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Let L(E/Q, s) be the L-function of an elliptic curve E de-
fined over the rational field Q. We examine special values of
the derivatives L′(E, 1, χ) of twists by Dirichlet characters of
L(E/Q, s) when L(E, 1, χ) = 0.

1. INTRODUCTION

Let E/Q be an elliptic curve defined over the field Q.
Denote by

L(E/Q, s) =
∑
n≥1

ann−s

its L-function.
By the proof [Breuil et al. 01, Taylor and Wiles 95] of

the modularity of elliptic curves over Q, we know that
L(E, s) has an analytic continuation for all s ∈ C, and
satisfies the functional equation

Λ(E, s) = wEΛ(E, 2 − s),

where Λ(E, s) = (
√

NE/2π)sΓ(s)L(E, s), NE is the con-
ductor of E/Q, and wE = ±1 is the sign of the functional
equation.

For a primitive Dirichlet character χ of conductor fχ,
the twist of L(E/Q, s) by χ is

L(E, s, χ) =
∑
n≥1

χ(n)ann−s.

We also know that the L-function L(E, s, χ) has an
analytic continuation and that if fχ is coprime to NE , it
satisfies the functional equation

Λ(E, s, χ) = wEχ(NE)τ(χ)2f−1
χ Λ(E, 2 − s, χ), (1–1)

where Λ(E, s, χ) = (fχ
√

NE/2π)sΓ(s)L(E, s, χ) and τ(χ)
is the Gauss sum

τ(χ) =
fχ−1∑
a=0

χ(a) exp (2πia/fχ).
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The Birch–Swinnerton-Dyer conjecture asserts that
for any finite extension K/Q,

ords=1L(E/K, s) = rank Z E(K),

where E(K) is the Mordell–Weil group of E/K, and
for a finitely generated abelian group A, rank Z A is the
Z-rank of A, i.e., the number of copies of Z in the de-
composition of A into cyclic factors.

The Birch & Swinnerton-Dyer conjecture also asserts
that the first non-vanishing derivative satisfies

L(rK)(E/K, 1)
rK !

=
ΩK |X(K)|RK√|d(K)||E(K)Tors|2

∏
p

cp

where rK = rank Z E(K), where ΩK is a product of peri-
ods of E, d(K) is the discriminant of K and RK denotes
the elliptic regulator, i.e. RK is the absolute value of
the determinant of the height pairing matrix of E(K).
Also X(K) is the Tate-Shafarevich group of E/K, and
the cp are the Tamagawa numbers of E/K modified by
a rational factor as in [Do 10].

If K/Q is an abelian extension with Gal(K/Q) = G,
then there is a factorization

L(E/K, s) =
∏
χ∈Ĝ

L(E, s, χ),

where Ĝ is the group of primitive Dirichlet characters
associated with the extension K/Q. Then L(rK)(E/K, 1)
can be computed in terms of the derivatives L(i)(E, 1, χ),
for i ≤ rK and for all χ ∈ Ĝ.

Let Ωχ be the real period Ω+ of E/Q if χ(−1) = 1
and the imaginary part Ω− of the complex period of E if
χ(−1) = −1. Then [Mazur 79] defines the algebraic part
Lalg(E, 1, χ) of L(E, 1, χ) by

L(E, 1, χ) =
τ(χ)
2fχ

ΩχLalg(E, 1, χ).

Mazur shows that

Lalg(E, 1, χ) =
∑

a modfχ

χ(a)Λ(a, m),

where Λ(a, m) ∈ 1
nE

Z if E is the “strong curve” in its
isogeny class, and where nE is an integer depending on
E but not on the character χ as long as fχ and NE are
coprime.

It is then clear that Lalg(E, 1, χ)γ = Lalg(E, 1, χγ) for
any γ ∈ Gal(Q(χ)/Q), where χγ(σ) = γ(χ(σ))) for all
σ ∈ G. Therefore L(E, 1, χ) = 0 for some χ ∈ Ĝ if and
only if L(E, 1, χγ) = 0 for all γ ∈ Gal(Q(χ)/Q).

Remark 1.1. The conjecture of Deligne–Gross asserts in
a special case that [Deligne 79, p. 323]

ords=1L(E, s, χγ) = ords=1L(E, s, χ)

for all γ ∈ Gal(Q(χ)/Q). It is shown in [Rohrlich 90] that
if we assume the Birch–Swinnerton-Dyer conjecture, in
addition to the above-mentioned conjecture of Deligne–
Gross, then the order of vanishing of L(E/Q, s, χ) at
s = 1 is the multiplicity of χ in the representation of
Gal(Q/Q) acting on Q ⊗Z E(Q).

