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Abstract

This paper contains both theoretical results and experimental data on the behavior of
the dimensions of the cohomology spaces H1(Γ, En), where Γ is a lattice in SL(2, C) and
En = Symn ⊗Symn, n ∈ N ∪ {0}, is one of the standard self-dual modules. In the case
Γ = SL(2,O) for the ring of integers O in an imaginary quadratic number field, we make the
theory of lifting explicit and obtain lower bounds linear in n. We have accumulated a large
amount of experimental data in this case, as well as for some geometrically constructed and
mostly non-arithmetic groups. The computations for SL(2,O) lead us to discover two instances
with non-lifted classes in the cohomology. We also derive an upper bound of size O(n2/ log n)
for any fixed lattice Γ in the general case. We discuss a number of new questions and conjec-
tures suggested by our results and our experimental data.
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1 Introduction

For a semisimple Lie group G and a lattice Γ in G (i.e. a discrete subgroup of finite covolume), it
is natural to consider the cohomology groups H∗(Γ, E) of Γ with coefficients in finite-dimensional
representation spaces E of G. If K is a maximal compact subgroup of G and X = G/K the
associated Riemannian symmetric space, these cohomology groups are canonically isomorphic to
the cohomology groups of the quotient orbifold Γ\X with coefficients in the local system associated
to E. By the main result of [22], at least for arithmetic Γ the cohomology of Γ can be described
by automorphic forms. For the contribution of the cuspidal spectrum one has (for general Γ)
a generalized Matsushima formula describing the so-called cuspidal cohomology in terms of the
multiplicities of cohomological unitary representations of G in L2

cusp(Γ\G), a well-known result of
Borel [5] predating [22]. The closer study of the non-cuspidal part is the object of the theory of
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Eisenstein cohomology initiated by G. Harder (cf. [loc. cit.], [32]), and there are fairly complete
results in many cases.

While there is therefore a complete correspondence between cohomology and representation
theory for the cuspidal part, generalizing the classical Eichler-Shimura homomorphism for the case
G = SL(2,R) to all G, the behavior of the dimensions of the cohomology spaces is understood
only under the hypothesis that G has a compact Cartan subgroup. In this case, one can compute
these dimensions using Euler-Poincaré characteristics [57] and the trace formula [1]. If the highest
weight of the representation E is regular, Arthur obtained in [loc. cit.] an explicit formula for the
dimension of the cohomology, which in this case is accounted for by the packet of discrete series
representations with the same infinitesimal character as the dual of E. In particular, the leading
term in his formula is a constant multiple of the dimension of E. The question of computing the
cohomology for non-regular highest weights and of separating the individual representations in the
packet is connected to the problem of stabilization and to Arthur’s conjectures. In the easiest case,
namely for lattices Γ in G = SL(2,R), it is well-known that the dimension of the cohomology with
coefficients in the symmetric power representations of G can be explicitly computed in terms of the
basic invariants of Γ (i.e. the covolume and the orders of the elliptic elements), and in fact such a
dimension formula follows without difficulties from the description of the group-theoretic structure
of Γ or from the Riemann-Roch theorem (see formula (1.9) below).

The situation is different if G has no compact Cartan subgroup and there are therefore no
discrete series representations. No explicit dimension formulas are known in this case. In this
paper, we consider the simplest case of this type, namely lattices in the Lie group G = SL(2,C).
Although the structure of this Lie group is very simple, the study of the cohomology of lattices in
G presents a number of deep problems. The irreducible finite-dimensional representations of G are
given by the tensor products

En,m = Symn ⊗ Symm (n, m ∈ Z, n, m ≥ 0). (1.1)

Here Symn stands for the n-th symmetric power of the standard two-dimensional representation of
G and Symm for its complex conjugate. For a lattice Γ in G = SL(2,C) we consider therefore the
finite-dimensional cohomology spaces

Hi(Γ, En,m).

The main problem studied in this paper is the behavior of the dimension of these spaces as a
function of n and m for a fixed Γ. Another problem which we consider is the behavior of the
dimensions when Γ ranges over the subgroups of finite index in a lattice Γ0. Since the virtual
cohomological dimension of Γ is three in the cocompact case, and two otherwise, the only dimensions
with interesting cohomology are i = 1 and i = 2.

We now define the subspaces of cuspidal cohomology classes and give their description in terms
of automorphic forms. As a consequence, it will turn out that we only have to consider the case
n = m and may in addition restrict to the first cohomology. Consider the set of all proper parabolic
subgroups P = MU of SL(2,C) with the property that Γ ∩ U is a lattice in U . Here U is the
unipotent radical of P and M is a Levi subgroup of P . Let C be a system of representatives for
the finitely many classes of such parabolics under Γ-conjugation and consider the direct sum of
restriction maps

Hi(Γ, En,m) −→ U i(Γ, En,m) =
⊕

P∈C
Hi(Γ ∩ P,En,m). (1.2)
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The kernel of this map is called the cuspidal cohomology of Γ and denoted by

Hi
cusp(Γ, En,m) ⊆ Hi(Γ, En,m). (1.3)

If Γ is cocompact, the set C is empty and we have Hi
cusp(Γ, En,m) = Hi(Γ, En,m).

We can also describe this construction geometrically. The group of orientation preserving
isometries of three dimensional hyperbolic space X = H3 can be identified with PSL(2,C) =
SL(2,C)/{±1}, and every lattice Γ of SL(2,C) gives rise to a quotient orbifold Γ\X . If this orbifold
is not compact, it can be compactified by adding a boundary ∂(Γ\H3), which consists of finitely
many disjoint two-dimensional tori or spheres. The inclusion

Γ\H3 →֒ Γ̂\H3 := Γ\H3 ∪ ∂(Γ\H3)

is a homotopy equivalence. The cohomology of Γ with coefficients in En,m can be computed as the

cohomology of a sheaf Ên,m on the compactified orbifold Γ̂\H3. The restriction map

Hi(Γ, En,m) ∼= Hi(Γ̂\H3, Ên,m) → Hi(∂(Γ\H3), Ên,m) (1.4)

coincides with the restriction map (1.2) (see [30] for a more detailed account). The spaces H1
cusp

and H2
cusp are then dual to each other under Poincaré duality (cf. [4, Chapter I, §7], [30]) and we

will therefore restrict to the case i = 1 in the following. Furthermore, by a result of Serre [56, Th.
8], for i = 1 the dimension of the image of the map in (1.2) is one half of the dimension of the target
space U1(Γ, En,m). It is not difficult to calculate the latter dimension explicitly. For example, if
Γ∩P ⊆ ±U for all P ∈ C and n+m is even, the dimension of the image is equal to the number of
cusps (the number of elements of C) by [loc. cit., Cor. 1]. For i = 2 one sees immediately from the

long exact cohomology sequence for the pair (Γ̂\H3, ∂(Γ\H3)) that the image of (1.2) is the entire
target space, except in the case n = m = 0, where it has codimension one. It therefore remains to
study the space H1

cusp.
The theorem of Borel mentioned above yields an isomorphism

H1
cusp(Γ, En,m) ≃ H1(g,K;L2

cusp(Γ\G)∞ ⊗ En,m), (1.5)

where the superscript ∞ denotes the subspace of smooth vectors. Since the space of cuspidal
functions decomposes discretely as a representation of G, we can also write

H1
cusp(Γ, En,m) ≃

⊕

π∈Ĝ

Hom(π, L2
cusp(Γ\G)) ⊗H1(g,K;H∞

π ⊗ En,m), (1.6)

where Ĝ denotes the unitary dual of G. From the computation of the (g,K)-cohomology of ad-
missible irreducible representations of G [4, Chapter II], we can deduce the following vanishing
theorem:

H1
cusp(Γ, En,m) = {0}, for n 6= m. (1.7)

In the case n = m the module
En := En,n = Symn ⊗ Symn (1.8)

is self-dual in the terminology of [4], and the dimension ofH1
cusp(Γ, En) is equal to the multiplicity of

the principal series representation π2n+2,0 (the representation unitarily induced from the character
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z 7→ (z/|z|)2n+2 of the maximal torus T ≃ C×) in the space L2
cusp(Γ\G). We will use this connection

extensively in the following. We would like to stress that it does not yield an explicit dimension
formula.

In the following we study the behavior of the dimension of H1(Γ, En) both theoretically and
numerically. We focus primarily on the following problems.

A: How does the dimension of H1(Γ, En) behave when Γ is fixed and n grows?

B: Are there formulas for the dimension of H1(Γ, En) in terms of n at least for some groups Γ?
Are there formulas for the dimension valid for all n ≥ n0, where n0 is allowed to depend on
Γ?

C: Are there lattices Γ such that H1
cusp(Γ, En) = 0 or H1(Γ, En) = 0 for all n (necessarily

cocompact in the latter case)?

D: How does the dimension of H1(Γ, En) and H1
cusp(Γ, En) behave when n is fixed and Γ ranges

over the subgroups of finite index of a fixed lattice in G?

E: How does the asymptotic behavior of H1(Γ, En) and H1
cusp(Γ, En) for n→ ∞ change when Γ

ranges over the subgroups of finite index of a fixed lattice in G?

While we do not know of previous work on problems A-C and E, problem D has been studied
qualitatively in the context of limit multiplicities [15, 54] and of the conjecture of Waldhausen and
Thurston (cf. [17]) in three-manifold topology. The results and computations described below are
of very preliminary nature, but we hope to provide at least some evidence on what might be true. In
Section 1.1 below we summarize our theoretical results on upper and lower bounds for the dimension
of H1(Γ, En). In Section 1.2 we shall formulate more specific questions about the behavior of the
these dimensions and discuss the numerical evidence accumulated in the later sections.

1.1 Theoretical results

We now describe our theoretical results. Before we proceed, let us briefly comment on the situation
for Fuchsian groups, i.e. discrete subgroups Γ of SL(2,R) of finite covolume. Let g be the genus
of Γ, k the number of cusps and r1, . . . , rs be the orders of the elliptic elements in the image of
Γ in PSL(2,R), considered up to conjugacy. For an integer n and a positive integer r let µ be the
remainder of n after division by 2r and set

d(n, r) =











1 − µ+1
r , µ even,

−µ+1
r , 0 ≤ µ < r odd,

2 − µ+1
r , r ≤ µ < 2r odd.

Then a consideration of the group-theoretical structure of Γ shows that

dimH1(Γ, Symn) =

(

2g − 2 + k +

s
∑

i=1

(

1 − 1

ri

)

)

(n+ 1) −
s
∑

i=1

d(n, ri) (1.9)

for all n > 0, where for −1 ∈ Γ one has in addition to assume n to be even (the cohomology
spaces vanish for odd n in this case). So, the dimension of the cohomology is given by simple

5



linear functions on congruence classes. Note also that the coefficient of n + 1 in (1.9) is equal to
vol(Γ\H2)/2π.

Our first theoretical result on lattices in SL(2,C) concerns a general upper bound for the di-
mension of the cohomology. We prove

Theorem 1.1. Let Γ ⊆ SL(2,C) be a discrete subgroup of finite covolume. Then

dim H1(Γ, En) = O

(

n2

logn

)

as n→ ∞.

This result is obtained by an application of the Selberg trace formula in Section 5. Note that the
module En has dimension (n+1)2. Since a group Γ as above is finitely presented, dim H1(Γ, En) =
O(n2) is the trivial upper bound (cf. Lemma 3.1 below). Non-trivial lower bounds are not known
for general lattices Γ ⊆ SL(2,C). In fact, our examples in Sections 7.2 and 7.3 indicate that there
are probably none.

Lattices in SL(2,C) can be classified into arithmetic and non-arithmetic ones. The arithmetic
lattices arise from quaternion algebras over number fields with precisely one complex place, and are
intimately connected to number theory. The primary examples are the Bianchi groups SL(2,OK),
where OK is the ring of integers of an imaginary quadratic field K. It is well known that every
non-cocompact arithmetic lattice in SL(2,C) is commensurable to a Bianchi group. For arithmetic
groups one can use Langlands functoriality (base change, automorphic induction, and the Jacquet-
Langlands correspondence) to obtain lower bounds on the cohomology in certain cases (cf. [11, 47,
52]). Unfortunately, because base change is only available for solvable extensions of number fields,
the results are not complete (cf. [48, Section 6]). The structure of the non-arithmetic lattices is even
less well understood. The explicit examples considered in this paper are on the one side Bianchi
groups for certain K of small discriminant, and on the other side certain geometrically constructed
lattices and series of lattices, almost all of which are non-arithmetic.

A related (but in general not equivalent) method for obtaining lower bounds is based on studying
the action of the complex conjugation automorphism c of SL(2,C) on the cohomology, if the lattice
Γ is invariant under c (as the Bianchi groups are, for example). In this case, one can use the
Lefschetz fixed point formula to compute the trace of this involution acting on H1

cusp(Γ, En), and
thereby obtain a lower bound for the dimension of this space. For the case of the Bianchi groups
with trivial coefficients this approach was carried out in [45, 53]. Here the results turn out to
be equivalent to the ones given by theory of base change. While this method is not restricted to
arithmetic groups, on the other hand it does not cover all lower bounds obtainable by Langlands
functoriality for arithmetic groups.

We work out the consequences of base change and automorphic induction (CM automorphic
forms) for the cohomology of the Bianchi groups in Section 4 below. The base change construction
detailed there associates to holomorphic automorphic forms for certain congruence subgroups of
SL(2,Z) elements of H1(SL(2,OK), En). Let us write

H1
bc(SL(2,OK), En) ⊆ H1

cusp(SL(2,OK), En)

for the corresponding subspace. Our main result here is a precise formula for the dimension of
H1

bc(SL(2,OK), En) in terms of the prime factorization of the discriminant of K. To state it, we
need to introduce functions εk and µk defined for all integers k which depend only on the residue
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class of k modulo 4 and 3, respectively, and a function νK,k depending on K and at most on k
modulo 2 or 3 (see Sections 4.1 and 4.3 below for the precise definitions).

Theorem 1.2. Let K be an imaginary quadratic extension of Q, R the set of primes ramified in
K (the prime divisors of the discriminant of K), and for each p ∈ R let νp be the exact power of p
dividing the discriminant. Then there are non-negative constants c2, c3 and c4 (depending on K)
such that

dimH1
bc(SL(2,OK), En) =





1

24

∏

p∈R
(pνp + 1) + c2(−1)n+1



 (n+ 1)

− νK,n
hK

2
− 2|R|−2 + c4εn+2 + c3µn+2 + δn,0

for all n ≥ 0, where hK is the class number of K and δn,0 denotes the Kronecker delta symbol.

Note that for every K the dimension of H1
bc is given by linear functions of n spread out over the

congruence classes modulo 12. If one takes the precise value of c2 given in Section 4.3 into account,
one sees that the coefficient of n in these linear functions is always positive, and that therefore the
dimension of H1

cusp(SL(2,OK), En) grows at least linearly with n. Also, for a fixed n the dimension
grows linearly in the (absolute value of) the discriminant. This implies non-vanishing results for
the cuspidal cohomology. The first results of this nature (in a much more limited situation) are in
[28, 29]. Let us describe the special cases K = Q(

√
d), d = −2, −7, −11, more explicitly.

Proposition 1.3. For all n ≥ 1 we have:

dimH1
bc(SL(2,O−2), En) =











(n− 1)/2, if n ≡ 1 (2),

(n− 2)/4, if n ≡ 2 (4),

(n− 4)/4, if n ≡ 0 (4),

(1.10)

dimH1
bc(SL(2,O−7), En) =











(n− 3)/3, if n ≡ 0 (3),

(n− 1)/3, if n ≡ 1 (3),

(n− 2)/3, if n ≡ 2 (3),

(1.11)

dimH1
bc(SL(2,O−11), En) =











(n− 1)/2, if n ≡ 1 (2),

n/2, if n ≡ 2 (4),

(n− 2)/2, if n ≡ 0 (4).

(1.12)

A second construction of cohomology classes is via automorphic induction from Hecke characters
of quadratic extensions of K (in fact necessarily biquadratic extensions of Q unramified over K). In
Section 4.2 we describe the corresponding contribution H1

CM to the cuspidal cohomology. In many
cases, it is already contained in H1

bc. The precise criterion for an additional CM contribution to
the cohomology is as follows.

