paper we give new examples of noncongruence subgroups having a basis of cuspidal modular forms satisfying the Atkin-Swinnerton-Dyer (ASwD) congruences. We only give experimental evidence of our results, obtained using Magma BCP97, Mathematica, and PARI Pari04. In a later publication, we will give a detailed treatment of one of our examples.
1.1. Notation. We assume familiarity with the action of $\mathrm{SL}_{2}(\mathbf{R})$ on the upper half complex plane \mathbf{H}, with congruence subgroups such as $\Gamma_{0}(N)$, $\Gamma_{1}(N), \Gamma^{0}(N), \Gamma^{1}(N)$, and with $M_{k}(\Gamma)$ and $S_{k}(\Gamma)$ the finite-dimensional vector spaces of modular forms and cusp forms for Γ, and $S_{k}\left(\Gamma_{0}(N), \chi\right)$ the space of cusp forms with character $\chi:(\mathbf{Z} / N)^{*} \rightarrow \mathbf{C}^{*}$.

It is well known (see Shi71 for details) that $S_{k}\left(\Gamma_{0}(N), \chi\right)$ has a basis of Hecke eigenforms, which have q-expansions

$$
f(z)=\sum_{n \geq 1} a_{n}(f) q^{n}, \quad \text { where } \quad q=\exp (2 \pi i z),
$$

[^0]with a_{n} satisfying the relations
\[

$$
\begin{equation*}
a_{n p}-a_{p} a_{n}+\chi(p) p^{k-1} a_{n / p}=0, \quad a_{n}=a_{n}(f) \tag{1}
\end{equation*}
$$

\]

for all positive integers n and primes $p \nmid N$, taking $a_{n / p}=0$ if $p \nmid n$.
1.2. Atkin-Swinnerton-Dyer congruences. If Γ is a noncongruence subgroup, then $S_{k}(\Gamma)$ has no basis of forms satisfying (11). Instead, it is conjectured that certain congruences hold, as in the following definition.

Definition 1.2.1 ([LLY03). Suppose that the noncongruence subgroup Γ has cusp width μ at infinity, and that $h \in S_{k}(\Gamma)$ has an M-integral $q^{1 / \mu_{-}}$ expansion $h=\sum a_{n}(h) q^{n / \mu}$ for some $M \in \mathbf{Z}$. (cf Sch85ii, Proposition 5.2]). Let $f=\sum c_{n}(f) q^{n}$ be a normalized newform of weight k, level N, character χ. The forms h and f are said to satisfy the Atkin-SwinnertonDyer congruence relation if, for all primes p not dividing $M N$ and for all $n \geq 1$,

$$
\begin{equation*}
\left(a_{n p}(h)-c_{p}(f) a_{n}(h)+\chi(p) p^{k-1} a_{n / p}(h)\right) /(n p)^{k-1} \tag{2}
\end{equation*}
$$

is integral at all places dividing p.
Definition 1.2.2. We say that $S_{k}(\Gamma)$ has an $A S w D$ basis if there is a basis h_{1}, \ldots, h_{n} of $S_{k}(\Gamma)$ and normalized newforms f_{1}, \ldots, f_{n} such that each pair $\left(h_{i}, f_{i}\right)$ satisfies the ASwD congruence relation in Definition 1.2.1.

Note that, in the above definition, the choices of h_{1}, \ldots, h_{n} and of f_{1}, \ldots, f_{n} may depend on the prime number p. There are examples known where the same h_{i} and f_{j} work for every prime p (actually all but a finite number of exceptional primes). On the other hand, there are examples known where the choice of the ASwD basis depends on the value of p modulo some modulus N (see examples 2 and 3 in the tables below).

2. Statement of Results

2.1. Tables. For the noncongruence subgroups Γ considered, there are two main issues addressed:
(1) Modularity of the l-adic Scholl's representation attached to the cusp forms of weight $3, S_{3}(\Gamma)$.
(2) Giving a basis of $S_{3}(\Gamma)$ that satisfies ASwD congruences.

In our cases the dimension of $S_{3}(\Gamma)$ is 2 so the l-adic representation is 4 dimensional. We find that this 4-dimensional representation breaks up into two 2-dimensional pieces, each of which is isomorphic to the 2-dimensional representations that Deligne constructed for Hecke eigenforms f on congruence subgroups. Thus, each $S_{3}(\Gamma)$ should be associated to a pair f_{1}, f_{2} of Hecke eigenforms on congruence subgroups. In the examples, these are one and the same form, or conjugate forms or base extensions of one form to a quadratic extension of \mathbf{Q}.

In Tables 1, 2, 3, 4, we define modular forms h_{1}, h_{2}, f, where h_{1} and h_{2} span $S_{3}(\Gamma)$ for the noncongruence subgroup Γ given in Definition 3.2.1, and
f is a weight 3 Hecke eigenform for some congruence subgroup. For each group we give a basis $\left(h_{1}, h_{2}\right)$ of $S_{3}(\Gamma)$, in some cases depending on the prime p, and a newform f with $\left(h_{i}, f\right)$ satisfying the ASwD congruence relation. Most forms are given in terms of the Dedekind eta function,

$$
\begin{equation*}
\eta(z)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right), \quad \text { where } q=e^{2 \pi i z} \tag{3}
\end{equation*}
$$

Our experiments support the following:
Theorem 2.1.1. Let ρ be the l-adic representation constructed by Scholl for $S_{3}(\Gamma)$ for an appropriate choice of \mathbf{Q}-model of the curve X_{Γ}. For the L-function of the corresponding representations we have

$$
\begin{gathered}
L(s, \rho)=L(s, f) L(s, f) \quad \text { for 1a, 1b } \\
L(s, \rho)=L(s, f) L(s, \bar{f}) \quad \text { for } 3 \mathrm{a}, 3 \mathrm{~b}, 4 \mathrm{a}, 4 \mathrm{~b} .
\end{gathered}
$$

In an earlier version of this paper a complete proof for cases 1 a and 1 b was given. We do not reproduce it here as it is very similar to other published examples. The L-function for examples 2a, 2b exhibits new and interesting features and will be discussed in a future work.
2.2. The examples. All the noncongruence subgroups Γ discussed in this paper are of index three inside a congruence subgroup G which itself is one of the index 12 genus 0 subgroups considered by Beauville. Each of these gives rise to a family if elliptic curves $E_{G} \rightarrow X_{G}=(G \backslash \mathbf{H})^{*} \cong \mathbf{P}^{1}(\mathbf{C})$ with ramification over the four cusps of G. For each of these, we select two of the cusps of G to construct a subgroup Γ such that the corresponding covering

$$
X_{\Gamma} \cong \mathbf{P}^{1}(\mathbf{C}) \longrightarrow X_{G} \cong \mathbf{P}^{1}(\mathbf{C})
$$

branches only over the two chosen cusps. We describe these coverings in the form $r^{3}=m(t)$, where r (resp. t) is a generator of the function field of X_{Γ} (resp. X_{G}), i.e., a Hauptmodul, which exists since these curves have genus 0 . See table 10, We have also considered arithmetic twists of a given covering gotten by varying some of the constants in the expression of $m(t)$. This leads to different models of Scholl's l-adic representation attached to $S_{3}(\Gamma)$, i.e., representations of $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ that become isomorphic as representations of $\operatorname{Gal}(\overline{\mathbf{Q}} / K)$ for a finite extension K / \mathbf{Q}. It is an important point that, in contrast to the case of classical modular curves for congruence subgroups, there are no canonical models defined over a number field. Scholl's construction of his l-adic representations depends on a choice of a model. Moreover, this choice is subject to a number of hypotheses: generally that there should be a model defined over \mathbf{Q}, and a cusp which is \mathbf{Q}-rational. This cusp is used for the expansions of modular forms whose coefficients satisfy ASwD congruences.

The l-adic representations that Scholl constructs that are associated to $S_{k}(\Gamma)$ for noncongruence subgroups Γ have very different properties from the corresponding representations constructed by Deligne for congruence Γ.

1a. Basis of $S_{3}\left(\Gamma_{24.6 .1^{6}}\right)$
$h_{1}(z)=\sqrt[3]{\frac{\eta(z)^{4} \eta(4 z)^{20}}{\eta(2 z)^{6}}}=q-\frac{4}{3} q^{2}+\frac{8}{9} q^{3}-\frac{176}{81} q^{4}+\cdots$
$h_{2}(z)=\sqrt[3]{\frac{\eta(4 z)^{16} \eta(2 z)^{6}}{\eta(z)^{4}}}=q+\frac{4}{3} q^{2}+\frac{8}{9} q^{3}+\frac{176}{81} q^{4}+\cdots$
Associated newform in $S_{3}\left(\Gamma_{0}(48), \chi\right)$, where $\chi\left(\operatorname{Frob}_{p}\right)=\left(\frac{-3}{p}\right)\left(\frac{-4}{p}\right)$:
$f(z)=\frac{\eta(4 z)^{9} \eta(12 z)^{9}}{\eta(2 z)^{3} \eta(6 z)^{3} \eta(8 z)^{3} \eta(24 z)^{3}}=q+3 q^{3}-2 q^{7}+9 q^{9}-22 q^{13}+\ldots$
The ASwD basis is h_{1}, h_{2}.
1b. Basis of $S_{3}\left(\Gamma_{8^{3} .2^{3} .3^{3}}\right)$:
$h_{1}(z)=\sqrt[3]{\frac{\eta(2 \tau)^{20} \eta(8 \tau)^{4}}{\eta(4 \tau)^{6}}}=q^{1 / 3}-\frac{20}{3} q^{4 / 3}+\frac{128}{9} q^{7 / 3}-\frac{400}{81} q^{10 / 3}+\cdots$
$h_{2}(z)=\sqrt[3]{\frac{\eta(2 \tau)^{16} \eta(4 \tau)^{6}}{\eta(8 \tau)^{4}}}=q^{2 / 3}-\frac{16}{3} q^{14 / 3}+\frac{38}{9} q^{26 / 3}+\frac{1696}{81} q^{38 / 3}+\cdots$
The associated newform is a twist $f \otimes \chi$ of the f in case 1a.
The ASwD basis is h_{1}, h_{2}.
TABLE 1. Modular forms for noncongruence subgroups, and associated forms for congruence subgroups.

The main point is that in the congruence case, the Hecke algebra acts and commutes with the Galois action so that the $2 d$-dimensional representation $\left(d=\operatorname{dim} S_{k}(\Gamma)\right)$ splits into 2-dimensional λ-adic representations. This is no longer the case in general for noncongruence subgroups. It is the case in our examples that the 4-dimensional representations attached to $S_{3}(\Gamma)$ factor into 2-dimensional pieces. Geometrically this is due to the presence of extra symmetries given by involutions and/or isogenies of our elliptic surfaces.
2.3. Outline. In section 3 we define the congruence and noncongruence subgroups we will be working with. Section 4 gives the method we use to construct the noncongruence forms h_{1}, h_{2}. Section 5 explains how we computed the traces of Frobenius elements in the l-adic Scholl's representation attached to our group Γ. The main point is to count the number of rational points over \mathbf{F}_{p} and $\mathbf{F}_{p^{2}}$ of the elliptic modular surface E_{Γ}. In section 6, we discuss involutions and isogenies of these elliptic surfaces. Finally in section

7 we provide the experimental evidence for the ASwD congruences.

2a. Basis of $S_{3}\left(\Gamma_{8^{3} .6 .3 .1^{3}}\right)$:
$h_{1}(z)=\sqrt[3]{\frac{\eta(z)^{4} \eta(2 z)^{10} \eta(8 z)^{8}}{\eta(4 z)^{4}}}=q-\frac{4}{3} q^{2}-\frac{40}{9} q^{3}+\frac{400}{81} q^{4}+\frac{1454}{243} q^{5}+\cdots$
$h_{2}(z)=\sqrt[3]{\frac{\eta(z)^{8} \eta(4 z)^{10} \eta(8 z)^{4}}{\eta(2 z)^{4}}}=q-\frac{8}{3} q^{2}+\frac{8}{9} q^{3}+\frac{32}{81} q^{4}-\frac{82}{243} q^{5}+\ldots$
Newfor m in $S_{3}\left(\Gamma_{0}(432), \chi\right)$, where $\chi\left(\operatorname{Frob}_{p}\right)=\left(\frac{-4}{p}\right)$:
$f(z)=f_{1}(12 z)+6 \sqrt{2} f_{5}(12 z)+\sqrt{-3} f_{7}(12 z)+6 \sqrt{-6} f_{11}(12 z)$,
where

$$
\begin{array}{ll}
f_{1}(z)=\frac{\eta(2 z)^{3} \eta(3 z)}{\eta(6 z) \eta(z)} E_{6}(z) & f_{5}(z)=\frac{\eta(z) \eta(2 z)^{3} \eta(3 z)^{3}}{\eta(6 z)} \\
f_{7}(z)=\frac{\eta(6 z)^{3} \eta(z)}{\eta(2 z) \eta(3 z)} E_{6}(z) & f_{11}(z)=\frac{\eta(3 z) \eta(z)^{3} \eta(6 z)^{3}}{\eta(2 z)}
\end{array}
$$

$$
\text { and } E_{6}(z)=1+12 \sum_{n \geq 1}(\sigma(3 n)-3 \sigma(n)) q^{n}, \text { where } \sigma(n)=\sum_{d \mid n} d
$$

Atkin Swinnerton-Dyer basis:
if $p \equiv 1 \bmod 3 \quad$ basis is $\quad h_{1}, h_{2}$
if $p \equiv 2 \bmod 3 \quad$ basis is $\quad h_{1} \pm \alpha h_{2}, \quad \alpha^{3}=4$.
2b. Basis of $S_{3}\left(\Gamma_{24.3 .2^{3} .1^{3}}\right)$:
$h_{1}(z)=\sqrt[3]{\frac{\eta(2 \tau)^{22} \eta(8 \tau)^{8}}{\eta(\tau)^{4} \eta(4 \tau)^{8}}}=q+\frac{4}{3} q^{2}-\frac{40}{9} q^{3}-\frac{400}{81} q^{4}+\frac{1454}{243} q^{5}+\cdots$
$h_{2}(z)=\sqrt[3]{\frac{\eta(2 \tau)^{20} \eta(4 \tau)^{2} \eta(8 \tau)^{4}}{\eta(\tau)^{8}}}=q+\frac{8}{3} q^{2}+\frac{8}{9} q^{3}-\frac{32}{81} q^{4}-\frac{82}{243} q^{5}+\cdots$
The associated new form and the ASwD basis
are given in exactly the same way as in case 2a.
A variant denoted $S_{3}\left(\Gamma_{24.3 .2^{3} \cdot 1^{3} B}\right)$ is discussed in section 7.4.3
TABLE 2. Modular forms for noncongruence subgroups, and associated forms for congruence subgroups.