In this article we consider the case that K/Q is a cyclic
extension of odd prime degree, [K : Q] = � ≥ 3. Fix a
generator σ0 ∈ G = Gal(K/Q).

We examine the case that the functions L(E, s, χ) have
simple zeros at s = 1 for χ �= χ0, and we call this the
χ-rank-1 case.

Then the Birch–Swinnerton-Dyer conjecture in the χ-
rank-1 case predicts that

rank Z E(K) = rank Z E(Q) + (� − 1).

Hence one expects that

L(rK)(E/K, 1)
rK !

=
L(rQ)(E/Q, 1)

rQ!
·

∏
χ0 �=χ∈Ĝ

L′(E, 1, χ),

and therefore that

ΩK |X(K)|RK√|d(K)||E(K)Tors|2
∏
p

cp (1–2)

=
Ω+|X(Q)|RQ

|E(Q)Tors|2
∏
p

cp ×
∏

χ0 �=χ∈Ĝ

L′(E, 1, χ),

where ΩK = (Ω+)�, since K is a totally real field.
Numerical computations, which we describe below in

Section 9, suggest that for nonprincipal (nontrivial) char-
acters χ �= χ0,

L′(E, 1, χ) =
τ(χ)
fχ

Ω+λχ(P )α+
χ (P )zχ,

where P ∈ ETr(K) is a point of infinite order in E(K)
with trace 0 to Q (i.e., TrK/Q(P ) = 0); λχ(P ) =∑

σ∈G χ(σ)〈P, P σ〉, where 〈·, ·〉 is the Néron–Tate canon-
ical height pairing on E(Q); and where α+

χ (P ) and zχ are
algebraic numbers in Q(χ).

These results can be considered as evidence in sup-
port of the equivariant Tamagawa number conjectures as
formulated in [Burns and Flach 01] and [Burns 10, The-
orem 5.1.1 (i)].
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2. CYCLOTOMIC ANALOGUE

Let L(s, χ) denote a Dirichlet L-function with primitive
Dirichlet character χ of conductor fχ. Then

L(1, χ) =

{
− τ(χ)

fχ

∑
a χ(a) log |1 − ζa| if χ(−1) = 1,

− τ(χ)
fχ

π
ifχ

∑
a χ(a)a if χ(−1) = −1,

where ζ = exp(2πi/fχ) and the sums are taken over in-
tegers 1 ≤ a ≤ fχ with (a, fχ) = 1. Using the func-
tional equation for Dirichlet L-functions, this translates
at s = 0 to the following:

L′(0, χ) = −1
2

∑
a

χ(a) log |1 − ζa|, if χ(−1) = 1,

L(0, χ) = − 1
fχ

∑
a

χ(a)a, if χ(−1) = −1.

In this article, we think of L(0, χ) for odd characters
as the analogue of L(E, 1, χ) in the case of χ-rank 0, and
L′(0, χ) for even characters as analogous to L′(E, 1, χ) in
the case of χ-rank 1.

3. THE ARGUMENT OF L(r)(E, 1, χ)

Suppose that E is an elliptic curve defined over Q with
conductor NE and let L(E, s) denote its L-function.

Proposition 3.1. Let χ be a primitive Dirichlet character
of conductor fχ coprime to NE and of order at least 3.
Let rχ be the order of vanishing of L(E, s, χ) at s = 1.
Then there is an algebraic integer zχ ∈ Q(χ) such that

L(rχ)(E, 1, χ)
τ(χ)zχ

is real. Furthermore, for all γ ∈ Gal(Q(χ)/Q), zχ satis-
fies

zχγ = γ(zχ).

Proof. Differentiating the functional equation (1–1) rχ

times and evaluating at s = 1, we obtain

L(rχ)(E, 1, χ) = (−1)rχwEχ(NE)τ(χ)2f−1
χ L(rχ)(E, 1, χ).

(3–1)
Noting that fχ = τ(χ)τ(χ), we can rewrite (3–1) as

L(rχ)(E, 1, χ)
τ(χ)

= (−1)rχwEχ(NE)
L(rχ)(E, 1, χ)

τ(χ)
. (3–2)

Therefore (3–2) has the form

z = ζz,

where z ∈ C∗ and ζ = (−1)rχwEχ(NE) is a root of unity
whose order divides twice the order of χ.