Proposition 1.4. Let K be an imaginary quadratic field. There is a CM contribution to a space
H1

cusp(SL(2,OK), En), n ≥ 0, which is not contained in H1
bc(SL(2,OK), En), if and only if for some

real quadratic field L′ such that KL′/K is unramified, the narrow class number h+
L′ is strictly bigger

than the corresponding number of genera g+
L′ = 2|R(L′)|−1, where R(L′) denotes the set of primes

ramified in L′.
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See Section 4.2 for the smallest examples of real quadratic fields L′ with this property. In any
case, the additional CM contribution is always constant on residue classes modulo 12, and the
total contribution from base change and automorphic induction is therefore again given by linear
functions on residue classes mod 12.

The techniques of Langlands functoriality have been previously used to prove (a generalization
of) the conjecture of Waldhausen and Thurston for some arithmetic groups Γ, i.e. to establish for
fixed n the existence of a finite index subgroup ∆ of Γ with H1(∆, En) 6= 0. In fact, one can in
all cases in the literature show that there exists such a ∆ with H1(∆, En) 6= 0 for all n. Building
on the work of Labesse-Schwermer [47], Rajan considers in [52] arithmetic groups Γ associated to
quaternion algebras defined over fields L such that the extension L/Ltr, where Ltr is the maximal
totally real subfield of L, is solvable (but not necessarily Galois). His methods easily imply the
following result on Problem E.

Proposition 1.5. Let Γ be an arithmetic subgroup of SL(2,C) such that the field of definition L
of the corresponding quaternion algebra is a solvable extension of its maximal totally real subfield
Ltr. Then for every c > 0 there exists a finite index subgroup ∆ of Γ such that

dimH1(∆, En) > cn

for all n ≥ 0.

If base change for SL(2) for arbitrary extensions of number fields was available, one could prove
the corresponding result for all arithmetic lattices Γ.

We now turn to a result which gives an upper bound for special cases of problem D. We consider
finite index subgroups of the Bianchi groups SL(2,OK). For any non-zero ideal a of OK we have
the classical congruence subgroup

Γ0(a) =

{

γ =

(

a b
c d

)

∈ SL(2,OK) c ∈ a

}

. (1.13)

The index of Γ0(a) in SL(2,OK) is given by the multiplicative function

ι(a) = N(a)
∏

p | a

(

1 +
1

N(p)

)

. (1.14)

The following theorem gives a bound for the dimension of H1(Γ ∩ Γ0(a), En) for each subgroup
Γ of finite index in SL2(OK), which improves the trivial bound O(ι(a)) by a logarithm.

Theorem 1.6. Let Γ be a subgroup of finite index in SL(2,OK), K imaginary quadratic. Then for
any fixed n ≥ 0 we have

dimH1(Γ ∩ Γ0(a), En) = O

(

ι(a)

log N(a)

)

, N(a) → ∞. (1.15)

This theorem, which again results from an application of the trace formula, should be compared
to the limit multiplicity results of de George-Wallach [15], Lück and Savin [54], which imply

lim
i→∞

dimH1(Γi, En)

[Γ : Γi]
= 0
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for fixed n and towers of normal subgroups Γi of a fixed lattice Γ such that
⋂

i Γi = {1}.
Note also that for a = aoK , a a positive integer, we can get by base change arguments a lower

bound of the form Ca = CN(a)1/2. If a and its conjugate are relatively prime, there is no non-
trivial lower bound known. On the other hand, it is certainly not possible to improve the trivial
bound O([SL(2,OK) : Γ]) on the dimension of H1(Γ, En) for finite index subgroups Γ of SL(2,OK)
without making any assumption on Γ. This follows easily from the fact that the Bianchi groups
(and more generally all non-cocompact lattices in SL(2,C)) are large, i. e. contain a finite index
subgroup surjecting onto a non-abelian free group. This property is in fact conjectured to be true
for all lattices (cf. [48]).

1.2 Experimental results and questions

Here we formulate more specific versions of problems A-E from above. We shall also discuss the
numerical results accumulated in the later sections.

Let us begin by reporting on our numerical calculations. In Section 3.1 we describe how the coho-
mology space H1(Γ, En) can be effectively computed from a presentation of Γ together with explicit
matrices for the generators. We have developed computer codes for this task. The results of the com-
putations are documented in Sections 6 and 7. Consider first the case of Bianchi groups explained in
Section 6. We consider the fields K = Q(

√
d) for d = −1,−2,−3,−5,−6,−7,−10,−11,−14,−19.

From Proposition 1.4 it follows immediately that H1
CM ⊆ H1

bc in all these cases. In our computa-
tions we had in all cases except two in fact H1

cusp = H1
bc. The precise range of the computations

can be found in Section 6. The two exceptions are:

Proposition 1.7. In the spaces
H1

cusp(SL(2,O−7), E12), (1.16)

and
H1

cusp(SL(2,O−11), E10) (1.17)

the subspace of cohomology classes obtained from base change has codimension two.

In both cases there is a uniquely determined two-dimensional complement invariant under the
action of the Hecke algebra. We document the eigenvalues of the first Hecke operators on these
subspaces in Section 6.2 below.

These computations suggest the following question:

Question 1.8. • For a given field K, is

H1
cusp(SL(2,OK), En) = H1

bc(SL(2,Od), En) +H1
CM(SL(2,OK), En)

for all but finitely many n?

• Is H1
cusp(SL(2,OK), En) = H1

bc(SL(2,OK), En) for all n for some K, for example K =

Q(
√
d), d = −1,−2,−3,−5,−6,−10,−14,−19?

In Section 7 we consider some examples of (mostly) non-arithmetic lattices. All examples are
compatible with an affirmative answer to the following question:

Question 1.9. For a given lattice Γ in SL(2,C), do there exist integers n0 ≥ 0, N > 0 depending on
Γ such that for each n ≥ n0 and n in a fixed residue class modulo N the dimension dim H1(Γ, En)
is given by a linear function in n?
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As we have seen, an affirmative answer to the first part of Question 1.8 would imply that one
might take N = 12 for the Bianchi groups. A weaker but still unresolved question is:

Question 1.10. Do we have dim H1(Γ, En) = O(n) as n→ ∞ for every lattice Γ or is it possible
that these dimensions grow faster than linearly in n?

The computations in Section 7.2 and 7.3 suggest an affirmative answer to the following question:

Question 1.11. Are there lattices Γ such that dim H1(Γ, En) remains bounded as n → ∞? Is it
possible that H1

cusp(Γ, En) = 0 or even H1(Γ, En) = 0 for all n (Γ being necessarily cocompact in
the latter case)?

In Section 7.2 an infinite sequence of non-arithmetic groups with one cusp is considered, which
provides candidates for lattices with H1

cusp(Γ, En) = 0 for all n. In Section 7.3 we consider a
cocompact non-arithmetic lattice and its finite index subgroups of low index and obtain many
candidates for lattices with H1(Γ, En) = 0 for all n.

Concerning Problem D, we pose the following variant of the conjecture of Waldhausen and
Thurston as a question:

Question 1.12. Given a lattice Γ and n ≥ 0, is there a subgroup ∆ of finite index in Γ such that
H1

cusp(∆, En) 6= 0? More strongly, is there a subgroup ∆ such that H1
cusp(∆, En) 6= 0 for all n?

We are able to provide an affirmative answer for all examples in Sections 7.2 and 7.3 which we
computed.

We have also made extensive computations of dimH1(Γ0(p),C) for the standard congruence
subgroups Γ0(p) of SL(2,O−1) associated to degree one prime ideals p of O−1. The results are
documented in Section 6.3. The cohomology groups H1(Γ0(p),C) are particularly interesting for
number theory since their non-vanishing is conjectured to be related to the existence of certain
elliptic curves (or more generally abelian varieties) defined over K = Q(i) (cf. [14, 25, 27]). Also,
the methods of Langlands functoriality do not provide any non-trivial lower bound for the dimension,
and in fact there are many examples of prime ideals p with H1(Γ0(p),C) = 0. The analogy with
distribution questions for elliptic curves (cf. [7]) suggests:

Question 1.13. Is there a constant C such that the asymptotic relation

∑

p, N(p)≤x

dimH1(Γ0(p),C) ∼ C
x

5
6

log x

holds as x tends to infinity, where the sum is to be extended over all degree one prime ideals p of
O−1 of norm at most x?

The computational results in Section 6.3 are compatible with an affirmative answer to this
question. But the range of our computations seems to be too small to allow a more detailed
analysis (cf. [7]). The behavior of the dimensions dimH1(Γ0(p), En) seems to be quite different if
n ≥ 1 is fixed and p varies (see Section 6.3).

Finally, we pose the following question regarding Problem E:

Question 1.14. For a given lattice Γ, does there exist a subgroup ∆ of finite index such that

lim inf
n→∞

dimH1(∆, En)

n
> 0?

10



While the theoretical evidence summarized in Section 1.1 above suggests that this question has
an affirmative answer for arithmetic lattices Γ, our computations for non-arithmetic groups are
inconclusive. Namely, for the groups considered in Sections 7.2 and 7.3 we were not able to find
such a finite index subgroup ∆, but to search through all subgroups of a given index very quickly
becomes prohibitive.

Acknowledgements: We thank Elena Klimenko, Jürgen Klüners, Peter Sarnak, Haluk Sengun,
Wilhelm Singhof, Gabor Wiese and Saeid Zhargani for conversations on the subject.

2 The Bianchi groups

This section contains some notation and preliminary material concerning the Bianchi groups, as
well as the explicit finite presentations on which our computer calculations are based. The first
subsection fixes notation which we will use throughout this paper. The results needed from algebraic
number theory are contained in [49]. We also follow this book in our notational conventions.

2.1 The Bianchi groups and their congruence subgroups

Let d be a square-free negative integer, K = Q(
√
d) ⊂ C the corresponding imaginary quadratic

number field and O = Od = OK its ring of integers. The ring Od has a Z-basis consisting of 1 and
ωd, where

ω = ωd =







√
d, if d 6≡ 1 mod 4,

1 +
√
d

2
, if d ≡ 1 mod 4.

(2.1)

The discriminant of the field K is

D = Dd =

{

d, if d ≡ 1 mod 4,

4d, if d ≡ 2, 3 mod 4.

We set R = Rd for the set of rational primes p ramified in K. The set Rd consists exactly of the
prime divisors of Dd.

We also fix the following notation concerning subgroups of SL(2,C) commensurable with the
Bianchi groups SL(2,O). Let a ⊆ O be a non-zero ideal. The subgroup

Γ(a) =

{(

a b
c d

)

∈ SL(2,O) a− 1, b, c, d− 1 ∈ a

}

⊆ SL(2,O) (2.2)

is called the full congruence subgroup of level a. It clearly has finite index in SL(2,O). A subgroup
Γ ⊆ SL(2,K) is called a congruence subgroup if Γ∩SL(2,O) has finite index in both Γ and SL(2,O),
and if Γ contains a full congruence subgroup Γ(a) for a non-zero ideal a of O.

Let a ⊂ K now be a fractional ideal of O, that is a is a non-zero finitely generated O-submodule
of K. We define

SL(2, a) =

{(

a b
c d

)

∈ SL(2,K) a, d ∈ O, c ∈ a, b ∈ a−1

}

. (2.3)
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Notice that SL(2, a) is a congruence subgroup of SL(2,K). It is equal to the stabilizer in SL(2,K) of
the O-submodule O⊕a of K2. We write PSL(2,O) or PSL(2, a) for the images of the corresponding
subgroups of SL(2,K) in PSL(2,C).

We write AK for the ring of adeles of K and AK,f for the ring of finite adeles. We view AK,f

as the subring of AK consisting of those elements which are 0 at the infinite place of K. The
adele rings AK , AK,f and their unit groups A∗

K , A∗
K,f are equipped with their standard topologies

(see [49]). We also consider the profinite completion of the ring O, which we denote by Ô, to be
embedded as a compact and open subring of AK,f in the usual way.

Recall the standard description of the adelic coset space GL(2,K)\GL(2,AK) in terms of the
coset spaces Γ\GL(2,C) for congruence subgroups Γ of GL(2,K). By the strong approximation
theorem, for any compact open subgroup K of GL(2,AK,f ) the determinant map identifies the space
of connected components of

GL(2,K)\GL(2,AK)/K (2.4)

with the finite set A∗
K,f/K

∗ det(K), and for a set S ⊂ GL(2,AK,f) with the property that det(S)
forms a system of representatives for A∗

K,f/K
∗ det(K) we have

GL(2,K)\GL(2,AK)/K =
⋃

s∈S

Γs\GL(2,C), (2.5)

where Γs = GL(2,K) ∩ sKs−1.
To obtain the special case of the groups SL(2, a), let K0 = GL(2, Ô) be the standard maximal

compact subgroup of GL(2,AK,f ) and for each finite index subgroup ∆ of Ô∗ set

K(∆) = {g ∈ K0 | det g ∈ ∆}. (2.6)

If ∆ ∩ O∗ = {1}, the groups Γs in (2.5) can be identified with the groups SL(2, a), where a runs
over a system of representatives for the ideal classes of K and each group appears with multiplicity
[Ô∗ : ∆O∗].

Denote by X(∆) the set of all characters of A∗
K,f/∆K

∗. It has evidently cardinality |X(∆)| =

hK [Ô∗ : ∆O∗], where hK is the class number of K.

2.2 Presentations

This subsection contains explicit finite presentations for some of the Bianchi groups. We include
them here, because some of them have not yet appeared in print. The presentations are taken from
[21, 55, 62]. We use the standard notation for presentations of groups: G = 〈 g1, . . . , gn R1, . . . , Rl 〉
means that the group G is generated by g1, . . . , gn and presented by the words R1, . . . , Rl.

The following three matrices are in the set of generators in almost all cases:

A =

(

1 1
0 1

)

, B =

(

0 1
−1 0

)

, U = Ud =

(

1 ωd

0 1

)

.

We first give the results for the cases d = −1,−2,−3,−7,−11, which are exactly the cases in which
the ring of integers Od is euclidean.

PSL(2,O−1) =

〈

A,B,U
B2, (AB)3, (BUBU−1)3, AUA−1U−1,

(BU2BU−1)2, (AUBAU−1B)2

〉

, (2.7)
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PSL(2,O−2) =
〈

A,B,U B2, (AB)3, AUA−1U−1, (BU−1BU)2
〉

, (2.8)

PSL(2,O−3) =

〈

A, B, U
B2, (AB)3, AUA−1U−1,

(UBA2U−2B)2, (UBAU−1B)3,
AUBAU−1BA−1UBA−1UBAU−1B

〉

, (2.9)

PSL(2,O−7) = 〈A, B, U B2, (BA)3, AUA−1U−1, (BAU−1BU)2 〉, (2.10)

PSL(2,O−11) = 〈A, B, U B2, (BA)3, AUA−1U−1, (BAU−1BU)3 〉. (2.11)

Next we consider the case d = −19. In this case Od is a non-euclidean principal ideal ring. We
have

PSL(2,O−19) =

〈

A, B, U, C
B2, (AB)3, AUA−1U−1, C3,

(CA−1)3, (BC)2, (BA−1UCU−1)2

〉

(2.12)

with the matrix

C =

(

1 − ω−19 2
2 ω−19

)

.

In the cases d = −5, −6, −10 the class number of Od is equal to 2. We give presentations of both
PSL(2,Od) and of PSL(2, a) for a non-principal ideal a.

PSL(2,O−5) =

〈

A, B, U, C, D
B2, (AB)3, AUA−1U−1, D2,

(BD)2, (BUDU−1)2, AC−1A−1BCB,
AC−1A−1UDU−1CD

〉

(2.13)

with matrices

C =

(

−4 − ω−5 −2ω−5

2ω−5 −4 + ω−5

)

, D =

(

−ω−5 2
2 ω−5

)

.

PSL(2, a−5) =

〈

A, V, C, D
AV A−1V −1, CDC−1D−1, (AC−1)2,

(DV −1)3, (CD−1V A−1)3

〉

(2.14)

with the ideal a−5 = 〈 2, 1 −
√
−5 〉 of O−5 and with the matrices

V =

(

1 1+
√
−5

2
0 1

)

, C =

(

1 0
2 1

)

, D =

(

1 0
1 −

√
−5 1

)

.