3a. Basis of $S_{3}\left(\Gamma_{18.6 .3^{3} .1^{3}}\right)$
$h_{1}(z)=\sqrt[3]{\frac{\eta(z)^{4} \eta(2 z)^{7} \eta(6 z)^{11}}{\eta(3 z)^{4}}}=q-\frac{4}{3} q^{2}-\frac{31}{9} q^{3}+\frac{400}{81} q^{4}+\frac{104}{243} q^{5}+\cdots$
$h_{2}(z)=\sqrt[3]{\frac{\eta(3 z)^{4} \eta(6 z)^{7} \eta(2 z)^{11}}{\eta(z)^{4}}}=q+\frac{4}{3} q^{2}-\frac{7}{9} q^{3}-\frac{112}{81} q^{4}-\frac{616}{243} q^{5}+\ldots$
Newform in $S_{3}\left(\Gamma_{0}(243), \chi\right)$, where $\chi\left(\operatorname{Frob}_{p}\right)=\left(\frac{-3}{p}\right)$.
$f(z)=q+3 i q^{2}-5 q^{4}+6 i q^{5}+11 q^{7}-3 i q^{8}-18 q^{10}+\cdots$
Atkin Swinnerton-Dyer basis:
if $p \equiv 1 \bmod 3 \quad$ basis is $\quad h_{1}, h_{2}$
if $p \equiv 2 \bmod 3 \quad$ basis is $\quad h_{1} \pm i \sqrt[3]{3} h_{2}$
3b. Basis of $S_{3}\left(\Gamma_{9.6^{3} .3 .2^{3}}\right) ; r=q^{1 / 3}$.
$h_{1}(z)=\sqrt[3]{\frac{\eta(\tau)^{7} \eta(2 \tau)^{4} \eta(3 \tau)^{11}}{\eta(6 \tau)^{4}}}=r-\frac{7}{3} r^{4}-\frac{19}{9} r^{7}+\frac{193}{81} r^{10}+\frac{2306}{243} r^{13}+\cdots$
$h_{2}(z)=\sqrt[3]{\frac{\eta(\tau)^{11} \eta(3 \tau)^{7} \eta(6 \tau)^{4}}{\eta(2 \tau)^{4}}}=r^{2}-\frac{11}{3} r^{5}+\frac{23}{9} r^{8}-\frac{13}{81} r^{11}+\cdots$
The associated new form and the ASwD basis are given in exactly the same way as in case 3 a.

TABLE 3. Modular forms for noncongruence subgroups, and associated forms for congruence subgroups.

4a. Basis of $S_{3}\left(\Gamma_{9.6^{4} .1^{3}}\right)$
$h_{1}(z)=\sqrt[3]{\frac{\eta(z)^{13} \eta(6 z)^{14}}{\eta(2 z)^{2} \eta(3 z)^{7}}}=q-\frac{13}{3} q^{2}+\frac{32}{9} q^{3}+\frac{670}{81} q^{4}-\frac{3577}{243} q^{5}+\cdots$
$h_{2}(z)=\sqrt[3]{\frac{\eta(z)^{14} \eta(6 z)^{13}}{\eta(2 z)^{7} \eta(3 z)^{2}}}=q-\frac{14}{3} q^{2}+\frac{56}{9} q^{3}-\frac{58}{81} q^{4}+\frac{266}{243} q^{5}+\ldots$
Associated newform in $S_{3}\left(\Gamma_{0}(486), \chi\right)$, where $\chi\left(\operatorname{Frob}_{p}\right)=\left(\frac{-3}{p}\right)$.
$f(z)=q-\sqrt{-2} q^{2}-2 q^{4}+3 \sqrt{-2} q^{5}-7 q^{7}+2 \sqrt{-2} q^{8}+6 q^{10}-3 \sqrt{-2} q^{11}+5 q^{13}$
Atkin Swinnerton-Dyer basis:
if $p \equiv 1 \bmod 3 \quad$ basis is $\quad h_{1}, h_{2}$
if $p \equiv 2 \bmod 3 \quad$ basis is $\quad h_{1} \pm \sqrt{-2} \sqrt[3]{3} h_{2}$
4b. Basis of $S_{3}\left(\Gamma_{18.3^{4} .2^{3}}\right) ; r=q^{1 / 3}$:
$h_{1}(z)=\sqrt[3]{\frac{\eta(2 \tau)^{13} \eta(3 \tau)^{14}}{\eta(6 \tau)^{7} \eta(\tau)^{2}}}=r+\frac{2}{3} r^{4}-\frac{28}{9} r^{7}-\frac{482}{81} r^{10}-\frac{736}{243} r^{13}+\cdots$
$h_{2}(z)=\sqrt[3]{\frac{\eta(2 \tau)^{14} \eta(3 \tau)^{13}}{\eta(6 \tau)^{2} \eta(\tau)^{7}}}=r^{2}+\frac{7}{3} r^{5}+\frac{14}{9} r^{8}-\frac{148}{81} r^{11}-\frac{1708}{243} r^{14}+\cdots$
The associated newform is the same as in case 4 a .
Atkin Swinnerton-Dyer basis: $\begin{aligned} & \text { if } p \equiv 1 \bmod 3 \quad \text { basis is } \begin{array}{l}h_{1}, h_{2} \\ \text { if } p \equiv 2 \bmod 3\end{array} \text { basis is } h_{1} \pm \sqrt{-2} \sqrt[3]{3} h_{2}\end{aligned}$
TABLE 4. Modular forms for noncongruence subgroups, and associated forms for congruence subgroups.

Figure 1. Fundamental domains for torsion free index 24 congruence subgroups in $\mathrm{SL}_{2}(\mathbf{Z})$.

3. Description of the noncongruence subgroups

3.1. Beauville's families. We start with certain index 12 genus 0 torsion free congruence subgroups of $\mathrm{SL}_{2}(\mathbf{Z})$, listed in Table 5 Seb01. Figure 3.1 shows corresponding fundamental domains and generating matrices.

Table 5 gives equations for the associated families of elliptic curves Beau82.
Table 6 gives the a_{1}, \ldots, a_{5} of the Weierstrass form $y^{2}+a_{1} x y+a_{3} y=$ $x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$. The hauptmodul $t(\tau)$ listed in the table is such that $j\left(E_{t(\tau)}\right)=j(\tau)$.

Figure 2. Fundamental domains for conjugates of some index 3 subgroups of $\Gamma_{0}(8) \cap \Gamma_{1}(4)$.

group	elliptic family	$j-$ invariant
$\Gamma(3)$	$\left(x^{3}+y^{3}+z^{3}\right)=t x y z$	$\frac{t^{3}\left(t^{3}+216\right)^{3}}{\left(t^{3}-27\right)^{3}}$
$\Gamma(2) \cap \Gamma_{1}(4)$	$x\left(x^{2}+z^{2}+2 z y\right)=t z\left(x^{2}-y^{2}\right)$	$\frac{\left(t^{4}-t^{2}+1\right)^{3}}{t^{4}(t-1)^{2}(t+1)^{2}}$
$\Gamma^{1}(5)$	$x(x-z)(y-z) t=y(y-x) z$	$-\frac{\left(t^{4}+12 t^{3}+14 t^{2}-12 t+1\right)^{3}}{t^{5}\left(t^{2}+11 t-1\right)}$
$\Gamma_{1}(6)$	$(x y+y x+z x)(x+y+z)=t x y z$	$\frac{(3 t-1)^{3}\left(3 t^{3}-3 t^{2}+9 t-1\right)^{3}}{(t-1)^{3} t^{6}(9 t-1)}$
$\Gamma_{0}(8) \cap \Gamma_{1}(4)$	$(x+y)\left(x y+z^{2}\right) t=4 x y z$	$-16 \frac{\left(t^{4}-16 t^{2}+16\right)^{3}}{t^{8}(t+1)(t-1)}$
$\Gamma_{0}(9) \cap \Gamma_{1}(3)$	$\left(x^{2} y+y^{2} z+z^{2} x\right)=t x y z$	$\frac{t^{3}\left(t^{3}-24\right)^{3}}{t^{3}-27}$

TABLE 5. Data for Beauville's elliptic surfaces.

level	Coefficients of Weierstrass form					t as a
	a_{1}	a_{2}	a_{3}	a_{4}	a_{6}	Hauptmodul
3	0	t^{2}	0	$-72 t$	$-8\left(4 t^{2}+27\right)$	$\frac{\eta\left(\frac{1}{3} \tau\right)^{3}}{\eta(3 \tau)^{3}}+3$
4	0	$4+4 t^{2}$	0	$16 t^{2}$	0	$\frac{1}{2} \frac{\eta(\tau)^{12}}{\eta(2 \tau)^{8} \eta\left(\frac{1}{2} \tau\right)^{4}}$
5	$t+1$	t	t	0	0	$q^{\frac{1}{5}} \prod_{\substack{n=0 \\ e=1,-1}}^{\infty}\left(\frac{\left(1-q^{n+e \frac{1}{5}}\right)}{\left(1-q^{n+e \frac{2}{5}}\right)}\right)^{5}$
6	$t+1$	$t-t^{2}$	$t-t^{2}$	0	0	$\frac{1}{9} \frac{\eta(6 \tau)^{4} \eta(\tau)^{8}}{\eta(3 \tau)^{8} \eta(2 \tau)^{4}}$
8	4	t^{2}	$4 t^{2}$	0	0	$\frac{\eta(z)^{8} \eta(4 z)^{4}}{\eta(2 z)^{12}}$
9	0	t^{2}	0	$8 t$	16	$27 \frac{\eta(9 \tau)^{3}}{\eta(\tau)^{3}}+3$

TABLE 6. Weierstrass equations for Beauville's elliptic families.

Figure 3. Fundamental domains for conjugates of some index 3 subgroups of $\Gamma_{1}(6)$.

cusps and subgroups of $\Gamma_{0}(8) \cap \Gamma_{1}(4)$				cusps and subgroups of $\Gamma_{1}(6)$				
cusp τ	∞	0		cusp τ	∞	0	$\frac{1}{2}$	$\frac{1}{3}$
width	1	8	1	width	1	6	3	2
subgroup	ramified cusps indicated by			subgroup	ramified cusps indicated by \checkmark			
$\Gamma_{24.6 .1^{6}}$				$\Gamma_{18.6 .3^{3} 1^{3}}$				
$\Gamma_{8^{3} .2^{3} .3^{2}}$				$\Gamma_{9.63 .3 .2^{3}}$				
$\Gamma_{83.6 .3 .1^{3}}$				$\Gamma_{9.6^{4} .1^{3}}$				
$\Gamma_{24.3 .2^{3} .1^{3}}$				$\Gamma_{18.3^{4} .2^{3}}$	\checkmark	\checkmark		

TABLE 7. Ramification points of triple covers of $X\left(\Gamma_{0}(8) \cap\right.$ $\left.\Gamma_{1}(4)\right)$ and $X\left(\Gamma_{1}(6)\right)$, with corresponding subgroups.
3.2. The noncongruence subgroups. We will work with certain index 3 normal subgroups of $\Gamma_{1}(6)$ and $\Gamma_{0}(8) \cap \Gamma_{1}(4)$. The case $\Gamma_{1}(5)$ has been studied in LLY03. The fundamental domain of Γ is a union of three copies of a fundamental domain for G, corresponding to the three cosets of Γ in G. From the fundamental domains, shown in Figures 2 and 3, we obtain generators and cusp widths Kul91, allowing us to make the following definition.

Definition 3.2.1. We let $\Gamma_{24.6 .1^{6}}, \Gamma_{8^{3} 6.3 .1^{3}}, \Gamma_{24.3 .2^{3} .1^{3}}, \Gamma_{8^{3} 2^{3} 3^{2}}$ be index 3 genus 0 subgroups of $\Gamma_{0}(8) \cap \Gamma_{1}(4)$, and $\Gamma_{18.6 .3^{3} .1^{3}}, \Gamma_{9.6^{4} .1^{3}}, \Gamma_{9.6^{3} .3 .2^{3}}, \Gamma_{18.3^{4} .2^{3}}$ index 3 genus 0 subgroups of $\Gamma_{1}(6)$, defined by their generators as follows:

Γ	generators
$\Gamma_{24.6 .1}{ }^{6}$	$\left(\begin{array}{ll}1 & 0 \\ 24 & 1\end{array}\right),\left(\begin{array}{cc}9 & -1 \\ 64 & -7\end{array}\right),\left(\begin{array}{cc}5 & -1 \\ 16 & -3\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}-3 & -1 \\ 16 & 5\end{array}\right),\left(\begin{array}{cc}-7 & -1 \\ 64 & 9\end{array}\right),\left(\begin{array}{cc}-11 & -1 \\ 144 & 13\end{array}\right)$.
$\Gamma_{8^{3} 2^{3} 3^{2}}$	$\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}-7 & -8 \\ 8 & 9\end{array}\right),\left(\begin{array}{cc}-3 & -2 \\ 8 & 5\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 8 & 1\end{array}\right),\left(\begin{array}{ll}5 & -2 \\ 8 & -3\end{array}\right),\left(\begin{array}{ll}9 & -8 \\ 8 & -7\end{array}\right),\left(\begin{array}{cc}13 & -18 \\ 8 & -11\end{array}\right)$.
$\Gamma_{8^{3} 6.3 .1^{3}}$	$\left(\begin{array}{ll}-11 & 6 \\ -24 & 13\end{array}\right),\left(\begin{array}{ll}41 & -25 \\ 64 & -39\end{array}\right),\left(\begin{array}{ll}49 & -32 \\ 72 & -47\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 8 & 1\end{array}\right),\left(\begin{array}{ll}25 & -9 \\ 64 & -23\end{array}\right),\left(\begin{array}{cc}81 & -32 \\ 200 & -79\end{array}\right)$.
$\Gamma_{24.3 .2^{3} .1^{3}}$	$\left(\begin{array}{ll}1 & 0 \\ 24 & 1\end{array}\right),\left(\begin{array}{cc}21 & -2 \\ 200 & -19\end{array}\right),\left(\begin{array}{cc}9 & -1 \\ 64 & -7\end{array}\right),\left(\begin{array}{ll}5 & -2 \\ 8 & -3\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}-11 & -2 \\ 72 & 13\end{array}\right),\left(\begin{array}{cc}-7 & -1 \\ 64 & 9\end{array}\right)$.
$\Gamma_{18.6 .3^{3} .1^{3}}$	$\left(\begin{array}{cc} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{cc} 25 & -3 \\ 192 & -23 \end{array}\right),\left(\begin{array}{cc} 7 & -1 \\ 36 & -5 \end{array}\right),\left(\begin{array}{cc} 7 & -3 \\ 12 & -5 \end{array}\right),\left(\begin{array}{ll} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{cc} -11 & -3 \\ 48 & 13 \end{array}\right),\left(\begin{array}{cc} -5 & -1 \\ 36 & 7 \end{array}\right) .$
$\Gamma_{9.6{ }^{3} .3 .2^{3}}$	$\left(\begin{array}{ll} 1 & 3 \\ 0 & 1 \end{array}\right),\left(\begin{array}{cc} -5 & -6 \\ 6 & 7 \end{array}\right),\left(\begin{array}{cc} -11 & -8 \\ 18 & 13 \end{array}\right),\left(\begin{array}{ll} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{cc} 7 & -2 \\ 18 & -5 \end{array}\right),\left(\begin{array}{ll} 7 & -6 \\ 6 & -5 \end{array}\right),\left(\begin{array}{ll} 25 & -32 \\ 18 & -23 \end{array}\right) .$
$\Gamma_{9.6^{4} .1^{3}}$	$\left(\begin{array}{cc} -17 & 6 \\ -54 & 19 \end{array}\right),\left(\begin{array}{ll} 127 & -49 \\ 324 & -125 \end{array}\right),\left(\begin{array}{cc} 61 & -24 \\ 150 & -59 \end{array}\right),\left(\begin{array}{ll} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{ll} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{cc} 91 & -25 \\ 324 & -89 \end{array}\right),\left(\begin{array}{cc} 85 & -24 \\ 294 & -83 \end{array}\right) .$
$\Gamma_{18.3^{4} .2^{3}}$	$\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}-11 & -8 \\ 18 & 13\end{array}\right),\left(\begin{array}{cc}-5 & -3 \\ 12 & 7\end{array}\right),\left(\begin{array}{cc}7 & -2 \\ 18 & -5\end{array}\right),\left(\begin{array}{cc}7 & -3 \\ 12 & -5\end{array}\right),\left(\begin{array}{ll}25 & -32 \\ 18 & -23\end{array}\right),\left(\begin{array}{ll}19 & -27 \\ 12 & -17\end{array}\right)$.

