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MODULAR FORMS ON NONCONGRUENCE SUBGROUPS

AND ATKIN-SWINNERTON-DYER RELATIONS

LIQUN FANG, J. WILLIAM HOFFMAN, BENJAMIN LINOWITZ, ANDREW
RUPINSKI, HELENA VERRILL

Abstract. We give new examples of noncongruence subgroups Γ ⊂

SL2(Z) whose space of weight 3 cusp forms S3(Γ) admits a basis satis-
fying the Atkin-Swinnerton-Dyer congruence relations with respect to a
weight 3 newform for a certain congruence subgroup.

1. Introduction

A finite index subgroup of SL2(Z) is noncongruence if it does not con-
tain Γ(N) for any N ≥ 1. The study of modular forms on such subgroups
was initiated by Atkin and Swinnerton-Dyer who discovered experimentally
the congruences now bearing their names [ASwD71]. Subsequently, Scholl
proved congruences satisfied by the coefficients of modular forms on non-
congruence subgroups [Sch85i, Sch85ii, Sch87, Sch88, Sch93]. A refined
conjecture has recently been put forward by Atkin, Li, Long and Yang
[LLY03],[ALL05], [LL]. See [LLY05] for a general survey of this.

In this paper we give new examples of noncongruence subgroups hav-
ing a basis of cuspidal modular forms satisfying the Atkin-Swinnerton-Dyer
(ASwD) congruences. We only give experimental evidence of our results,
obtained using Magma [BCP97], Mathematica, and PARI [Pari04]. In a
later publication, we will give a detailed treatment of one of our examples.

1.1. Notation. We assume familiarity with the action of SL2(R) on the
upper half complex plane H, with congruence subgroups such as Γ0(N),
Γ1(N), Γ0(N), Γ1(N), and with Mk(Γ) and Sk(Γ) the finite-dimensional
vector spaces of modular forms and cusp forms for Γ, and Sk(Γ0(N), χ) the
space of cusp forms with character χ : (Z/N)∗ → C∗.

It is well known (see [Shi71] for details) that Sk(Γ0(N), χ) has a basis of
Hecke eigenforms, which have q-expansions

f(z) =
∑

n≥1

an(f)q
n, where q = exp(2πiz),
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with an satisfying the relations

(1) anp − apan + χ(p)pk−1an/p = 0, an = an(f)

for all positive integers n and primes p 6 |N , taking an/p = 0 if p 6 |n.
1.2. Atkin–Swinnerton-Dyer congruences. If Γ is a noncongruence sub-
group, then Sk(Γ) has no basis of forms satisfying (1). Instead, it is conjec-
tured that certain congruences hold, as in the following definition.

Definition 1.2.1 ([LLY03]). Suppose that the noncongruence subgroup Γ

has cusp width µ at infinity, and that h ∈ Sk(Γ) has an M -integral q1/µ-
expansion h =

∑
an(h)q

n/µ for some M ∈ Z. (cf [Sch85ii, Proposition
5.2]). Let f =

∑
cn(f)q

n be a normalized newform of weight k, level N ,
character χ. The forms h and f are said to satisfy the Atkin-Swinnerton-
Dyer congruence relation if, for all primes p not dividing MN and for all
n ≥ 1,

(anp(h) − cp(f)an(h) + χ(p)pk−1an/p(h))/(np)
k−1(2)

is integral at all places dividing p.

Definition 1.2.2. We say that Sk(Γ) has an ASwD basis if there is a basis
h1, ..., hn of Sk(Γ) and normalized newforms f1, ..., fn such that each pair
(hi, fi) satisfies the ASwD congruence relation in Definition 1.2.1.

Note that, in the above definition, the choices of h1, ..., hn and of f1, ..., fn
may depend on the prime number p. There are examples known where the
same hi and fj work for every prime p (actually all but a finite number of ex-
ceptional primes). On the other hand, there are examples known where the
choice of the ASwD basis depends on the value of p modulo some modulus
N (see examples 2 and 3 in the tables below).

2. Statement of results

2.1. Tables. For the noncongruence subgroups Γ considered, there are two
main issues addressed:

(1) Modularity of the l-adic Scholl’s representation attached to the cusp
forms of weight 3, S3(Γ).

(2) Giving a basis of S3(Γ) that satisfies ASwD congruences.

In our cases the dimension of S3(Γ) is 2 so the l-adic representation is 4
dimensional. We find that this 4-dimensional representation breaks up into
two 2-dimensional pieces, each of which is isomorphic to the 2-dimensional
representations that Deligne constructed for Hecke eigenforms f on congru-
ence subgroups. Thus, each S3(Γ) should be associated to a pair f1, f2 of
Hecke eigenforms on congruence subgroups. In the examples, these are one
and the same form, or conjugate forms or base extensions of one form to a
quadratic extension of Q.

In Tables 1, 2, 3, 4, we define modular forms h1, h2, f , where h1 and h2
span S3(Γ) for the noncongruence subgroup Γ given in Definition 3.2.1, and
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f is a weight 3 Hecke eigenform for some congruence subgroup. For each
group we give a basis (h1, h2) of S3(Γ), in some cases depending on the prime
p, and a newform f with (hi, f) satisfying the ASwD congruence relation.
Most forms are given in terms of the Dedekind eta function,

(3) η(z) = q1/24
∞∏

n=1

(1− qn), where q = e2πiz .

Our experiments support the following:

Theorem 2.1.1. Let ρ be the l-adic representation constructed by Scholl
for S3(Γ) for an appropriate choice of Q-model of the curve XΓ. For the
L-function of the corresponding representations we have

L(s, ρ) = L(s, f)L(s, f) for 1a, 1b,

L(s, ρ) = L(s, f)L(s, f) for 3a, 3b, 4a, 4b.

In an earlier version of this paper a complete proof for cases 1a and 1b was
given. We do not reproduce it here as it is very similar to other published
examples. The L-function for examples 2a, 2b exhibits new and interesting
features and will be discussed in a future work.

2.2. The examples. All the noncongruence subgroups Γ discussed in this
paper are of index three inside a congruence subgroup G which itself is one
of the index 12 genus 0 subgroups considered by Beauville. Each of these
gives rise to a family if elliptic curves EG → XG = (G\H)∗ ∼= P1(C) with
ramification over the four cusps of G. For each of these, we select two of the
cusps of G to construct a subgroup Γ such that the corresponding covering

XΓ
∼= P1(C) −→ XG

∼= P1(C)

branches only over the two chosen cusps. We describe these coverings in
the form r3 = m(t), where r (resp. t) is a generator of the function field
of XΓ (resp. XG), i.e., a Hauptmodul, which exists since these curves have
genus 0. See table 10. We have also considered arithmetic twists of a given
covering gotten by varying some of the constants in the expression of m(t).
This leads to different models of Scholl’s l-adic representation attached to
S3(Γ), i.e., representations of Gal(Q/Q) that become isomorphic as repre-
sentations of Gal(Q/K) for a finite extension K/Q. It is an important point
that, in contrast to the case of classical modular curves for congruence sub-
groups, there are no canonical models defined over a number field. Scholl’s
construction of his l-adic representations depends on a choice of a model.
Moreover, this choice is subject to a number of hypotheses: generally that
there should be a model defined over Q, and a cusp which is Q-rational.
This cusp is used for the expansions of modular forms whose coefficients
satisfy ASwD congruences.

The l-adic representations that Scholl constructs that are associated to
Sk(Γ) for noncongruence subgroups Γ have very different properties from
the corresponding representations constructed by Deligne for congruence Γ.
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1a. Basis of S3(Γ24.6.16):

h1(z) =
3

√
η(z)4η(4z)20

η(2z)6
= q − 4

3
q2 +

8

9
q3 − 176

81
q4 + · · ·

h2(z) =
3

√
η(4z)16η(2z)6

η(z)4
= q +

4

3
q2 +

8

9
q3 +

176

81
q4 + · · ·

Associated newform in S3(Γ0(48), χ), where χ(Frobp) =
(
−3
p

)(
−4
p

)
:

f(z) =
η(4z)9η(12z)9

η(2z)3η(6z)3η(8z)3η(24z)3
= q + 3q3 − 2q7 + 9q9 − 22q13 + . . .

The ASwD basis is h1, h2.

1b. Basis of S3(Γ83.23.33):

h1(z) =
3

√
η(2τ)20η(8τ)4

η(4τ)6
= q1/3 − 20

3
q4/3 +

128

9
q7/3 − 400

81
q10/3 + · · ·

h2(z) =
3

√
η(2τ)16η(4τ)6

η(8τ)4
= q2/3 − 16

3
q14/3 +

38

9
q26/3 +

1696

81
q38/3 + · · ·

The associated newform is a twist f ⊗ χ of the f in case 1a.
The ASwD basis is h1, h2.

Table 1. Modular forms for noncongruence subgroups, and
associated forms for congruence subgroups.

The main point is that in the congruence case, the Hecke algebra acts and
commutes with the Galois action so that the 2d-dimensional representation
(d = dimSk(Γ)) splits into 2-dimensional λ-adic representations. This is no
longer the case in general for noncongruence subgroups. It is the case in our
examples that the 4-dimensional representations attached to S3(Γ) factor
into 2-dimensional pieces. Geometrically this is due to the presence of extra
symmetries given by involutions and/or isogenies of our elliptic surfaces.

2.3. Outline. In section 3 we define the congruence and noncongruence
subgroups we will be working with. Section 4 gives the method we use to
construct the noncongruence forms h1, h2. Section 5 explains how we com-
puted the traces of Frobenius elements in the l-adic Scholl’s representation
attached to our group Γ. The main point is to count the number of rational
points over Fp and Fp2 of the elliptic modular surface EΓ. In section 6. we
discuss involutions and isogenies of these elliptic surfaces. Finally in section

7 we provide the experimental evidence for the ASwD congruences.
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2a. Basis of S3(Γ83.6.3.13):

h1(z) =
3

√
η(z)4η(2z)10η(8z)8

η(4z)4
= q − 4

3
q2 − 40

9
q3 +

400

81
q4 +

1454

243
q5 + · · ·

h2(z) =
3

√
η(z)8η(4z)10η(8z)4

η(2z)4
= q − 8

3
q2 +

8

9
q3 +

32

81
q4 − 82

243
q5 + . . .

Newfor m in S3(Γ0(432), χ), where χ(Frobp) =
(
−4
p

)
:

f(z) = f1(12z) + 6
√
2f5(12z) +

√
−3f7(12z) + 6

√
−6f11(12z),

where

f1(z) =
η(2z)3η(3z)
η(6z)η(z) E6(z) f5(z) =

η(z)η(2z)3η(3z)3

η(6z)

f7(z) =
η(6z)3η(z)
η(2z)η(3z)E6(z) f11(z) =

η(3z)η(z)3η(6z)3

η(2z)

and E6(z) = 1 + 12
∑

n≥1(σ(3n)− 3σ(n))qn, where σ(n) =
∑

d|n d.
Atkin Swinnerton-Dyer basis:
if p ≡ 1 mod 3 basis is h1, h2
if p ≡ 2 mod 3 basis is h1 ± αh2, α3 = 4.