PSL(2,O−6) =

〈

A, B, U, C, D
B2, (AB)3, AUA−1U−1,

D2, BCBC−1, (BAUDU−1)3,
A−1CAUDU−1C−1D−1, (BAD)3

〉

(2.15)

with the matrices

C =

(

5 −2ω−6

2ω−6 5

)

, D =

(

−1 − ω−6 2 − w−6

2 1 + ω−6

)

.

PSL(2, a−6) =

〈

A, V, C,
D, E

E2, (CA−1)2, (DV −1)3, (DEV −1)2,
(CEA−1)2, CDC−1D−1,

AV A−1V −1, (CDEV −1A−1)2

〉

(2.16)

with the ideal a−6 = 〈 2,
√
−6 〉 of O−6 and with the matrices

V =

(

1 ω
2

0 1

)

, C =

(

1 0
2 1

)

, D =

(

1 0
−w 1

)

, E =

(

−2 −1 − ω
2

2 − w 2

)

.
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PSL(2,O−10) =

〈

A, B, U, C,
D, E, F

B2, (AB)3, AUA−1U−1, C2, E2,
(BC)2, (BE)2, C−1AD−1BEBAD,

U−1E−1UFCF−1,
D−1E−1B−1DU−1DBCD−1U,

D−1B−1ADC−1U−1EDA−1BD−1U,
U−1DA−1B−1D−1UFD−1BADF−1

〉

(2.17)

with the matrices

C =

(

−ω 3
3 ω

)

, D =

(

ω − 1 −4
3 ω + 1

)

, E =

(

ω 3
3 −ω

)

, F =

(

11 5ω
2ω −9

)

.

PSL(2, a−10) =

〈

A, V, C,
D, E, F

E2, (CA−1)2, (FE)2, (DEV −1)2,
(DF−1V −1)3, CDC−1D−1, AV A−1V −1,

(FC−1EA)2, F 3, (CF−1A−1)3,
(CDF−1A−1V −1)3

〉

(2.18)

with the ideal a−10 = 〈 2,
√
−10 〉 of O−10 and with the matrices

C =

(

1 0
2 1

)

, D =

(

1 0
−ω 1

)

, E =

(

−2 −ω
2

−ω 2

)

, F =

(

−3 −1 − ω
2

2 − ω 2

)

, V =

(

1 ω
2

0 1

)

.

The ideal class group of O−14 is cyclic of order 4. The ideal a−14 = 〈 3, 1 +
√
−14 〉 is not a square

in the ideal class group.

PSL(2,O−14) =

〈
A, B,
U, C,
D, E,
F

B2, (AB)3, (A−1C−1BDBAD−1C)2,
AUA−1U−1, (A−1CD−1ABDBC−1)2,

D−1CE−1A−3DC−1A3E,
CB−1C−1FC−1BCF−1,

C−1DA−1B−1D−1B−1CA−
E−1A−2CBD−1BA−1DC−1A3E,
ACB−1D−1B−1A−1DC−1−

AFA−1C−1BDBAD−1CA−1F−1

〉

(2.19)

with the matrices

C =

(

ω −5
3 ω

)

, D =

(

4 1 + ω
1 − w 4

)

, E =

(

−5 + 4ω −23
4 − ω 7 + ω

)

, F =

(

13 6ω
−2ω 13

)

.

PSL(2, a−14) =

〈
A, U,
C, D,
E, F,
G

G2, CDC−1D−1, AUA−1U−1, (CA−1)3,
(DGU−1)2, F−1AE−1A−1UFEU−1,

(CGE−1A−1UGU−1AEA−1)3,
(AEU−1DGE−1A−1UGD−1)2,
DC−1GU−1AEGD−1UE−1F−1−
CGE−1A−1UGU−1AEA−1F

〉

(2.20)

with the matrices

U =

(

1 1−ω
3

0 1

)

, C =

(

1 0
3 1

)

, D =

(

1 0
1 + ω 1

)

, E =

(

−3 − ω −4
6 3 − ω

)

,

F =

(

−3 + ω −3
2 + 2ω −3 + ω

)

, G =

(

−2 ω−1
3

1 + ω 2

)

.
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3 Group cohomology

In this section we report basic definitions from the cohomology of groups. Section 3.1 reports a
method to compute the first cohomology group for finitely presented groups. Our basic reference
here is [6].

Let Γ be a group and M a RΓ-module for a commutative ring R. A derivation from Γ to M is
a map f : Γ →M which satisfies

f(gh) = g · f(h) + f(g) (3.1)

for all g, h ∈ Γ. For m ∈M the map

fm : Γ →M, fm(g) = g ·m−m, (3.2)

is a derivation and is called the inner derivation corresponding to m. We write Der(Γ,M) for the
space of all derivations and IDer(Γ,M) for its subspace consisting of inner derivations. If H1(Γ,M)
is the first cohomology group of Γ with coefficients in M , we have

H1(Γ,M) = Der(Γ,M)/ IDer(Γ,M). (3.3)

Here we are interested in the case when Γ ⊆ SL(2, L) ⊆ SL(2,C) where L ⊂ C is a number field.
The modules we consider are derived from the symmetric powers of the standard representation of
SL(2,C). So, let V be a two-dimensional L1-vector space with basis x, y where L1 is a field between
L and C invariant under complex conjugation. Let n be a non-negative integer. The symmetric
power Symn(L1) has the L1-basis xn−iyi, 0 ≤ i ≤ n. The action of g ∈ SL(2, L1) is given by

g · xn−iyi =

(

a b
c d

)

· xn−iyi = (ax+ cy)n−i(bx+ dy)i, g =

(

a b
c d

)

. (3.4)

The module Symn(L1) is equal to Symn(L1) as an L1-vector space, and the action is given by
replacing g in (3.4) by its complex conjugate.

We often use the follwing simple facts from group cohomology without further notice. First of all
the spaces H1(Γ, Symn(L1)⊗Symm(L1))⊗C and H1(Γ, Symn(C)⊗Symm(C))) are isomorphic for
all n, m ≥ 0. Secondly, if m+ n is even, the action of Γ on Symn(L1)⊗ Symm(L1) factors through
an action of the image Γ̃ of Γ in PSL(2,C) and H1(Γ, Symn(L1) ⊗ Symm(L1)) is isomorphic to
H1(Γ̃, Symn(L1) ⊗ Symm(L1)).

3.1 H1(Γ, M) for finitely presented groups

Here we explain how information about H1(Γ,M) can be computed from equation (3.3). We assume
here that R is an euclidean ring and M is a free R-module of finite rank in which a basis has been
chosen. Let Γ be a finitely presented group given explicitly in the form

Γ = 〈 g1, . . . , gs R1, . . . , Rt 〉.

Here we consider the relations R1, . . . , Rt to be explicitly given words in the generators g1, . . . , gs of
Γ and their inverses. Assume also that the matrices for the action of g1, . . . , gs on M are explicitly
given. Consider now the R-linear map

Φ : Der(Γ,M) →M s, Φ(f) = (f(g1), . . . , f(gs)).
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The image of Φ lies in the kernel of the linear map Λ : M s → M t, which is obtained by formally
expanding the image of each of the relators R1, . . . , Rt under a derivation f : Γ → M in terms of
the values f(g1), . . . , f(gs). It is easily seen that Φ maps Der(Γ,M) isomorphically to the kernel
ker(Λ) of Λ. Since M s is a free R-module, a basis for the free module ker(Λ) can be computed.
Consider now the linear map

µ : M → ker(Λ), µ(m) = ((g1 − 1)m, . . . , (gs − 1)m).

The image of µ may then be described as the linear span of the images of the basis elements of M .
If we express these in terms of the previously computed basis of ker(Λ), we see that the effective
version of the elementary divisor theorem can be used to compute the structure of

H1(Γ,M) = Der(Γ,M)/ IDer(Γ,M) = ker(Λ)/Im(µ). (3.5)

If R is a field, the dimension of H1(Γ,M) can be computed by this method.
Apart from being important for the computation of cohomology spaces, (3.5) leads to the fol-

lowing (trivial) estimate.

Lemma 3.1. Let Γ be a group generated by s elements and M a finite dimensional RΓ-module for
some field R. Then dimH1(Γ,M) ≤ s dimM.

A typical problem encountered in our computations is that the moduleM can be a vector space of
big dimension (up to around 50000) over an algebraic number field, and that the direct computation
of the dimension of H1(Γ,M) from (3.5) is not feasible. All discrete subgroups Γ ⊆ SL(2,C)
considered in this paper have the property that they are contained in SL(2, R) for a finitely generated
ring R inside an algebraic number field. Let OΓ be a ring containing R and its complex conjugate.
Suppose p is a prime and OΓ → Fp is a surjective ring homomorphism. Then En(Fp) inherits the
structure of a Γ-module. By the usual universal coefficient theorem we have

dimFp H
1(Γ, En(Fp)) ≥ dimC H1(Γ, En).

A standard argument using Tchebotarev’s density theorem shows that dimC H1(Γ, En) is equal
to the minimum of the dimensions dimFp H

1(Γ, En(Fp)), where p ranges over all primes with the
above compatibility property. For all real numbers x we define

dim≤x H
1(Γ, En) = inf

p≤x
{ dimFp H

1(Γ, En(Fp)) }, (3.6)

where p ranges over all primes with p ≤ x which admit a surjective ring homomorphism OΓ →
Fp. The numbers dim≤x H

1(Γ, En) are much cheaper to compute than the actual dimensions
dimC H1(Γ, En). Of course, in the computations below we hope to have chosen the bound x to
be large enough to capture dimC H1(Γ, En). Also, if a lower bound for this dimension is known
beforehand, we can by this method verify that the actual dimension is equal to the bound.

3.2 Hecke operators

In this section we introduce the Hecke operators on cohomology spaces in a way suitable for explicit
computations. We chose a treatment similar to [59, Section 8.5], see also [25].

If H is a subgroup of a group Γ, and M is a Γ-module, the inclusion H →֒ Γ induces a restriction
map resΓH : H∗(Γ,M) −→ H∗(H,M). When [Γ : H ] < ∞, there is also a map tr : H∗(H,M) −→
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H∗(Γ,M) in the opposite direction, called the transfer map (cf. [6]). The composition tr ◦ resΓH is
multiplication by [Γ : H ] on H∗(Γ,M).

Let now Γ be a congruence subgroup of SL(2,O), where O is the ring of integers in an imaginary
quadratic number field K, and M be one of the GL(2,C)-modules En,m. The groups Γ and
δΓδ−1 are easily seen to be commensurable for every δ ∈ GL(2,K). Define the Hecke operator
Tδ : H1(Γ,M) → H1(Γ,M) by the diagram:

H1(Γ,M)
Tδ−−−−→ H1(Γ,M)

res





y

x




tr

H1(Γ ∩ δΓδ−1,M)
δ̃−−−−→ H1(δ−1Γδ ∩ Γ,M)

(3.7)

where δ̃ Is the isomorphism in cohomology induced by conjugation with δ. For a non-zero element
a ∈ O we define

Ta = Tδa with δa =

(

1 0
0 a

)

. (3.8)

The following properties of the linear maps Tδ : H1(Γ,M) → H1(Γ,M), δ ∈ GL(2,K), are well
known (cf. [59, Section 8.5], [25]):

• Each Tδ is diagonalizable.

• The characteristic polynomial of Tδ has integral coefficients and its zeroes are real numbers.

• Tδ depends only on the double coset ΓδΓ.

• If Γ = SL(2,O), all operators Tδ commute with each other.

3.3 The Eichler-Shimura isomorphism

In this subsection we briefly recall the generalized Eichler-Shimura isomorphism sketched already in
the introduction, which will give us the possibility of using results from the theory of automorphic
forms in our study of cohomology spaces. See also [32] and [64, Théorème 3.2] for the case of
congruence subgroups of GL(2,K), K imaginary quadratic.

From [4, Chapter II] we know that for any integer n ≥ 0, and any unitary representation π of
G = SL(2,C), the (g,K)-cohomology space H1(g,K;H∞

π ⊗ En) is non-trivial if and only if π is
the principal series representation π2n+2,0 (the representation unitarily induced from the character
z 7→ (z/|z|)2n+2 of the maximal torus T ≃ C×, cf. Section 5), and one-dimensional in this case.
Therefore, we can deduce from (1.6) the more explicit isomorphism

Hom(π2n+2,0, L
2
cusp(Γ\SL(2,C)) ≃ H1

cusp(Γ, En) (3.9)

for any lattice Γ of G.
For use in Section 4, we quickly rewrite this isomorphism in a form involving GL(2,C). Define

a unitary character of C∗ by χ∞(x) = x/|x|, and for each integer n ≥ 0 consider the principal series
representation ρn

∞ = PS(χn+1
∞ , χ−n−1

∞ ) of GL(2,C). Let Z∞ ⊂ GL(2,C) be the center of GL(2,C).
Then we have an isomorphism

Hom(ρ∞n , L
2
cusp(Γ\GL(2,C)/Z∞)) ≃ H1

cusp(Γ, En). (3.10)
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4 Base change

This section contains our results on the construction of cohomology classes for the Bianchi groups
by base change from classical modular forms for congruence subgroups of SL(2,Z) and automorphic
induction from Hecke characters of quadratic extensions. In particular, we derive explicit dimension
formulas for the corresponding subspaces of the cohomology. For this we fix an imaginary quadratic
number field K = Q(

√
d) and use the notation of Section 2.1.

4.1 General results on the base change construction

Here we present the consequences of the theory of base change and automorphic induction for the
cohomology of the groups SL(2, a). We give a precise description of the base change process and
the relevant spaces of holomorphic elliptic modular forms. The notation and concepts from the
theory of automorphic forms are taken from [4]. For a quadratic extension L of Q denote by ωL

the associated quadratic character of A∗
Q/Q

∗.
Let AK be the set of all cuspidal automorphic representations of GL(2,AK). See [50] for

information on the base change map π 7→ πK from GL(2,AQ) to GL(2,AK). We shall be interested
in the following subset of AK .

Definition 4.1. The set Abc
K of (twisted) base change representations is the set of all Π ∈ AK such

that Π ≃ πK ⊗ χ for an automorphic representation π of GL(2,AQ) and an idele class character χ
of K.

Recall from Section 3.3 the definition of the representations ρn
∞ of GL(2,C). For an integer

n ≥ 0 and a finite index subgroup ∆ of Ô∗ consider

A1
K(n,∆) = {Π ∈ AK |Π∞ ≃ ρn

∞, Π
K(∆)
f 6= 0} (4.1)

and set
A1

K(n) =
⋃

∆

A1
K(n,∆). (4.2)

Furthermore, let A1,bc
K (n,∆) = A1

K(n,∆) ∩ Abc
K and A1,bc

K (n) = A1
K(n) ∩ Abc

K . Recall that each
representation in AK occurs with multiplicity one in L2

cusp(GL(2,K)\GL(2,AK)). Furthermore,
Π ∈ A1

K(n) is equivalent to the condition that Π∞ ≃ ρn
∞ and that the local components Πp at the

finite places p are twists of unramified principal series representations by characters. Therefore, for

Π ∈ A1
K(n,∆) the space Π

K(∆)
f is actually one-dimensional.