By comparing cusp widths, in Tables 11 and 12 , with possible cusp widths of congruence subgroups in Table 8, we obtain the following result.

Theorem 3.2.2. The groups in Definition 3.2.1 are noncongruence subgroups.

$$
\begin{aligned}
& 6-6-6-6-3-3-3-3 \\
& 9-9-9-3-3-1-1-1 \\
& 9-9-3-3-3-3-3-3 \\
& 10-10-5-5-2-2-1-1 \\
& 18-9-2-2-2-1-1-1 \\
& 27-3-1-1-1-1-1-1
\end{aligned}
$$

Table 8. Possible cusp widths of index 36 genus zero torsion free subgroups of $\mathrm{PSL}_{2}(\mathbf{Z})$, taken from Seb01, §7, Table 2].

Values of t_{8}										
$\operatorname{cusp} c$	∞	0	$\frac{1}{2}$	$\frac{1}{4}$						
$t_{8}(c)$	1	0	∞	-1	\quad	Values of t_{6}				
:---	:---:	:---:	:---:	:---:						
$\operatorname{cusp} c$	∞	0	$\frac{1}{2}$	$\frac{1}{3}$						
$t_{8}(c)$	$\frac{1}{9}$	0	1	∞						

Table 9. Values of Hauptmoduln at cusps.
3.3. Hauptmoduln and covering maps. Throughout this paper we fix our choice of identification of $X\left(\Gamma_{0}(8) \cap \Gamma_{1}(4)\right)$ and $X\left(\Gamma_{1}(6)\right)$ with the projective line \mathbf{P}^{1}, with parameter t_{8} and t_{6} respectively. As functions of z in the upperhalf complex plane, $t_{8}(z)$ and $t_{6}(z)$ are given terms of the Dedekind eta function, as listed in the last column of Table 6.

$$
t_{8}(z)=\frac{\eta(z)^{8} \eta(4 z)^{4}}{\eta(2 z)^{12}}, \text { and } t_{6}(z)=\frac{1}{9} \frac{\eta(6 \tau)^{4} \eta(\tau)^{8}}{\eta(3 \tau)^{8} \eta(2 \tau)^{4}}
$$

The values of these functions at the cusps are as in Table 9 .
Since the ramification points of the covering maps $\Gamma \backslash \mathbf{H} \rightarrow G \backslash \mathbf{H}$ are at cusps as in Table 7 , the covering maps are given in each case by a map

$$
r \mapsto r^{3}=m(t),
$$

where the maps m corresponding to each of our subgroups are as in Table 10 .

subgroup	$m(t)$	$m^{-1}\left(r^{3}\right)$					
$\Gamma_{24.6 .1^{6}}$	t	r^{3}					
$\Gamma_{8^{3} .2^{3} .3^{2}}$	$\frac{1+t}{1-t}$	$\frac{r^{3}-1}{r^{3}+1}$					
$\Gamma_{8^{3} .6 .3 .1^{3}}$	$\frac{t+1}{4}$	$4 r^{3}-1$					
$\Gamma_{24.3 .2^{3} .1^{3}}$	$\frac{2(1+t)}{t}$	$\frac{2}{r^{3}-2}$	$\quad	$	subgroup	$m(t)$	$m^{-1}\left(r^{3}\right)$
:---	:---	:---	:---				
$\Gamma_{18.6 .3^{3} .1^{3}}$	$t / 9$	$9 r^{3}$					
$\Gamma_{9.6^{3} \cdot 3.2^{3}}$	$\frac{1-9 t}{3-3 t}$	$\frac{1-3 r^{3}}{9-3 r^{3}}$					
$\Gamma_{9.6^{4} \cdot 1^{3}}$	$\frac{8}{3-3 t}$	$1-\frac{8}{3 r^{3}}$					
$\Gamma_{18.3^{4} \cdot 2^{3}}$	$\frac{1-9 t}{24 t}$	$\frac{1}{24 r^{3}+9}$					

Table 10. Covering maps corresponding to subgroups of $\Gamma_{0}(8) \cap \Gamma_{1}(4)$ and $\Gamma_{1}(6)$.
4. Constructing elements of $S_{3}(\Gamma)$
4.1. Dimension. For odd k, Shimura [Shi71, Theorem 2.25] gives the following formula for $\operatorname{dim} S_{k}(\Gamma)$ for a genus g subgroup $\Gamma \notin-I$ of $\mathrm{SL}_{2}(\mathbf{Z})$:

$$
\operatorname{dim} S_{k}(\Gamma)=(k-1)(g-1)+\frac{1}{2}(k-2) u+\frac{1}{2}(k-1) u^{\prime}+\sum_{i=1}^{r} k \frac{e_{i}-1}{2 e_{i}} .
$$

The e_{i} are orders of elliptic points, u is the number of regular cusps, and u^{\prime} the number of irregular cusps. Using this formula, we find that

$$
\operatorname{dim} S_{3}(\Gamma)=2
$$

for Γ equal to any of the groups in Definition 3.2.1.
4.2. Method of constructing elements of $S_{3}(\Gamma)$. Suppose that Γ has index 3 in G, one of the groups in Table [5, and that the corresponding covering is ramified at cusps c_{1} and c_{2}. Let t be a Hauptmodul for G, e.g., as in [CN79. By a transformation, take t with $t\left(c_{1}\right)=0$ and $t\left(c_{2}\right)=\infty$. Then $\sqrt[3]{t}$ is a Hauptmodul for Γ. Let $f \in M_{3}(G)$. Then $\sqrt[3]{t} f \in A_{3}(\Gamma)$. If f is zero where t has poles, then $\sqrt[3]{t} f$ and $\sqrt[3]{t^{2}} f$ are in $S_{3}(\Gamma)$. We give modular forms in terms of the Dedekind eta function, using the data given by Martin [M96]. Explicit details of the forms and their poles and zeros are given in Tables 11 and 12, and the q-expansions are given in Tables 13 and 14 .

TABLE 11. Orders of vanishingat cusps for forms for $\Gamma_{0}(8) \cap$
$\Gamma_{1}(4)$ and for subgroups of $\Gamma_{0}(8) \cap \Gamma_{1}(4)$.

TABLE 12. Orders of vanishing at cusps for forms for sub-
groups of $\Gamma_{1}(6)$.

$\Gamma_{24.6 .1^{6}}$	$=q+\frac{4}{3} q^{2}+\frac{8}{9} q^{3}+\frac{176}{81} q^{4}-\frac{850}{243} q^{5}-\frac{3488}{729} q^{6}-\frac{5968}{6566} q^{7}+\cdots$
$\sqrt[3]{\eta(\tau)^{-4} \eta(2 \tau)^{6} \eta(4 \tau)^{16}}$	$=q-\frac{4}{3} q^{2}+\frac{8}{9} q^{3}-\frac{176}{81} q^{4}-\frac{850}{243} q^{5}+\frac{3488}{729} q^{6}-\frac{5968}{6561} q^{7}+\cdots$
$\sqrt[3]{\eta(\tau)^{4} \eta(2 \tau)^{-6} \eta(4 \tau)^{20}}$	
$\Gamma_{8^{3} 6.3 .1^{3}}$	$=q-\frac{4}{3} q^{2}-\frac{40}{9} q^{3}+\frac{400}{81} q^{4}+\frac{1454}{243} q^{5}-\frac{1888}{729} q^{6}-\frac{13168}{6561} q^{7}+\cdots$
$\sqrt[3]{\eta(\tau)^{4} \eta(2 \tau)^{10} \eta(4 \tau)^{-4} \eta(8 \tau)^{8}}$	$=q$
$\sqrt[3]{\eta(\tau)^{8} \eta(2 \tau)^{-4} \eta(4 \tau)^{10} \eta(8 \tau)^{4}}$	$=q-\frac{8}{3} q^{2}+\frac{8}{9} q^{3}+\frac{32}{81} q^{4}-\frac{82}{243} q^{5}+\frac{5440}{729} q^{6}-\frac{2400}{6561} q^{7}+\cdots$
$\Gamma_{24.3 .2^{3} .1^{3}}$	
$\sqrt[3]{\eta(\tau)^{-4} \eta(2 \tau)^{22} \eta(4 \tau)^{-8} \eta(8 \tau)^{8}}$	$=q+\frac{4}{3} q^{2}-\frac{40}{9} q^{3}-\frac{400}{81} q^{4}+\frac{1454}{243} q^{5}+\frac{1888}{729} q^{6}-\frac{13168}{6561} q^{7}+\cdots$
$\sqrt[3]{\eta(\tau)^{-8} \eta(2 \tau)^{20} \eta(4 \tau)^{2} \eta(8 \tau)^{4}}$	$=q+\frac{8}{3} q^{2}+\frac{8}{9} q^{3}-\frac{32}{81} q^{4}-\frac{82}{243} q^{5}-\frac{5440}{729} q^{6}-\frac{24400}{6561} q^{7}+\cdots$
$\Gamma_{8^{3} 2^{3} 3^{2}}$	
$\sqrt[3]{\eta(2 \tau)^{20} \eta(4 \tau)^{-6} \eta(8 \tau)^{4}}$	$=q^{2 / 3}-\frac{20}{3} q^{8 / 3}+\frac{128}{9} q^{14 / 3}-\frac{400}{81} q^{20 / 3}+\cdots$
$\sqrt[3]{\eta(2 \tau)^{16} \eta(4 \tau)^{6} \eta(8 \tau)^{-4}}$	$=q^{1 / 3}-\frac{16}{3} q^{7 / 3}+\frac{38}{9} q^{13 / 3}+\frac{1696}{81} q^{19 / 3}+\cdots$

TABLE 13. q-expansions of basis of forms for $S_{3}(\Gamma)$ for four subgroups of $\Gamma_{0}(8) \cap \Gamma_{1}(4)$

$\Gamma_{18.6 .3^{3} \cdot 1^{3}}$ $a b^{1 / 3} c d^{2 / 3}=\sqrt[3]{\eta(\tau)^{4} \eta(2 \tau)^{7} \eta(3 \tau)^{-4} \eta(6 \tau)^{11}}=q-\frac{4}{3} q^{2}-\frac{31}{9} q^{3}+\frac{400}{81} q^{4}+\frac{104}{243} q^{5}+\cdots$ $a b^{2 / 3} c d^{1 / 3}=\sqrt[3]{\eta(\tau)^{-4} \eta(2 \tau)^{11} \eta(3 \tau)^{4} \eta(6 \tau)^{7}}=q+\frac{4}{3} q^{2}-\frac{7}{9} q^{3}-\frac{112}{81} q^{4}-\frac{616}{243} q^{5}+\cdots$ $\Gamma_{9.6^{4} \cdot 1^{3}}$ $a b^{1 / 3} c^{2 / 3} d=\sqrt[3]{\eta(\tau)^{13} \eta(2 \tau)^{-2} \eta(3 \tau)^{-7} \eta(6 \tau)^{14}}=q-\frac{13}{3} q^{2}+\frac{32}{9} q^{3}+\frac{670}{81} q^{4}-\frac{3577}{243} q^{5}+\cdots$ $a b^{2 / 3} c^{1 / 3} d=\sqrt[3]{\eta(\tau)^{14} \eta(2 \tau)^{-7} \eta(3 \tau)^{-2} \eta(6 \tau)^{13}}=q-\frac{14}{3} q^{2}+\frac{56}{9} q^{3}-\frac{58}{81} q^{4}+\frac{266}{243} q^{5}+\cdots$ $\Gamma_{9.6^{3} .32^{3}}$ $a^{1 / 3} b c^{2 / 3} d=\sqrt[3]{\eta(\tau)^{7} \eta(2 \tau)^{4} \eta(3 \tau)^{11} \eta(6 \tau)^{-4}}=q^{\frac{1}{3}}-\frac{7}{3} q^{\frac{4}{3}}-\frac{19}{9} q^{\frac{7}{3}}+\frac{193}{81} q^{\frac{10}{3}}+\frac{2306}{243} q^{\frac{13}{3}}+\cdots$ $a^{2 / 3} b c^{1 / 3} d=\sqrt[3]{\eta(\tau)^{11} \eta(2 \tau)^{-4} \eta(3 \tau)^{7} \eta(6 \tau)^{4}}=q^{\frac{2}{3}}-\frac{11}{3} q^{\frac{5}{3}}+\frac{23}{9} q^{\frac{8}{3}}-\frac{13}{81} q^{\frac{11}{3}}+\frac{2495}{243} q^{\frac{14}{3}}+\cdots$ $\Gamma_{18.3^{4} \cdot 2^{3}}$ $a^{1 / 3} b c d^{2 / 3}=\sqrt[3]{\eta(\tau)^{-2} \eta(2 \tau)^{13} \eta(3 \tau)^{14} \eta(6 \tau)^{-7}}=q^{\frac{1}{3}}+\frac{2}{3} q^{\frac{4}{3}}-\frac{28}{9} q^{\frac{7}{3}}-\frac{482}{81} q^{\frac{10}{3}}-\frac{736}{243} q^{\frac{13}{3}}+\cdots$ $a^{2 / 3} b c d^{1 / 3}=\sqrt[3]{\eta(\tau)^{-7} \eta(2 \tau)^{14} \eta(3 \tau)^{13} \eta(6 \tau)^{-2}}=q^{\frac{2}{3}}+\frac{7}{3} q^{\frac{5}{3}}+\frac{14}{9} q^{\frac{8}{3}}-\frac{148}{81} q^{\frac{11}{3}}-\frac{1708}{243} q^{\frac{14}{3}}+\cdots$

Table 14. Basis of weight three cusp forms for some index 3 subgroups of $\Gamma_{1}(6) . a, b, c, d$ are eta products as in Table 12 ,