2b. Basis of S3(Γ24.3.23.13):

h1(z) =
3

√
η(2τ)22η(8τ)8

η(τ)4η(4τ)8
= q +

4

3
q2 − 40

9
q3 − 400

81
q4 +

1454

243
q5 + · · ·

h2(z) =
3

√
η(2τ)20η(4τ)2η(8τ)4

η(τ)8
= q +

8

3
q2 +

8

9
q3 − 32

81
q4 − 82

243
q5 + · · ·

The associated new form and the ASwD basis
are given in exactly the same way as in case 2a.

A variant denoted S3(Γ24.3.23.13B) is discussed in section 7.4.3
Table 2. Modular forms for noncongruence subgroups, and
associated forms for congruence subgroups.
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3a. Basis of S3(Γ18.6.33.13)

h1(z) =
3

√
η(z)4η(2z)7η(6z)11

η(3z)4
= q − 4

3
q2 − 31

9
q3 +

400

81
q4 +

104

243
q5 + · · ·

h2(z) =
3

√
η(3z)4η(6z)7η(2z)11

η(z)4
= q +

4

3
q2 − 7

9
q3 − 112

81
q4 − 616

243
q5 + . . .

Newform in S3(Γ0(243), χ), where χ(Frobp) =
(
−3
p

)
.

f(z) = q + 3iq2 − 5q4 + 6iq5 + 11q7 − 3iq8 − 18q10 + · · ·
Atkin Swinnerton-Dyer basis:
if p ≡ 1 mod 3 basis is h1, h2
if p ≡ 2 mod 3 basis is h1 ± i 3

√
3h2

3b. Basis of S3(Γ9.63.3.23); r = q1/3.

h1(z) =
3

√
η(τ)7η(2τ)4η(3τ)11

η(6τ)4
= r − 7

3
r4 − 19

9
r7 +

193

81
r10 +

2306

243
r13 + · · ·

h2(z) =
3

√
η(τ)11η(3τ)7η(6τ)4

η(2τ)4
= r2 − 11

3
r5 +

23

9
r8 − 13

81
r11 + · · ·

The associated new form and the ASwD basis are given in
exactly the same way as in case 3a.

Table 3. Modular forms for noncongruence subgroups, and
associated forms for congruence subgroups.
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4a. Basis of S3(Γ9.64.13)

h1(z) =
3

√
η(z)13η(6z)14

η(2z)2η(3z)7
= q − 13

3
q2 +

32

9
q3 +

670

81
q4 − 3577

243
q5 + · · ·

h2(z) =
3

√
η(z)14η(6z)13

η(2z)7η(3z)2
= q − 14

3
q2 +

56

9
q3 − 58

81
q4 +

266

243
q5 + . . .

Associated newform in S3(Γ0(486), χ), where χ(Frobp) =
(
−3
p

)
.

f(z) = q −
√
−2q2 − 2q4 + 3

√
−2q5 − 7q7 + 2

√
−2q8 + 6q10 − 3

√
−2q11 + 5q13

Atkin Swinnerton-Dyer basis:
if p ≡ 1 mod 3 basis is h1, h2
if p ≡ 2 mod 3 basis is h1 ±

√
−2 3

√
3h2

4b. Basis of S3(Γ18.34.23); r = q1/3:

h1(z) =
3

√
η(2τ)13η(3τ)14

η(6τ)7η(τ)2
= r +

2

3
r4 − 28

9
r7 − 482

81
r10 − 736

243
r13 + · · ·

h2(z) =
3

√
η(2τ)14η(3τ)13

η(6τ)2η(τ)7
= r2 +

7

3
r5 +

14

9
r8 − 148

81
r11 − 1708

243
r14 + · · ·

The associated newform is the same as in case 4a.

Atkin Swinnerton-Dyer basis:
if p ≡ 1 mod 3 basis is h1, h2
if p ≡ 2 mod 3 basis is h1 ±

√
−2 3

√
3h2

Table 4. Modular forms for noncongruence subgroups, and
associated forms for congruence subgroups.
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Γ1(4) ∩ Γ0(8)

`

1 1

0 1

´

`

1 0

8 1

´

“

5 −2

8 −3

”

3

4

`

1 1

0 1

´

1

4

1

2

28

0 2

3

1

3

1

6
− 1

3

1

Γ0(9) ∩ Γ1(3)

`

1 0

9 1

´ “

−2 1

−9 4

”

9

Γ(3)

Γ1(5)Γ1(6)

Γ(2) ∩ Γ0(4)
`

1 2

0 1

´

`

1 0

4 1

´
“

5 −4

4 −3

”

`

1 0

5 1

´

“

11 −5

20 −9

”

`

1 1

0 1

´

`

1 0

6 1

´

3

2

1

2
1− 1

2

2

3
− 1

3
0 1

2

1

3
− 2

5

2

5

3

5

1

2

`

1 1

0 1

´

“

7 −3

12 −5

”

`

1 0

3 1

´
“

−2 3

−3 4

”

`

1 3

0 1

´

0−1 1

2
1 2 0

0

0− 1

4

3 3

6
5

1

1

5

14

3

1

3

1

3
1

3

1

3

1

2

1

4

1

2

1 1
4

2

3
1

2

1

10

1

2

1

4

2

5

Figure 1. Fundamental domains for torsion free index 24
congruence subgroups in SL2(Z).

3. Description of the noncongruence subgroups

3.1. Beauville’s families. We start with certain index 12 genus 0 torsion
free congruence subgroups of SL2(Z), listed in Table 5 [Seb01]. Figure 3.1
shows corresponding fundamental domains and generating matrices.

Table 5 gives equations for the associated families of elliptic curves [Beau82].
Table 6 gives the a1, . . . , a5 of the Weierstrass form y2 + a1xy + a3y =
x3 + a2x

2 + a4x+ a6. The hauptmodul t(τ) listed in the table is such that
j(Et(τ)) = j(τ).



MODULAR FORMS, NONCONGRUENCE SUBGROUPS, ASWD RELATIONS 9

−10

g3tg−3

0

t = ( 1 0
1 1 )

−2−4 2 4 6 8 10 14−6−8

t

g6

g = ( 1 4
0 1 )

g−1tg g2tg−2g−2tg2
(
5 −16
1 −3

)
= gtg−1

s =
(

0 1
−1 0

) Fundamental domain for

1 1
1

2

sΓ24.6.16s
−1

−10 12

t = ( 1 1
0 1 )

g = ( 1 0
8 1 )

t6

− 3
2

1
2

g

0

t2gt−2
t2st−1s−1t−2

Fundamental domain for

1
8

t−2st−1s−1t2
t−2gt2

−

1

6− 1
2

−2− 5
2

− 7
2

st−1s−1

5
2

s =
(

1 0
−2 1

)

3
2 2

sΓ836.3.13s
−1

1

Γ832332

g = ( 1 0
8 1 )

g

− 1
4

0 1
4

1
2

3
4

1 5
4

− 1
2

− 3
4

−1− 5
4

t−2gt2 t−1gt t3gt−3
(
5 −2
8 −3

)
= tgt−1

t2gt−2

t6

t =
(
1 1/2
0 1

)

Fundamental domain for

8 21

2

−4 40

s =
(

0 1
−1 0

)

t = ( 1 0
1 1 )

128−12 −8

t

−

4

3

Fundamental domain for

sΓ24.3.23 .13s
−1g = ( 1 2

0 1 ) g12

g−4tg4 g4tg−4

g−1t2gg−5t2g5 g3t2g−3

6−2

1
2

Figure 2. Fundamental domains for conjugates of some in-
dex 3 subgroups of Γ0(8) ∩ Γ1(4).
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group elliptic family j − invariant

Γ(3) (x3 + y3 + z3) = txyz t3(t3+216)3

(t3−27)3

Γ(2) ∩ Γ1(4) x(x2 + z2 + 2zy) = tz(x2 − y2) (t4−t2+1)3

t4(t−1)2(t+1)2

Γ1(5) x(x− z)(y − z)t = y(y − x)z − (t4+12t3+14t2−12t+1)3

t5(t2+11t−1)

Γ1(6) (xy + yx+ zx)(x+ y + z) = txyz (3t−1)3(3t3−3t2+9t−1)3

(t−1)3t6(9t−1)

Γ0(8) ∩ Γ1(4) (x+ y)(xy + z2)t = 4xyz −16 (t4−16t2+16)3

t8(t+1)(t−1)

Γ0(9) ∩ Γ1(3) (x2y + y2z + z2x) = txyz t3(t3−24)3

t3−27

Table 5. Data for Beauville’s elliptic surfaces.

level Coefficients of Weierstrass form t as a

a1 a2 a3 a4 a6 Hauptmodul

3 0 t2 0 −72t −8(4t2 + 27)
η( 1

3
τ)

3

η(3τ)3
+ 3

4 0 4 + 4t2 0 16t2 0 1
2

η(τ)12

η(2τ)8η( 1
2
τ)

4

5 t+ 1 t t 0 0 q
1
5

∞∏

n=0
e=1,−1

(
“

1−qn+e 1
5

”

“

1−qn+e 2
5

”

)5

6 t+ 1 t− t2 t− t2 0 0 1
9

η(6τ)4η(τ)8

η(3τ)8η(2τ)4

8 4 t2 4t2 0 0 η(z)8η(4z)4

η(2z)12

9 0 t2 0 8t 16 27η(9τ)3

η(τ)3 + 3

Table 6. Weierstrass equations for Beauville’s elliptic families.
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g1 =
“

−5 −12

3 7

”

0
1

3
−

1

2

1

2

1

4
−

3

2
1−1

2

3

2

5

4

4

3
−

2

3

g6

g2

t
−1

g6t

t
−1

g2t

tg6t
−1

tg2t
−1

t =
`

1 1

0 1

´

g6 =
`

1 0

6 1

´

g2 =
“

7 −2

18 −5

”

6

Fundamental domain for Γ
9.63.3.23

t
3

0−

3

2

tg2t
−1

−1 −3 −2 −

3

2
3 6 94

t =
`

1 0

1 1

´

g6 =
`

1 6

0 1

´

t

g3

g
−1

6
tg6

g
−1

6
g3g6

3
1

g6tg
−1

6

g6g3g
−1

6

g
3

6

s =
“

0 1

−1 0

”

g3 = ( )

Fundamental domain for sΓ
18.6.33.13

s
−1

t =
`

1 1

0 1

´

g6 =
`

1 0

6 1

´

g2 =
“

7 −2

18 −5

”

0 1−1 2

5

1

2
−

1

2

2

3
21

3

g2

g3

3

t
−1

g2t

4

3

tg2t
−1

tg3t
−1

t
−1

g3t

2

Fundamental domain for Γ
18.34.23

t
3

g6

g6 =
`

1 0

6 1

´

10
−1

s =
“

1 0

−3 1

”

1

5
−

1

3
−3 −2 5

3

9

5
32

6

g2 =
`

1 2

0 1

´

g
3

2

g1g
−1

2
g1g2

g
−1

2
g6g2 g

−1

2
g6g2

g
−1

2
g1g2

Fundamental domain for sΓ
9.64.13

s
−1

1

Figure 3. Fundamental domains for conjugates of some in-
dex 3 subgroups of Γ1(6).
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cusps and subgroups of Γ0(8) ∩ Γ1(4)

cusp τ ∞ 0 1
2

1
4

width 1 8 2 1

subgroup ramified cusps
indicated by X

Γ24.6.16 X X

Γ83.23.32 X X

Γ83.6.3.13 X X

Γ24.3.23.13 X X

cusps and subgroups of Γ1(6)

cusp τ ∞ 0 1
2

1
3

width 1 6 3 2

subgroup ramified cusps
indicated by X

Γ18.6.33.13 X X

Γ9.63.3.23 X X

Γ9.64.13 X X

Γ18.34.23 X X

Table 7. Ramification points of triple covers of X(Γ0(8) ∩
Γ1(4)) and X(Γ1(6)), with corresponding subgroups.