If we take a subgroup ∆ of Ô∗ with the property ∆∩O∗ = {1}, we have by (2.5) an isomorphism

(

⊕

a

Hom(ρ∞n , L
2
cusp(SL(2, a)\GL(2,C)/Z∞))

)[Ô∗:∆O∗]

≃ Hom(ρ∞n , L
2
cusp(GL(2,K)\GL(2,AK)/Z∞K(∆))),

where a ranges over a system of representatives for the ideal classes of K. Combining the Eichler-

Shimura isomorphism from Section 3.3 with multiplicity one and the fact that dimΠ
K(∆)
f = 1 for

Π ∈ A1
K(n,∆), we obtain the relation

∑

a

dimH1
cusp(SL(2, a), En) =

∣

∣A1
K(n,∆)

∣

∣

[Ô∗ : ∆O∗]
. (4.3)
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It is not difficult to obtain also a finer description distinguishing between the individual cohomology
spaces dimH1

cusp(SL(2, a), En) for representatives a of different ideal classes. For this consider the
action of the abelian group X(∆) on the space Hom(ρ∞n , L

2
cusp(GL(2,K)\GL(2,AK)/Z∞K(∆)))

given by letting ξ ∈ X(∆) (see Section 2.1) act as multiplication of functions on

GL(2,K)\GL(2,AK)/Z∞K(∆)

by ξ ◦ det. Considering a basis of Hom(ρ∞n , L
2
cusp(GL(2,K)\GL(2,AK)/Z∞K(∆))) consisting of

normalized (cf. [64, Section 5]) eigenfunctions for the Hecke algebra of K(∆) (which correspond to
the representations in A1

K(n,∆)), one sees that the action of X(∆) induces a permutation of this
basis, and therefore the trace of the action of a non-trivial element ξ ∈ X(∆) is equal to the number
of elements Π ∈ A1

K(n,∆) with Π⊗ ξ ≃ Π. It is clear that this number can only be non-zero if ξ is
quadratic, and indeed unramified quadratic, i. e. necessarily of the form ωL◦NK/Q for an imaginary
quadratic field L 6= K such that LK/K is unramified (see Proposition 4.5 below). Therefore, we
get

dimH1
cusp(SL(2, a), En) =

1

|X(∆)|

(

∣

∣A1
K(n,∆)

∣

∣+

∑

L∈L(K)

ωL(NK/Q(a))
∣

∣{Π ∈ A1
K(n,∆) |Π ⊗ ωL ◦ NK/Q ≃ Π}

∣

∣

)

,

where L(K) denotes the set of all imaginary quadratic fields L 6= K with LK/K unramified.
Furthermore, if A ⊆ A1

K(n,∆) is any subset invariant under twisting by characters in X(∆),
we can consider inside the space L2

cusp(GL2(K)\GL(2,AK)/Z∞K(∆)) the subspace spanned by
representations in A and apply the same arguments to see that it splits as a direct sum of spaces of
functions supported on a single connected component. This implies that it makes sense to speak of
the contribution of representations in A to each space H1

cusp(SL(2, a), En) and that the dimension
of the corresponding subspace is given by

dimH1
cusp,A(SL(2, a), En)

=
1

|X(∆)|



|A| +
∑

L∈L(K)

ωL(NK/Q(a))
∣

∣{Π ∈ A |Π ⊗ ωL ◦ NK/Q ≃ Π}
∣

∣



 . (4.4)

In particular, this dimension depends only on the genus of a and it assumes its maximum on the
principal genus. We are especially interested in evaluating the contribution of twisted base change
forms to the cohomology, i. e. in the case A = A1,bc

K (n,∆).

Definition 4.2. For the set Abc = A1,bc
K (n,∆) define

H1
bc(SL(2, a), En) := H1

cusp,Abc
(SL(2, a), En) ⊆ H1

cusp(SL(2, a), En).

Note that this definition makes sense, since the right-hand side is indeed independent of the
subgroup ∆ with ∆ ∩ O∗ = {1}.

Our first goal is to describe the set A1,bc
K (n,∆) in terms of holomorphic automorphic forms

for GL(2,AQ) fulfilling explicit local conditions. We also need to distinguish the automorphic
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representations of CM type. Recall that for any quadratic extension E/F of number fields there is a
canonical map from Hecke characters of E to automorphic representations of GL(2,AF ) [37] which is
called automorphic induction (notation: AIE/F ). The map is characterized by AIE/F (θ χ◦NE/F ) =
AIE/F (θ) ⊗ χ for Hecke characters χ of F , and the L-function identity L(s,AIE/F (θ)) = L(s, θ).
The automorphically induced representation is cuspidal if and only if θτ 6= θ, where τ is the
automorphism of E/F , and the fibers of the automorphic induction map are precisely the orbits
{θ, θτ} of τ . There are compatible local induction maps, which we also denote by AI.

In the following, we fix once and for all for each p ∈ R a character θp ofK∗
p with θp/θ

c
p unramified

quadratic.

Definition 4.3. For each n ≥ 0 let A1
Q(n) be the set of all cuspidal automorphic representations π

of GL(2,AQ) such that π∞ is the holomorphic discrete series representation of weight n+ 2, πp is
unramified for p /∈ R, and of one of the following three types for p ∈ R:

1. unramified principal series,

2. PS(α, ωK,pβ) with α, β unramified characters of Q∗
p,

3. AIKp/Qp
(θp) ⊗ γ with an unramified character γ of Q∗

p.

For any (necessarily imaginary) quadratic extension L of Q let A1
Q(n;L) be the subset of A1

Q(n)

consisting of representations automorphically induced from L. Recall that π ∈ A1
Q(n;L) if and only

if π ⊗ ωL ≃ π [46]. We will see that the set of possible extensions L is precisely L(K).
The basic classification statement is the following proposition. It shows that we obtain the

representations in A1,bc
K (n,∆) by base change and character twists from the elliptic modular forms

satisfying the local conditions of Definition 4.3. Of course, the description depends on the choice
of the local characters θp for p ∈ R.

Proposition 4.4. 1. If Π ∈ A1,bc
K (n), one can find π ∈ A1

Q(n)\A1
Q(n;K) such that Π ≃ πK ⊗χ

for some finite order idele class character χ of K.

2. If ∆∩O×
K = {1}, for any π ∈ A1

Q(n)\A1
Q(n;K) there exists a finite order idele class character

χ of K with πK ⊗χ ∈ A1
K(n,∆). The set of all such characters χ is a principal homogeneous

space for X(∆).

Proof. For an automorphic representation π of GL(2,AQ) we have πK ∈ A1
K(n) if and only if

π is not automorphically induced from K, π∞ is up to a character twist the holomorphic or anti-
holomorphic discrete series representation of weight n + 2, and each πp satisfies up to a character
twist the local condition of Definition 4.3. It is not difficult to deduce from this the assertions of
the Proposition.

We can also classify the CM representations of interest to us as follows.

Proposition 4.5. 1. If A1
Q(n;L) is nonempty, L is an imaginary quadratic extension of Q such

that for all primes p the character ωL,p is either unramified or the product of ωK,p and an
unramified character.

2. If for Π ∈ A1
K(n) there exists a character γ 6= 1 with Π⊗γ ≃ Π, the character γ is necessarily

of the form ωKL/K = ωL ◦ NK/Q for some quadratic extension L/Q as above.
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The set of all imaginary quadratic number fields different from K and satisfying the conditions
of Part 1 of Proposition 4.5 is precisely the set L(K) of imaginary quadratic fields different from
K for which LK/K is unramified. Equivalently, it is the set of all imaginary quadratic fields L for
which the discriminant dL is a proper divisor of the discriminant of K and the two factors dL and
dK/dL are coprime.

Consider now for each π ∈ A1
Q(n)\A1

Q(n;K) the set

A1
K(n,∆;π) := {Π = πK ⊗ χ |Π ∈ A1

K(n,∆)}.

Clearly, the sets A1
K(n,∆;π) form a partition of A1,bc

K (n,∆). Assuming ∆ ∩ O∗
K = {1}, the set

A1
K(n,∆;π) has cardinality |X(∆)|, if π is not automorphically induced from any quadratic field

L, and |X(∆)|/2, otherwise. It remains to count for any π ∈ A1
Q(n) the number of π′ with

A1
K(n,∆;π′) = A1

K(n,∆;π). We first consider the non-CM representations.

Proposition 4.6. For π ∈ A1
Q(n)\⋃L∈L(K)∪{K}A1

Q(n;L) the set

{π′ ∈ A1
Q(n) | A1

K(n,∆;π′) = A1
K(n,∆;π)}

consists of the twists π ⊗ γ for all characters γ such that γp is unramified for all p where πp is
unramified, and γp is unramified or the product of ωK,p and an unramified character at the primes
p where πp is ramified. In particular, it has cardinality 2|R(π)|, where R(π) ⊆ R denotes the set of
all primes p where πp is ramified.

Therefore, if we want to write the cardinality of A1,bc
K (n,∆) as a sum over all representations

π ∈ A1
Q(n)\A1

Q(n;K), each non-CM representation π ∈ A1
Q(n)\⋃L A1

Q(n;L) has to be weighted by

the factor |X(∆)|2−|R(π)|.

Example 4.7. Consider the case where a single prime p is ramified in K. In this case, the set
A1

Q(n) consists of the automorphic representations associated to classical modular forms of weight
n + 2 for SL(2,Z), for Γ0(p) with character ωK , or of p-power level with πp ≃ AI(θp) ⊗ γp, γp

unramified. The CM forms for K have to be omitted. In this case, there are no other fields L to
be considered. To obtain the dimension of H1

bc(SL(2,O), En), the dimension of the corresponding
spaces of modular forms has to be weighted by a factor 1/2 except in the SL(2,Z) case.

In the count for the representations in A1,bc
K (n,∆), the main term is therefore given by |X(∆)|

∑

π∈A1
Q
(n) 2−|R(π)|.

The contributions from CM representations have to be modified by omitting the representations
automorphically induced from the field K and weighting the contribution of the representations
induced from quadratic fields L ∈ L(K) by an additional factor 1

2 . The reason for this is that for
these representations there are more equivalences A1

K(n,∆;π′) = A1
K(n,∆;π) than in the non-CM

case.
To give some more details, we first explicate the local conditions on CM representations in

A1
Q(n). Recall the definition of the local character at infinity χ∞ in Section 3.3.

Lemma 4.8. Let L ∈ L(K) be an imaginary quadratic field. Write AIKp/Qp
(θp) = AILp/Qp

(θp,Lp)
with a character θp,Lp of L×

p for all p ∈ R where p is non-split in L (note that this is possible). For

an idele class character ψ of L with ψ∞ = χ
−(n+1)
∞ and unramified at primes not above primes in

R we have AIL/Q(ψ) ∈ A1
Q(n) if and only if the following local conditions are satisfied:
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1. If p ∈ R splits in L, ψp is either unramified or of the form (αp, ωK,pβp) or (ωK,pαp, βp) for
unramified characters αp and βp of Q×

p .

2. If p ∈ R is inert in L, ψp is either unramified or the product of θp,Lp or θc
p,Lp

and an
unramified character.

3. If p ∈ R ramifies in L, ψp is either unramified or the product of θp,Lp and an unramified
character.

We can also explicate the equivalence relation A1
K(n,∆;π′) = A1

K(n,∆;π) for these represen-
tations.

Lemma 4.9. If A1
K(n,∆;π′) = A1

K(n,∆;π) for π, π′ ∈ A1
Q(n) which are automorphically in-

duced from quadratic extensions, they are necessarily induced from the same quadratic extension
L. Furthermore, for π = AIL/Q(ψ) and π′ = AIL/Q(ψ′) with ψ and ψ′ as above, the equivalence
A1

K(n,∆;π′) = A1
K(n,∆;π) is true if and only if either δ = ψ′/ψ = γ ◦ NL/Q for some idele class

character γ of Q or δ = ψ′/ψ satisfies δ/δc = ωK ◦ NL/Q.

With these descriptions in hand, one can obtain a preliminary formula for the cardinality of
A1,bc

K (n,∆), which will in a second step be refined to a completely explicit expression. Using (4.4)
we can then compute the contribution to the cohomology of each individual group SL(2, a).

To simplify the notation, we need the following definition: for an integer n and an imaginary
quadratic field L define νL,n ∈ {0, 1} as follows:

1. If L is the field Q(
√
−3), set

νL,n =

{

1, if n ≡ 2 (3),
0, otherwise.

2. If L = Q(i), set

νL,n =

{

1, if n ≡ 1 (2),
0, otherwise.

3. If L is not one of the two exceptional fields, we simply set νL,n = 1 for all n.

Proposition 4.10. 1. The cardinality of the set A1,bc
K (n,∆) is given by

∣

∣

∣A1,bc
K (n,∆)

∣

∣

∣

|X(∆)| =
∑

π∈A1
Q
(n)

2−|R(π)| − νK,n
hK

2
−

∑

L∈L(K)

νL,n2|R|−|RL|−2hL.

2. For L ∈ L(K) we have

∣

∣

∣{Π ∈ A1,bc
K (n,∆) |Π ⊗ ωL ◦ NK/Q ≃ Π}

∣

∣

∣

|X(∆)| = νL,n2|R|−|RL|−2hL.

Combining this Proposition with (4.4) and the fact that
∣

∣A1
Q(n;K)

∣

∣ = νK,n2|R|−1hK , we can
immediately deduce:
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Proposition 4.11. The dimension of the base change part of the cohomology of the group SL(2, a)
is given by

dimH1
bc(SL(2, a), En)

=
∑

π∈A1
Q
(n)

2−|R(π)| − νK,n
hK

2
−

∑

L∈L(K), ωL(N(a))=−1

νL,n2|R|−|RL|−1hL.

4.2 CM classes

As a consequence we also obtain the following results on cohomology spaces associated to CM
automorphic forms. We introduce the following notation.

Definition 4.12. If ACM ⊆ A1
K(n,∆) is the subset of all automorphic representations automor-

phically induced from quadratic extensions of K, define

H1
CM(SL(2, a), En) := H1

cusp,ACM
(SL(2, a), En) ⊆ H1

cusp(SL(2, a), En).

Note that the corresponding space is again independent of the choice of ∆ with ∆ ∩ O∗ = {1}.
First consider the intersection of this space with H1

bc. The following proposition follows imme-
diately from (4.4) and Proposition 4.10, Part 2:

Proposition 4.13. For L ∈ L(K) the representations in A1,bc
K (n,∆) automorphically induced from

KL contribute to H1
bc(SL(2, a), En) a space of dimension

{

νL,n2|R|−|RL|−1hL, if ωL(N(a)) = 1,
0, otherwise.

We can also consider all representations in A1
K(n,∆) automorphically induced from a fixed

quadratic extension of K, necessarily of the form KL for an imaginary quadratic extension L as
above. For this, let L′ be the real quadratic subfield of LK and h+

L′ its narrow ideal class number.
The total number of such representations is then equal to

|X(∆)|
2

νL,nhLh
+
L′ . (4.5)

Consequently, we obtain:

Proposition 4.14. For L ∈ L(K) the contribution of representations automorphically induced
from KL to H1

cusp(SL(2, a), En) has dimension

{

νL,nh
+
L′hL, if ωL(N(a)) = 1,

0, otherwise.

Note that this is precisely the contribution of twisted base change representations of the corre-
sponding type times a factor of h+

L′/2|R|−|RL|−1, which is the number of narrow ideal classes in a
narrow genus of L′.

The following relation between the dimension of the cohomology spaces for SL(2, a) and SL(2,O)
follows immediately from (4.5) and (4.4), this time applied with A = A1

K(n,∆):
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Proposition 4.15. For any fractional ideal a of K we have

dimH1
cusp(SL(2, a), En) = dimH1

cusp(SL(2,O), En) −
∑

L∈L(K), ωL(N(a))=−1

νL,nh
+
L′hL. (4.6)

Corollary 4.16. For L ∈ L(K) there exist representations in A1(n,∆) automorphically induced
from KL, which are not twisted base changes from Q, if and only if the narrow ideal class num-
ber h+

L′ of the real quadratic subfield L′ of KL is bigger than the corresponding number g+
L′ =

2|R(L′)|−1 of genera. In this case, the contribution of these representations to the dimension of
H1

cusp(SL(2, a), En) is independent of n, if L is not one of the two exceptional fields Q(
√
−3) and

Q(i) and constant on residue classes modulo 3 and 2, respectively, in the two exceptional cases.
The existence of such representations (i. e. the failure of the relation H1

CM ⊆ H1
bc for the field

K) is equivalent to the existence of a real quadratic field L′ with h+
L′ > g+

L′ and KL′/K unramified
(equivalently, dL′ divides the discriminant dK and dL′ and dK/dL′ are coprime).

In the following table we give the real quadratic fields L′ = Q(
√
D) with the five smallest

discriminants, for which the criterion of Corollary 4.16 is satisfied.

D = dL′ g+ h+

136 = 8 · 17 2 4
145 = 5 · 29 2 4
205 = 5 · 41 2 4
221 = 13 · 17 2 8

229 1 3

4.3 Dimension formulas

We now deduce from the preliminary formula of Proposition 4.11 a completely explicit dimension
formula for H1

bc. For p ∈ R let νp be the exact power of p dividing the discriminant of K. We have
νp = 1 for p 6= 2 and ν2 = 2 or 3.

For any integer n set

εn =

{

(−1)n/2

4 , if n ≡ 0 (2),
0, otherwise,

and µn =







0, if n ≡ 1 (3),
− 1

3 , if n ≡ 2 (3),
1
3 , if n ≡ 0 (3).