5. Traces and Point Counting

As described by Scholl, corresponding to each of these families, we have a representation on parabolic cohomology:

$$
\begin{equation*}
\rho=\rho_{l}: \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}) \rightarrow H^{1}\left(X(\Gamma), j_{*} R^{1} f_{*} \mathbf{Q}_{l}\right) \tag{4}
\end{equation*}
$$

Here

$$
E^{\circ}(\Gamma) \xrightarrow{f} Y(\Gamma) \stackrel{j}{\hookrightarrow} X(\Gamma),
$$

with

$$
Y(\Gamma)=\Gamma \backslash \mathbf{H}, \quad X(\Gamma)=(\Gamma \backslash \mathbf{H})^{*}
$$

$E^{\circ}(\Gamma)$ be a family of elliptic curves over $Y(\Gamma)$. We let $\mathcal{F}=j_{*} R^{1} f_{*} \mathbf{Q}_{l}$, an l-adic sheaf for the étale topology on $X(\Gamma)$. We computed the traces of the Frobenius elements of this representation via point counting, as in [LLY03] and ALL05.
5.1. Equations for elliptic surfaces associated with the noncongruence subgroups. As in section Section 3.1, associated to $\Gamma_{0}(8) \cap \Gamma_{1}(4)$ and $\Gamma_{1}(6)$, we have families of elliptic curves $E_{8}(t)$ and $E_{6}(t)$ as given in Table 6 .

$$
\begin{array}{ll}
E_{8}(t): & y^{2}+4 x y+4 t^{2} y=x^{3}+t^{2} x^{2} \\
E_{6}(t): & y^{2}+(t+1) x y+\left(t-t^{2}\right) y=x^{3}+\left(t-t^{2}\right) x^{2} \tag{6}
\end{array}
$$

Thus we have elliptic surfaces E_{8} and E_{6}, with fibrations

$$
f_{8}: E_{8} \rightarrow X\left(\Gamma_{0}(8) \cap \Gamma_{1}(4)\right)
$$

and

$$
f_{6}: E_{6} \rightarrow X\left(\Gamma_{1}(6)\right),
$$

with fibres given by $f_{8}^{-1}(t)=E_{8}(t)$ and $f_{6}^{-1}(t)=E_{6}(t)$.
By composing the covering maps given in Table 10 with the fibrations f_{8} or f_{6}, associated with our noncongruence subgroups we have the families of elliptic curves given in Table 15. Our notation is explained by example: The elliptic surface $E\left(\Gamma_{8^{3} .2^{3} .3^{3}}\right)$ corresponding to $\Gamma_{8^{3} .2^{3} .3^{2}}$ has a fibration

$$
f: E\left(\Gamma_{8^{3} .2^{3} .3^{3}}\right) \rightarrow X\left(\Gamma_{8^{3} .2^{3} .3^{3}}\right),
$$

with fiber $f^{-1}(r)$ having an equation

$$
y^{2}+4 x y+4\left(\frac{r^{3}-1}{r^{3}+1}\right)^{2} y=x^{3}+4\left(\frac{r^{3}-1}{r^{3}+1}\right)^{2} x^{2}
$$

i.e., the t in (5) is replaced by $m^{-1}\left(r^{3}\right)=\frac{r^{3}-1}{r^{3}+1}$, where $m(t)=\frac{1+t}{1-t}$. This family of elliptic curve is denoted by $E_{8}\left(\frac{r^{3}-1}{r^{3}+1}\right)$. The other families are constructed and denoted in a similar way.

We computed the traces of Frobenius by summing local terms using:

Theorem 5.1.1.

$$
\operatorname{Tr}\left(\operatorname{Frob}_{q} \mid H^{1}(X(\Gamma), \mathcal{F})\right)=-\sum_{x \in X\left(\mathbf{F}_{q}\right)} \operatorname{Tr}\left(\operatorname{Frob}_{q} \mid \mathcal{F}_{x}\right) .
$$

group	family of curves	group	family of curves
$\Gamma_{24.6 .1^{6}}$	$E_{8}\left(r^{3}\right)$	$\Gamma_{18.6 .3^{3} .1^{3}}$	$E_{6}\left(9 r^{3}\right)$
$\Gamma_{8^{3} 2^{3} 3^{2}}$	$E_{8}\left(\frac{r^{3}-1}{r^{3}+1}\right)$	$\Gamma_{9.6}{ }^{3} .3 .2^{3}$	$E_{6}\left(\frac{1-3 r^{3}}{9-3 r^{3}}\right)$
$\Gamma_{8^{3} 6.3 .1^{3}}$	$E_{8}\left(4 r^{3}-1\right)$	$\Gamma_{9.6^{4} .1^{3}}$	$E_{6}\left(1-\frac{8}{9 r^{3}}\right)$
$\Gamma_{24.3 .2^{3} .1^{3}}$	$E_{8}\left(\frac{2}{r^{3}-2}\right)$	$\Gamma_{18.3^{4} .2^{3}}$	$E_{6}\left(\frac{1}{9\left(8 r^{3}+1\right)}\right)$

Proof. This follows from Grothendieck-Lefschetz trace formula because the other terms $\left.H^{i}(X(\Gamma), \mathcal{F})\right), i \neq 1$ are zero.

The following is also well known:
Theorem 5.1.2. $\operatorname{Tr}\left(\operatorname{Frob}_{q} \mid \mathcal{F}_{x}\right)$ may be computed according to the following:
(1) If the fiber E_{x} is smooth, then

$$
\operatorname{Tr}\left(\operatorname{Frob}_{q} \mid \mathscr{F}_{x}\right)=\operatorname{Tr}\left(\operatorname{Frob}_{q} \mid H^{1}\left(E_{x}, \mathbf{Q}_{l}\right)\right)=q+1-\# E_{x}\left(\mathbf{F}_{q}\right)
$$

(2) If the fiber E_{x} is singular, then Tate's algorithm tells us that

$$
\operatorname{Tr}\left(\operatorname{Frob}_{q} \mid \mathcal{F}_{x}\right)=\left\{\begin{array}{l}
1 \text { if the fiber is split multiplicative. } \\
-1 \text { if the fiber is nonsplit multiplicative. } \\
0 \text { if the fiber is additive. }
\end{array}\right.
$$

(3) If E is a singular curve over a field with characteristic not 2 or 3 , given by an equation

$$
E: y^{2}=x^{3}+a x+b
$$

then the reduction type of E is determined as follows:

In order to apply part (3) of the above result, we need to transform $E_{8}(t)$ and $E_{6}(t)$ in to the simplified Weierstrass form $y^{2}=x^{3}+a x+b$. We obtain the following curves, isomorphic to the originals, over any field of characteristic not 2 or 3 .
(7) $\quad \widetilde{E}_{8}: \quad y^{2}=x^{3}-27\left(t^{4}-16 t^{2}+16\right) x+54\left(t^{2}-2\right)\left(t^{4}+32 t^{2}-32\right)$
(8) $\quad \widetilde{E}_{6}: \quad y^{3}=x^{3}-2^{4} 3^{3}(3 t-1)\left(3 t^{3}-3 t^{2}+9 t-1\right) x$

$$
-2^{7} 3^{3}\left(3 t^{2}+6 t-1\right)\left(9 t^{4}-36 t^{3}+30 t^{2}-12 t+1\right)
$$

Thus one may compute values of the trace by using the above result, for example with Magma. The results for a range of values of p and various covers of E_{8} and E_{6} are given in Table 16.

Group	Equation	p	5	7	11	13	17	19	23	73
$\Gamma_{24.6 .1^{6}}$	$E_{8}\left(r^{3}\right)$	Tr_{p}	0	4	0	-44	0	52	0	-92
		$\operatorname{Tr}_{p^{2}}$	100	-188	484	292	1156	-92	2116	-17084
$\Gamma_{8^{3} 2^{3} 3^{2}}$	$E_{8}\left(\frac{r^{3}-1}{r^{3}+1}\right)$	Tr_{p}	0	-4	0	-44	0	-52	0	-92
		$\operatorname{Tr}_{p^{2}}$	100	-188	484	292	1156	-92	2116	-17084
$\Gamma_{836.3 .1^{3}}$	$E_{8}\left(r^{3}-1\right)$	Tr_{p}	0	-3	0	13	0	33	0	-71
		$\operatorname{Tr}_{p^{2}}$	-44	-95	52	169	1012	-359	-1772	5617
	$E_{8}\left(2 r^{3}-1\right)$	Tr_{p}	0	3	0	13	0	-33	0	-71
		$\operatorname{Tr}_{p^{2}}$	-44	-95	52	169	1012	-359	-1772	5617
	$E_{8}\left(4 r^{3}-1\right)$	Tr_{p}	0	0	0	-26	0	0	0	142
		$\operatorname{Tr}_{p^{2}}$	-44	190	52	-338	1012	718	-1772	-11234
$\Gamma_{24.3 .2^{3} .1^{3}}$	$E_{8}\left(\frac{2}{r^{3}-2}\right)$	Tr_{p}	0	0	0	-26	0	0	0	142
		$\operatorname{Tr}_{p^{2}}$	-44	190	52	-338	1012	718	-1772	-11234
$\Gamma_{18.6 .3^{3} .1^{3}}$	$E_{6}\left(3 r^{3}\right)$	Tr_{p}	0	-11	0	-5	0	19	0	76
		$\operatorname{Tr}_{p^{2}}$	28	-23	196	313	508	361	316	-18428
$\Gamma_{18.6 .3^{3} .1^{3}}$	$E_{6}\left(9 r^{3}\right)$	Tr_{p}	0	22	0	10	0	-38	0	76
		$\operatorname{Tr}_{p^{2}}$	28	46	196	-626	508	-722	316	-18428
$\Gamma_{9.6^{3} 3.2^{3}}$	$E_{6}\left(\frac{1-3 r^{3}}{9-3 r^{3}}\right)$	Tr_{p}	0	22	0	10	0	-38	0	76
		$\operatorname{Tr}_{p^{2}}$	28	46	196	-626	508	-722	316	-18428
$\Gamma_{9.6^{4} .1^{3}}$	$E_{6}\left(1-\frac{24}{r^{3}}\right)$	Tr_{p}	0	7	0	-5	0	-17	0	-248
		$\operatorname{Tr}_{p^{2}}$	64	49	448	313	-140	433	1972	9436
$\Gamma_{18.3^{4} \cdot 2^{3}}$	$E_{6}\left(\frac{1}{24 r^{3}+9}\right)$	Tr_{p}	0	-14	0	10	0	34	0	-248
	$\operatorname{Tr}_{p^{2}}\left(1-\frac{8}{3 r^{3}}\right)$	Tr_{p}	0	-14	0	10	0	34	0	-248
$\operatorname{Tr}_{p^{2}}$	64	-98	448	-626	-140	-866	1972	9436		

Table 16. Table of $\operatorname{Tr} \rho^{*}\left(\operatorname{Frob}_{p}\right)$.

6. Involutions and Isogenies

6.1. Involutions. The four dimensional representations on $H^{1}\left(X(\Gamma), \mathcal{F}_{\Gamma}\right)$ in fact split into two 2-dimensional Galois representations. We can achieve this splitting by using an involution on $\Gamma \backslash \mathbf{H}$ which extends to either an automorphism or isogeny on the elliptic surface.

For each family given in Table 15 by an equation $E_{n}(r)$, corresponding to a covering $r^{3}=m(t)$, we have involutions i and ι of t and r, given in Table 17, such that the following diagram commutes.

Furthermore, if c_{1}, c_{2} are the ramified cusps of the map $r \mapsto r^{3}=m(t)$, and c_{3}, c_{4} are the unramified cusps, then i fixes the sets $\left\{c_{1}, c_{2}\right\}$ and $\left\{c_{3}, c_{4}\right\}$. This means that the involution i lifts to an involution ι of r, as indicated in Table 17. To check these are the correct maps, one just needs to verify that $(\iota(\sqrt[3]{m(t)}))^{3}=m(i(t))$, which is simple algebra.
6.2. Isogenies. The involutions i of modular curves given in Table 17 lift to maps

$$
\begin{align*}
\tilde{i}: E_{n} & \rightarrow E_{n} \\
\tilde{i}:(t, x, y) \in E_{n}(t) & \mapsto\left(i(t), i_{x}(t, x, y), i_{y}(t, x, y)\right) \tag{9}
\end{align*}
$$

where $n=8$ or 6 , which restrict to isogenies between the fibres of the corresponding family of elliptic curves (given by (5) and (6)). From the isogenies of the families $E_{6}(t), E_{8}(t)$, one can obtain the isogenies on the families $E_{6}\left(m^{-1}\left(r^{3}\right)\right), E_{8}\left(m^{-1}\left(r^{3}\right)\right)$, lifting ι to $\tilde{\iota}$. These isogenies will give rise to involutions on the level of cohomology.

To show that two curves $E(t)$ and $E(i(t))$ are isogenous by an isogeny of degree d, it suffices to show that $\Phi_{d}(j(E(t)), j(E(i(t))))=0$, where Φ_{d} is the d th modular polynomial. The isogeny can be explicitly determined by Velu's methodfrom a subgroup of order d on $E(t)$. Although the algorithms involved are well known and not difficult theoretically, in practice they should be carried out with the help of a computer program, such as MAGMA BCP97, because of the large number of of terms in the polynomials involved. For example, Φ_{8} is a polynomial in two variables of degree 20 with 141 terms; Φ_{n} can be found in a Magma database using the command ClassicalModularPolynomial(n) for $1 \leq n \leq 17$.

Although it's not important to know the isogeny exactly, we do need to know the field over which the map is defined. This information was computed with the assistance of Magma, and is given in Table 18 . The polynomials given in this table are such that their roots are the x-coordinates of points in the kernel of the isogeny.