3.2. The noncongruence subgroups. We will work with certain index
3 normal subgroups of Γ1(6) and Γ0(8) ∩ Γ1(4). The case Γ1(5) has been
studied in [LLY03]. The fundamental domain of Γ is a union of three copies
of a fundamental domain for G, corresponding to the three cosets of Γ in G.
From the fundamental domains, shown in Figures 2 and 3, we obtain gener-
ators and cusp widths [Kul91], allowing us to make the following definition.

Definition 3.2.1. We let Γ24.6.16 , Γ836.3.13 , Γ24.3.23.13 , Γ832332 be index 3
genus 0 subgroups of Γ0(8)∩Γ1(4), and Γ18.6.33.13 ,Γ9.64.13 ,Γ9.63.3.23 , Γ18.34.23

index 3 genus 0 subgroups of Γ1(6), defined by their generators as follows:

Γ generators

Γ24.6.16 ( 1 0
24 1 ) ,

(
9 −1
64 −7

)
,
(

5 −1
16 −3

)
, ( 1 1

0 1 ) ,
(−3 −1

16 5

)
,
(−7 −1

64 9

)
,
(−11 −1

144 13

)
.

Γ832332 ( 1 3
0 1 ) ,

(−7 −8
8 9

)
,
(−3 −2

8 5

)
, ( 1 0

8 1 ) ,
(
5 −2
8 −3

)
,
(
9 −8
8 −7

)
,
(
13 −18
8 −11

)
.

Γ836.3.13
(−11 6
−24 13

)
,
(
41 −25
64 −39

)
,
(
49 −32
72 −47

)
, ( 1 1

0 1 ) , (
1 0
8 1 ) ,

(
25 −9
64 −23

)
,
(

81 −32
200 −79

)
.

Γ24.3.23.13 ( 1 0
24 1 ) ,

(
21 −2
200 −19

)
,
(

9 −1
64 −7

)
,
(
5 −2
8 −3

)
, ( 1 1

0 1 ) ,
(−11 −2

72 13

)
,
(−7 −1

64 9

)
.

Γ18.6.33.13 ( 1 0
18 1 ) ,

(
25 −3
192 −23

)
,
(

7 −1
36 −5

)
,
(

7 −3
12 −5

)
, ( 1 1

0 1 ) ,
(−11 −3

48 13

)
,
(−5 −1

36 7

)
.

Γ9.63.3.23 ( 1 3
0 1 ) ,

(−5 −6
6 7

)
,
(−11 −8

18 13

)
, ( 1 0

6 1 ) ,
(

7 −2
18 −5

)
,
(
7 −6
6 −5

)
,
(
25 −32
18 −23

)
.

Γ9.64.13
(−17 6
−54 19

)
,
(
127 −49
324 −125

)
,
(

61 −24
150 −59

)
, ( 1 1

0 1 ) , (
1 0
6 1 ) ,

(
91 −25
324 −89

)
,
(

85 −24
294 −83

)
.

Γ18.34.23 ( 1 3
0 1 ) ,

(−11 −8
18 13

)
,
(−5 −3

12 7

)
,
(

7 −2
18 −5

)
,
(

7 −3
12 −5

)
,
(
25 −32
18 −23

)
,
(
19 −27
12 −17

)
.

By comparing cusp widths, in Tables 11 and 12, with possible cusp widths
of congruence subgroups in Table 8, we obtain the following result.

Theorem 3.2.2. The groups in Definition 3.2.1 are noncongruence sub-
groups.
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6− 6− 6− 6− 3− 3− 3− 3
9− 9− 9− 3− 3− 1− 1− 1
9− 9− 3− 3− 3− 3− 3− 3
10− 10− 5− 5− 2− 2− 1− 1
18− 9− 2− 2− 2− 1− 1− 1
27− 3− 1− 1− 1− 1− 1− 1

Table 8. Possible cusp widths of index 36 genus zero torsion
free subgroups of PSL2(Z), taken from [Seb01, §7, Table 2].

Values of t8
cusp c ∞ 0 1

2
1
4

t8(c) 1 0 ∞ −1

Values of t6
cusp c ∞ 0 1

2
1
3

t8(c)
1
9 0 1 ∞

Table 9. Values of Hauptmoduln at cusps.

3.3. Hauptmoduln and covering maps. Throughout this paper we fix
our choice of identification of X(Γ0(8) ∩ Γ1(4)) and X(Γ1(6)) with the pro-
jective line P1, with parameter t8 and t6 respectively. As functions of z in
the upperhalf complex plane, t8(z) and t6(z) are given terms of the Dedekind
eta function, as listed in the last column of Table 6:

t8(z) =
η(z)8η(4z)4

η(2z)12
, and t6(z) =

1

9

η(6τ)4η(τ)8

η(3τ)8η(2τ)4
.

The values of these functions at the cusps are as in Table 9.
Since the ramification points of the covering maps Γ \H → G \H are at

cusps as in Table 7, the covering maps are given in each case by a map

r 7→ r3 = m(t),

where the mapsm corresponding to each of our subgroups are as in Table 10.

subgroup m(t) m−1(r3)

Γ24.6.16 t r3

Γ83.23.32
1+t
1−t

r3−1
r3+1

Γ83.6.3.13
t+1
4 4r3 − 1

Γ24.3.23.13
2(1+t)

t
2

r3−2

subgroup m(t) m−1(r3)

Γ18.6.33.13 t/9 9r3

Γ9.63.3.23
1−9t
3−3t

1−3r3

9−3r3

Γ9.64.13
8

3−3t 1− 8
3r3

Γ18.34.23
1−9t
24t

1
24r3+9

Table 10. Covering maps corresponding to subgroups of
Γ0(8) ∩ Γ1(4) and Γ1(6).
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4. Constructing elements of S3(Γ)

4.1. Dimension. For odd k, Shimura [Shi71, Theorem 2.25] gives the fol-
lowing formula for dimSk(Γ) for a genus g subgroup Γ /∈ −I of SL2(Z):

dimSk(Γ) = (k − 1)(g − 1) +
1

2
(k − 2)u+

1

2
(k − 1)u′ +

r∑

i=1

k
ei − 1

2ei
.

The ei are orders of elliptic points, u is the number of regular cusps, and u′

the number of irregular cusps. Using this formula, we find that

dimS3(Γ) = 2,

for Γ equal to any of the groups in Definition 3.2.1.

4.2. Method of constructing elements of S3(Γ). Suppose that Γ has
index 3 in G, one of the groups in Table 5, and that the corresponding
covering is ramified at cusps c1 and c2. Let t be a Hauptmodul for G, e.g.,
as in [CN79]. By a transformation, take t with t(c1) = 0 and t(c2) = ∞.
Then 3

√
t is a Hauptmodul for Γ. Let f ∈ M3(G). Then 3

√
tf ∈ A3(Γ). If f

is zero where t has poles, then 3
√
tf and

3
√
t2f are in S3(Γ). We give modular

forms in terms of the Dedekind eta function, using the data given by Martin
[M96]. Explicit details of the forms and their poles and zeros are given in
Tables 11 and 12, and the q-expansions are given in Tables 13 and 14.
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cusps (and widths) 1
2 (2) 0(8) ∞(1) 1

4(1)
forms for Γ0(8) ∩ Γ1(4) weight order of vanishing

t = η(z)8η(4z)4

η(2z)12
= 1− 8q + 32q2 + · · · 0 −1 1 0 0

t+1
2 = η(z)4η(4z)14

η(8z)4η(2z)14 = 1− 4q + 16q2 + · · · 0 −1 0 0 1

t+1
2t = η(4z)10

η(8z)4η(2z)2η(z)4
= 1 + 4q + 16q2 + · · · 0 0 −1 0 1

4(t+1)
(1−t) = η(4z)12

η(8z)8η(2z)4
0 0 0 −1 1

Ea = η(4z)4η(2z)6

η(z)4
3 1 0 1 1

Eb =
(

2t
t+1

)
Ea = η(2z)8η(8z)4

η(4z)6
3 1 1 1 0

cusps 1/2 0 −1
8 ∞ 1

8
−1
4

1
4

1
12

forms for width 6 24 1 1 1 1 1 1
Γ24.6.16 weight order of vanishing of form at cusps
3
√
t 0 −1 1 0 0 0 0 0 0

Ea 3 3 0 1 1 1 1 1 1

t1/3Ea 3 2 1 1 1 1 1 1 1

t2/3Ea 3 1 2 1 1 1 1 1 1

cusps 1/2 2
5 0 2

3
3
8 ∞ 5

8 1/4
forms for width 6 8 8 8 1 1 1 3
Γ836.3.13 weight order of vanishing of form at cusps

r1 =
3

√
t+1
2 0 −1 0 0 0 0 0 0 1

Eb 3 3 1 1 1 1 1 1 0
r1Eb 3 2 1 1 1 1 1 1 1
r21Eb 3 1 1 1 1 1 1 1 2

cusps −1
6

1
2

1
10 0 −1

8 ∞ 1
8 1/4

forms for width 2 2 2 24 1 1 1 3
Γ24.3.23.13 weight order of vanishing of form at cusps

r2 =
3

√
(t+1)
2t 0 0 0 0 −1 0 0 0 1

Eb 3 1 1 1 3 1 1 1 0
r2Eb 3 1 1 1 2 1 1 1 1
r22Eb 3 1 1 1 1 1 1 1 2

cusps −1
2

1
2

3
2 −1 0 1 ∞ 1

4
forms for width 2 2 2 8 8 8 3 3
Γ832332 weight order of vanishing of form at cusps

r3 =
3

√
4(t+1)
(t−1) 0 0 0 0 0 0 0 −1 1

Eb 3 1 1 1 1 1 1 3 0
r3Eb 3 1 1 1 1 1 1 2 1
r23Eb 3 1 1 1 1 1 1 1 2

Table 11. Orders of vanishingat cusps for forms for Γ0(8)∩
Γ1(4) and for subgroups of Γ0(8) ∩ Γ1(4).
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cusps (and widths) ∞(1) 0(6) 1
2(3)