(4.7)

Theorem 4.17. Let K = Q(
√
d) be an imaginary quadratic number field with ring of integer O

and n be a non-negative integer. We have

dimH1
bc(SL(2,O), En) =





1

24

∏

p∈R
(pνp + 1) + c2(−1)n+1



 (n+ 1)

− νK,n
hK

2
− 2|R|−2 + c4εn+2 + c3µn+2 + δn,0

where δn,0 stands for the Kronecker delta symbol. The constant c2 is given by

c2 =

{

2|R|−4, if p ≡ 1 (4) for all p ∈ R, p 6= 2,
0, otherwise.
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The constants c4 and c3 are given by

c4 =







2|R|, if p ≡ 1 or 3 (8) for all p ∈ R,

2|R|−1, if 2 ∈ R and p ≡ 1 or 3 (8) for all p ∈ R, p 6= 2,
0, otherwise,

and

c3 =







2|R|−1, if pνp ≡ 1 (3) for all p ∈ R,

2|R|−2, if 3 ∈ R and pνp ≡ 1 (3) for all p ∈ R, p 6= 3,
0, otherwise.

Furthermore, for any fractional ideal a of K we have

dimH1
bc(SL(2, a), En) = dimH1

bc(SL(2,O), En) −
∑

L 6=K, ωL(N(a))=−1

νL,k2|R|−|RL|−1hL.

It is interesting to compare the resulting lower bound for the dimension of the cohomology
group H1

cusp(SL2(O),C) with the lower bound obtained by Rohlfs [53]. In the work of Krämer [45]
a lower bound for the dimension H1

cusp(SL2(O),C) agreeing with the bound dimH1
bc(SL2(O),C) of

the above theorem is derived by a different method.
Given Proposition 4.11, the proof of Theorem 4.17 rests on the computation of spaces of holomor-

phic elliptic modular forms with fixed local components. We summarize the ingredients necessary
to carry out this task in the remaining part of this subsection, while omitting some elementary com-
putations. The possible local components are given in Definition 4.3. The dimension computation
is based on the following Proposition.

Proposition 4.18. Let N ≥ 1 and k ≥ 2 be integers and σ a representation of GN = SL(2,Z/NZ)
such that σ(−I2) is the scalar (−1)k. Let UN ⊆ GN be the subgroup of all upper triangular unipotent
elements and S3 and S4 the images in GN of elements of SL(2,Z) of order 3 and 4, respectively.
Then

dimHomGN (σ, Sk(Γ(N))) =
k − 1

12
dim σ − 1

2
dimσUN

+ εk trσ(S4) + ρk tr σ(S3) + δk,2 dimσGN .

It is not difficult to prove this Proposition using the description of SL(2,Z) as an amalgamated
product of 〈−S3〉 and 〈S4〉 and the Eichler-Shimura isomorphism. Of course, it is also a consequence
of the trace formula. By taking for σ a representation induced from the Borel subgroup, one recovers
the classical dimension formulas for the group Γ0(N) with nebentype (cf. [12]).

It remains to make explicit the representations of SL(2,Z/NZ) corresponding to the local con-
ditions of Definition 4.3 and to compute the terms appearing in Proposition 4.18. Actually, we will
consider irreducible representations σ of GL(2,Z/NZ) occurring in the automorphic representations
in question with multiplicity one and use their restrictions to SL(2,Z/NZ). The representations
σ can be written as tensor products of representations σp of GL(2,Z/pνpZ) for p ∈ R(π). For
the principal series representations of Definition 4.3 the necessary computation of dimensions and
character values is standard and we refer to [12]. For the convenience of the reader we repeat the
results here. The dimension of the corresponding representation σp is pνp−1(p+ 1). The dimension
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of the space of UN -invariants equals 2. The character values are given by

tr σp(S3) =







0, if p ≡ 2 (3),
1, if p = 3,
2, if p ≡ 1 (3),

and

tr σp(S4) =

{

2(−1)(p−1)/4, if p ≡ 1 (4),
0, otherwise.

The parity of σp is equal to ωK,p(−1).
For the supercuspidal components we can use the constructions of [8].

Lemma 4.19. Let p ∈ R and Qp2 be the unramified quadratic extension of Qp. We can write the
representation πp = AIKp/Qp

(θp) as AIQp2/Qp
(θ′p) with a character θ′p of Q×

p2 fulfilling θ′p/(θ
′
p)

τ =

ωK,p ◦ NQp2/Qp
. The minimal conductor of such a character is pνp . Assume in the following that

θ′p has this minimal conductor. Then πp contains (with multiplicity one) a unique representation
of GL(2,Zp), and this representation factors through a representation σp of GL(2,Z/pνpZ). The
dimension of σp is pνp−1(p−1). If p is odd, σp is the cuspidal representation of GL(2,Fp) associated
to the character of F×

p2 obtained by restricting θ′p.

Furthermore, we have the following values for the traces at the torsion elements of SL(2,Z):

tr σp(S3) =















0, if p ≡ 1 (3),
−2, if p ≡ 2 (3), p > 2, or p = 2, νp = 3,
−1, if p = 3,
2, if p = 2, νp = 2,

and

tr σp(S4) =

{

2(−1)(p−3)/4, if p ≡ 3 (4),
0, otherwise.

The parity of σp is −ωK,p(−1) except in the case p = 2, νp = 2, where it is −1 while ωK,p(−1) = −1.

Proof. We quickly sketch the ingredients of the proof. Everything is based on the Tame
Parametrization Theorem of [8, Theorem 20.2] and the explicit constructions in its proof. The case
of odd p is covered by [loc. cit., 19.1]. Dimensions and character values can then be read off from
the standard description of cuspidal representations over finite fields in [loc. cit., 6.4]. For p = 2
we need the constructions of [loc. cit., 19.3, 19.4] together with [loc. cit., 15.8] to describe the
representations of GL(2,Z2) and to compute the character values. The dimension statement can
be found in [loc. cit., Lemma 27.6].

We can now finish the proof of Theorem 4.17. For any tensor product of local representations
σp the dimensions and character values are obtained by multiplication. The space of UN -invariants
is non-trivial only if all local components are principal series representations. The last term in
Proposition 4.18 only appears for representations of level one (i. e. for σ the trivial representation).
It remains to compute for each n the sum of the contributions in Proposition 4.11 for all possi-
ble combinations of local components with total parity (−1)n. This is a tedious but elementary
computation which we omit here.

26



4.4 Bounds for the cohomology of Bianchi groups

In this subsection we use the results of Section 4.3 to give some bounds for the dimension of the
cohomology spaces H1(SL(2,Od), En) as |d| or n go to infinity. The first result is a more or less
obvious consequence of Theorem 4.17.

Corollary 4.20. Let K be an imaginary quadratic number field with ring of integers OK . There
is a bound C1 > 0 such that

dimH1(SL(2,OK), En) ≥ C1n (as n→ ∞).

For the proof we only have to show that the coefficient of n+ 1 in the formula of Theorem 4.17
is non-negative.

The second result we see as a complement to the following theorem which is proved in [3].

Theorem 4.21. Let G be a simple Lie group with Haar measure µ. There is a constant C2 > 0
such that d(Γ) is at most C2vol(G/Γ) for every lattice Γ in G where d(Γ) is the minimal number
of generators of Γ.

To use this theorem note that

vol (SL(2,C)/ SL(2,Od)) =
|d|3/2

4π2
ζK(2)

where ζK(s) is the Dedekind zeta function of K, see [20, Section 7]. It is easy to see that ζK(2) is
bounded between two positive real numbers for all imaginary quadratic fields K. In view of Lemma
3.1 we obtain

Corollary 4.22. Let n be a (fixed) non-negative integer. There is a constant C3 > 0 such that

dimH1(SL(2,Od), En) ≤ C3|d|3/2 as |d| → ∞.

We remark that this result also follows from the trace formula methods of Section 5 below.
Theorem 4.17 implies

Proposition 4.23. Let n be a (fixed) non-negative integer. There is a constant C4 > 0 such that

dimH1(SL(2,Od), En) ≥ C4|d| as |d| → ∞.

4.5 Base change and cocompact arithmetic groups

By the work of Labesse-Schwermer [47] and Rajan [52], it is possible to use base change and the
Jacquet-Langlands correspondence to study the cohomology of the cocompact arithmetic groups Γ
associated to quaternion algebras defined over fields L such that the extension L/Ltr, where Ltr is
the maximal totally real subfield of L, is solvable (but not necessarily Galois). The resulting bound
for dimH1(Γ, En) is determined by the dimension of certain spaces of Hilbert modular forms of
weight (n + 2, 2, . . . , 2) for Ltr, and will be again linear on congruence classes. We do not go into
the details here. Note that, in contrast to the case of the Bianchi groups, for a particular group
Γ the resulting bound will often be trivial. If we however consider the collection of all congruence
subgroups, the conjecture of Waldhausen and Thurston has been verified for these groups by Rajan
[52]. We can easily deduce from his arguments the following qualitative result:

27



Proposition 4.24. Let Γ be an arithmetic subgroup of SL(2,C) such that the field of definition L
of the corresponding quaternion algebra is a solvable extension of its maximal totally real subfield
Ltr. Then for every c > 0 there exists a finite index subgroup ∆ of Γ such that

dimH1(∆, En) > cn

for all n ≥ 0.

Proof. By [47, 52], for a suitable ∆ a lower bound for the dimension of the cohomology is given
by the dimension of the space of Hilbert modular newforms of weight (n + 2, 2, . . . , 2) for certain
congruence subgroups of GL(2, Ltr). By adding additional local conditions, it is easily seen that it
is possible to assume that the subgroups in question are torsion-free. Furthermore, their covolume
can be made arbitrarily large by changing ∆. Shimizu’s dimension formula [58] implies then that
for any c > 0 we can find a subgroup ∆ such that the dimension of the corresponding space of
Hilbert modular forms is ≥ c(n+ 1) for all n ≥ 0.

If base change for SL(2) for arbitrary extensions of number fields was available, one could prove
the corresponding result for all arithmetic lattices. This provides strong theoretical evidence for a
positive answer to Question 1.14 for arithmetic lattices.

5 Upper bounds for the dimension of H1

In this section we derive upper bounds for the dimension of the cohomology spaces H1(Γ, En)
by using the generalized Eichler-Shimura isomorphism to transform the problem into a question
on multiplicities of representations in L2(SL(2,C)/Γ) and then using the trace formula to get
information on these multiplicities. We first set up the form of the trace formula we need by
specializing the work of W. Hoffmann [35, 36] to our situation. Then we consider the behavior of
the dimension of H1(Γ, En) as a function of n and its behavior for fixed n as Γ varies over the
standard congruence subgroups Γ0(a) of a Bianchi group (our result is in fact slightly more general,
cf. Theorem 5.5 below).

5.1 Review of the invariant trace formula for SL(2, C)

Let Γ be a general discrete subgroup of G = SL(2,C) of finite covolume and consider the discrete
part of L2(G/Γ), which is a Hilbert space direct sum of irreducible unitary representations π of
G, each one occurring with a finite multiplicity m(π,Γ). The irreducible unitary representations
of G most important to us are the principal series representations πm,iν for integers m and real
parameters ν, which are obtained by unitary induction from the characters

σm,iν(eu+iθ) = ei(νu+mθ)

of the maximal torus T ≃ C× of G. The representations πm,iν and π−m,−iν are equivalent.
We are interested in bounding the multiplicities m(πm,0) from above. As explicated above, the

dimension of H1
cusp(Γ, En) is the same as the multiplicity m(π2n+2,0).

We first recall the trace formula for L2(G/Γ) in the form in which it has been explicitly worked
out by Hoffmann for lattices of rank one [36]. We specialize his results to the simpler case of
G = SL(2,C) and the trivial Hecke operator. As a preparation, we need to recall the basic relations
between orbital integrals and principal series characters and the explicit form of the Plancherel
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formula, for which we use [43, Ch. XI] as a reference. We normalize measures as in [loc. cit.], i.e.
we use the Haar measure on G given by the product measure dk dn da associated to the Iwasawa
decomposition G = KNA, where dk givesK = SU(2) total measure one, dn is the standard measure
on N ≃ C, the upper triangular unipotent subgroup, and the measure da on A ≃ R>0 is du in the
parametrization u 7→ diag (eu, e−u). We consider compactly supported functions f ∈ C∞

c (G). To
such a function is associated the function FT

f ∈ C∞
c (T ) defined by

FT
f (t) = e2u

∫

K×N

f(ktnk−1)dkdn.

For g ∈ G set
DG(g) = det

g/gg

(1 − ad (g)).

Then |DG(g)|1/2 = |t − t−1|2 for a regular semisimple element g with eigenvalues t and t−1, and
DG(g) = 1 otherwise. For g ∈ G define the orbital integral

JG(g, f) = |DG(g)|1/2

∫

G/Gg

f(xgx−1)dx.

Then JG(t, f) = FT
f (t) for all regular elements t ∈ T [loc. cit., (11.13), (11.14)]. From this one

sees immediately that FT
f (t) = FT

f (t−1). It is also easy to see that FT
f (±1) = 8πJG(±n1, f)

for n1 =

(

1 1
0 1

)

. The Fourier transform of FT
f yields the characters of the principal series

representations:

Θm,iν(f) =
1

2π

∫

T

FT
f (eu+iθ)ei(νu+mθ)dudθ

and

FT
f (eu+iθ) =

1

2π

∑

m∈Z

∫ ∞

−∞
Θm,iν(f)e−i(νu+mθ)dν.

The Plancherel formula for G is given by [loc. cit., Theorem 11.2] (up to a minor correction):

f(1) =
1

16π2

∑

m∈Z

∫ ∞

−∞
Θm,iν(f)(m2 + ν2)dν. (5.1)

For a discrete subgroup Γ of G of finite covolume let C be the set of all cuspidal parabolic
subgroups of G, i. e. of all parabolic subgroups fixing a cusp of Γ. Let Γ(∗) be the set of all
semisimple elements of Γ which do not fix a cusp together with the elements of Γ ∩ {±1}, and on
the other hand Γce the set of semisimple elements of Γ different from ±1 and stabilizing a cusp.
For ξ ∈ Γce let A(ξ) be the unique conjugate of the real torus A ⊆ T in the centralizer of ξ. For
the definition of the weight factor vξ for ξ ∈ Γce we refer to [36, p. 105]. For each P ∈ C let ΓM (P )
be the set of projections to a Levi component L of P of the elements of Γ∩P . We define constants
C(P, η,Γ) (called CP (ηn1, χΓ) in [loc. cit., p. 106]) in terms of Epstein zeta functions associated to
ηΓ ∩N . Namely, C(P, η,Γ) is the constant term in the Laurent expansion at z = 1 of the function

C(P, η,Γ; z) =
2vol(N/Γ ∩N)

|ΓM (P )|
∑

ξ∈ηΓ∩N, ξ 6=1

1

|u(ξ)|2z
,
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where we choose kP ∈ K such that k−1
P PkP is the standard upper triangular Borel subgroup P0

and write

ξ = kP

(

1 u(ξ)
0 1

)

k−1
P , ξ ∈ N.

The absolute value of u(ξ) does not depend on the choice of kP . For η = 1 we can write C(P, 1,Γ) =
2πκΛ(P )/|ΓM (P )| for the lattice Λ(P ) = u(Γ∩N) in C, where κΛ denotes the constant term in the

expansion of |Λ|
π

∑

λ∈Λ\{0} |λ|−2z at z = 1 (this notation agrees with [20, Lemma 6.5.2]). We also

need distributions IL(η), which are Arthur’s invariant modifications of weighted orbital integrals
(cf. [loc. cit., Sect. 5]). Finally, let Φ(σm,s) be the scattering matrix of Γ defined in [loc. cit., p.
122] (and denoted by S(χΓ, w̃, σΛ) there) and φ = detΦ its determinant (with respect to a suitable
identification of the vector spaces in question, the choice of which is unimportant). We can now
quote [36, Theorem 6.4], specialized to our situation.