Choose

zχ =

{
1 + ζ if ζ = (−1)rχwEχ(NE) �= −1,

χ(σ0) − χ(σ0) if ζ = (−1)rχwEχ(NE) = −1.

Then
zχ = ζzχ,

and therefore

L(rχ)(E, 1, χ)
τ(χ)zχ

=
L(rχ)(E, 1, χ)

τ(χ)zχ

is real. Clearly, for this choice of zχ we have zχγ = γ(zχ)
for all γ ∈ Gal(Q(χ)/Q).

Remark 3.2. We note that zχ is not unique. If ρχ is
chosen in the real subfield Q(χ)+ ⊂ Q(χ) such that ρχγ =
γ(ρχ) for all γ ∈ G, then z′χ = zχρχ will work as well.

4. REGULATORS AND HEIGHT PAIRINGS

Suppose that E is an elliptic curve defined over Q and
that K/Q is an arbitrary finite extension. Let h :
E(Q) → R denote the Néron–Tate canonical height func-
tion on E and

〈·, ·〉 : E(Q) × E(Q) → R

the canonical height pairing on E (see [Silverman 86,
Section 8.8]). Then the height pairing 〈·, ·〉 is a positive
definite bilinear form on E(Q) satisfying the following
properties for P, Q ∈ E(Q):

h(P ) ≥ 0, and h(P ) = 0 iff P ∈ E(Q)Tors,

〈P, P 〉 = h(P ) ≥ 0,

〈P, Q〉 = 〈Q, P 〉,
〈P σ, Qσ〉 = 〈P, Q〉,

for all σ ∈ Gal(Q/Q).
It follows that 〈Q, P σ〉 = 〈Q, P 〉 for Q ∈ E(Q) and for

all σ ∈ Gal(Q/Q).
Suppose that P1, P2, . . . , Pr generate a subgroup

E{P} ⊆ E(K) of rank r. The regulator matrix and the
regulator (determinant) are defined as

RM(P1, P2, . . . , Pr) :=
(〈Pi, Pj〉

)
1≤i,j≤r

,

R(P1, P2, . . . , Pr) := | det
(〈Pi, Pj〉

)|.
If E{P} and E(K)Tors generate all of E(K), then
R(P1, P2, . . . , Pr) = RK .
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If Q1, Q2, . . . , Qr generate a subgroup E{Q} of finite
index m in E{P}, then

R(Q1, Q2, . . . , Qr) = m2R(P1, P2, . . . , Pr).

Therefore passing to subgroups of finite index introduces
only integral square factors in the regulators.

Let ETr(K) ⊆ E(K) be the subgroup of points of trace
0 to Q, i.e.,

ETr(K) = {P ∈ E(K) | TrK/Q(P ) = 0}.

Since E(K) is a finitely generated abelian group, it fol-
lows from the exact sequence

0 −→ ETr(K) −→ E(K) −→ TrK/Q(E(K)) −→ 0

that

rank Z E(K) = rank Z TrK/Q(E(K)) + rank Z ETr(K).

On the other hand, we have

[K : Q]E(Q) ⊂ TrK/Q(E(K)) ⊂ E(Q).

Hence

rank Z E(Q) = rank Z TrK/Q(E(K)),

and since
E(Q) ∩ ETr(K) ⊂ E(Q)Tors,

we see that the subgroup

E′ = ETr(K) · E(Q)

has finite index in E(K), say [E(K) : E′] = m < ∞. It
follows that the regulator R(E′) is equal to m2RK .

We also see that ETr(K) is orthogonal to E(Q) with
respect to the canonical height pairing, since for Q ∈
E(Q) and P ∈ ETr(K) we have

〈Q, P 〉 =
1

[K : Q]

〈
Q,

∑
σ:K→Q

P σ
〉

=
1

[K : Q]
〈
Q, TrK/Q(P )

〉
= 0.

Therefore, the regulator matrix of E′(K) (up to finite
index) can be written as(

RM(E(Q)) 0
0 RM(ETr(K))

)
.

Hence for some integer m, we have

RK = RQ × R(ETr(K)) × m2.

5. K/Q CYCLIC OF PRIME DEGREE

We assume now that K/Q is a cyclic extension of odd
prime degree [K : Q] = � ≥ 3 with Galois group G =
Gal(K/Q) = 〈σ0〉.