1
3(2)

forms for Γ1(6) weight order of vanishing

a = η(z)η(6z)6

η(2z)2η(3z)3
= q − q2 + q3 + q4 + · · · 1 1 0 0 0

b = η(2z)η(3z)6

η(z)2η(6z)3 = 1 + 2q + 4q2 + 2q3 + · · · 1 0 0 0 1

c = η(3z)η(2z)6

η(6z)2η(z)3
= 1 + 3q + 3q2 + 3q3 + · · · 1 0 0 1 0

d = η(6z)η(z)6

η(3z)2η(2z)3
= 1− 6q + 12q2 − 6q3 · · · 1 0 1 0 0

r0 = b/d = 1 + 8q + 40q2 + 152q3 + · · · 0 0 −1 0 1
r1 = b/c = 8 r0

(9r0−1) = 1− q + 4q2 + · · · 0 0 0 −1 1

r2 = a/c = (r0−1)
(9r0−1) = q − 4q2 + 10q3 · · · 0 1 0 −1 0

r3 = a/d = 1
8(r0 − 1) = q + 5q2 + 19q3 · · · 0 1 −1 0 0

acd = q − 4q2 + q3 + 16q4 + · · · 3 1 1 1 0
bcd = 1− q − 5q2 − q3 + 11q4 + · · · 3 0 1 1 1

cusps 1
6 ∞ −1

6 0 1
8

1
2 −1

4
1
3

forms for width 1 1 1 18 3 3 3 6
Γ18.6.33.13 weight order of vanishing of form at cusps
3
√

b/d 0 0 0 0 −1 0 0 0 1
acd 3 1 1 1 3 1 1 1 0

( 3
√

b/d)acd 3 1 1 1 2 1 1 1 1

( 3
√

b/d)2acd 3 1 1 1 1 1 1 1 2

cusps 5
18 ∞ 7

18
2
5 0 2

7
1
2

1
3

forms for width 1 1 1 6 6 6 9 6
Γ9.64.13 weight order of vanishing of form at cusps
3
√

b/c 0 0 0 0 0 0 0 −1 1
acd 3 1 1 1 1 1 1 3 0

( 3
√

b/c)acd 3 1 1 1 1 1 1 2 1

( 3
√

b/c)2acd 3 1 1 1 1 1 1 1 2

cusps ∞ −1 0 1 1
2 −2

3
1
3

4
3

forms for width 3 6 6 6 9 2 2 2
Γ9.63.3.23 weight order of vanishing of form at cusps
3
√

a/c 0 1 0 0 0 −1 0 0 0
bcd 3 0 1 1 1 3 1 1 1

( 3
√

a/c)bcd 3 1 1 1 1 2 1 1 1

( 3
√

a/c)2bcd 3 2 1 1 1 1 1 1 1

cusps ∞ 0 −1
2

1
2

3
2 −2

3
1
3

4
3

forms for width 3 18 3 3 3 2 2 2
Γ18.34.23 weight order of vanishing of form at cusps
3
√

a/d 0 1 −1 0 0 0 0 0 0
bcd 3 0 3 1 1 1 1 1 1

( 3
√

a/d)bcd 3 1 2 1 1 1 1 1 1

( 3
√

a/d)2bcd 3 2 1 1 1 1 1 1 1
Table 12. Orders of vanishing at cusps for forms for sub-
groups of Γ1(6).
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Γ24.6.16

3
√

η(τ)−4η(2τ)6η(4τ)16 = q + 4
3q

2 + 8
9q

3 + 176
81 q

4 − 850
243q

5 − 3488
729 q

6 − 5968
6561q

7 + · · ·
3
√

η(τ)4η(2τ)−6η(4τ)20 = q − 4
3q

2 + 8
9q

3 − 176
81 q

4 − 850
243q

5 + 3488
729 q

6 − 5968
6561q

7 + · · ·

Γ836.3.13

3
√

η(τ)4η(2τ)10η(4τ)−4η(8τ)8 = q − 4
3q

2 − 40
9 q

3 + 400
81 q

4 + 1454
243 q

5 − 1888
729 q

6 − 13168
6561 q

7 + · · ·
3
√

η(τ)8η(2τ)−4η(4τ)10η(8τ)4 = q − 8
3q

2 + 8
9q

3 + 32
81q

4 − 82
243q

5 + 5440
729 q

6 − 24400
6561 q

7 + · · ·

Γ24.3.23.13

3
√

η(τ)−4η(2τ)22η(4τ)−8η(8τ)8 = q + 4
3q

2 − 40
9 q

3 − 400
81 q

4 + 1454
243 q

5 + 1888
729 q

6 − 13168
6561 q

7 + · · ·
3
√

η(τ)−8η(2τ)20η(4τ)2η(8τ)4 = q + 8
3q

2 + 8
9q

3 − 32
81q

4 − 82
243q

5 − 5440
729 q

6 − 24400
6561 q

7 + · · ·

Γ832332

3
√

η(2τ)20η(4τ)−6η(8τ)4 = q2/3 − 20
3 q

8/3 + 128
9 q14/3 − 400

81 q
20/3 + · · ·

3
√

η(2τ)16η(4τ)6η(8τ)−4 = q1/3 − 16
3 q

7/3 + 38
9 q

13/3 + 1696
81 q19/3 + · · ·

Table 13. q-expansions of basis of forms for S3(Γ) for four
subgroups of Γ0(8) ∩ Γ1(4)

Γ18.6.33.13

ab1/3cd2/3 = 3
√

η(τ)4η(2τ)7η(3τ)−4η(6τ)11 = q − 4
3q

2 − 31
9 q

3 + 400
81 q

4 + 104
243q

5 + · · ·
ab2/3cd1/3 = 3

√
η(τ)−4η(2τ)11η(3τ)4η(6τ)7 = q + 4

3q
2 − 7

9q
3 − 112

81 q
4 − 616

243q
5 + · · ·

Γ9.64.13

ab1/3c2/3d = 3
√

η(τ)13η(2τ)−2η(3τ)−7η(6τ)14 = q − 13
3 q

2 + 32
9 q

3 + 670
81 q

4 − 3577
243 q

5 + · · ·
ab2/3c1/3d = 3

√
η(τ)14η(2τ)−7η(3τ)−2η(6τ)13 = q − 14

3 q
2 + 56

9 q
3 − 58

81q
4 + 266

243q
5 + · · ·

Γ9.63.3.23

a1/3bc2/3d = 3
√

η(τ)7η(2τ)4η(3τ)11η(6τ)−4 = q
1
3 − 7

3q
4
3 − 19

9 q
7
3 + 193

81 q
10
3 + 2306

243 q
13
3 + · · ·

a2/3bc1/3d = 3
√

η(τ)11η(2τ)−4η(3τ)7η(6τ)4 = q
2
3 − 11

3 q
5
3 + 23

9 q
8
3 − 13

81q
11
3 + 2495

243 q
14
3 + · · ·

Γ18.34.23

a1/3bcd2/3 = 3
√

η(τ)−2η(2τ)13η(3τ)14η(6τ)−7 = q
1
3 + 2

3q
4
3 − 28

9 q
7
3 − 482

81 q
10
3 − 736

243q
13
3 + · · ·

a2/3bcd1/3 = 3
√

η(τ)−7η(2τ)14η(3τ)13η(6τ)−2 = q
2
3 + 7

3q
5
3 + 14

9 q
8
3 − 148

81 q
11
3 − 1708

243 q
14
3 + · · ·

Table 14. Basis of weight three cusp forms for some index
3 subgroups of Γ1(6). a, b, c, d are eta products as in Table 12.
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5. Traces and Point Counting

As described by Scholl, corresponding to each of these families, we have
a representation on parabolic cohomology:

(4) ρ = ρl : Gal(Q/Q) → H1(X(Γ), j∗R
1f∗Ql).

Here

E◦(Γ)
f−→ Y (Γ)

j→֒ X(Γ),

with
Y (Γ) = Γ\H, X(Γ) = (Γ\H)∗

E◦(Γ) be a family of elliptic curves over Y (Γ). We let F = j∗R1f∗Ql, an
l-adic sheaf for the étale topology on X(Γ). We computed the traces of the
Frobenius elements of this representation via point counting, as in [LLY03]
and [ALL05].

5.1. Equations for elliptic surfaces associated with the noncongru-

ence subgroups. As in section Section 3.1, associated to Γ0(8)∩Γ1(4) and
Γ1(6), we have families of elliptic curves E8(t) and E6(t) as given in Table 6:

E8(t) : y2 + 4xy + 4t2y = x3 + t2x2(5)

E6(t) : y2 + (t+ 1)xy + (t− t2)y = x3 + (t− t2)x2.(6)

Thus we have elliptic surfaces E8 and E6, with fibrations

f8 : E8 → X(Γ0(8) ∩ Γ1(4))

and
f6 : E6 → X(Γ1(6)),

with fibres given by f−1
8 (t) = E8(t) and f−1

6 (t) = E6(t).
By composing the covering maps given in Table 10 with the fibrations f8

or f6, associated with our noncongruence subgroups we have the families of
elliptic curves given in Table 15. Our notation is explained by example: The
elliptic surface E(Γ83.23.33) corresponding to Γ83.23.32 has a fibration

f : E(Γ83.23.33) → X(Γ83.23.33),

with fiber f−1(r) having an equation

y2 + 4xy + 4

(
r3 − 1

r3 + 1

)2

y = x3 + 4

(
r3 − 1

r3 + 1

)2

x2,

i.e., the t in (5) is replaced by m−1(r3) = r3−1
r3+1 , where m(t) = 1+t

1−t . This

family of elliptic curve is denoted by E8

(
r3−1
r3+1

)
. The other families are

constructed and denoted in a similar way.
We computed the traces of Frobenius by summing local terms using:

Theorem 5.1.1.