Involutions i of $X\left(\Gamma_{0}(8) \cap \Gamma_{1}(4)\right)$, and ι of $X(\Gamma)$, for $\Gamma \subset \Gamma_{0}(8) \cap \Gamma_{1}(4)$					
subgroup Γ	values of τ and t where cover ramifies		$\begin{aligned} & r^{3}= \\ & m(t) \end{aligned}$	$\begin{aligned} & \quad \text { involutions of } t \text { and } r \\ & i: t \mapsto \quad \iota: r \mapsto \end{aligned}$	
	τ	$t(\tau)$			
$\Gamma_{24.6 .16}$	1/2,0	$\infty, 0$	t	$-t$	$-r$
$\Gamma_{8^{2} .22^{3} .3^{2}}$	$\infty, 1 / 4$	1, -1	$\frac{t+1}{1-t}$	$1 / t$	$-r$
$\Gamma_{8^{3} 6.3 .1^{3}}$	1/2, 1/4	$\infty,-1$	$\frac{t+1}{4}$	$\frac{1-t}{1+t}$	$\frac{1}{2 r}$
$\Gamma_{24.3 .2^{3} .1^{3}}$	0,1/4	$0,-1$	$\frac{2(1+t)}{t}$	$\frac{t+1}{t-1}$	$\frac{2}{r}$
Involutions i of $X\left(\Gamma_{1}(6)\right)$, and ι of $X(\Gamma)$ for $\Gamma \subset \Gamma_{1}(6)$					
subgroup Γ	values of τ and t where cover ramifies		$\begin{aligned} & r^{3}= \\ & m(t) \end{aligned}$	$\begin{aligned} & \quad \text { involutions of } t \text { and } \\ & i: t \mapsto \quad \iota: r \mapsto \end{aligned}$	
	τ	$t(\tau)$			
$\Gamma_{18.6 .3^{3} .1^{3}}$	1/3, 0	$\infty, 0$	$t / 9$	$\frac{1}{9 t}$	$\frac{1}{9 r}$
$\Gamma_{9.66^{3} 3.2^{3}}$	$\infty, 1 / 2$	$\frac{1}{9}, 1$	$\frac{1-9 t}{3(1-t)}$	$\frac{1}{9 t}$	$\frac{1}{r}$
$\Gamma_{9.64 .1^{3}}$	1/2, 1/3	$1, \infty$	$\frac{8}{3(1-t)}$	$\frac{1-9 t}{9-9 t}$	$\frac{2}{r}$
$\Gamma_{18.33^{4} .2^{3}}$	$\infty, 0$	$\frac{1}{9}, 0$	$\frac{1-9 t}{24 t}$	$\frac{1-9 t}{9-9 t}$	$\frac{1}{2 r}$

Table 17. Involutions of modular curves $\Gamma \backslash \mathbf{H}$. For $\Gamma_{0}(8) \cap$ $\Gamma_{1}(4), t(\tau)=\frac{\eta(z)^{8} \eta(4 z)^{4}}{\eta(2 z)^{12}}$, and for $\Gamma_{1}(6), t(\tau)=\frac{1}{9} \frac{\eta(6 \tau)^{4} \eta(\tau)^{8}}{\eta(3 \tau)^{8} \eta(2 \tau)^{4}}$, as in Tables 6, 11, and 12,
6.3. Isogenous relationships between families. In the previous section we showed how involutions give rise to isogenies on the fibres, which will resulting in involutions on the cohomology of each family. There are also isogenous maps between families, which explain our groupings into pairs of cases, which was originally based on the relationships between traces seen in Table 16. Combining the relations between curves we already have, we

subgroup	$i(t)$	d polynomial defining kernel of isogeny	$\tilde{\iota}$'s field of definition	
Level 8 cases				
$\Gamma_{24.6 .1^{6}}$	$-t$	1	-	\mathbf{Q}
$\Gamma_{8^{2} .2^{3} .3^{2}}$	$1 / t$	4	$\left(x+t^{2}\right) x$	\mathbf{Q}
$\Gamma_{8^{3} 6.31^{3}}$	$\frac{1-t}{1+t}$	8	$\left(x^{2}-4 t x-4 t^{3}\right)\left(x+t^{2}\right) x$	$\mathbf{Q}[\sqrt{-1}]$
$\Gamma_{24.3 .2^{3} \cdot 1^{3}}$	$\frac{t+1}{t-1}$	8	$\left(x^{2}+4 t x+4 t^{3}\right)\left(x+t^{2}\right) x$	$\mathbf{Q}[\sqrt{-1}]$
Level 6 cases				
$\Gamma_{18.6 .3^{3} \cdot 1^{3}}, \Gamma_{9.6^{4} .1^{3}}$	$\frac{1}{9 t}$	3	$x-t^{2}+t$	$\mathbf{Q}[\sqrt{-3}]$
$\Gamma_{9.6^{3} .1^{3}}, \Gamma_{18.3^{4} \cdot 2^{3}}$	$\frac{1-9 t}{9-9 t}$	6	$\left(x-t^{2}+t\right) x(x+t)$	$\mathbf{Q}[\sqrt{-3}]$

TABLE 18. Data concerning involutions i and ι of Table 17, lifted to maps $\tilde{\iota}$ of families of curves, defining isogenies of degree d on fibres. In particular, $\Phi_{d}\left(j\left(E_{n}(i(t))\right), j\left(E_{n}(t)\right)\right)=$ 0 where n is the level, and Φ_{d} is the d th modular polynomial.
find that

$$
\begin{aligned}
\Phi_{8}\left(j\left(E_{6}\left(\frac{t-1}{t+1}\right)\right), j\left(E_{8}\left(\phi_{1}(t)\right)\right)\right) & =0 \\
\Phi_{8}\left(j\left(E_{8}(4 t-1)\right), j\left(E_{8}\left(\frac{2}{\phi_{2}(t)-2}\right)\right)\right) & =0 \\
\Phi_{6}\left(j\left(E_{6}\left(\frac{1-3 t}{9-3 t}\right)\right), j\left(E_{6}\left(9 \phi_{3}(t)\right)\right)\right) & =0 \\
\Phi_{3}\left(j\left(E_{6}\left(1-\frac{8}{3 t}\right)\right), j\left(E_{6}\left(\frac{1}{9-24 \phi_{4}(t)}\right)\right)\right) & =0
\end{aligned}
$$

where $\phi_{1}(t)=\phi(2)=1 / t, \phi_{3}(t)=t / 3, \phi_{4}(t)=-1 / t$. This may also be checked directly with Magma. Thus the maps ϕ_{i} between the bases lift to isogenies on the fibres between families. Replacing t by r^{3} in these equations does not change the relationships, so this also holds for the covers, and these maps induce isomorphisms on the level of cohomology. Refer to Table 16 for which cover corresponds to which group.

7. Experimental data for the ASwD congruences

The strategy for finding an ASwD basis is the following: For our noncongruence subgroup Γ, we have found a basis h_{1}, h_{2} for $S_{3}(\Gamma)$. We have also found a Hecke eigenform $f \in S_{3}\left(\Gamma_{0}, \chi\right)$ for some congruence subgroup Γ_{0}. Let a_{n} and b_{n} respectively be the expansion coefficients of h_{1} and h_{2}. Let A_{n} be the expansion coefficients of f. We consider two possible situations.
7.1. Case 1. In the simplest case, h_{1}, h_{2} is already an ASwD basis. This case occurs in section 7.3. So for good primes p and integers n with $p \nmid n$

$$
\begin{equation*}
a_{p n} \equiv A_{p} a_{n} \bmod p^{2} \quad \text { and } \quad b_{p n} \equiv A_{p} b_{n} \bmod p^{2} \tag{10}
\end{equation*}
$$

which implies, for p fixed and n varying with $a_{n} \neq 0$ and $b_{n} \neq 0$,
(11) $a_{p n} / a_{n} \equiv \mathrm{constant} \bmod p^{2} \quad$ and $\quad b_{p n} / b_{n} \equiv \mathrm{constant} \bmod p^{2}$.

So, our test for whether h_{1}, h_{2} is an ASwD basis is to check whether $a_{p n} / a_{n}$ and $b_{p n} / b_{n}$ take constant values for fixed p and varying n, with $n p$ less than some fixed bound. If this holds, then we also consider this to be evidence that h_{1}, h_{2} is an ASwD basis. We can make this conclusion regardless of whether f is known.

In the case $n=1$, since $a_{1}=b_{1}=1$, (11) implies that

$$
\begin{equation*}
a_{p} \equiv A_{p} \bmod p^{2} \quad \text { and } \quad b_{p} \equiv A_{p} \bmod p^{2} \tag{12}
\end{equation*}
$$

In order to determine the associated congruence modular form, we test whether (12) holds for small primes for the candidate form f. This is what happens in subsection 7.3.1.

In some cases, to get congruences, f needs to be replaced by $f \otimes \chi$ for some character χ. Then A_{p} will be replaced by $A_{p} \chi(p)$ in (12), so this phenomena can be recognized by checking whether A_{p} / a_{p} and A_{p} / b_{p} are roots of unity. This happens in subsection 7.3.2. However, we have not worked out what the character χ is.
7.2. Case 2. In most of our examples examples, it turns out that the ASwD basis depends on the congruence class of the prime p modulo some small integer. It turns out that for some primes, (11) holds for the values tested, in which case h_{1}, h_{2} is assumed to be the ASwD basis, but for other primes, this does not hold.

If (11) does not hold for some prime p, then we will assume that for this prime, an ASwD basis consists of linear combinations of the form $h_{1}+\alpha h_{2}$, where α is an algebraic number of small degree, such that for integers n with $p \nmid n$. the expansion coefficients satisfy

$$
\begin{equation*}
a_{p n}+\alpha b_{p n} \equiv A_{p}\left(a_{n}+\alpha b_{n}\right) \bmod p^{2} \tag{13}
\end{equation*}
$$

A priori, α depends on p, though we will see that in the examples we are considering, evidence suggests that it only depends on the congruence class of p modulo a small integer.

For (13) to hold, it is sufficient, but not necessary, that

$$
\begin{equation*}
a_{p n} \equiv A_{p} \alpha b_{n} \quad \bmod p^{2}, \quad \text { and } \alpha b_{p n} \equiv A_{p} a_{n} \quad \bmod p^{2}, \tag{14}
\end{equation*}
$$

which, assuming all the terms are non-zero, implies that $a_{p n} / b_{n}=A_{p} \alpha_{p}$ and $b_{p n} / a_{n}=A_{p} / \alpha_{p}$, So if (11) does not hold as n varies, we test whether
(15) $\frac{a_{n p}}{b_{n}} \equiv$ constant $\quad \bmod p^{2} \quad$ and $\quad \frac{b_{n p}}{a_{n}} \equiv$ constant $\bmod p^{2}$.

If this holds, the values of α and $A_{p} \bmod p^{2}$, up to sign, are determined by

$$
\begin{equation*}
\alpha^{2} \equiv \frac{a_{n p}}{b_{n}} / \frac{b_{n p}}{a_{n}} \quad \bmod p^{2}, \quad \text { and } \quad A_{p}^{2} \equiv \frac{a_{n p}}{b_{n}} \frac{b_{n p}}{a_{n}} \quad \bmod p^{2} . \tag{16}
\end{equation*}
$$

For p for which (15) holds, there are two solutions to (16) for α, and the ASwD basis has the form $h_{1}+\alpha h_{2}, h_{1}-\alpha h_{2}$. We expect that α only depends on p modulo some small integer. Since α is expected to be an algebraic integer, but not an integer, it may be difficult to guess the value of α, from $\alpha \bmod p^{2}$. So we also look at powers of $\alpha \bmod p^{2}$, and if for some small power these are constant as p varies, then we deduce a value of α. Once α is determined, $A_{p} \bmod p^{2}$ is determined, if this agrees with the coefficients of our congruence modular form, then we take this as evidence that $h_{1}+\alpha h_{2}, h_{1}-\alpha h_{2}$ is an ASwD basis with f the associated new form. As for case 1 , we will also test whether the A_{p} must be multiplied some root of unity, presumably the value $\chi(p)$ for some character χ, though again, we have not determined the character in question.
7.3. Examples associated with newform in $S_{3}\left(\Gamma_{0}(48), \chi\right)$. For $\Gamma_{\text {24.6.1 }}{ }^{6}$ and $\Gamma_{8^{3} .2^{3} .3^{3}}$, evidence suggests that the associated congruence form is as follows, with the first few A_{p} as in Table 19 ,

$$
\begin{align*}
f(z) & =\frac{\eta(4 z)^{9} \eta(12 z)^{9}}{\eta(2 z)^{3} \eta(6 z)^{3} \eta(8 z)^{3} \eta(24 z)^{3}} \tag{17}\\
& =q+3 q^{3}-2 q^{7}+9 q^{9}-22 q^{13}-26 q^{19}-6 q^{21}+25 q^{25}+\ldots
\end{align*}
$$

p	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67
a_{p}	0	-2	0	-22	0	-26	0	0	46	26	0	22	0	0	0	74	-122

Table 19. First few coefficients A_{p} for newform for $S_{3}\left(\Gamma_{0}(48), \chi\right)$.
7.3.1. Atkin Swinnerton-Dyer congruences for $\Gamma_{24.6 .16}$. We have shown previously that $S_{3}\left(\Gamma_{24.6 .1^{6}}\right)$ has a basis

$$
\begin{align*}
& \text { (18) } h_{1}(z)=\sqrt[3]{\frac{\eta(z)^{4} \eta(4 z)^{20}}{\eta(2 z)^{6}}}=q-\frac{4}{3} q^{2}+\frac{8}{9} q^{3}-\frac{176}{81} q^{4}-\frac{850}{243} q^{5} \cdots \tag{18}\\
& (19) h_{2}(z)=\sqrt[3]{\frac{\eta(4 z)^{16} \eta(2 z)^{6}}{\eta(z)^{4}}}=q+\frac{4}{3} q^{2}+\frac{8}{9} q^{3}+\frac{176}{81} q^{4}-\frac{850}{243} q^{5} \cdots
\end{align*}
$$

The first few prime coefficients of these forms are:

TABLE 20. values of $\frac{a_{n p}}{a_{n}}$ and $\frac{b_{n p}}{b_{n}}$ for primes $p \geq 5$ and integers n, with $p n \leq 500$. These agree $\bmod p^{2}$ with values in Table 19.

Since the ratios $a_{n p} / a_{n}$ and $b_{n p} / b_{n}$, given in Table 20 appear to be constant, and the numbers in Tables 19 and 20 agree modulo p^{2}, we conclude that the ASwD basis of $S_{3}\left(\Gamma_{24.6 .1^{6}}\right)$ is h_{1}, h_{2}, as given by (18) and (19) for all primes, with f in (17) being the associated congruence form.
7.3.2. Atkin Swinnerton-Dyer congruences for $\Gamma_{8^{3} .2^{3} .3^{3}}$. Basis of $S_{3}\left(\Gamma_{8^{3} .2^{3} .3^{3}}\right)$, written in terms of $r=q^{1 / 3}$ and $s=q^{2 / 3}$.
$h_{1}(z)=\sqrt[3]{\frac{\eta(2 \tau)^{20} \eta(8 \tau)^{4}}{\eta(4 \tau)^{6}}}=\sum_{n \geq 1} a_{n} s^{n}=s-\frac{20}{3} s^{4}+\frac{128}{9} s^{7}-\frac{400}{81} s^{10}+\cdots$
$h_{2}(z)=\sqrt[3]{\frac{\eta(2 \tau)^{16} \eta(4 \tau)^{6}}{\eta(8 \tau)^{4}}}=\sum_{n \geq 1} b_{n} r^{n}=r-\frac{16}{3} r^{7}+\frac{38}{9} r^{13}+\frac{1696}{81} r^{19}+\cdots$
First few prime coefficients:

$$
\begin{array}{ccccccccc}
p & 2 & 3 & 5 & 7 & 11 & 13 & 17 & 19 \\
a_{p} & 0 & 0 & 0 & \frac{128}{9} & 0 & -\frac{3454}{243} & 0 & -\frac{38656}{6561} \\
b_{p} & 0 & 0 & 0 & -\frac{16}{3} & 0 & \frac{38}{9} & 0 & \frac{1696}{81}
\end{array}
$$

Our computations show that the ratios $\frac{a_{n p}}{a_{n}}$ and $\frac{b_{n p}}{b_{n}}$ remain constant for fixed p, for values of $p n$ up to 500 . We can write these ratios in terms of ω, a sixth root of $1 \bmod p^{2}$, as in Table 21. In this table we also tabulate ω, and the order of ω as an element of $\left(\mathbf{Z} / p^{2} \mathbf{Z}\right)^{\times}$.