Theorem 5.1. For f ∈ C∞
c (G) the trace of the corresponding convolution operator on the discrete

part of L2(G/Γ) is given by

trπdisc
Γ (f) =

∑

{ξ}Γ⊂Γ(∗)
vol(Gξ/Γξ)|DG(ξ)|−1/2JG(ξ, f)

+
∑

{ξ}Γ⊂Γce

vol(Gξ/ΓξA(ξ))vξ |DG(ξ)|−1/2JG(ξ, f)

+
∑

P∈C, η∈ΓM (P )∩{±1}
C(P, η,Γ)JG(η

(

1 1
0 1

)

, f)

+
1

2

∑

P∈C, η∈ΓM (P )

|ΓM (P )|−1IL(η, f)

+
1

4π

∑

m∈Z

∫ ∞

−∞

φ′(σm,iν)

φ(σm,iν )
Θm,iν(f)dν

−1

4
trΦ(σ0,0)Θ0,0(f).

The distributions IL(η) can be explicitly described in terms of the character values Θm,iν(f).
We need here only the limiting case η = 1. Denote by ψ(s) = Γ′(s)/Γ(s) the logarithmic derivative
of the gamma function. The following Proposition follows easily from Hoffmann’s work in [35].

Proposition 5.2. For the trivial element of G the distribution IL(1) is given by

IL(1, f) =
1

2π

∑

m∈Z

∫ ∞

−∞
ΩL(1, σm,iν)Θm,iν(f)dν +

1

2
Θ0,0(f)

with the function

ΩL(1, σm,iν) = ψ(1) − Reψ(
m+ iν

2
).

Note that although the function ψ has a simple pole at s = 0, the real part of ψ(iν/2) is
continuous at ν = 0, and in fact Reψ(iν/2) = Reψ(1 + iν/2).

Proof. Hoffmann considers invariant distributions IP closely related to IL, cf. [35, p. 58
bottom] for their precise relation. The normalization factor rP̄ P (σm,iν ) there is up to a constant
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equal to 1/(|m| + iν) (cf. [44]). The distributions IP (1) are explicitly given by [loc. cit., p. 96,
Corollary]. Note that we have only two roots α and ᾱ and have to insert λ(Hα) = (m+ iν)/2 and
λ(Hᾱ) = (−m + iν)/2 into the expression given there. Putting everything together and using the
well-known relation Γ(s)Γ(1 − s) = π/ sinπs, one obtains the formula above.

The reader may compare the resulting explicit trace formula, which involves only the function
FT

f on T and its Fourier transform, with the trace formula for K-biinvariant functions f given in
[20, Theorem 6.5.1].

5.2 The dimension of H1: behavior with n

We now turn to the behavior of the multiplicities m(πm,0,Γ) as m → ∞ for a fixed group Γ. The
method extends to cohomological representations of real rank one groups which are not in the
discrete series. It is an adaption of the method of [16, Sect. 9] for bounding the remainder term in
Weyl’s law. Our result is the following.

Theorem 5.3. For any discrete subgroup Γ ⊆ G of finite covolume one has

m(πm,0) = O(m2/ logm), m→ ∞.

As an immediate consequence we have:

Corollary 5.4. For any discrete subgroup Γ ⊆ G of finite covolume one has

dimH1(Γ, En) = O(n2/ logn), n→ ∞.

Proof of the Theorem. By passing to a finite index subgroup, we can assume that Γ is torsion-free
and ΓM (P ) = {1} for all P .

Let m ≥ 1 and g0 be an even C∞ function with support contained in [−1, 1], non-negative
Fourier transform h0 and h0(0) > 0. Consider the functions

g(eu+iθ) = 2εg0(εu) cosmθ

on T , with ε > 0 being specified later. For f ∈ C∞
c (G) with FT

f = g we have

Θ±m,iν(f) = h0(ε
−1ν),

and Θn,iν(f) = 0 for |n| 6= m. Insert f into the trace formula and note that because of our
assumption on Γ, the sum in the second line is empty while the sums in the third and fourth line
involve only η = 1. Also, the expression in the last line vanishes. Moving the integral involving the
scattering matrix to the other side, we obtain an expression for

2
∑

ν

m(πm,iν)h0(ε
−1ν) − 1

2π

∫ ∞

−∞

φ′(σm,iν)

φ(σm,iν )
h0(ε

−1ν)dν (5.2)

as the sum of the remaining terms on the right hand side (i. e. the sum of the first, third and fourth
line). As usual, we split the sum in the first line as

vol(G/Γ)f(1) +
∑

{ξ}Γ⊂Γ(∗), ξ 6=1

vol(Gξ/Γξ)|DG(ξ)|−1/2JG(ξ, f).
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By the Plancherel formula, we can express the first term as

vol(G/Γ)

8π2

∫ ∞

−∞
h0(ε

−1ν)(m2 + ν2)dν = C1εm
2 + C2ε

3

with constants C1 and C2 depending only on Γ and h0. By [16, pp. 90-91], since the absolute values
of the orbital integrals JG(ξ, f) are bounded independently of m, the second term can be estimated
by C3e

C4/ε. The third line of the trace formula is a constant multiple of FT
f (1), and therefore C5ε.

To estimate the weighted orbital integrals, we use the standard approximation ψ(s) = log s+O(1)
for Re s ≥ δ > 0 to get

|ΩL(1, σm,iν)| ≤ 1

2
log(m2 + ν2) + C6 ≤ logm+

ν2

2m2
+ C6.

From this one obtains

|IL(1, f)| ≤ (C7 + C8 logm)ε+ C9
ε3

m2
.

Taking ε = c/ logm with a suitable constant c, one may conclude that with this choice the expression
(5.2) is O(m2/ logm) as m → ∞. Now, for each m the determinant of the scattering matrix may
be written as a Hadamard product

φ(σm,s) = φ(σm,0)q
s
m

∏

η∈Pm

s+ η̄

s− η

with positive real constants qm bounded from above, where the product runs over the set Pm of
poles of φm,s, which all have negative real part. Note that for m ≥ 1 the Eisenstein series and
the scattering determinant cannot have a pole on the real axis, since the corresponding induced
representations do not have any unitarizable subquotients. Taking logarithmic derivatives, one sees
that log qm −φ′(σm,iν)/φ(σm,iν ) is positive real for all ν. Since h0 was assumed to be non-negative,
(5.2) is therefore up to a term going to zero with m an upper bound for m(πm,0)h0(0). The Theorem
follows.

We remark that for congruence subgroups of the Bianchi groups SL(2,OK), K imaginary
quadratic, standard estimates for the logarithmic derivatives of Hecke L-functions imply that the
contribution from the continuous spectrum in (5.2) is O(ε logm) if ε goes to zero for m→ ∞, and
that it is therefore bounded with our choice of ε.

5.3 The dimension of H1: congruence subgroups of Bianchi groups

We now consider finite index subgroups of the Bianchi groups SL(2,OK). For any non-zero ideal a

of OK we have the classical congruence subgroup

Γ0(a) =

{(

a b
c d

)

∈ SL(2,OK) c ∈ a

}

.

The index of Γ0(a) in SL(2,OK) is given by the multiplicative function

ι(a) = N(a)
∏

p | a

(

1 +
1

N(p)

)

.
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We also need the following subgroups closely related to the principal congruence subgroups:

Γ̃(a) =

{(

a b
c d

)

∈ SL(2,OK) a ≡ d mod a, b, c ∈ a

}

.

The following theorem gives a bound for the multiplicity of a representation πm,0 in L2(G/Γ∩Γ0(a)),
Γ a subgroup of finite index in SL(2,OK), which improves the trivial bound O(ι(a)) by a logarithm.

Theorem 5.5. Let Γ be a subgroup of finite index in SL(2,OK), K imaginary quadratic. Then for
any fixed m ≥ 1 we have

m(πm,0,Γ ∩ Γ0(a)) = O

(

ι(a)

log N(a)

)

, N(a) → ∞.

This theorem can be regarded as a quantitative variant of the limit multiplicity results of de
George-Wallach [15], Lück and Savin [54] (which however concern towers of normal subgroups).
Note also that for a = aOK , a a positive integer, we can get by base change arguments a lower
bound of the form Ca = CN(a)1/2. If a and its conjugate are relatively prime, there is no non-trivial
lower bound known.

Corollary 5.6. Let Γ be a subgroup of finite index in SL(2,OK). Then for any fixed n ≥ 0 we
have

dimH1(Γ ∩ Γ0(a), En) = O

(

ι(a)

log N(a)

)

, N(a) → ∞.

Proof. The corresponding assertion for the cuspidal part is an immediate consequence of Theo-
rem 5.5. To bound the dimension of the non-cuspidal part use Lemma 5.7 below.

The proof of Theorem 5.5 is again based on the trace formula. By passing to a finite index
subgroup, we can assume that Γ is torsion-free and ΓM (P ) = {1} for all P . Let ∆ ⊆ Γ be a
subgroup of finite index. We may then write (cf. [13]) for every f ∈ C∞

c (G) the spectral side

tr πdisc
∆ (f) − 1

4π

∑

m∈Z

∫ ∞

−∞

φ′∆(σm,iν)

φ∆(σm,iν)
Θm,iν(f)dν +

1

4
tr Φ∆(σ0,0)Θ0,0(f)

as the sum

[Γ : ∆]vol(G/Γ)f(1) +
∑

{ξ}Γ⊂Γ(∗), ξ 6=1

c∆(ξ)vol(Gξ/Γξ)|DG(ξ)|−1/2JG(ξ, f)

+
∑

P∈C∆

C(P, 1,∆)JG(

(

1 1
0 1

)

, f) +
1

2
|C∆|IL(1, f),

where we set
c∆(ξ) =

∣

∣{γ ∈ ∆\Γ | γξγ−1 ∈ ∆}
∣

∣ .

We now need a sequence of elementary lemmas to deal with the parabolic and hyperbolic
contributions. The following well-known lemma is used to bound the parabolic contribution.

Lemma 5.7. Let κ be the multiplicative function defined by

κ(pk) =

{

N(p)k/2 + N(p)k/2−1, k ≡ 0 (2),

2N(p)(k−1)/2, k ≡ 1 (2).

33



Then we have

|CΓ∩Γ0(a)| ≤ κ(a)|CΓ| ≤
ι(a)
√

N(a)
|CΓ|,

and the first inequality is an equality for Γ = SL(2,OK).

To deal with the hyperbolic contribution, we need to consider first the numbers cΓ∩Γ0(a)(ξ). The
following lemma follows easily from the definitions.

Lemma 5.8. Let ξ ∈ Γ and b be the largest divisor of a such that ξ ∈ Γ̃(b). Then

cΓ∩Γ0(a)(ξ) ≤ c(a, b) ≤ 2ν(a)N(b),

where ν(a) denotes the number of prime divisors of a and c is defined by extending

c(pk, pr) =

{

2N(p)r, r < k,
N(p)k + N(p)k−1, r ≥ k,

multiplicatively.

For any semisimple element γ ∈ G let its norm N(γ) ≥ 1 be the maximum value of |t|2 for
the two eigenvalues t of γ. We need to estimate the number of Γ-conjugacy classes of bounded
norm which are contained in Γ̃(b). Such an estimate can be deduced from the following well-known
lemma.

Lemma 5.9. There is a constant B depending only on Γ such that every semisimple conjugacy class

{γ}Γ in Γ with N(γ) ≤ T contains a representative γ =

(

a b
c d

)

with |a|2, |b|2, |c|2, |d|2 ≤ BT .

The crude estimate of the next lemma is an easy consequence. The reader may verify that a
better estimate would not change the final result (apart from the constant implicit in the O).

Lemma 5.10. For every δ > 0 there is a constant C depending on Γ and δ, such that for all non-
zero ideals b of oK the number of Γ-conjugacy classes in Γ(∗) with norm ≤ T which are contained
in the normal subgroup Γ ∩ Γ̃(b) of Γ is bounded by CT 2+δN(b)−2.

Proof. Apply Lemma 5.9 to see that each such conjugacy class has a representative γ =
(

a b
c d

)

with |a|2, |b|2, |c|2, |d|2 ≤ BT . Furthermore, bc 6= 0 since the conjugacy class was

assumed to lie in Γ(∗). The number of possible pairs (b, c) corresponding to elements of Γ̃(b) is
therefore bounded by C′T 2N(b)−2 with C′ depending only on K. For each such pair the number
of possible entries a and d with ad = 1 + bc 6= 0 is clearly bounded by O(T δ) with a constant
depending only on δ. This proves the assertion.

Proof of Theorem 5.5. We take a test function f ∈ C∞
c (G) depending on m ≥ 1 and ε as

above. We fix m and assume at first only that ε is bounded. Then the identity contribution
to the trace formula for ∆ = Γ ∩ Γ0(a) is bounded by C1ι(a)ε. The lattices Λ(P ) = u(∆ ∩ N)
appearing in the definition of C(P, 1,∆) = 2πκΛ(P ) are all invariant under a fixed order of the field
K, and belong therefore to finitely many classes up to multiplication by elements of K∗. Using that
κΛ + log |Λ| is invariant under such homotheties, this implies that the constants κΛ(P ) are bounded
by C + log N(a) for a constant C. By Lemma 5.7 the parabolic contribution is therefore bounded
by C2ι(a)(log N(a))N(a)−1/2ε.
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As for the contribution of classes in Γ(∗), the estimates of Lemma 5.8 and Lemma 5.10 show
that it is bounded by



2ν(a)
∑

b | a

1

N(b)



C3e
C4/ε ≤ C5(µ)N(a)µeC4/ε

for any µ > 0. Taking ε = c/ logN(a) with a suitable constant c, we see that the geometric side of
the trace formula is indeed O(ι(a)/ log N(a)). A positivity argument as in the proof of Theorem 5.3
yields the result.

6 Computational results for Bianchi groups

This section contains computational results on the dimensions of the cohomology groups H1(Γ, En)
where Γ = SL(2, a) is one of the Bianchi groups of Section 2.2 and n a non-negative integer. We
also consider certain congruence subgroups of SL(2,O−1). The method of computation is explained
in Section 3.1. Often the resulting systems of linear equations turned out to be far to big to do
computations over the rational numbers. In these cases we were able to use the lower estimates
of Section 4.3 to deduce the dimension of the solution space over the complex numbers from the
dimension over various finite fields.

6.1 Dimensions of H1(SL(2,O), E
n
)

Let us start with a little table. In Table 1 we have listed the dimension of the cohomology spaces
H1(SL(2,Od), En) for d = −1, −2, −3, −7, −11 and 0 ≤ n ≤ 15. To compare these values with
the dimensions of the spaces of lifted forms given in Proposition 1.3 or more generally in Theorem
4.17, it is important to know the codimension of the cuspidal cohomology. Using [56, Th. 8, Cor.
1] (and the further information contained there), it can be easily checked that

dimH1(SL(2,OK), En) − dimH1
cusp(SL(2,OK), En) = νK,nhK (6.1)

for all imaginary quadratic fields K, using the notation introduced in Section 4.1.
We see that the cuspidal cohomology consists only of lifted forms except in the two cases

marked in boldface. These two cases will be analyzed more closely below. As a result of some
heavy computer calculations we can report the following results.

Proposition 6.1. For d = −1, −2, −3, −7, −11 and rd as given in

d −1 −2 −3 −7 −11
rd 104 141 116 132 153

we have
H1

cusp(SL(2,Od), En) = H1
bc(SL(2,Od), En)

in the range 0 ≤ n ≤ rd, except in the cases d = −7 and n = 12, d = −11 and n = 10, where H1
bc

has codimension two in H1
cusp.

It remains to report the results of the computations in the non-euclidean cases. We have found
the following:
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n d = −1 d = −2 d = −3 d = −7 d = −11
0 0 1 0 1 1
1 1 1 0 1 1
2 0 1 1 1 2
3 1 2 0 1 2
4 0 1 0 2 2
5 2 3 1 2 3
6 0 2 1 2 4
7 3 4 1 3 4
8 0 2 1 3 4
9 3 5 1 3 5
10 1 3 2 4 8

11 4 6 2 4 6
12 0 3 1 6 6
13 5 7 2 5 7
14 1 4 3 5 8
15 5 8 2 5 8

Table 1: Dimensions of H1(SL(2,O), En)

Proposition 6.2. Let Γ be one of the groups SL(2,Od) with d = −19, −5, −6, −10, −14 or
SL(2, a−5), SL(2, a−6), SL(2, a−10), SL(2, a−14), where the ideals a are as in Section 2.2 and let the
non-negative integer n be in the range 0 ≤ n ≤ 60. Then H1

cusp(Γ, En) = H1
bc(Γ, En).