Tr(Frobq |H1(X(Γ),F)) = −
∑

x∈X(Fq)

Tr(Frobq |Fx).
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group family of curves group family of curves

Γ24.6.16 E8(r
3) Γ18.6.33.13 E6(9r

3)

Γ832332 E8

(
r3−1
r3+1

)
Γ9.63.3.23 E6

(
1−3r3

9−3r3

)

Γ836.3.13 E8(4r
3 − 1) Γ9.64.13 E6

(
1− 8

9r3

)

Γ24.3.23.13 E8

(
2

r3−2

)
Γ18.34.23 E6

(
1

9(8r3+1)

)

Table 15. Families of elliptic curves En(m
−1(r3)) corre-

sponding to certain noncongruence subgroups.

Proof. This follows from Grothendieck-Lefschetz trace formula because the
other terms H i(X(Γ),F)), i 6= 1 are zero. �

The following is also well known:

Theorem 5.1.2. Tr(Frobq |Fx) may be computed according to the following:

(1) If the fiber Ex is smooth, then

Tr(Frobq|Fx) = Tr(Frobq|H1(Ex,Ql)) = q + 1−#Ex(Fq).

(2) If the fiber Ex is singular, then Tate’s algorithm tells us that

Tr(Frobq|Fx) =





1 if the fiber is split multiplicative.

−1 if the fiber is nonsplit multiplicative.

0 if the fiber is additive.

(3) If E is a singular curve over a field with characteristic not 2 or 3,
given by an equation

E : y2 = x3 + ax+ b,

then the reduction type of E is determined as follows:

additive
split multiplicative
nonsplit multiplicative



 if − 2ab is





0 in k
a nonzero square in k
not a square in k

In order to apply part (3) of the above result, we need to transform E8(t)
and E6(t) in to the simplified Weierstrass form y2 = x3 + ax + b. We
obtain the following curves, isomorphic to the originals, over any field of
characteristic not 2 or 3.

Ẽ8 : y2 = x3 − 27(t4 − 16t2 + 16)x + 54(t2 − 2)(t4 + 32t2 − 32)(7)

Ẽ6 : y3 = x3 − 2433(3t− 1)(3t3 − 3t2 + 9t− 1)x(8)

−2733(3t2 + 6t− 1)(9t4 − 36t3 + 30t2 − 12t+ 1)

Thus one may compute values of the trace by using the above result, for
example with Magma. The results for a range of values of p and various
covers of E8 and E6 are given in Table 16.
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Group Equation p 5 7 11 13 17 19 23 73

Γ24.6.16 E8(r
3) Trp 0 4 0 −44 0 52 0 −92

Trp2 100 −188 484 292 1156 −92 2116 −17084

Γ832332 E8

(
r3−1
r3+1

)
Trp 0 −4 0 −44 0 −52 0 −92

Trp2 100 −188 484 292 1156 −92 2116 −17084

Γ836.3.13 E8(r
3 − 1) Trp 0 −3 0 13 0 33 0 −71

Trp2 −44 −95 52 169 1012 −359 −1772 5617

E8(2r
3 − 1) Trp 0 3 0 13 0 −33 0 −71

Trp2 −44 −95 52 169 1012 −359 −1772 5617

E8(4r
3 − 1) Trp 0 0 0 −26 0 0 0 142

Trp2 −44 190 52 −338 1012 718 −1772 −11234

Γ24.3.23.13 E8

(
2

r3−2

)
Trp 0 0 0 −26 0 0 0 142

Trp2 −44 190 52 −338 1012 718 −1772 −11234

Γ18.6.33.13 E6(3r
3) Trp 0 −11 0 −5 0 19 0 76

Trp2 28 −23 196 313 508 361 316 −18428

Γ18.6.33.13 E6(9r
3) Trp 0 22 0 10 0 −38 0 76

Trp2 28 46 196 −626 508 −722 316 −18428

Γ9.63.3.23 E6

(
1−3r3

9−3r3

)
Trp 0 22 0 10 0 −38 0 76

Trp2 28 46 196 −626 508 −722 316 −18428

Γ9.64.13 E6

(
1− 24

r3

)
Trp 0 7 0 −5 0 −17 0 −248

Trp2 64 49 448 313 −140 433 1972 9436

E6

(
1− 8

3r3

)
Trp 0 −14 0 10 0 34 0 −248

Trp2 64 −98 448 −626 −140 −866 1972 9436

Γ18.34.23 E6

(
1

24r3+9

)
Trp 0 −14 0 10 0 34 0 −248

Trp2 64 −98 448 −626 −140 −866 1972 9436

Table 16. Table of Tr ρ∗(Frobp).
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6. Involutions and Isogenies

6.1. Involutions. The four dimensional representations on H1(X(Γ),FΓ)
in fact split into two 2-dimensional Galois representations. We can achieve
this splitting by using an involution on Γ \ H which extends to either an
automorphism or isogeny on the elliptic surface.

For each family given in Table 15 by an equation En(r), corresponding
to a covering r3 = m(t), we have involutions i and ι of t and r, given in
Table 17, such that the following diagram commutes.

P
1
r 7→ι(r)

//

r 7→r3=m(t)
��

P
1

r 7→r3=m(t)
��

P
1
t7→i(t)

//
P
1

Furthermore, if c1, c2 are the ramified cusps of the map r 7→ r3 = m(t), and
c3, c4 are the unramified cusps, then i fixes the sets {c1, c2} and {c3, c4}.
This means that the involution i lifts to an involution ι of r, as indicated in
Table 17. To check these are the correct maps, one just needs to verify that
(ι( 3
√

m(t)))3 = m(i(t)), which is simple algebra.

6.2. Isogenies. The involutions i of modular curves given in Table 17 lift
to maps

ĩ : En → En

ĩ : (t, x, y) ∈ En(t) 7→ (i(t), ix(t, x, y), iy(t, x, y)),(9)

where n = 8 or 6, which restrict to isogenies between the fibres of the
corresponding family of elliptic curves (given by (5) and (6)). From the
isogenies of the families E6(t), E8(t), one can obtain the isogenies on the
families E6(m

−1(r3)), E8(m
−1(r3)), lifting ι to ι̃. These isogenies will give

rise to involutions on the level of cohomology.
To show that two curves E(t) and E(i(t)) are isogenous by an isogeny

of degree d, it suffices to show that Φd(j(E(t)), j(E(i(t)))) = 0, where Φd

is the dth modular polynomial. The isogeny can be explicitly determined
by Velu’s methodfrom a subgroup of order d on E(t). Although the algo-
rithms involved are well known and not difficult theoretically, in practice
they should be carried out with the help of a computer program, such as
Magma [BCP97], because of the large number of of terms in the polynomi-
als involved. For example, Φ8 is a polynomial in two variables of degree 20
with 141 terms; Φn can be found in a Magma database using the command
ClassicalModularPolynomial(n) for 1 ≤ n ≤ 17.

Although it’s not important to know the isogeny exactly, we do need
to know the field over which the map is defined. This information was
computed with the assistance of Magma, and is given in Table 18. The
polynomials given in this table are such that their roots are the x-coordinates
of points in the kernel of the isogeny.
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Involutions i of X(Γ0(8) ∩ Γ1(4)), and ι of X(Γ), for Γ ⊂ Γ0(8) ∩ Γ1(4)

subgroup values of τ and t where r3 = involutions of t and r

Γ cover ramifies m(t) i : t 7→ ι : r 7→
τ t(τ)

Γ24.6.16 1/2, 0 ∞, 0 t −t −r

Γ82.23.32 ∞, 1/4 1,−1 t+1
1−t 1/t −r

Γ836.3.13 1/2, 1/4 ∞,−1 t+1
4

1−t
1+t

1
2r

Γ24.3.23.13 0, 1/4 0,−1 2(1+t)
t

t+1
t−1

2
r

Involutions i of X(Γ1(6)), and ι of X(Γ) for Γ ⊂ Γ1(6)

subgroup values of τ and t where r3 = involutions of t and r

Γ cover ramifies m(t) i : t 7→ ι : r 7→
τ t(τ)

Γ18.6.33.13 1/3, 0 ∞, 0 t/9 1
9t

1
9r

Γ9.63.3.23 ∞, 1/2 1
9 , 1

1−9t
3(1−t)

1
9t

1
r

Γ9.64.13 1/2, 1/3 1,∞ 8
3(1−t)

1−9t
9−9t

2
r

Γ18.34.23 ∞, 0 1
9 , 0

1−9t
24t

1−9t
9−9t

1
2r

Table 17. Involutions of modular curves Γ\H. For Γ0(8)∩
Γ1(4), t(τ) =

η(z)8η(4z)4

η(2z)12 , and for Γ1(6), t(τ) =
1
9

η(6τ)4η(τ)8

η(3τ)8η(2τ)4 ,

as in Tables 6, 11, and 12.

6.3. Isogenous relationships between families. In the previous section
we showed how involutions give rise to isogenies on the fibres, which will
resulting in involutions on the cohomology of each family. There are also
isogenous maps between families, which explain our groupings into pairs of
cases, which was originally based on the relationships between traces seen
in Table 16. Combining the relations between curves we already have, we
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subgroup i(t) d polynomial defining ι̃’s field of

kernel of isogeny definition

Level 8 cases

Γ24.6.16 −t 1 − Q

Γ82.23.32 1/t 4 (x+ t2)x Q

Γ836.3.13
1−t
1+t 8 (x2 − 4tx− 4t3)(x+ t2)x Q[

√
−1]

Γ24.3.23.13
t+1
t−1 8 (x2 + 4tx+ 4t3)(x+ t2)x Q[

√
−1]

Level 6 cases

Γ18.6.33.13 ,Γ9.64.13
1
9t 3 x− t2 + t Q[

√
−3]

Γ9.63.13 ,Γ18.34.23
1−9t
9−9t 6 (x− t2 + t)x(x+ t) Q[

√
−3]

Table 18. Data concerning involutions i and ι of Table 17,
lifted to maps ι̃ of families of curves, defining isogenies of
degree d on fibres. In particular, Φd(j(En(i(t))), j(En(t))) =
0 where n is the level, and Φd is the dth modular polynomial.

find that

Φ8

(
j

(
E6

(
t− 1

t+ 1

))
, j (E8 (φ1(t)))

)
= 0

Φ8

(
j(E8(4t− 1)), j

(
E8

(
2

φ2(t)− 2

)))
= 0

Φ6

(
j

(
E6

(
1− 3t

9− 3t

))
, j (E6 (9φ3(t)))

)
= 0

Φ3

(
j

(
E6

(
1− 8

3t

))
, j

(
E6

(
1

9− 24φ4(t)

)))
= 0,

where φ1(t) = φ(2) = 1/t, φ3(t) = t/3, φ4(t) = −1/t. This may also be
checked directly with Magma. Thus the maps φi between the bases lift to
isogenies on the fibres between families. Replacing t by r3 in these equations
does not change the relationships, so this also holds for the covers, and these
maps induce isomorphisms on the level of cohomology. Refer to Table 16
for which cover corresponds to which group.
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7. Experimental data for the ASwD congruences

The strategy for finding an ASwD basis is the following: For our noncon-
gruence subgroup Γ, we have found a basis h1, h2 for S3(Γ). We have also
found a Hecke eigenform f ∈ S3(Γ0, χ) for some congruence subgroup Γ0.
Let an and bn respectively be the expansion coefficients of h1 and h2. Let
An be the expansion coefficients of f . We consider two possible situations.