Since the values of $a_{n p} / a_{n}$ and $b_{n p} / b_{n}$ are constant over the ranges computed, we conjecture that h_{1}, h_{2} is an ASwD basis for all primes. Comparing these values with the coefficients of f, we conjecture that the associated congruence form is $f \otimes \chi$ where χ is a certain Hecke character.

p	$\frac{a_{n p}}{a_{n}}$	$\bmod p^{2}$	$\frac{b_{n p}}{b_{n}}$	$\bmod p^{2}$	ω	$o(\omega)$
7	36	$=-2 \omega$	11	$=-2 \omega^{-1}$	31	6
11	0		0			
13	168	$=-22 \omega$	23	$=-22 \omega^{-1}$	146	3
17	0		0			
19	11	$=-26 \omega$	324	$=-26 \omega^{-1}$	69	6
23	0		0			
29	0		0			
31	915	$=46 \omega$	915	$=46 \omega^{-1}$	-1	2
37	47	$=26 \omega$	1296	$=26 \omega^{-1}$	581	3
41	0		0			
43	1827	$=22 \omega$	1827	$=22 \omega^{-1}$	-1	2
47	0		0			

Table 21. values of $\frac{a_{n p}}{a_{n}}$ and $\frac{b_{n p}}{b_{n}}$ for $\Gamma_{8^{3} .2^{3} .3^{3}}$, for primes $p \geq 5$ and integers n, with $p n \leq 500$, in terms of a 6 th root of unity, ω, with order $o(\omega)$. Compare with values in Table 19
7.4. Examples associated with newform in $S_{3}\left(\Gamma_{0}(432), \chi\right)$. For $\Gamma_{8^{3} .6 .3 .1^{3}}$ and $\Gamma_{24.3 .2^{3} .1^{3}}$ evidence suggests that the associated congruence form is

$$
\begin{align*}
f(z)= & q+6 \sqrt{2} q^{5}+\sqrt{-3} q^{7}+6 \sqrt{-6} q^{11}+13 q^{13}-6 \sqrt{2} q^{17}+ \tag{20}\\
& 11 \sqrt{-3} q^{19}-18 \sqrt{-6} q^{23}+47 q^{25}-24 \sqrt{2} q^{29}+\cdots
\end{align*}
$$

The first few A_{p} are given in Table 22, where they are divided by either $1, \sqrt{2}, \sqrt{3}$, or $\sqrt{-6}$, for easy readability

p	5	7	11	13	17	19	23	29	31	37	41	43	47
A_{p}				13						35			
$A_{p} / \sqrt{2}$	6				-6			-24			0		
$A_{p} / \sqrt{-3}$		1				11			24			-24	
$A_{p} / \sqrt{-6}$			6				-18						6

Table 22. Coefficients of f in (20) and (21).

The form f can be given in terms of eta products and an Eisenstein series as follows:

$$
\begin{equation*}
f(z)=f_{1}(12 z)+6 \sqrt{2} f_{5}(12 z)+\sqrt{-3} f_{7}(12 z)+6 \sqrt{-6} f_{11}(12 z), \tag{21}
\end{equation*}
$$

where

$$
\begin{align*}
f_{1}(z) & =\frac{\eta(2 z)^{3} \eta(3 z)}{\eta(6 z) \eta(z)} E_{6}(z) \tag{22}\\
f_{5}(z) & =\frac{\eta(z) \eta(2 z)^{3} \eta(3 z)^{3}}{\eta(6 z)} \tag{23}\\
f_{7}(z) & =\frac{\eta(6 z)^{3} \eta(z)}{\eta(2 z) \eta(3 z)} E_{6}(z) \tag{24}\\
f_{11}(z) & =\frac{\eta(3 z) \eta(z)^{3} \eta(6 z)^{3}}{\eta(2 z)} \tag{25}\\
\text { where } E_{6}(z) & =1+12 \sum_{n \geq 1}(\sigma(3 n)-3 \sigma(n)) q^{n}, \tag{26}
\end{align*}
$$

and $\sigma(n)=\sum_{d \mid n} d$.
7.4.1. Atkin Swinnerton-Dyer congruences for $\Gamma_{83.6 .3 .1^{3}}$. We have seen that a basis of $S_{3}\left(\Gamma_{8^{3} \text {.6.3.1 }}{ }^{3}\right)$ can be given by:

$$
\begin{aligned}
& h_{1}(z)=\sqrt[3]{\frac{\eta(z)^{4} \eta(2 z)^{10} \eta(8 z)^{8}}{\eta(4 z)^{4}}}=\sum_{n \geq 1} a_{n} q^{n}=q-\frac{4}{3} q^{2}-\frac{40}{9} q^{3}+\frac{400}{81} q^{4}+\frac{1454}{243} q^{5}+\cdots \\
& h_{2}(z)=\sqrt[3]{\frac{\eta(z)^{8} \eta(4 z)^{10} \eta(8 z)^{4}}{\eta(2 z)^{4}}}=\sum_{n \geq 1} b_{n} q^{n}=q-\frac{8}{3} q^{2}+\frac{8}{9} q^{3}+\frac{32}{81} q^{4}-\frac{82}{243} q^{5}+\ldots
\end{aligned}
$$

The first few prime coefficients of h_{1} and h_{2} are as follows:

p	2	3	5	7	11	13	17	19
a_{p}	$-\frac{4}{3}$	$-\frac{40}{9}$	$\frac{1454}{243}$	$-\frac{13168}{6561}$	$\frac{3871144}{4782969}$	$-\frac{223095138}{129140163}$	$-\frac{418720079278}{31381059609}$	$\frac{3066046258552}{2541865828329}$
b_{p}	$-\frac{8}{3}$	$\frac{8}{9}$	$-\frac{82}{243}$	$-\frac{24400}{6561}$	$\frac{16345336}{4782969}$	$\frac{123674992}{129140163}$	$\frac{84428399194}{31381059609}$	$-\frac{3458560729368}{2541865828329}$

For $p \equiv 1 \bmod 3$, our data suggests that $a_{p n} / a_{p}$ and $b_{p n} / b_{n}$ remain constant as n varies, with values as in Table 23. This means we are in case 1, described in subsection 7.1. Experimentally, we noted that for these p we always have $\left(\frac{a_{p n}}{a_{p}} / \frac{b_{p n}}{b_{n}}\right)^{6} \equiv 1 \bmod p^{2}$ (excluding the case $p=13$, when $\left.a_{p n} \equiv b_{p n} \equiv 0 \bmod 13\right)$. We also checked that $\frac{a_{p n}}{a_{p}} \times \frac{b_{p n}}{b_{n}} \equiv A_{p}^{2} \bmod p^{2}$ where the A_{p} are as in Table 22. The first observation indicates that these two forms correspond to congruence forms which are twists of each other by an order 6 character, and the second observation indicates that the congruence form is the f given by (20). Using these two observations, we write the ratios $a_{n p} / a_{n}$ and $b_{n p} / b_{n}$ in the factored forms in Table 23. The values of ω, a sixth root of 1 , and the values used for $\sqrt{3} \bmod p^{2}$ are also tabulated.

Based on these experiments, we conjecture that the Atkin SwinnertonDyer basis of $S_{3}\left(\Gamma_{8^{3} .6 .3 .1^{3}}\right)$ when $p \equiv 1 \bmod 3$ is h_{1}, h_{2}, and the associated congruence forms are $f \otimes \chi$ and $f \otimes \chi^{-1}$ for a certain Hecke character.

p	$\frac{a_{n p}}{a_{n}} \bmod p^{2}$		$\frac{b_{n p}}{b_{n}}$		$\bmod p^{2}$	$\sqrt{-3}$
ω						
7	17	$=\omega^{-4} \sqrt{-3}$	29	$=\omega^{-2} \sqrt{-3}$	37	$\sqrt[4]{-18}$
13	52	$=\omega^{-2} 13$	130	$=\omega^{2} 13$		$\sqrt{23}$
19	48	$=\omega^{-2} 11 \sqrt{-3}$	346	$=\omega^{-4} 11 \sqrt{-3}$	137	$\sqrt{69}$
31	915	$=\omega^{6} 24 \sqrt{-3}$	46	$=24 \sqrt{-3}$	82	$\sqrt[6]{-1}$
37	165	$=\omega^{-4} 35$	1169	$=\omega^{4} 35$		$\sqrt[4]{581}$
43	11	$=-\omega^{6} 24 \sqrt{-3}$	1838	$=-24 \sqrt{-3}$	1002	$\sqrt[6]{-1}$

TABLE 23. Values of $a_{n p} / a_{n}$ and $b_{n p} / b_{n}$ for $p \equiv 1 \bmod 3$, for h_{1} and h_{2} for $\Gamma_{8^{3} .6 .3 .1^{3}}$, in terms of A_{p} in Table 22,

p	$\frac{a_{n p}}{b_{n}}$	$\frac{b_{n p}}{a_{n}} \bmod p^{2}$	$\left(\frac{a_{n p}}{b_{n}} / \frac{b_{n p}}{a_{n}}\right)^{6} \equiv \alpha^{3}$	$\frac{a_{n p}}{b_{n}} \frac{b_{n p}}{a_{n}} \equiv A_{p}^{2}$
5	3	1	4	$-2 \cdot 6^{2}$
11	84	32	4	$-6 \cdot 6^{2}$
17	278	243	4	$-2 \cdot 6^{2}$
23	335	130	4	$-6 \cdot 18^{2}$
29	272	441	4	$-2 \cdot 24^{2}$
41	0	0		
47	302	760	4	$-6 \cdot 6^{2}$

TABLE 24. Values of $a_{n p} / b_{n}$ and $b_{n p} / a_{n}$ for $p \equiv 2 \bmod 3$, for h_{1} and h_{2} for $\Gamma_{8^{3} .6 .3 .1^{3}}$, with α as in (16), and A_{p} (experimentally) as in Table 22.

From the data in Table 24, following the explanation of Section 7.2, the Atkin Swinnerton-Dyer basis of $S_{3}\left(\Gamma_{8^{3} \cdot 6 \cdot 3 \cdot 1^{3}}\right)$ when $p \equiv 1 \bmod 3$ should be h_{1}, h_{2}, and when $p \equiv 2 \bmod 3$, it should consist of forms of the form $h_{1}+\alpha h_{2}$ with $\alpha^{3}=4$.
7.4.2. Atkin Swinnerton-Dyer congruences for $\Gamma_{24.3 .2^{3} .1^{3}}$. Basis of $S_{3}\left(\Gamma_{24.3 .2^{3} .1^{3}}\right)$:

$$
\begin{aligned}
& h_{1}(z)=\sqrt[3]{\frac{\eta(2 \tau)^{22} \eta(8 \tau)^{8}}{\eta(\tau)^{4} \eta(4 \tau)^{8}}}=q+\frac{4}{3} q^{2}-\frac{40}{9} q^{3}-\frac{400}{81} q^{4}+\frac{1454}{243} q^{5}+\frac{1888}{729} q^{6}-\frac{13168}{6561} q^{7}+\cdots \\
& h_{2}(z)=\sqrt[3]{\frac{\eta(2 \tau)^{20} \eta(4 \tau)^{2} \eta(8 \tau)^{4}}{\eta(\tau)^{8}}}=q+\frac{8}{3} q^{2}+\frac{8}{9} q^{3}-\frac{32}{81} q^{4}-\frac{82}{243} q^{5}-\frac{5440}{729} q^{6}-\frac{24400}{6561} q^{7}+\cdots
\end{aligned}
$$

First few prime coefficients:

$$
\begin{array}{ccccccccc}
p & 2 & 3 & 5 & 7 & 11 & 13 & 17 & 19 \\
a_{p} & \frac{4}{3} & -\frac{40}{9} & \frac{1454}{243} & -\frac{13168}{6561} & \frac{38671144}{4782969} & -\frac{2230795138}{129140163} & -\frac{418720079278}{31381059609} & \frac{30660416258552}{2541865828329} \\
b_{p} & \frac{8}{3} & \frac{8}{9} & -\frac{82}{243} & -\frac{24400}{6561} & \frac{16345336}{4782969} & \frac{1236747902}{129140163} & \frac{842483994194}{31381059609} & -\frac{34758650729368}{2541865828329}
\end{array}
$$

Note that up to sign these are identical to the coefficients of the forms given for the $\Gamma_{8^{3} .6 .31^{3}}$ case, and so the ASwD basis is expected to be the same as

p	$\frac{a_{n p}}{a_{n}}$	$\frac{b_{n p}}{b_{n}}$
7	17	29
13	52	130
19	48	346
31	915	46
37	165	1169
43	11	1838

TABLE 25. Values of $a_{n p} / a_{n}$ and $b_{n p} / b_{n}$ for $p \equiv 1 \bmod 3$, for h_{1} and h_{2} for $S_{3}\left(\Gamma_{24.3 .2^{3} .1^{3}}\right)$. These values are the same as those in Table 23.

p	$\frac{a_{n p}}{b_{n}}$	$\frac{b_{n p}}{a_{n}}$	$\bmod p^{2}$
5	3	1	
11	84	32	
17	278	243	
23	335	130	
29	272	441	
41	0	0	
47	302	760	

TABLE 26. Values of $a_{n p} / b_{n}$ and $b_{n p} / a_{n}$ for $p \equiv 2 \bmod 3$, for h_{1} and h_{2} for $S_{3}\left(\Gamma_{24.3 .2^{3} .1^{3}}\right)$. These values are the same as those in Table 24.
in the $\Gamma_{8^{3} .6 .3 .1^{3}}$ case, namely h_{1}, h_{2} when $p \equiv 1 \bmod 3$ and $h_{1}+\alpha h_{2}$ with $\alpha^{3}=4$ when $p \equiv 2 \bmod 3$.
7.4.3. Atkin Swinnerton-Dyer congruences for $\Gamma_{24.3 .2^{3} .1^{3} B}$. This is a conjugate of the $S_{3}\left(\Gamma_{24.3 .2^{3} .1^{3}}\right)$ example by the involution

$$
W_{8}=\left(\begin{array}{cc}
0 & -1 \\
8 & 0
\end{array}\right) .
$$

Basis of $S_{3}\left(\Gamma_{24.3 .2^{3} .1^{3} B}\right)$ in terms of $r=q^{1 / 3}$.

$$
\begin{aligned}
& h_{1}(z)=\sqrt[3]{\frac{\eta(z)^{8} \eta(4 z)^{22}}{\eta(8 z)^{4} \eta(8 z)^{8}}}=\sum_{n \geq 1} a_{n} r^{n}=r^{2}-\frac{8}{3} r^{5}+\frac{20}{9} r^{8}-\frac{256}{81} r^{11}-\frac{64}{243} r^{14}+\cdots \\
& h_{2}(z)=\sqrt[3]{\frac{\eta(z)^{4} \eta(2 z)^{2} \eta(4 z)^{20}}{\eta(8 z)^{8}}}=\sum_{n \geq 1} b_{n} r^{n}=r-\frac{4}{3} r^{4}-\frac{16}{9} r^{7}+\frac{112}{81} r^{10}+\ldots
\end{aligned}
$$