Then ETr(K) is a module over the ring Z[G]/(Tr) �
Z[ζ�] = O�, where Tr = 1 + σ0 + σ2

0 + · · · + σ�−1
0 ∈ Z[G].

Since O� is a Dedekind domain, there is an ideal A ⊆ O�

such that there is an O�-isomorphism

ETr(K) � ETr(K)Tors ×Od−1
� × A.

Hence there is a free O�-submodule E∗(K) ⊆ ETr(K)
of finite index with E∗(K) � Od

� . The index [ETr(K) :
E∗(K)] depends on the order of ETr(K)Tors and on the
index of the largest principal ideal of O� contained in A.
By the finiteness of class number and by Merel’s theorem
[Merel 96] on the boundedness of torsion, the minimal
such index depends only on � (and not on the curve E or
on the character χ of order �). It is clear that the Z-rank
r0 of ETr(K) satisfies

r0 = d(� − 1).

Under the χ-rank-1 assumption that ords=1L(E, s, χγ) =
1 for χ �= χ0 ∈ Ĝ and for all γ ∈ Gal(Q(χ)/Q), it is
a consequence of the Birch–Swinnerton-Dyer conjecture
that d = 1 and E∗(K) � O�.

Therefore there is a subgroup E′(K) ⊆ E(K) of
bounded index, and there is a point of trace zero P ∈
ETr(K) such that

E′(K) � E(Q) ⊕ 〈
P, σ0(P ), σ2

0(P ), . . . , σ�−2
0 (P )

〉
.

Since E(Q) and ETr(K) are orthogonal with respect
to the canonical height pairing, we see that the regulator
matrix of E′(K) can be written as⎛⎜⎜⎜⎝

RM(E(Q)) 0 . . . 0
0 〈P, P 〉 . . . 〈P, P σ�−2

0 〉
...

...
...

...
0 〈P σ�−2

0 , P 〉 . . . 〈P σ�−2
0 , P σ�−2

0 〉

⎞⎟⎟⎟⎠ ,

so that there is an integer m such that

RK = RQ × R(P, σ0(P ), σ2
0(P ), . . . , σ�−2

0 (P )) × m2.

(5–1)
But R(P, σ0(P ), σ2

0(P ), . . . , σ�−2
0 (P )) is a group de-

terminant (see [Washington 82, Lemma 5.26]) and can
therefore be computed as

R(P, σ0(P ), σ2
0(P ), . . . , σ�−2

0 (P )) =
1
|G|

∏
χ�=χ0

λχ(P ),

(5–2)
where λχ(P ) =

∑
σ∈G χ(σ)〈P, P σ〉.
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6. THE FUNCTION λχ

Let E be an elliptic curve defined over the rational field
Q, and in this section we let K/Q be an arbitrary finite
Galois extension with Gal(K/Q) = G. For P ∈ E(K)
and χ ∈ Ĝ a 1-dimensiona1 character of G, we use the
canonical height pairing to define

λχ(P ) :=
∑
σ∈G

χ(σ)〈P, P σ〉.

In order to derive the properties of λχ(·), we intro-
duce a two-variable generalization and define the func-
tion λχ(·, ·) : E(K) × E(K) −→ C by

λχ(P, Q) :=
∑
σ∈G

χ(σ)〈P, Qσ〉.

Proposition 6.1. The function λχ(P, Q) is bilinear for
P, Q ∈ E(K) and satisfies the following elementary
equivariance properties:

1. If P or Q belongs to E(K)Tors, then λχ(P, Q) = 0.

2. λχ(P, P ) = λχ(P ).

3. λχ(P τ , Q) = χ(τ)λχ(P, Q) for τ ∈ G.

4. λχ(P, Qτ ) = χ(τ)λχ(P, Q) for τ ∈ G.

5. λχ(P, Q) = λχ(P, Q) = λχ(Q, P ).

Proof. The bilinearity is immediate from the correspond-
ing property of the canonical height pairing. To prove
assertion 3, we use equivariance properties of the pairing

λχ(P τ , Q) =
∑
σ∈G

χ(σ)〈P τ , Qσ〉 =
∑
σ∈G

χ(σ)〈P, Qστ−1 〉

=
∑
ρ∈G

χ(ρτ)〈P, Qρ〉 = χ(τ)λχ(P, Q).

The other statements are proved similarly.