7.1. Case 1. In the simplest case, h1, h2 is already an ASwD basis. This
case occurs in section 7.3. So for good primes p and integers n with p 6 |n

apn ≡ Apan mod p2 and bpn ≡ Apbn mod p2,(10)

which implies, for p fixed and n varying with an 6= 0 and bn 6= 0,

apn/an ≡ constant mod p2 and bpn/bn ≡ constant mod p2.(11)

So, our test for whether h1, h2 is an ASwD basis is to check whether apn/an
and bpn/bn take constant values for fixed p and varying n, with np less than
some fixed bound. If this holds, then we also consider this to be evidence
that h1, h2 is an ASwD basis. We can make this conclusion regardless of
whether f is known.

In the case n = 1, since a1 = b1 = 1, (11) implies that

ap ≡ Ap mod p2 and bp ≡ Ap mod p2.(12)

In order to determine the associated congruence modular form, we test
whether (12) holds for small primes for the candidate form f . This is what
happens in subsection 7.3.1.

In some cases, to get congruences, f needs to be replaced by f⊗χ for some
character χ. Then Ap will be replaced by Apχ(p) in (12), so this phenomena
can be recognized by checking whether Ap/ap and Ap/bp are roots of unity.
This happens in subsection 7.3.2. However, we have not worked out what
the character χ is.

7.2. Case 2. In most of our examples examples, it turns out that the ASwD
basis depends on the congruence class of the prime p modulo some small
integer. It turns out that for some primes, (11) holds for the values tested,
in which case h1, h2 is assumed to be the ASwD basis, but for other primes,
this does not hold.

If (11) does not hold for some prime p, then we will assume that for this
prime, an ASwD basis consists of linear combinations of the form h1 +αh2,
where α is an algebraic number of small degree, such that for integers n with
p 6 |n. the expansion coefficients satisfy

apn + αbpn ≡ Ap(an + αbn) mod p2.(13)

A priori, α depends on p, though we will see that in the examples we are
considering, evidence suggests that it only depends on the congruence class
of p modulo a small integer.
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For (13) to hold, it is sufficient, but not necessary, that

apn ≡ Apαbn mod p2, and αbpn ≡ Apan mod p2,(14)

which, assuming all the terms are non-zero, implies that apn/bn = Apαp and
bpn/an = Ap/αp, So if (11) does not hold as n varies, we test whether

anp
bn

≡ constant mod p2 and
bnp
an

≡ constant mod p2.(15)

If this holds, the values of α and Ap mod p2, up to sign, are determined by

α2 ≡ anp
bn

/bnp
an

mod p2, and A2
p ≡

anp
bn

bnp
an

mod p2.(16)

For p for which (15) holds, there are two solutions to (16) for α, and the
ASwD basis has the form h1+αh2, h1−αh2. We expect that α only depends
on p modulo some small integer. Since α is expected to be an algebraic
integer, but not an integer, it may be difficult to guess the value of α,
from α mod p2. So we also look at powers of α mod p2, and if for some
small power these are constant as p varies, then we deduce a value of α.
Once α is determined, Ap mod p2 is determined, if this agrees with the
coefficients of our congruence modular form, then we take this as evidence
that h1 + αh2, h1 − αh2 is an ASwD basis with f the associated new form.
As for case 1, we will also test whether the Ap must be multiplied some root
of unity, presumably the value χ(p) for some character χ, though again, we
have not determined the character in question.

7.3. Examples associated with newform in S3(Γ0(48), χ). For Γ24.6.16

and Γ83.23.33 , evidence suggests that the associated congruence form is as
follows, with the first few Ap as in Table 19.

f(z) =
η(4z)9η(12z)9

η(2z)3η(6z)3η(8z)3η(24z)3
(17)

= q + 3q3 − 2q7 + 9q9 − 22q13 − 26q19 − 6q21 + 25q25 + . . .

p 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67
ap 0 −2 0 −22 0 −26 0 0 46 26 0 22 0 0 0 74 −122

Table 19. First few coefficients Ap for newform for S3(Γ0(48), χ).

7.3.1. Atkin Swinnerton-Dyer congruences for Γ24.6.16 . We have shown pre-
viously that S3(Γ24.6.16) has a basis

h1(z) = 3

√
η(z)4η(4z)20

η(2z)6
= q − 4

3
q2 +

8

9
q3 − 176

81
q4 − 850

243
q5 · · ·(18)

h2(z) = 3

√
η(4z)16η(2z)6

η(z)4
= q +

4

3
q2 +

8

9
q3 +

176

81
q4 − 850

243
q5 · · ·(19)
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The first few prime coefficients of these forms are:

p 2 3 5 7 11 13 17 19
ap −4

3
8
9 −850

243 −5968
6561 −35104520

4782969
952141694
129140163 −206256733102

31381059609
60201506159720
2541865828329

bp
4
3

8
9 −850

243 −5968
6561 −35104520

4782969
952141694
129140163 −206256733102

31381059609
60201506159720
2541865828329

p 5 7 11 13 17 19 23 29 31 37 41 43 47
anp/an mod p2 0 47 0 147 0 335 0 0 46 26 0 22 0
bnp/bn mod p2 0 47 0 147 0 335 0 0 46 26 0 22 0

Table 20. values of
anp

an
and

bnp

bn
for primes p ≥ 5 and inte-

gers n, with pn ≤ 500. These agree mod p2 with values in
Table 19.

Since the ratios anp/an and bnp/bn, given in Table 20 appear to be con-
stant, and the numbers in Tables 19 and 20 agree modulo p2, we conclude
that the ASwD basis of S3(Γ24.6.16) is h1, h2, as given by (18) and (19) for
all primes, with f in (17) being the associated congruence form.

7.3.2. Atkin Swinnerton-Dyer congruences for Γ83.23.33 . Basis of S3(Γ83.23.33),

written in terms of r = q1/3 and s = q2/3.

h1(z) = 3

√
η(2τ)20η(8τ)4

η(4τ)6
=
∑

n≥1

ans
n = s− 20

3
s4 +

128

9
s7 − 400

81
s10 + · · ·

h2(z) = 3

√
η(2τ)16η(4τ)6

η(8τ)4
=
∑

n≥1

bnr
n = r − 16

3
r7 +

38

9
r13 +

1696

81
r19 + · · ·

First few prime coefficients:

p 2 3 5 7 11 13 17 19
ap 0 0 0 128

9 0 −3454
243 0 −38656

6561

bp 0 0 0 −16
3 0 38

9 0 1696
81

Our computations show that the ratios
anp

an
and

bnp

bn
remain constant for

fixed p, for values of pn up to 500. We can write these ratios in terms of ω,
a sixth root of 1 mod p2, as in Table 21. In this table we also tabulate ω,
and the order of ω as an element of (Z/p2Z)×.

Since the values of anp/an and bnp/bn are constant over the ranges com-
puted, we conjecture that h1, h2 is an ASwD basis for all primes. Comparing
these values with the coefficients of f , we conjecture that the associated con-
gruence form is f ⊗ χ where χ is a certain Hecke character.
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p
anp

an
mod p2

bnp

bn
mod p2 ω o(ω)

7 36 = −2ω 11 = −2ω−1 31 6
11 0 0
13 168 = −22ω 23 = −22ω−1 146 3
17 0 0
19 11 = −26ω 324 = −26ω−1 69 6
23 0 0
29 0 0
31 915 = 46ω 915 = 46ω−1 −1 2
37 47 = 26ω 1296 = 26ω−1 581 3
41 0 0
43 1827 = 22ω 1827 = 22ω−1 −1 2
47 0 0

Table 21. values of
anp

an
and

bnp

bn
for Γ83.23.33 , for primes

p ≥ 5 and integers n, with pn ≤ 500, in terms of a 6th root
of unity, ω, with order o(ω). Compare with values in Ta-
ble 19.

7.4. Examples associated with newform in S3(Γ0(432), χ). For Γ83.6.3.13

and Γ24.3.23.13 evidence suggests that the associated congruence form is

f(z) = q + 6
√
2q5 +

√
−3q7 + 6

√
−6q11 + 13q13 − 6

√
2q17 +(20)

11
√
−3q19 − 18

√
−6q23 + 47q25 − 24

√
2q29 + · · ·

The first few Ap are given in Table 22, where they are divided by either

1,
√
2,

√
3, or

√
−6, for easy readability

p 5 7 11 13 17 19 23 29 31 37 41 43 47
Ap 13 35

Ap/
√
2 6 −6 −24 0

Ap/
√
−3 1 11 24 −24

Ap/
√
−6 6 −18 6

Table 22. Coefficients of f in (20) and (21).

.

The form f can be given in terms of eta products and an Eisenstein series
as follows:

(21) f(z) = f1(12z) + 6
√
2f5(12z) +

√
−3f7(12z) + 6

√
−6f11(12z),
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where

f1(z) =
η(2z)3η(3z)

η(6z)η(z)
E6(z)(22)

f5(z) =
η(z)η(2z)3η(3z)3

η(6z)
(23)

f7(z) =
η(6z)3η(z)

η(2z)η(3z)
E6(z)(24)

f11(z) =
η(3z)η(z)3η(6z)3

η(2z)
(25)

where E6(z) = 1 + 12
∑

n≥1

(σ(3n)− 3σ(n))qn,(26)

and σ(n) =
∑

d|n d.

7.4.1. Atkin Swinnerton-Dyer congruences for Γ83.6.3.13. We have seen that
a basis of S3(Γ83.6.3.13) can be given by:

h1(z) = 3

√
η(z)4η(2z)10η(8z)8

η(4z)4
=
∑

n≥1

anq
n = q − 4

3
q2 − 40

9
q3 +

400

81
q4 +

1454

243
q5 + · · ·

h2(z) = 3

√
η(z)8η(4z)10η(8z)4

η(2z)4
=
∑

n≥1

bnq
n = q − 8

3
q2 +

8

9
q3 +

32

81
q4 − 82

243
q5 + . . .