First few prime coefficients:

$$
\begin{array}{cccccccccccc}
p & 2 & 3 & 5 & 7 & 11 & 13 & 17 & 19 & 23 & 29 & 31 \\
a_{p} & 1 & 0 & -\frac{8}{3} & 0 & -\frac{256}{81} & 0 & \frac{7994}{729} & 0 & \frac{172544}{19683} & -\frac{18907736}{1594323} & 0 \\
b_{p} & 0 & 0 & 0 & -\frac{16}{9} & 0 & -\frac{1534}{243} & 0 & \frac{78560}{6561} & 0 & 0 & -\frac{126424784}{4782969}
\end{array}
$$

p	$a_{n p} / a_{n}$	$b_{n p} / b_{n}$	$a_{n p} / b_{n}$	$b_{n p} / a_{n}$	ω	i	$\sqrt[3]{2}$
5			$14=6 \sqrt{-2} \cdot \frac{\sqrt{2}}{2 \sqrt[3]{2}}$	$2 \quad=6 \sqrt{-2} \cdot \frac{2 \sqrt[3]{2}}{\sqrt{2}}$		$i=7$	3
7	$32=-\sqrt{-3} \cdot \omega^{2}$	$20=\sqrt{-3} \cdot \omega$	- $2 \sqrt{2}$		18	$\sqrt{-3}=12$	
11			$79=6 \sqrt{-6} \cdot \frac{\sqrt{-2}}{2 \sqrt[3]{2}}$	$57=6 \sqrt{-6} \cdot \frac{2 \sqrt[3]{2}}{\sqrt{-2}}$		$\sqrt{3}=27$	73
13	$52=-13 \cdot \omega$	$130=-13 \cdot \omega^{2}$			22	$\sqrt{-3}=45$	
17			$139=6 \sqrt{-2} \cdot \frac{\sqrt{2}}{2 \sqrt[3]{2}}$	$197=6 \sqrt{-2} \cdot \frac{2 \sqrt[3]{2}}{\sqrt{2}}$		$i=38$	195
19	$313=11 \sqrt{-3} \cdot \omega$	$15=-11 \sqrt{-3} \cdot \omega^{2}$			68	$\sqrt{-3}=137$	
23			$97=-18 \sqrt{-6} \cdot \frac{\sqrt{-2}}{2 \sqrt[3]{2}}$	$269=-18 \sqrt{-6} \cdot \frac{2 \sqrt[3]{2}}{\sqrt{-2}}$		$\sqrt{3}=223$	384
29			$136=-24 \sqrt{-2} \cdot \frac{\sqrt{2}}{2 \sqrt[3]{2}}$	$41=-24 \sqrt{-2} \cdot \frac{2 \sqrt[3]{2}}{\sqrt{2}}$		$i=800$	403
31	$46=24 \sqrt{-3}$	$915=-24 \sqrt{-3}$			439	$\sqrt{-3}=82$	
37	$165=35 \cdot \omega^{2}$	$1169=35 \cdot \omega$			581		
41			0	0			
43	$1838=24 \sqrt{-3}$	$11=-24 \sqrt{-3}$			423	$\sqrt{-3}=847$	
47			$2058=6 \sqrt{-6} \cdot \frac{\sqrt{-2}}{2 \sqrt[3]{2}}$	$689 \quad 6 \sqrt{-6} \cdot \frac{2 \sqrt[3]{2}}{\sqrt{-2}}$		$\sqrt{3}=270$	1854

TABLE 28. Values of $a_{n p} / b_{n}$ and $b_{n p} / a_{n}$ for $p \equiv 2 \bmod 3$, for h_{1} and h_{2} for $S_{3}\left(\Gamma_{24.3 .2^{3} .1^{3} B}\right)$.

Ratios when terms are non-zero:
Atkin Swinnerton-Dyer basis:
if $p \equiv 1 \quad \bmod 3 \quad$ basis is $\quad h_{1}, h_{2}$
if $p \equiv 5 \quad \bmod 12 \quad$ basis is $\quad h_{1} \pm \frac{\sqrt{2}}{2 \sqrt[3]{2}} h_{2}$
if $p \equiv 11 \quad \bmod 12 \quad$ basis is $\quad h_{1} \pm \frac{\sqrt{-2}}{2 \sqrt[3]{2}} h_{2}$
7.5. Examples associated with newform in $S_{3}\left(\Gamma_{0}(243), \chi\right)$.
$f(z)=q+3 i q^{2}-5 q^{4}+6 i q^{5}+11 q^{7}-3 i q^{8}-18 q^{10}+12 i q^{11}+\cdots$
where i is a root of $x^{2}+1=0$. Note, the corresponding Galois representation is a twist of the representation corresponding to $E_{6}\left(3 r^{3}\right)$.

The first few prime coefficients \tilde{A}_{p} of this form are as follows:

p	5	7	11	13	17	19	23	29	31	37
\tilde{A}_{p}	$6 i$	11	$12 i$	5	$-18 i$	-19	$-30 i$	$48 i$	-13	17

7.5.1. Atkin Swinnerton-Dyer congruences for $\Gamma_{18.6 .3^{3} .1^{3}}$. Basis of $S_{3}\left(\Gamma_{18.6 .3^{3} .1^{3}}\right)$

$$
\begin{aligned}
& h_{1}(z)=\sqrt[3]{\frac{\eta(z)^{4} \eta(2 z)^{7} \eta(6 z)^{11}}{\eta(3 z)^{4}}}=\sum_{n \geq 1} a_{n} q^{n}=q-\frac{4}{3} q^{2}-\frac{31}{9} q^{3}+\frac{400}{81} q^{4}+\frac{104}{243} q^{5}+\ldots \\
& h_{2}(z)=\sqrt[3]{\frac{\eta(3 z)^{4} \eta(6 z)^{7} \eta(2 z)^{11}}{\eta(z)^{4}}}=\sum_{n \geq 1} b_{n} q^{n}=q+\frac{4}{3} q^{2}-\frac{7}{9} q^{3}-\frac{112}{81} q^{4}-\frac{616}{243} q^{5}+\ldots
\end{aligned}
$$

First few prime coefficients:

p	2	3	5	7	11	13	17	19
a_{p}	$-\frac{4}{3}$	$-\frac{31}{9}$	$\frac{104}{243}$	$\frac{44018}{6561}$	$-\frac{38654696}{4782969}$	$-\frac{1857609346}{129140163}$	$\frac{362933655200}{31381059609}$	$-\frac{33243449873158}{2541865828329}$
b_{p}	$\frac{4}{3}$	$-\frac{7}{9}$	$-\frac{616}{243}$	$-\frac{15886}{6561}$	$\frac{43656424}{4782969}$	$-\frac{343807618}{129140163}$	$-\frac{100695940768}{31381059609}$	$\frac{19258418018042}{2541865828329}$

with a_{n} and b_{n} the coefficients of the non-congruence forms given above. The following ratios, all computed $\bmod p^{2}$, appear to be constant as n varies, for the given $p \mathrm{~s}$. The table shows the constants; if no entry is shown, this means the ratio is not constant in this case.

p	$\frac{a_{n p}}{a_{n}}$	$\frac{b_{n p}}{b_{n}}$	$\frac{a_{n p}}{b_{n}}$	$\frac{b_{n p}}{a_{n}}$	$\bmod p^{2}$
5			3	13	
7	36	2			
11			13	82	
13	54	110			
17			279	148	
19	228	152			
23			130	400	
29			296	515	
31	915	59			
37	1058	294			

Case I: $p \equiv 1 \bmod 3$. These ratios are a special case of the Atkin-SwinnertonDyer type relation, e.g., $a_{7 n} / a_{n} \equiv 36 \bmod 7^{2}$ can be written as

$$
a_{7 n}-36 a_{n}+7^{2} a_{n / p} \equiv 0 \quad \bmod 7^{2} .
$$

So, for $p \equiv 1 \bmod 3$, it looks like h_{1} and h_{2} form an Atkin Swinnerton-Dyer basis.

Note that for p in the above table with $p \equiv 1 \bmod p$, except for the case $p=19$, we have $\left(\frac{a_{n p}}{a_{n}} / \frac{b_{n p}}{b_{n}}\right)^{3} \equiv 1 \bmod p^{2}$.

It's not surprising that this relation holds, since the ratios ought to be the values of A_{p} given above, which we can see should always be ω or ω^{2} in these cases, including for $p=19$.

The reason the congruence does not hold for $p=19$ is that in this case we have $\omega, \omega^{2} \equiv 68,292 \bmod 19^{2}$, and $\alpha_{1}=-19 \omega, \alpha_{2}=-19 \omega^{2} \equiv 152,228$ $\bmod 19^{2}$, so we only have that $\alpha_{1} / 19 \equiv \omega \bmod 19, \alpha_{2} / 19 \equiv \omega^{2} \bmod 19$, i.e., the ratio satisfies $\left(\frac{a_{19 n}}{a_{n}} / \frac{b_{19 n}}{b_{n}}\right)^{3} \equiv 1 \bmod 19$, which we can check is true. Case II: $p \equiv 2 \bmod 3$. Observation: when $p \equiv 2 \bmod 3$ we always have $\left(\frac{a_{n p}}{b_{n}} / \frac{b_{n p}}{a_{n}}\right)^{3} \equiv-9 \bmod p^{2}$.

Suppose that the Atkin Swinnerton-Dyer basis is $h_{1}+\alpha h_{2}$, then (writing $\alpha_{p}=\alpha \bmod p^{2}$) we would have

$$
a_{p n}+\alpha_{p} b_{p n} \equiv A_{p}\left(a_{n}+\alpha_{p} b_{n}\right) \quad \bmod p^{2},
$$

and suppose we in fact have

$$
a_{p n} \equiv A_{p} \alpha_{p} b_{n} \quad \bmod p^{2}, \text { and } \alpha_{p} b_{p n} \equiv A_{p} a_{n} \quad \bmod p^{2},
$$

then this implies that $a_{p n} / b_{n}=A_{p} \alpha_{p}$ and $b_{p n} / a_{n}=A_{p} / \alpha_{p}$, so $\alpha_{p}^{2} \equiv \frac{a_{n p}}{b_{n}} / \frac{b_{n p}}{a_{n}}$, so from the above observation we expect $\alpha^{6} \equiv-9 \bmod p^{2}$, i.e., $\alpha \equiv \sqrt[3]{3} i$ $\bmod p^{2}$, so it seems that for $p \equiv 2 \bmod 3$ we should have Atkin SwinnertonDyer basis consisting of forms of the form $h_{1}+\alpha h_{2}$, where $\alpha^{6}=-9$.

The value of A_{p} is given by $A_{p} \equiv \pm \sqrt{\frac{a_{n}}{b_{n}} \frac{b_{n p}}{a_{n}}} \bmod p^{2}$, whereas the values for $p \equiv 1 \bmod 3$ are those already in the table above. From the values in the above table, we compute the following table of $A_{p} \mathrm{~s}$, with no particular order given to the two possible values. In this table, we write e.g., $A_{p} \equiv 6 i$ $\bmod 25$ to mean that $A_{p}^{2} \equiv-36 \bmod 25$, etc, and ω means $\omega^{2}+\omega+1 \equiv 0$ $\bmod p^{2}$.

p	5	7	11	13	17	19	23	29	31	37
A_{p}	$6 i$	11ω	$12 i$	5ω	$18 i$	-19ω	$30 i$	$48 i$	-13ω	17ω
$\bmod p^{2}$	$-6 i$	$11 \omega^{2}$	$-12 i$	$5 \omega^{2}$	$-18 i$	$-19 \omega^{2}$	$-30 i$	$-48 i$	$-13 \omega^{2}$	$17 \omega^{2}$

7.5.2. Atkin Swinnerton-Dyer congruences for $\Gamma_{9.6^{3} .3 .2^{3}}$. Basis of $S_{3}\left(\Gamma_{9.6^{3} .3 .2^{3}}\right)$ in terms of $r=q^{1 / 3}$.

$$
\begin{aligned}
& h_{1}(z)=\sqrt[3]{\frac{\eta(\tau)^{7} \eta(2 \tau)^{4} \eta(3 \tau)^{11}}{\eta(6 \tau)^{4}}}=\sum_{n \geq 1} a_{n} r^{n}=r-\frac{7}{3} r^{4}-\frac{19}{9} r^{7}+\frac{193}{81} r^{10}+\frac{2306}{243} r^{13}+\cdots \\
& h_{2}(z)=\sqrt[3]{\frac{\eta(\tau)^{11} \eta(3 \tau)^{7} \eta(6 \tau)^{4}}{\eta(2 \tau)^{4}}}=\sum_{n \geq 1} b_{n} r^{n}=r^{2}-\frac{11}{3} r^{5}+\frac{23}{9} r^{8}-\frac{13}{81} r^{11}+\cdots
\end{aligned}
$$

First few prime coefficients:

p	2	3	5	7	11	13	17	19
a_{p}	0	0	0	$-\frac{19}{9}$	0	$\frac{2306}{243}$	0	$-\frac{151696}{6561}$
b_{p}	1	0	$-\frac{11}{3}$	0	$-\frac{13}{81}$	0	$-\frac{7130}{729}$	0

First few prime coefficients $\bmod p^{2}$. Notice that these are either zero or the same as in the $\Gamma_{18.6 .3^{3} .1^{3}}$ case.

Ratios of coefficients, (when all terms are non-zero), all numbers given $\bmod p^{2}$. When $p \equiv 2 \bmod 3$, there is a unique cube root $\bmod p^{2}$ of any integer, so the given value of $\sqrt[3]{3}$ is unique. i means the square root of -1 .

p	$a_{n p} / a_{n}$	$b_{n p} / b_{n}$	$a_{n p} / b_{n}$	$b_{n p} / a_{n}$	ω	ω^{2}	$\sqrt[3]{3}$
5			$3 \quad=6 i \cdot i \sqrt[3]{3}$	$13 \quad=6 i / i \sqrt[3]{3}$			12
7	$36=11 \cdot \omega^{2}$	$2=11 \cdot \omega$			18	30	
11			$13=12 i \cdot i \sqrt[3]{3}$	$82=12 i / i \sqrt[3]{3}$			9
13	$54=5 \cdot \omega^{2}$	$110=5 \cdot \omega$			22	146	
17			$279=-18 i \cdot i \sqrt[3]{3}$	$148=-18 i / i \sqrt[3]{3}$			160
19	$228=-19 \cdot \omega^{2}$	$152=-19 \cdot \omega$			68	292	
23			$130=-30 i \cdot i \sqrt[3]{3}$	$400=-30 i / i \sqrt[3]{3}$			357
29			$296=48 i \cdot \sqrt[3]{3}$	$515=48 i / i \sqrt[3]{3}$			134
31	$915=-13 \cdot \omega^{2}$	$59=-13 \cdot \omega$			439	521	
37	$1058=17 \cdot \omega^{2}$	$294=17 \cdot \omega$			581	787	
41			$1384=-30 i \cdot i \sqrt[3]{3}$	$869=-30 i / i \sqrt[3]{3}$			1503
43	$1173=29 \cdot \omega^{2}$	$647=29 \cdot \omega$			1425	423	
47			$155=-24 i \cdot i \sqrt[3]{3}$	$1906=-24 i / i \sqrt[3]{3}$			1203

The above table indicates that when $p \equiv 1 \bmod 3$, we have

$$
a_{n p}-A_{p} \omega^{2} a_{n} \equiv 0 \quad \bmod p^{2} \quad \text { and } \quad b_{n p}-A_{p} \omega b_{n} \equiv 0 \quad \bmod p^{2}
$$

for certain A_{p}, indicating h_{1}, h_{2} is an ASWD-basis in this case.
Note that this relation only hold when terms are non zero. E.g., $b_{1}=0$, so we can't have $b_{p}+A_{p} b_{1} \equiv 0 \bmod p$ for any p with $b_{p} \neq 0$.