6.2 Hecke operators on non-lifted cohomology classes

In this subsection we give the numerical values of some of the Hecke operators on the two spaces
of non-lifted cohomology classes exhibited in Section 6.1.

6.2.1 Hecke operators on H1(SL(2,O−7), E12)

We consider the prime element π11 = 2 +
√
−7 of O−7, which has degree one and norm 11. By the

methods described in Section 3.2 the characteristic polynomial of the corresponding Hecke operator

Tπ11
: H1(SL(2,O−7), E12) → H1(SL(2,O−7), E12)

can easily be computed to be

Pπ11
(X) =

(X − 9951764)(X2 + 1877432X − 54779120751344)
(X3 − 2226532X2 − 7410075237136X− 1678794474022559168)

.

We know that there is a unique two-dimensional complement of the space of base change classes in
the cohomology space H1

cusp(SL(2,O−7), E12) invariant under the Hecke operators. Identifying the
Hecke operators on lifted classes (see Section 3.2) we infer that the kernel

NL(−7, 12) = Ker(T 2
π11

+ 1877432Tπ11
− 54779120751344) (6.2)
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is this space of non-lifted classes. We write Lπ for the restriction of the Hecke operators Tπ, π a
prime element of O−7, to the space NL(−7, 12). The following properties of the linear maps Lπ

hold for all prime elements π of O−7.

P7.1 L−π = −Lπ

P7.2 Lπ̄ = −Ladj
π

P7.3 If π = p is a prime of degree two, then Lπ is an integer scalar denoted by λp.

P7.4 After a suitable choice of basis for NL(−7, 12), the matrices giving the action of the Hecke
operators Lπ have integral entries.

P7.5 The simultaneous splitting field for the Hecke operators Lπ is Q(
√

7 · 239).

Here Aadj stands for the adjoint of a linear map A. If A is given by a two-by-two matrix, we have

(

a b
c d

)adj

=

(

d −b
−c a

)

.

Property P7.2 follows by comparing the actions of the Hecke operator Tπ on the two cohomology
spaces

H1(SL(2,O−7), Sym12 ⊗ Sym
12

), H1(SL(2,O−7), Sym
12 ⊗ Sym12).

Property P7.1 is proved by computing the automorphism ǫ induced by a matrix E ∈ GL(2,O−7)
of determinant −1 on H1(PSL(2,O−7), E12). This property implies that no non-zero class in
NL(−7, 12) is the restriction of a cohomology class in H1(GL(2,O−7), E12). The rest of the above
properties is clear.

Examples of the scalars λp for primes of degree two are contained in Table 2. Examples of the
integral matrices corresponding to the linear maps Lπ for primes π of degree one are contained in
Tables 3, 4 and 5.

6.2.2 Hecke operators on H1(SL(2,O−11), E10)

We consider the prime element π3 = (1 +
√
−11)/2 of O−11, which has degree one and norm 3.

By the methods described in Section 3.2 the characteristic polynomial of the corresponding Hecke
operator

Tπ3
: H1(SL(2,O−11), E10) → H1(SL(2,O−11), E10)

can easily be computed to be

Pπ3
(X) =

(X − 252)(X − 67)(X2 + 700X + 40671)
(X4 + 403X3 − 439713X2 − 113276475X + 1097145000)

.

We know that there is a unique two-dimensional complement of the space of base change classes in
the cohomology space H1

cusp(SL(2,O−11), E10) invariant under the Hecke operators. We infer that
the kernel

NL(−11, 10) = Ker(T 2
π3

+ 700Tπ3
+ 40671) (6.3)

is equal to this space of non-lifted classes. We write Lπ for the restriction of the Hecke operator
Tπ, π a prime element of O−11, to the space NL(−11, 10). The following properties of the linear
maps Lπ hold for all prime elements π of O−11.
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p λp

3 −1939626
5 -747491750
13 -252803502896086
17 4756247617499746
19 5094169624293878
31 -30279773153264109058
41 -948454707467278569518
47 -9168990821180522751074
59 123833654051598471764998
61 -105716258627702854298998
73 -707186203752039245531566
83 -5005894274852029376014346
89 -980936263375178621227022
97 84206314563458516168628866

Table 2: Scalars λp for Lp on NL(−7, 12)

p π Aπ p π Aπ

2 ω

(

0 1
14432 −50

)

7 −1 + 2ω

(

44800 1792
25862144 −44800

)

11 1 + 2ω

(

581284 60800
877465600 −2458716

)

23 3 + 2ω

(

−257854600 4457728
64333930496 −480741000

)

Table 3: Hecke operators Lπ on NL(−7, 12)

p π Aπ

29 −1 + 4ω

(

−114226222 −627200
−9051750400 −82866222

)

37 1 + 4ω

(

8869653750 −61610496
−889162678272 11950178550

)

43 5 + 2ω

(

42167274700 293147008
4230697619456 27509924300

)

53 3 + 4ω

(

−229421381350 −843922944
−12179495927808 −187225234150

)

67 −1 + 6ω

(

914163852100 −1805341824
−26054693203968 1004430943300

)

71 7 + 2ω

(

−600257601424 −5497094400
−79334066380800 −325402881424

)

Table 4: Hecke operators Lπ on NL(−7, 12)
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p π Aπ

79 1 + 6ω

(

−775382036248 −11236492800
−162165064089600 −213557396248

)

107 9 + 2ω

(

11411424109300 66437695872
958828826824704 8089539315700

)

109 7 + 4ω

(

8058528373122 78253401600
1129353091891200 4145858293122

)

113 3 − 8ω

(

4624127056750 42202431488
609065491234816 2514005482350

)

127 5 + 6ω

(

4687450108000 367392485376
5302208348946432 −13682174160800

)

137 1 + 8ω

(

79180120345450 −113527447552
−1638428123070464 84856492723050

)

149 9 + 4ω

(

−71276735378522 562548416000
8118698739712000 −99404156178522

)

Table 5: Hecke operators Lπ on NL(−7, 12)

P11.1 L−π = Lπ

P11.2 Lπ̄ = −Ladj
π

P11.3 If π = p is a prime of degree two, then Lπ is an integer scalar denoted by µp.

P11.4 After a suitable choice of basis for NL(−11, 10), the matrices giving the action of the Hecke
operators Lπ have integral entries.

P11.5 The simultaneous splitting field for the Hecke operators Lπ is Q(
√

11 · 43 · 173).

P11.6 The space NL(−11, 10) is the restriction of a subspace of H1(GL(2,O−11), E10).

The case d = −11, k = 10, differs from the case d = −7, k = 12, since we have L−π = Lπ for
d = −11 and and L−π = −Lπ for d = −7. In the case d = −11 this leads directly to property
P11.6.

Examples of the scalars µp for primes of degree two are contained in Table 6. Examples of the
integral matrices corresponding to the linear maps Lπ for primes π of degree one are contained in
Tables 7, 8, 9.

6.3 Cohomology of congruence subgroups

In this subsection we give some computational results concerning the dimensions of the cohomology
groups H1(Γ, En) where Γ ⊆ SL(2,O−1) is a congruence subgroup.

6.3.1 The case of trivial coefficients

Here we consider the congruence subgroups

Γ0(p) =

{(

a b
c d

)

∈ SL(2,O−1) b ∈ p

}
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p µp

2 −80
7 −818885550
13 1235127129530
17 45387811032610
19 −95158947964038
29 −8701360899198758
41 −429545462511285518
43 638559982027780650
61 10654154103002912922
73 34915634850910529970
79 −688424011186184859358
83 33668143605728046010
101 15523742571431406528202

Table 6: Scalars µp for Lp on NL(−11, 10)

p π Aπ p π Aπ

3 ω

(

0 1
−40671 −700

)

5 −2 + ω

(

−14203 −26
1057446 3997

)

11 −1 + 2ω

(

−117612 0
0 −117612

)

23 −5 + ω

(

44565050 22561
−917578431 28772350

)

31 −4 + 3ω

(

−124944582 −577125
23472250875 279042918

)

37 −5 + 3ω

(

351981325 819882
−33345420822 −221936075

)

Table 7: Hecke operators Lπ on NL(−11, 10)

p π Aπ

47 −7 + 2ω

(

2959574800 5646848
−229662955008 −993218800

)

53 −5 + 4ω

(

−3591316050 −868224
35311538304 −2983559250

)

59 −8 + ω

(

2044859460 10611525
−431581333275 −5383208040

)

67 −8 + 3ω

(

5506303200 −13041567
530413571457 14635400100

)

71 −4 + 5ω

(

−20524885978 −34309625
1395406758375 3491851522

)

89 −7 + 5ω

(

19167086435 60342700
−2454197951700 −23072803565

)

Table 8: Hecke operators Lπ on NL(−11, 10)
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p π Aπ

97 −10 + 3ω

(

33903167375 94396752
−3839210300592 −32174559025

)

103 −5 + 6ω

(

−127510128200 −435253824
17702208275904 177167548600

)

113 −11 + ω

(

−257969686425 −640536456
26051258201976 190405832775

)

137 −5 + 7ω

(

500270562475 −968684668
39397374132228 1178349830075

)

157 −13 + 3ω

(

−2300340926975 −6625408122
269461973729862 2337444758425

)

163 −11 + 6ω

(

−174488742500 315270144
−12822352026624 −395177843300

)

179 −13 + 5ω

(

−933096107380 −5594462825
227532397555575 2983027870120

)

Table 9: Hecke operators Lπ on NL(−11, 10)

of SL(2,O−1), where p is a prime ideal of O = O−1 of degree one. Note that Γ0(p) is conjugate
in SL(2,O) to the congruence subgroup Γ0(p) considered in Section 5.3. The norm of p is either
equal to 2 or a rational prime p congruent to 1 modulo 4. The index of Γ0(p) in SL(2,O−1)
is p + 1. The cohomology groups H1(Γ0(p),C) are particularly interesting for number theory
since their non-vanishing is conjectured to be related to the existence of certain elliptic curves
(or more generally abelian varieties) defined over K = Q(i) (cf. [14, 25, 27]). We shall report
here on extensive computations of the dimensions of the spaces H1(Γ0(p),C). Note that we have
H1(Γ0(p),C) = H1

cusp(Γ0(p),C) and H1(SL(2,O),C) = 0, and that H1(Γ0(p),C) consists therefore
entirely of new classes (cf. Section 6.3.2).

The elements Ai, 0 ≤ i ≤ p− 1, and B (cf. Section 2.2) form a system of coset representatives
for Γ0(p) in SL(2,O−1). From this we obtain the following generating system for Γ0(p):

Ap, BAB, BUB, UAρ, Ai′BAi, 1 ≤ i ≤ p− 1, ii′ ≡ 1 mod p,

where ρ2 +1 = 0 in the field Fp. From the presentation (2.7) we may compute a presentation of the
finitely generated abelian group Γ0(p)ab and in particular the dimension of Γ0(p)ab⊗C (which is the
same as the dimension of H1(Γ0(p),C)). This computation may be speeded up in the following way,
i. e. the presentation of Γ0(p) obtained from the Reidemeister-Schreier method can be simplified a
lot. We shall describe a result contained in [25] which gives such a simplification.

Let R be a commutative ring and let P1(R, p) be a (p+1)-dimensional free R-module with basis
ux indexed by the projective line P1(Fp). This module has rank p+ 1 and is a PGL(2,Fp)-module
by the natural permutation action on the basis elements. Let U(R, p) be the submodule of P1(R, p)
generated by u0 and the elements

ux + uBx, ux + uWx, ux + uSx + uS2x, ux + uY x + uY 2x, x ∈ P1(Fp), (6.4)

with the matrices

B =

(

0 1
−1 0

)

, W =

(

0 1
1 0

)

, S =

(

1 −1
1 0

)

, Y =

(

−ρ 1
1 0

)

.
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137 233 257 277 509 569 733 977
1009 1013 1021 1049 1153 1277 1373 1489
1493 1753 1997 2053 2081 2377 2441 2521
2609 2729 2917 3109 3361 3929 4013 4177
4289 4421 4597 4621 4721 5021 5237 5741
5749 5801 6029 6361 6701 6781 6793 6857
6949 7001 7069 7121 7793 7937 8297 8377
8461 8513 8537 8753 9041 9413 10357 10369
10477 10657 10729 10861 10937 11701 11953 12253
12553 13381 13457 13633 15161 15497 15569 15629
15749 16097 16349 16649 16673 17209 17921 18289
18553 18701 18869 18913 19213 19417 19841 19997

Table 10: Norms of degree one primes p in O−1 with dim≤500 H
1(Γ0(p),C) = 1

433 709 757 853 953 1321 1549 1901
1973 2657 2753 3313 3469 3529 3637 3877
5849 5857 6689 7577 8081 9349 9629 11437
12269 12953 13093 13477 15761 16921 17033 18757
19237 19937

Table 11: Norms of degree one primes p in O−1 with dim≤500 H
1(Γ0(p),C) = 2

Define Φp : P1(R, p) → Γ0(p)ab ⊗ R by setting Φp(ui) = Ai′BAi for i ∈ Fp with i 6= 0 and
Φp(u0) = Φp(u∞) = 0. The results of [25, Section 3] imply that the map Φp is a surjective group
homomorphism with kernel equal to U(R, p), if R is a field of characteristic 0.

To avoid heavy integer computations, we take R = Fq for various (small) primes q, compute the
dimension of P1(R, p)/U(R, p) and set

dim≤x H
1(Γ0(p),C) = inf { dimFq P1(Fq, p)/U(Fq, p) } (6.5)

where q ranges over all primes below x. Of course, if this number is zero then also H1(Γ0(p),C) = 0,
and if x is sufficiently large dim≤xH

1(Γ0(p),C) will be equal to the dimension of H1(Γ0(p),C).
In Table 10 we give the norms of the degree one primes p in O−1 with N(p) ≤ 20000 and

dim≤500 H
1(Γ0(p),C) = 1. Table 11 covers the same range and gives the norms of the degree one

primes p with dim≤500 H
1(Γ0(p),C) = 2. The norms of the primes with dim≤500 H

1(Γ0(p),C) = 3
are 941, 1777, 5113. Those with dim≤500 = 4 are 8893, 17021. The values 5 and 6 are attained for
4517, 5309 respectively. There is no prime p with N(p) ≤ 20000 and dim≤500 ≥ 7.

In an even more extensive search we have gone through the degree one primes p in O−1 with
N(p) ≤ 60000 and have computed dim≤500 H

1(Γ0(p),C). There are altogether 3018 primes below
60000 which are congruent to 1 modulo 4. In the following table we give the number N(r, 60000)
of such primes with dim≤500 H

1(Γ0(p),C) = r.

r 0 1 2 3 4 5 6 7 8 ≥ 9
N(r, 60000) 2728 198 73 11 4 1 1 1 1 0
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The value 8 is attained for the prime 58313.
Let us now define for real numbers x the function

S(x) = x
1
6

∑

p, N(p)≤x dimH1(Γ0(p),C)

|{p N(p) ≤ x }| , (6.6)

where the sum is extended over all degree one prime ideals of O−1. The function S(x) can be
tabulated in the range x ≤ 60000 as follows:

x/1000 6 12 18 24 30 36 42 48 54 60
S(x) 3.21 3.39 3.62 3.99 4.15 4.18 4.24 4.31 4.37 4.52

See Question 1.13 of the introduction for some comments on this table.

6.3.2 The case of non-trivial coefficients

We now report on some computational results on the cohomology spaces H1(Γ0(p), En) where p is
a prime of O−1 of degree one and n ≥ 1.

Let π be a generator of p and let δπ ∈ GL(2,Q(
√
−1)) be defined as in (3.8). The two injective

homomorphisms
ι1 : Γ0(p) → SL(2,O−1), ι2 : Γ0(p) → SL(2,O−1),

where ι1 is just the injection and ι2 is induced by conjugation with the element δπ, give rise to an
injection

ι : H1(SL(2,O−1), En) ⊕H1(SL(2,O−1), En) →֒ H1(Γ0(p), En).

The image of ι is traditionally called the space of old classes. It is invariant under the Hecke
operators and has an invariant complement H1

new(Γ0(p), En). We have found:

• H1
new(Γ0(p), E1) = 0 for all prime ideals p with N(p) ≤ 1000 except for the case N(p) = 41,

where H1
new(Γ0(p), E1) has dimension 2.