The first few prime coefficients of h1 and h2 are as follows:

p 2 3 5 7 11 13 17 19
ap −4

3 −40
9

1454
243 −13168

6561
38671144
4782969 −2230795138

129140163 −418720079278
31381059609

30660416258552
2541865828329

bp −8
3

8
9 − 82

243 −24400
6561

16345336
4782969

1236747902
129140163

842483994194
31381059609 −34758650729368

2541865828329

For p ≡ 1 mod 3, our data suggests that apn/ap and bpn/bn remain con-
stant as n varies, with values as in Table 23. This means we are in case
1, described in subsection 7.1. Experimentally, we noted that for these p

we always have
(
apn
ap

/ bpn
bn

)6
≡ 1 mod p2 (excluding the case p = 13, when

apn ≡ bpn ≡ 0 mod 13). We also checked that
apn
ap

× bpn
bn

≡ A2
p mod p2

where the Ap are as in Table 22. The first observation indicates that these
two forms correspond to congruence forms which are twists of each other by
an order 6 character, and the second observation indicates that the congru-
ence form is the f given by (20). Using these two observations, we write the
ratios anp/an and bnp/bn in the factored forms in Table 23. The values of

ω, a sixth root of 1, and the values used for
√
3 mod p2 are also tabulated.

Based on these experiments, we conjecture that the Atkin Swinnerton-
Dyer basis of S3(Γ83.6.3.13) when p ≡ 1 mod 3 is h1, h2, and the associated
congruence forms are f ⊗ χ and f ⊗ χ−1 for a certain Hecke character.
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p
anp

an
mod p2

bnp

bn
mod p2

√
−3 ω

7 17 = ω−4
√
−3 29 = ω−2

√
−3 37 4

√
−18

13 52 = ω−213 130 = ω213
√
23

19 48 = ω−211
√
−3 346 = ω−411

√
−3 137

√
69

31 915 = ω624
√
−3 46 = 24

√
−3 82 6

√
−1

37 165 = ω−435 1169 = ω435 4
√
581

43 11 = −ω624
√
−3 1838 = −24

√
−3 1002 6

√
−1

Table 23. Values of anp/an and bnp/bn for p ≡ 1 mod 3,
for h1 and h2 for Γ83.6.3.13 , in terms of Ap in Table 22.

p
anp

bn

bnp

an
mod p2 (

anp

bn
/
bnp

an
)6 ≡ α3 anp

bn

bnp

an
≡ A2

p

5 3 1 4 −2 · 62
11 84 32 4 −6 · 62
17 278 243 4 −2 · 62
23 335 130 4 −6 · 182
29 272 441 4 −2 · 242
41 0 0
47 302 760 4 −6 · 62

Table 24. Values of anp/bn and bnp/an for p ≡ 2 mod 3,
for h1 and h2 for Γ83.6.3.13 , with α as in (16), and Ap (exper-
imentally) as in Table 22.

From the data in Table 24, following the explanation of Section 7.2, the
Atkin Swinnerton-Dyer basis of S3(Γ83.6.3.13) when p ≡ 1 mod 3 should
be h1, h2, and when p ≡ 2 mod 3, it should consist of forms of the form
h1 + αh2 with α3 = 4.

7.4.2. Atkin Swinnerton-Dyer congruences for Γ24.3.23.13. Basis of S3(Γ24.3.23.13):

h1(z) = 3

√
η(2τ)22η(8τ)8

η(τ)4η(4τ)8
= q +

4

3
q2 − 40

9
q3 − 400

81
q4 +

1454

243
q5 +

1888

729
q6 − 13168

6561
q7 + · · ·

h2(z) = 3

√
η(2τ)20η(4τ)2η(8τ)4

η(τ)8
= q +

8

3
q2 +

8

9
q3 − 32

81
q4 − 82

243
q5 − 5440

729
q6 − 24400

6561
q7 + · · ·

First few prime coefficients:

p 2 3 5 7 11 13 17 19
ap

4
3 −40

9
1454
243 −13168

6561
38671144
4782969 −2230795138

129140163 −418720079278
31381059609

30660416258552
2541865828329

bp
8
3

8
9 − 82

243 −24400
6561

16345336
4782969

1236747902
129140163

842483994194
31381059609 −34758650729368

2541865828329

Note that up to sign these are identical to the coefficients of the forms given
for the Γ83.6.3.13 case, and so the ASwD basis is expected to be the same as
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p
anp

an

bnp

bn
7 17 29
13 52 130
19 48 346
31 915 46
37 165 1169
43 11 1838

Table 25. Values of anp/an and bnp/bn for p ≡ 1 mod 3,
for h1 and h2 for S3(Γ24.3.23.13). These values are the same
as those in Table 23.

p
anp

bn

bnp

an
mod p2

5 3 1
11 84 32
17 278 243
23 335 130
29 272 441
41 0 0
47 302 760

Table 26. Values of anp/bn and bnp/an for p ≡ 2 mod 3,
for h1 and h2 for S3(Γ24.3.23.13). These values are the same
as those in Table 24.

in the Γ83.6.3.13 case, namely h1, h2 when p ≡ 1 mod 3 and h1 + αh2 with
α3 = 4 when p ≡ 2 mod 3.

7.4.3. Atkin Swinnerton-Dyer congruences for Γ24.3.23.13B. This is a conju-
gate of the S3(Γ24.3.23.13) example by the involution

W8 =

(
0 −1
8 0

)
.

Basis of S3(Γ24.3.23.13B) in terms of r = q1/3.

h1(z) = 3

√
η(z)8η(4z)22

η(8z)4η(8z)8
=
∑

n≥1

anr
n = r2 − 8

3
r5 +

20

9
r8 − 256

81
r11 − 64

243
r14 + · · ·

h2(z) = 3

√
η(z)4η(2z)2η(4z)20

η(8z)8
=
∑

n≥1

bnr
n = r − 4

3
r4 − 16

9
r7 +

112

81
r10 + . . .

First few prime coefficients:

p 2 3 5 7 11 13 17 19 23 29 31
ap 1 0 −8

3 0 −256
81 0 7984

729 0 172544
19683 −18907736

1594323 0

bp 0 0 0 −16
9 0 −1534

243 0 78560
6561 0 0 −126424784

4782969



MODULAR FORMS, NONCONGRUENCE SUBGROUPS, ASWD RELATIONS 31

p anp/an bnp/bn anp/bn bnp/an ω i 3
√
2

7 32 = −
√
−3 · ω2 20 =

√
−3 · ω 18

√
−3 = 12

13 52 = −13 · ω 130 = −13 · ω2 22
√
−3 = 45

19 313 = 11
√
−3 · ω 15 = −11

√
−3 · ω2 68

√
−3 = 137

31 46 = 24
√
−3 915 = −24

√
−3 439

√
−3 = 82

37 165 = 35 · ω2 1169 = 35 · ω 581
43 1838 = 24

√
−3 11 = −24

√
−3 423

√
−3 = 847

Table 27. Values of anp/an and bnp/bn for p ≡ 1 mod 3,
for h1 and h2 for S3(Γ24.3.23.13B).

p anp/an bnp/bn anp/bn bnp/an ω i 3
√
2

5 14 = 6
√
−2 ·

√
2

2 3
√
2

2 = 6
√
−2 · 2 3

√
2√
2

i = 7 3

7 32 = −
√
−3 · ω2 20 =

√
−3 · ω 18

√
−3 = 12

11 79 = 6
√
−6 ·

√
−2

2 3
√
2

57 = 6
√
−6 · 2 3

√
2√

−2

√
3 = 27 73

13 52 = −13 · ω 130 = −13 · ω2 22
√
−3 = 45

17 139 = 6
√
−2 ·

√
2

2 3
√
2

197 = 6
√
−2 · 2 3

√
2√
2

i = 38 195

19 313 = 11
√
−3 · ω 15 = −11

√
−3 · ω2 68

√
−3 = 137

23 97 = −18
√
−6 ·

√
−2

2 3
√
2

269 = −18
√
−6 · 2 3

√
2√

−2

√
3 = 223 384

29 136 = −24
√
−2 ·

√
2

2 3
√
2

41 = −24
√
−2 · 2 3

√
2√
2

i = 800 403

31 46 = 24
√
−3 915 = −24

√
−3 439

√
−3 = 82

37 165 = 35 · ω2 1169 = 35 · ω 581
41 0 0
43 1838 = 24

√
−3 11 = −24

√
−3 423

√
−3 = 847

47 2058 = 6
√
−6 ·

√
−2

2 3
√
2

689 6
√
−6 · 2 3

√
2√

−2

√
3 = 270 1854

Table 28. Values of anp/bn and bnp/an for p ≡ 2 mod 3,
for h1 and h2 for S3(Γ24.3.23.13B).

Ratios when terms are non-zero:
Atkin Swinnerton-Dyer basis:

if p ≡ 1 mod 3 basis is h1, h2

if p ≡ 5 mod 12 basis is h1 ±
√
2

2 3
√
2
h2

if p ≡ 11 mod 12 basis is h1 ±
√
−2

2 3
√
2
h2

7.5. Examples associated with newform in S3(Γ0(243), χ).

f(z) = q + 3iq2 − 5q4 + 6iq5 + 11q7 − 3iq8 − 18q10 + 12iq11 + · · ·
where i is a root of x2+1 = 0. Note, the corresponding Galois representation
is a twist of the representation corresponding to E6(3r

3).

The first few prime coefficients Ãp of this form are as follows:
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p 5 7 11 13 17 19 23 29 31 37

Ãp 6i 11 12i 5 −18i −19 −30i 48i −13 17

7.5.1. Atkin Swinnerton-Dyer congruences for Γ18.6.33.13. Basis of S3(Γ18.6.33.13)

h1(z) = 3

√
η(z)4η(2z)7η(6z)11

η(3z)4
=
∑

n≥1

anq
n = q − 4

3
q2 − 31

9
q3 +

400

81
q4 +

104

243
q5 + · · ·

h2(z) = 3

√
η(3z)4η(6z)7η(2z)11

η(z)4
=
∑

n≥1

bnq
n = q +

4

3
q2 − 7

9
q3 − 112

81
q4 − 616

243
q5 + . . .

First few prime coefficients:

p 2 3 5 7 11 13 17 19
ap −4

3 −31
9

104
243

44018
6561 −38654696

4782969 −1857609346
129140163

362933655200
31381059609 −33243449873158

2541865828329

bp
4
3 −7

9 −616
243 −15886

6561
43656424
4782969 −343807618

129140163 −100695940768
31381059609

19258418018042
2541865828329

with an and bn the coefficients of the non-congruence forms given above.
The following ratios, all computed mod p2, appear to be constant as n varies,
for the given ps. The table shows the constants; if no entry is shown, this
means the ratio is not constant in this case.

p
anp

an

bnp

bn

anp

bn

bnp

an
mod p2

5 3 13
7 36 2
11 13 82
13 54 110
17 279 148
19 228 152
23 130 400
29 296 515
31 915 59
37 1058 294

Case I: p ≡ 1 mod 3. These ratios are a special case of the Atkin-Swinnerton-
Dyer type relation, e.g., a7n/an ≡ 36 mod 72 can be written as

a7n − 36an + 72an/p ≡ 0 mod 72.