For $p \equiv 2 \bmod 3$, the above table indicates that we have

$$
\begin{aligned}
& \left(a_{n p}+i \sqrt[3]{3} b_{n p}\right)+i A_{p}\left(a_{n}+i \sqrt[3]{3} b_{n}\right) \equiv 0 \quad \bmod p^{2} \\
& \left(a_{n p}-i \sqrt[3]{3} b_{n p}\right)-i A_{p}\left(a_{n}-i \sqrt[3]{3} b_{n}\right) \equiv 0 \quad \bmod p^{2}
\end{aligned}
$$

so $h_{1}+i \sqrt[3]{3} h_{2}, h_{1}-i \sqrt[3]{3} h_{2}$ should be the ASWD-basis in this case. (shouldn't make any difference which cube root of three is taken)
7.6. Examples associated with newform in $S_{3}\left(\Gamma_{0}(48), \chi\right)$..

$$
\begin{aligned}
f(z)= & q-\sqrt{-2} q^{2}-2 q^{4}+3 \sqrt{-2} q^{5}-7 q^{7}+2 \sqrt{-2} q^{8}+6 q^{10}-3 \sqrt{-2} q^{11}+5 q^{13} \\
& +7 \sqrt{-2} q^{14}+4 q^{16}-18 \sqrt{-2} q^{17}+17 q^{19}-6 \sqrt{-2} q^{20}-6 q^{22}-6 \sqrt{-2} q^{23} \\
& +7 q^{25}-5 \sqrt{-2} q^{26}+14 q^{28}-39 \sqrt{-2} q^{29}+59 q^{31}-4 \sqrt{-2} q^{32}-36 q^{34}+\cdots
\end{aligned}
$$

First few coefficients a_{p}, First few prime coefficients, divided by either 1 or $3 \sqrt{-2}$, for easy readability

p	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67
a_{p} $3 \sqrt{-2}$	1	-7		5		17			59	-19		47				-4	-46

7.6.1. Atkin Swinnerton-Dyer congruences for $\Gamma_{9.6^{4} .1^{3}}$. Basis of $S_{3}\left(\Gamma_{9.6^{4} .1^{3}}\right)$

$$
\begin{aligned}
& h_{1}(z)=\sqrt[3]{\frac{\eta(z)^{13} \eta(6 z)^{14}}{\eta(2 z)^{2} \eta(3 z)^{7}}}=\sum_{n \geq 1} a_{n} q^{n}=q-\frac{13}{3} q^{2}+\frac{32}{9} q^{3}+\frac{670}{81} q^{4}-\frac{3577}{243} q^{5}+\cdots \\
& h_{2}(z)=\sqrt[3]{\frac{\eta(z)^{14} \eta(6 z)^{13}}{\eta(2 z)^{7} \eta(3 z)^{2}}}=\sum_{n \geq 1} b_{n} q^{n}=q-\frac{14}{3} q^{2}+\frac{56}{9} q^{3}-\frac{58}{81} q^{4}+\frac{266}{243} q^{5}+\ldots
\end{aligned}
$$

First few prime coefficients:

p	2	3	5	7	11	13	17	19
a_{p}	$-\frac{13}{3}$	$\frac{32}{9}$	$-\frac{3577}{243}$	$\frac{38780}{6561}$	$\frac{97488844}{4782969}$	$-\frac{198000616}{129140163}$	$\frac{1030071452831}{31381059609}$	$-\frac{91038813695632}{2541865828329}$
b_{p}	$-\frac{14}{3}$	$\frac{56}{9}$	$\frac{266}{243}$	$-\frac{1036}{6561}$	$\frac{24235144}{4782969}$	$-\frac{2216727472}{129140163}$	$-\frac{894269035558}{31381059609}$	$\frac{97467805305080}{2541865828329}$

p	$\frac{a_{n p}}{a_{n}}$	$\frac{b_{n p}}{b_{p}}$	$\frac{a_{n p}}{b}$	$\frac{b_{n p}}{a^{\prime}}$	$\bmod p^{2}$	$\left(\frac{a_{n p}}{a n} / \frac{b_{n p}}{b}\right)^{3}$	$\frac{a_{n p}}{a^{\prime}} \frac{b_{n p}}{b_{p}}$	$\left(\frac{a_{n p}}{b_{n}} / \frac{b_{n p}}{a_{n}}\right)^{6}$	$\frac{a_{n p}}{b} \frac{b_{n p}}{a}$
5			11	12				4	-18
7	35	21				1	0		
11			94	41				75	-18
13	54	110				1	5^{2}		
17			10	282				69	$-18 \cdot 6^{2}$
19	271	73				1	17^{2}		
23			503	369				522	$-18 \cdot 2^{2}$
29			661	101				724	$-18 \cdot 13^{2}$
31	948	915				1	59^{2}		
37	106	1282				1	19^{2}		
41			1463	1587				1656	$-18 \cdot 13^{2}$
43	1391	411				1	47^{2}		
47			2117	887				519	$-18 \cdot 19^{2}$

7.6.2. Atkin Swinnerton-Dyer congruences for $\Gamma_{18.3^{4} .2^{3}}$. Basis of $S_{3}\left(\Gamma_{18.3^{4} .2^{3}}\right)$, in terms of $r=q^{1 / 3}$:

$$
\begin{aligned}
& h_{1}(z)=\sqrt[3]{\frac{\eta(2 \tau)^{13} \eta(3 \tau)^{14}}{\eta(6 \tau)^{7} \eta(\tau)^{2}}}=\sum_{n \geq 1} a_{n} r^{n}=r+\frac{2}{3} r^{4}-\frac{28}{9} r^{7}-\frac{482}{81} r^{10}-\frac{736}{243} r^{13}+\cdots \\
& h_{2}(z)=\sqrt[3]{\frac{\eta(2 \tau)^{14} \eta(3 \tau)^{13}}{\eta(6 \tau)^{2} \eta(\tau)^{7}}}=\sum_{n \geq 1} b_{n} q^{n}=r^{2}+\frac{7}{3} r^{5}+\frac{14}{9} r^{8}-\frac{148}{81} r^{11}-\frac{1708}{243} r^{14}+\cdots
\end{aligned}
$$

First few prime coefficients:

$$
\begin{array}{ccccccccc}
p & 2 & 3 & 5 & 7 & 11 & 13 & 17 & 19 \\
a_{p} & 0 & 0 & 0 & -\frac{28}{9} & 0 & -\frac{736}{243} & 0 & \frac{120680}{6561} \\
b_{p} & 1 & 0 & \frac{7}{3} & 0 & -\frac{148}{81} & 0 & -\frac{4529}{729} & 0
\end{array}
$$

p	$a_{n p} / a_{n}$	$b_{n p} / b_{n}$	$a_{n p} / b_{n}$	$b_{n p} / a_{n}$	ω	ω^{2}	$\sqrt[3]{3}$
5			$3=-1 \cdot 6 \sqrt[3]{3}$	$19 \quad=1 \cdot 3 / \sqrt[3]{3}$			12
7	$35=-7 \cdot \omega^{2}$	$21=-7 \cdot \omega$			18	30	
11			$54=1 \cdot 6 \sqrt[3]{3}$	$40=-1 \cdot 3 / \sqrt[3]{3}$			9
13	$54=5 \cdot \omega^{2}$	$110=5 \cdot \omega$			22	146	
17			$269=6 \cdot 6 \sqrt[3]{3}$	$148=-6 \cdot 3 / \sqrt[3]{3}$			160
19	$271=17 \cdot \omega^{2}$	$73=17 \cdot \omega$			68	292	
23			$52 \quad=2 \cdot 6 \sqrt[3]{3}$	$80=-2 \cdot 3 / \sqrt[3]{3}$			357
29			$360=13 \cdot 6 \sqrt[3]{3}$	$370=-13 \cdot 3 / \sqrt[3]{3}$			134
31	$948=59 \cdot \omega^{2}$	$915=59 \cdot \omega$			439	521	
37	$106=-19 \cdot \omega^{2}$	$1282=-19 \cdot \omega$			581	787	
41			$436=-13 \cdot 6 \sqrt[3]{3}$	$47 \quad=13 \cdot 3 / \sqrt[3]{3}$			1503
43	$1391=47 \cdot \omega^{2}$	$411=47 \cdot \omega$			1425	423	
47			$184=19 \cdot 6 \sqrt[3]{3}$	$661=-19 \cdot 3 / \sqrt[3]{3}$			1203

When $p \equiv 1 \bmod 3$, we see the ASWD-basis should be h_{1}, h_{2}.
For $p \equiv 2 \bmod 3$, the congruences (which only hold when all terms are non-zero)

$$
a_{n p} / b_{p} \equiv-\alpha_{p} \cdot 6 \sqrt[3]{3} \quad \text { and } \quad b_{n p} / a_{p} \equiv \alpha_{p} \cdot 3 / \sqrt[3]{3}
$$

should be rewritten in terms of u, where $u^{2}=-2$, writing $-6=3 u \cdot u$, so we have

$$
a_{n p} / b_{p} \equiv \alpha_{p} 3 u \cdot u \sqrt[3]{3} \quad \text { and } \quad b_{n p} / a_{p} \equiv \alpha_{p} 3 u / u \sqrt[3]{3}
$$

These imply that $a_{n p} \equiv \alpha_{p} 3 u \cdot u \sqrt[3]{3} b_{p} \quad$ and $\quad u \sqrt[3]{3} b_{n p} \equiv \alpha_{p} 3 u a_{p}$. so

$$
a_{n p}+u \sqrt[3]{3} b_{n p} \equiv \alpha_{p} 3 u\left(\cdot u \sqrt[3]{3} b_{p}+a_{p}\right),
$$

which holds for u replaced with $-u$, so the ASWD-basis should be $h_{1} \pm$ $\sqrt{-2} \sqrt[2]{3} h_{2}$.

References

[ALL05] Atkin, A. O. L.; Li, Wen-Ching Winnie; Long, Ling On Atkin and SwinnertonDyer congruence relations. II. Math. Ann. 340 (2008), no. 2, 335-358.
[ASwD71] A. O. L. Atkin and H. P. F. Swinnerton-Dyer, Modular forms on noncongruence subgroups, Combinatorics (Proc. Sympos. Pure Math., Vol. XIX, Univ. California, Los Angeles, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1971, pp. 1-25.
[Beau82] A. Beauville, Les familles stable de courbes elliptiques sur \mathbf{P}^{1} admettant quatre fibres singulières, C.R. Acad. Sci. 294 (1982), 657-660.
[CN79] J. H. Conway and S. P. Norton, Monstrous moonshine. Bull. London Math. Soc. 11 (1979), no. 3, 308-339.
[Kul91] R. S. Kulkarni, An arithmetic-geometric method in the study of the subgroups of the modular group. Amer. J. Math. 113 (1991), no. 6, 1053-1133
[LLY03] Li, Wen-Ching Winnie; Long, Ling; Yang, Zifeng On Atkin-Swinnerton-Dyer congruence relations. J. Number Theory 113 (2005), no. 1, 117-148.
[LLY05] Li, Wen-Ching Winnie; Long, Ling; Yang, Zifeng Modular forms for noncongruence subgroups. Q. J. Pure Appl. Math. 1 (2005), no. 1, 205-221.
[LL] Long, Ling. On Atkin-Swinnerton-Dyer congruence relations(3), preprint, arXiv:math/0701310
[BCP97] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system I: The user language, 1997, http://www.maths.usyd.edu.au:8000/u/magma/ pp. 235-265.
[M96] Y. Martin, Multiplicative η-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856; MR1376550 (97d:11070)
[Pari04] PARI/GP, version 2.1.5, Bordeaux, 2004, http://pari.math.u-bordeaux.fr//
[Sch85i] A. J. Scholl, A trace formula for F-crystals. Invent. Math., 79 (1985), 31-48.
[Sch85ii] -, Modular forms and deRham cohomology; Atkin-Swinnerton-Dyer congruences. Invent. Math., 79 (1985), 49-77.
[Sch87] -, Modular forms on noncongruence subgroups. Séminaire de Théorie des Nombres, Paris 1985-86, 199-206, Progr. Math. 71, Birkhäuser, Boston, MA, 1987.
[Sch88] -, The l-adic representations attached to a certain non-congruence subgroup, J. Reine Angew. Math. 392 (1988), 1-15.
[Sch93] -, The l-adic representations attached to non-congruence subgroups II, preprint, 1993.
[Sch97] -, On the Hecke algebra of a noncongruence subgroup, Bull. London Math.Soc. 29 (1997), 395-399.
[Seb01] A. Sebbar, Classification of torsion-free genus zero congruence groups, Proc. Amer. Math. Soc. 129 (2001), no. 9, 2517-2527 (electronic).
[Shi71] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo, 1971, Kanô Memorial Lectures, No. 1.
[Stein] W. Stein The Modular Forms database http://modular.fas.harvard.edu/Tables
(Fang, Hoffman and Verrill) Mathematics Department, Louisiana State University, Baton Rouge 70803, Louisiana
(Linowitz) Mathematics Department, Dartmouth College, Hanover 03755, New Hampshire
(Rupinski) Mathematics Department, University of Pennsylvania, Philadelphia 19104, Pennsylvania

E-mail address, Fang: liqun@math.1su.edu
E-mail address, Hoffman: hoffman@math.lsu.edu
E-mail address, Linowitz: Benjamin.D.Linowitz@dartmouth.edu
E-mail address, Rupinski: rupinski@math.upenn.edu
E-mail address, Verrill: verrill@math.lsu.edu

[^0]: Date: May 30, 2018.
 This research was carried out as part of an REU summer program at LSU, supported by the National Science Foundation grant DMS-0353722 and a Louisiana Board of Regents Enhancement grant, LEQSF (2002-2004)-ENH-TR-17. The last author was partially supported by grants LEQSF (2004-2007)-RD-A-16 and NSF award DMS-0501318.