• H1
new(Γ0(p), E2) = 0 for all prime ideals p with N(p) ≤ 600.

• H1
new(Γ0(p), En) = 0 for all prime ideals p with N(p) ≤ 90 and 3 ≤ n ≤ 10.

Table 12 contains some examples of the characteristic polynomials of the Hecke operators on
H1

new(Γ0(p), E1) for N(p) = 41. The Hecke operators on H1
new(Γ0(p), E1) satisfy Tiπ = −Tπ for all

prime elements π of degree one. There is no apparent connection between Tπ and Tπ̄. We thank
Haluk Sengun for help with this computation.

7 Cohomology of non-arithmetic groups

This section contains computational results on the cohomology of various geometrically constructed
and mostly non-arithmetic groups. The results are discussed in more detail in the introduction.
See Section 3.1 for remarks on the method of computation and especially for the notation dim≤x

used below.
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p π Aπ p π Aπ

2 1 + i x2 − x− 10 − − −
5 2 + i (x+ 4)2 5 2 − i x2 + 6x− 32
13 3 + 2i x2 + 2x− 40 13 3 − 2i (x + 10)2

17 1 + 4i x2 − 22x+ 80 17 1 − 4i x2 + 24x− 20
29 5 + 2i x2 + 48x− 80 29 5 − 2i x2 − 164
37 1 + 6i x2 + 4x− 160 37 1 − 6i
41 5 + 4i x2 + 48x+ 412 41 5 − 4i
61 6 + 5i x2 − 108 + 292 61 6 − 5i
73 8 + 3i x2 − 106x+ 2440 73 8 − 3i

Table 12: Characteristic Polynomials of Hecke operators on H1
new(Γ0(p41), E1)

7.1 Klimenko’s examples

The discrete subgroups Γ ⊆ PSL(2,C) described here arose in an important attempt to classify
simultaneous conjugacy classes of pairs of matrices generating discrete subgroups of SL(2,C) (see
[38, 39, 40, 41, 42]). We follow the notation of [41, 42], see also [26].

7.1.1 Groups of finite covolume

Let k ≥ 8 be an even integer. We set

t = tk = (exp(πi/k) + exp(−πi/k))2 = exp(2πi/k) + exp(−2πi/k) + 2 (7.1)

and define the matrices

f = fk =

(

exp(πi/k) 0
0 exp(−πi/k)

)

, (7.2)

g = gk =





1
2

(√

t
(t−3)(4−t) +

√

3
t−3

)

1

t−3
4−t

1
2

(
√

t
(t−3)(4−t) −

√

3
t−3

)



 . (7.3)

Let GTet1[k, 3, 3] be the image in PSL(2,C) of the group generated by the matrices f and g. The
following properties are known.

• GTet1[k, 3, 3] is a discrete subgroup of PSL(2,C) of finite covolume with one cusp ([41, 42]).

• GTet1[k, 3, 3] is commensurable with a reflection group ([41, 42]).

• GTet1[k, 3, 3] is non-arithmetic for all k ([26]).

• GTet1[k, 3, 3] = 〈 f, g fk, (gfk/2zfk/2g−1z)3, z2, fzgf−1g−1z 〉, where z = fgfg−1f ([41]).
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Using this explicit presentation, we find:

dim≤1000H
1(GTet1[k, 3, 3], En) =







































2(n− 1)/3 + 1, if n ≡ 1 (6),

2(n− 2)/3 + 2, if n ≡ 2 (6),

2(n− 3)/3 + 2, if n ≡ 3 (6),

2(n− 4)/3 + 3, if n ≡ 4 (6),

2(n− 5)/3 + 4, if n ≡ 5 (6),

2(n− 6)/3 + 4, if n ≡ 6 (6),

(7.4)

in the range 8 ≤ k ≤ 100 and 1 ≤ n ≤ 50. Note that these groups Γ are invariant under the complex
conjugation automorphism of PSL(2,C). This opens up the possibility to compute the trace of this
involution on H1

cusp(Γ, En) and to obtain a lower bound for the dimension of this space, following
the work of Rohlfs and Krämer [45, 53] on the Bianchi groups. We hope to come back to this
question in the future.

7.1.2 Cocompact groups

As in the case considered before, we take from [41] (see also [26]) a series of explicit pairs of matrices
generating a discrete subgroup Γ ⊆ PSL(2,C). In this case the groups Γ act on three-dimensional
hyperbolic space with a compact quotient.

Let k ≥ 8 be an even integer. We define t = tk as in (7.1) and set

f = fk =

(

exp(πi/k) 0
0 exp(−πi/k)

)

, (7.5)

g = gk =





1
2

(√

2(t−2)
(t−3)(4−t) +

√

2
t−3

)

1

t−3
4−t

1
2

(√

2(t−2)
(t−3)(4−t) −

√

2
t−3

)



 . (7.6)

Define GTet1[k, 3, 2] ⊆ PSL(2,C) to be the image in PSL(2,C) of the group generated by f and g.
The following facts are known.

• GTet1[k, 3, 2] is a discrete and cocompact subgroup of PSL(2,C) ([41, 42]).

• GTet1[k, 3, 2] is commensurable with a reflection group ([41, 42]).

• GTet1[k, 3, 2] is non-arithmetic for all k ≥ 14 ([26]).

• GTet1[k, 3, 2] = 〈 f, g fk, (gfk/2zfk/2g−1z)2, z2, fzgf−1g−1z 〉, where z = fgfg−1f ([41]).

Again these results are sufficient to compute cohomology spaces. We find

dim≤1000H
1(GTet1[k, 3, 2], En) =











n/4, if n ≡ 0 (4),

(n+ 1)/2, if n ≡ 1 (2),

(n+ 2)/4, if n ≡ 2 (4)

(7.7)

in the range 14 ≤ k ≤ 100 and 1 ≤ n ≤ 30. The groups GTet1[8, 3, 2], GTet1[10, 3, 2] and
GTet1[12, 3, 2] are arithmetic. Compared to (7.7), the dimensions of their cohomology groups show
a similar but slightly more complicated behavior. In particular, the dimensions of the cohomology
spaces H1(GTet1[10, 3, 2], En) are given by linear functions on the residue classes modulo 20 within
the range of our computations. Again all these groups are invariant under the complex conjugation
automorphism of PSL(2,C).
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7.2 Helling’s examples

Here we report on a series of two-generator discrete subgroups of SL(2,C) described in [33]. We
shall keep the terminology of [33]. The phenomena seen here are new.

For a non-negative integer k, let Tk and Uk be the standard Tchebyshev polynomials [51]. They
can be defined by the relation

(

x+
√

x2 − 1
)k

= Tk(x) + Uk−1(x)
√

x2 − 1,

for example. For a non-negative integer m we define polynomials

p̃m(x) =

{

2Tk

(

x
2

)

, if m = 2k,

Uk

(

x
2

)

− Uk−1

(

x
2

)

, if m = 2k + 1,
(7.8)

and

fm(x) =

{

p̃m+2(x)
2 − x2 + 4, if m is even,

p̃m+2(x)
2 − x+ 2, if m is odd.

(7.9)

The following table contains the first ten polynomials fm(x).

m fm(x)
1 x2 − 3x+ 3
2 x4 − 5x2 + 8
3 x4 − 2x3 − x2 + x+ 3
4 x6 − 6x4 + 8x2 + 4
5 x6 − 2x5 − 3x4 + 6x3 + 2x2 − 5x+ 3
6 x8 − 8x6 + 20x4 − 17x2 + 8
7 x8 − 2x7 − 5x6 + 10x5 + 7x4 − 14x3 − 2x2 + 3x+ 3
8 x10 − 10x8 + 35x6 − 50x4 + 24x2 + 4
9 x10 − 2x9 − 7x8 + 14x7 + 16x6 − 32x5 − 13x4 + 26x3 + 3x2 − 7x+ 3
10 x12 − 12x10 + 54x8 − 112x6 + 105x4 − 37x2 + 8

Helling shows in [33] that the polynomials fm have only non-real zeroes. For a zero z of fm define
the matrices

Am =

(

0 1
−1 z

)

, Bm =

(

1 0
p̃m(z)

p̃m+2(z) 1

)

, Cm =

(

1 p̃m(z)
p̃m+2(z)

0 1

)

. (7.10)

An easy computation using properties of the Tchebyshev polynomials confirms that these ma-
trices satisfy the relations

AmCmA
−1
m = B−1

m , CmBmC
−1
m B−1

m = Am
m. (7.11)

Define Θm to be the group generated by the above matrices:

Θm = 〈Am, Bm, Cm〉 = 〈Am, Cm〉 ⊆ SL(2,C). (7.12)

Helling shows that for every m ∈ N there is a zero z ∈ C of fm such that the matrix group Θm

satisfies:
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• Θm is a discrete and torsion-free subgroup of SL(2,C).

• Θm has finite covolume and exactly one cusp.

• Θm is defined by the relations (7.11).

• The groups Θ1, Θ2 are arithmetic groups, but all the other Θm (m ≥ 3) are non-arithmetic.

The zero z in question is specified (up to complex conjugation) by the condition

|z − 2| < 4 sin2 π

2m

for m ≥ 3 odd and

Re (z) > 0, |z2 − 4| < 4 sin2 π

m

for m ≥ 4 even. For m = 1 or 2, z may be taken to be any zero of fm. Concerning the cohomology
of the groups Θm, we can report the following computations:

m = 1:
The group Θ1 is (up to conjugacy) the famous figure eight knot group. It is conjugate to a

congruence subgroup of SL(2,O−3). For k ≤ 120 we have

dimH1(Θ1, En) =











n/3, if n ≡ 0 mod 3,

(n+ 2)/3, if n ≡ 1 mod 3,

(n+ 1)/3 + 1, if n ≡ 2 mod 3.

(7.13)

m = 2:
The group Θ2 is isomorphic to the fundamental group of the lens space with fundamental group

of order 2 with a knot removed. It is conjugate to a group commensurable with SL(2,O−7). For
k ≤ 120 we have

dimH1(Θ2, En) =











n/3, if n ≡ 0 mod 3,

(n+ 2)/3, if n ≡ 1 mod 3,

(n+ 1)/3, if n ≡ 2 mod 3,

(7.14)

except in the case n = 12, where we have

dimH1(Θ2, E12) = 6.

m ≥ 3:
Here we have

dimH1(Θm, En) = 1 (7.15)

for all 3 ≤ m ≤ 150 and 1 ≤ k ≤ 30. This means that in this range we have H1
cusp(Θm, En) = 0.
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7.3 A cocompact tetrahedral group

Let CT(26) be the tetrahedral hyperbolic reflection group constructed (for example) in Section 10
of [20] and let Γ26 ⊆ PSL(2,C) be its unique subgroup of index 2. The quotient PSL(2,C)/Γ26 is
compact. The group Γ26 is non-arithmetic and has the presentation

Γ26 = 〈 a, b, c a3, b2, c5, (ac−1)2, (bc−1)3, (ab)4 〉. (7.16)

Using the data from [20] we infer that Γ26 can be generated (up to conjugacy) by the matrices

a =

(

2t3+t2+t+2
5 1

−t3+t2−2
5

−t3−t2−t+3
5

)

, b =

(

−3t3+t2−4t+2
5 b2
c2

3t3−t2+4t−2
5

)

, c =

(

t−1 0
0 t

)

,

where t ∈ C is a primitive 10-th root of unity and c2 is one of the two complex roots of the
polynomial

x4 +
−6t3 + 6t2 + 8

5
x3 +

−t3 + t2 − 3

5
x2 +

−4t3 + 4t2 + 2

25
x+

3t3 − 3t2 + 2

25
.

The entry b2 is determined by

b2 = (−20t3 + 20t2 + 35)c32 + (−50t3 + 50t2 + 80)c22 + (9t3 − 9t2 − 17)c2 − 4t3 + 4t2 + 6.

We have found that
H1(Γ26, En) = 0 (7.17)

for 0 ≤ n ≤ 90. The group Γ26 has 222 conjugacy classes of subgroups of index less than or equal
to 24. We have also determined the dimensions of some cohomology spaces of these subgroups. Of
the 222 subgroups 191 satisfied H1(Γ, En) = 0 in the range 0 ≤ n ≤ 10. Thirty subgroups had
dim≤1000 H

1(Γ, En) = 1 in the range 0 ≤ n ≤ 10. One of the 222 had dim≤1000 H
1(Γ, En) = 2,

again in this range.
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[21] Flöge, D., Zur Struktur der PSL2 über einigen imaginär-quadratischen Zahlringen, Math. Z.
183 (1983), 255–279.

[22] Franke, J., Schwermer, J., A decomposition of spaces of automorphic forms, and the Eisenstein
cohomology of arithmetic groups, Math. Ann. 311 (1998), 765–790.

49



[23] Friedberg, S., On the imaginary quadratic Doi-Naganuma lifting of modular forms of arbitrary
level, Nagoya Math. J. 92 (1983), 1–20.

[24] Friedberg, S., On Maass wave forms and the imaginary quadratic Doi-Naganuma lifting, Math.
Ann. 263 (1983), no. 4, 483–508.

[25] Grunewald, F., Helling, H., Mennicke, J., SL2 over complex quadratic fields. I. Algebra i Logika
17 (1978), no. 5, 512–580, 622.

[26] Grunewald, F., Klimenko, E., Kopteva, N., Kleinian groups generated by two elements: arith-
meticity and cohomology computations. In preparation.

[27] Grunewald, F., Mennicke, J., SL2(O) and elliptic curves. Manuscript, Universität Bielefeld
(1978).

[28] Grunewald, F., Schwermer, J., A nonvanishing theorem for the cuspidal cohomology of SL2

over imaginary quadratic integers. Math. Ann. 258 (1981/82), no. 2, 183–200.

[29] Grunewald, F., Schwermer, J., Arithmetic quotients of hyperbolic 3-space, cusp forms and link
complements. Duke Math. J. 48 (1981), no. 2, 351–358.

[30] Grunewald, F., Singhof, W., Some further points on the cohomology of discontinuous group
actions. Manuscript Düsseldorf (2008).

[31] Haberland, K., Perioden von Modulformen einer Variabler und Gruppencohomologie, I–III,
Math. Nachr. 112 (1983), 245–282, 283–295, 297–315.

[32] Harder, G., Eisenstein cohomology of arithmetic groups: the case GL2. Inv. math. 89 (1987),
37–118.

[33] Helling, H., The trace field of a series of hyperbolic manifolds. Preprint 99–072, Sonder-
forschungsbereich 343, Universität Bielefeld.

[34] Harris, M., Soudry, D., Taylor, R., l-adic representations associated to modular forms over
imaginary quadratic fields. I: Lifting to GSp4(Q), Invent. Math. 112 (1993), no. 2, 377–411.

[35] Hoffmann, W., The Fourier transforms of weighted orbital integrals on semisimple groups of
real rank one. J. reine angew. Math. 489 (1997), 53–97.

[36] Hoffmann, W., An Invariant Trace Formula for Rank One Lattices. Math. Nachr. 207 (1999),
93–131.

[37] Jacquet, H., Langlands, R. P., Automorphic forms on GL(2). Lecture Notes in Math. 114

Springer-Verlag (1970).

[38] Klimenko, E., Sakuma, M., Two-generator discrete subgroups of Isom(H2) containing
orientation-reversing elements. Geometriae Dedicata 72 (1998), 247–282.

[39] Klimenko, E., Kopteva, N., Discreteness criteria for RP groups. Israel J. Math. 128 (2002),
247–265.

[40] Klimenko, E., Kopteva, N., All discrete RP groups whose generators have real traces. Algebra
and Computation, 15 (2005), 577–618.

50



[41] Klimenko, E., Kopteva, N., Kleinian orbifolds uniformized by RP groups with an elliptic and
a hyperbolic generators. Geometry and Topology Monographs 12 (2007), 121–156.

[42] Klimenko, E., Kopteva, N., Two generator Kleinian orbifolds. arxiv math:GT/0606066

[43] Knapp, A. W., Representation Theory of Semisimple Groups. Princeton University Press
(1986).

[44] Knapp, A. W., Stein, E. M., Intertwining operators for semisimple groups. Ann. Math. 93

(1971), 489–578.
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