So, for p ≡ 1 mod 3, it looks like h1 and h2 form an Atkin Swinnerton-Dyer
basis.

Note that for p in the above table with p ≡ 1 mod p, except for the case

p = 19, we have (
anp

an
/
bnp

bn
)3 ≡ 1 mod p2.

It’s not surprising that this relation holds, since the ratios ought to be
the values of Ap given above, which we can see should always be ω or ω2 in
these cases, including for p = 19.
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The reason the congruence does not hold for p = 19 is that in this case
we have ω, ω2 ≡ 68, 292 mod 192, and α1 = −19ω,α2 = −19ω2 ≡ 152, 228
mod 192, so we only have that α1/19 ≡ ω mod 19, α2/19 ≡ ω2 mod 19,

i.e., the ratio satisfies (a19nan
/ b19n

bn
)3 ≡ 1 mod 19, which we can check is true.

Case II: p ≡ 2 mod 3. Observation: when p ≡ 2 mod 3 we always have

(
anp

bn
/
bnp

an
)3 ≡ −9 mod p2.

Suppose that the Atkin Swinnerton-Dyer basis is h1 +αh2, then (writing
αp = α mod p2) we would have

apn + αpbpn ≡ Ap(an + αpbn) mod p2,

and suppose we in fact have

apn ≡ Apαpbn mod p2, and αpbpn ≡ Apan mod p2,

then this implies that apn/bn = Apαp and bpn/an = Ap/αp, so α2
p ≡

anp

bn
/
bnp

an
,

so from the above observation we expect α6 ≡ −9 mod p2, i.e., α ≡ 3
√
3i

mod p2, so it seems that for p ≡ 2 mod 3 we should have Atkin Swinnerton-
Dyer basis consisting of forms of the form h1 + αh2, where α6 = −9.

The value of Ap is given by Ap ≡ ±
√

anp

bn

bnp

an
mod p2, whereas the values

for p ≡ 1 mod 3 are those already in the table above. From the values in
the above table, we compute the following table of Aps, with no particular
order given to the two possible values. In this table, we write e.g., Ap ≡ 6i
mod 25 to mean that A2

p ≡ −36 mod 25, etc, and ω means ω2 + ω + 1 ≡ 0

mod p2.

p 5 7 11 13 17 19 23 29 31 37
Ap 6i 11ω 12i 5ω 18i −19ω 30i 48i −13ω 17ω

mod p2 −6i 11ω2 −12i 5ω2 −18i −19ω2 −30i −48i −13ω2 17ω2

7.5.2. Atkin Swinnerton-Dyer congruences for Γ9.63.3.23 . Basis of S3(Γ9.63.3.23)

in terms of r = q1/3.

h1(z) = 3

√
η(τ)7η(2τ)4η(3τ)11

η(6τ)4
=
∑

n≥1

anr
n = r − 7

3
r4 − 19

9
r7 +

193

81
r10 +

2306

243
r13 + · · ·

h2(z) = 3

√
η(τ)11η(3τ)7η(6τ)4

η(2τ)4
=
∑

n≥1

bnr
n = r2 − 11

3
r5 +

23

9
r8 − 13

81
r11 + · · ·

First few prime coefficients:
p 2 3 5 7 11 13 17 19
ap 0 0 0 −19

9 0 2306
243 0 −151696

6561

bp 1 0 −11
3 0 −13

81 0 −7130
729 0

First few prime coefficients mod p2. Notice that these are either zero or
the same as in the Γ18.6.33.13 case.
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Ratios of coefficients, (when all terms are non-zero), all numbers given
mod p2. When p ≡ 2 mod 3, there is a unique cube root mod p2 of any
integer, so the given value of 3

√
3 is unique. i means the square root of −1.

p anp/an bnp/bn anp/bn bnp/an ω ω2 3
√
3

5 3 = 6i · i 3
√
3 13 = 6i/i 3

√
3 12

7 36 = 11 · ω2 2 = 11 · ω 18 30

11 13 = 12i · i 3
√
3 82 = 12i/i 3

√
3 9

13 54 = 5 · ω2 110 = 5 · ω 22 146

17 279 = −18i · i 3
√
3 148 = −18i/i 3

√
3 160

19 228 = −19 · ω2 152 = −19 · ω 68 292

23 130 = −30i · i 3
√
3 400 = −30i/i 3

√
3 357

29 296 = 48i · 3
√
3 515 = 48i/i 3

√
3 134

31 915 = −13 · ω2 59 = −13 · ω 439 521
37 1058 = 17 · ω2 294 = 17 · ω 581 787

41 1384 = −30i · i 3
√
3 869 = −30i/i 3

√
3 1503

43 1173 = 29 · ω2 647 = 29 · ω 1425 423

47 155 = −24i · i 3
√
3 1906 = −24i/i 3

√
3 1203

The above table indicates that when p ≡ 1 mod 3, we have

anp −Apω
2an ≡ 0 mod p2 and bnp −Apωbn ≡ 0 mod p2

for certain Ap, indicating h1, h2 is an ASWD-basis in this case.
Note that this relation only hold when terms are non zero. E.g., b1 = 0,

so we can’t have bp +Apb1 ≡ 0 mod p for any p with bp 6= 0.
For p ≡ 2 mod 3, the above table indicates that we have

(
anp + i

3
√
3bnp

)
+ iAp

(
an + i

3
√
3bn

)
≡ 0 mod p2

(
anp − i

3
√
3bnp

)
− iAp

(
an − i

3
√
3bn

)
≡ 0 mod p2,

so h1+i 3
√
3h2, h1−i 3

√
3h2 should be the ASWD-basis in this case. (shouldn’t

make any difference which cube root of three is taken)

7.6. Examples associated with newform in S3(Γ0(48), χ)..

f(z) = q −
√
−2q2 − 2q4 + 3

√
−2q5 − 7q7 + 2

√
−2q8 + 6q10 − 3

√
−2q11 + 5q13

+7
√
−2q14 + 4q16 − 18

√
−2q17 + 17q19 − 6

√
−2q20 − 6q22 − 6

√
−2q23

+7q25 − 5
√
−2q26 + 14q28 − 39

√
−2q29 + 59q31 − 4

√
−2q32 − 36q34 + · · ·

First few coefficients ap, First few prime coefficients, divided by either 1

or 3
√
−2, for easy readability

p 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67
ap −7 5 17 59 −19 47 −4 −46
ap

3
√
−2

1 −1 −6 −2 −13 13 −19 9 −5
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7.6.1. Atkin Swinnerton-Dyer congruences for Γ9.64.13. Basis of S3(Γ9.64.13)

h1(z) = 3

√
η(z)13η(6z)14

η(2z)2η(3z)7
=
∑

n≥1

anq
n = q − 13

3
q2 +

32

9
q3 +

670

81
q4 − 3577

243
q5 + · · ·

h2(z) = 3

√
η(z)14η(6z)13

η(2z)7η(3z)2
=
∑

n≥1

bnq
n = q − 14

3
q2 +

56

9
q3 − 58

81
q4 +

266

243
q5 + . . .

First few prime coefficients:

p 2 3 5 7 11 13 17 19
ap −13

3
32
9 −3577

243
38780
6561

97488844
4782969 −198000616

129140163
1030071452831
31381059609 −91038813695632

2541865828329

bp −14
3

56
9

266
243 −1036

6561
24235144
4782969 −2216727472

129140163 −894269035558
31381059609

97467805305080
2541865828329

p
anp

an

bnp

bn

anp

bn

bnp

an
mod p2 (

anp

an
/
bnp

bn
)3

anp

an

bnp

bn
(
anp

bn
/
bnp

an
)6

anp

bn

bnp

an
5 11 12 4 −18
7 35 21 1 0
11 94 41 75 −18
13 54 110 1 52

17 10 282 69 −18 · 62
19 271 73 1 172

23 503 369 522 −18 · 22
29 661 101 724 −18 · 132
31 948 915 1 592

37 106 1282 1 192

41 1463 1587 1656 −18 · 132
43 1391 411 1 472

47 2117 887 519 −18 · 192

7.6.2. Atkin Swinnerton-Dyer congruences for Γ18.34.23. Basis of S3(Γ18.34.23),

in terms of r = q1/3:

h1(z) = 3

√
η(2τ)13η(3τ)14

η(6τ)7η(τ)2
=
∑

n≥1

anr
n = r +

2

3
r4 − 28

9
r7 − 482

81
r10 − 736

243
r13 + · · ·

h2(z) = 3

√
η(2τ)14η(3τ)13

η(6τ)2η(τ)7
=
∑

n≥1

bnq
n = r2 +

7

3
r5 +

14

9
r8 − 148

81
r11 − 1708

243
r14 + · · ·

First few prime coefficients:

p 2 3 5 7 11 13 17 19
ap 0 0 0 −28

9 0 −736
243 0 120680

6561

bp 1 0 7
3 0 −148

81 0 −4529
729 0
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p anp/an bnp/bn anp/bn bnp/an ω ω2 3
√
3

5 3 = −1 · 6 3
√
3 19 = 1 · 3/ 3

√
3 12

7 35 = −7 · ω2 21 = −7 · ω 18 30

11 54 = 1 · 6 3
√
3 40 = −1 · 3/ 3

√
3 9

13 54 = 5 · ω2 110 = 5 · ω 22 146

17 269 = 6 · 6 3
√
3 148 = −6 · 3/ 3

√
3 160

19 271 = 17 · ω2 73 = 17 · ω 68 292

23 52 = 2 · 6 3
√
3 80 = −2 · 3/ 3

√
3 357

29 360 = 13 · 6 3
√
3 370 = −13 · 3/ 3

√
3 134

31 948 = 59 · ω2 915 = 59 · ω 439 521
37 106 = −19 · ω2 1282 = −19 · ω 581 787

41 436 = −13 · 6 3
√
3 47 = 13 · 3/ 3

√
3 1503

43 1391 = 47 · ω2 411 = 47 · ω 1425 423

47 184 = 19 · 6 3
√
3 661 = −19 · 3/ 3

√
3 1203

When p ≡ 1 mod 3, we see the ASWD-basis should be h1, h2.
For p ≡ 2 mod 3, the congruences (which only hold when all terms are

non-zero)

anp/bp ≡ −αp · 6 3
√
3 and bnp/ap ≡ αp · 3/ 3

√
3

should be rewritten in terms of u, where u2 = −2, writing −6 = 3u · u, so
we have

anp/bp ≡ αp3u · u 3
√
3 and bnp/ap ≡ αp3u/u

3
√
3.

These imply that anp ≡ αp3u · u 3
√
3bp and u 3

√
3bnp ≡ αp3uap. so

anp + u
3
√
3bnp ≡ αp3u(·u 3

√
3bp + ap),

which holds for u replaced with −u, so the ASWD-basis should be h1 ±√
−2 2

√
3h2.
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