Corollary 6.2. If P ∈ E(K), then λχ(P ) = λχ(P ) =
λχ(P ) is real. Furthermore, if ξ =

∑
σ∈G aσσ and η =∑

σ∈G bσσ are elements of the integral group ring Z[G],
then

λχ(ξ(P )) = χ(ξ)χ(ξ)λχ(P ) = |χ(ξ)|2λχ(P )

λχ(ξ(P ), η(Q)) = χ(ξ)χ(η)λχ(P, Q),

where χ(ξ) =
∑

σ∈G aσχ(σ) and χ(η) =
∑

σ∈G bσχ(σ).

Proof. This follows immediately from Proposition 6.1.

Assume now that K/Q is a cyclic extension of order �

with Gal(K/Q) = G = 〈σ0〉.

Proposition 6.3. Suppose that P ∈ E(K) has infinite
order. If P /∈ E(Q), then λχ(P ) is positive for all non-
principal (nontrivial) characters χ0 �= χ ∈ Ĝ.

Proof. Consider the � × � group matrix

A =

⎛⎜⎜⎜⎝
〈P, P 〉 · · ·

〈
P, P σ�−1

0

〉
...

...
...〈

P σ�−1
0 , P

〉
· · ·

〈
P σ�−1

0 , P σ�−1
0

〉
⎞⎟⎟⎟⎠ .

Then a result of Dedekind–Frobenius (see [Washington
82, Lemma 5.26]) shows that the matrix A has eigenval-
ues λχ(P ) =

∑
σ χ(σ)〈P, P σ〉 and corresponding eigen-

vectors

vχ =

⎛⎜⎜⎜⎝
1

χ(σ0)
...

χ(σ�−1
0 )

⎞⎟⎟⎟⎠ .

If TrK/Q(P ) has infinite order in E(Q), then A is the
matrix of the quadratic form induced by the Néron–Tate
height-pairing on L(P ) ⊗ R, where

L(P ) =
〈
P, σ0(P ), σ2

0(P ), . . . , σ�−1
0 (P )

〉 ⊆ E(K)

is the subgroup of E(K) generated by all the conjugates
of P . By a result of Cassels (see [Silverman 86, Section
8.9]), A is a positive definite matrix whose eigenvalues
λχ(P ) are therefore positive.

Suppose now that TrK/Q(P ) = 0. Since λχ(P ) =
λχ(P ) = λχ(P ) is real, the vector 1

i (vχ − vχ) is also a
real eigenvector for λχ(P ). But then a simple calculation
shows that the vector

wχ =
1
i
·

⎛⎜⎝ χ(σ0) − χ(σ0)
...

χ(σ�−1
0 ) − χ(σ�−1

0 )

⎞⎟⎠
is a real eigenvector of the (� − 1) × (� − 1) matrix

B =

⎛⎜⎜⎜⎝
〈P, P 〉 · · ·

〈
P, P σ�−2

0

〉
...

...
...〈

P σ�−2
0 , P

〉
· · ·

〈
P σ�−2

0 , P σ�−2
0

〉
⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
〈P σ0 , P σ0〉 · · ·

〈
P σ0 , P σ�−1

0

〉
...

...
...〈

P σ�−1
0 , P σ0

〉
· · ·

〈
P σ�−1

0 , P σ�−1
0

〉
⎞⎟⎟⎟⎠
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with eigenvalue λχ(P ). But as above, B is the matrix
of the quadratic form induced by the Néron–Tate height-
pairing on L′(P ) ⊗ R, where

L′(P ) =
〈
P, σ0(P ), σ2

0(P ), . . . , σ�−2
0 (P )

〉 ⊆ E(K)

is the subgroup of E(K) generated by all the conjugates
of P . Hence by Cassels’ result, B is a positive definite
matrix. Since λχ(P ), χ �= χ0, is an eigenvalue of B, it is
therefore positive.

Remark 6.4. It was pointed out to us by R. Loewy that
the positivity could also be proved using the Cauchy in-
terlacing theorem relating the eigenvalues of a real sym-
metric matrix A and those of a principal minor B.

7. χ-Rank-1 Critical Values

Let K/Q be a cyclic extension of odd prime degree [K :
Q] = � ≥ 3 with Galois group G = Gal(K/Q) = 〈σ0〉.
Suppose that E/Q is an elliptic curve defined over Q for
which the twisted L-functions L(E, s, χ) have χ-rank 1
for all nontrivial χ ∈ Ĝ, i.e., ords=1L(E, s, χ) = 1 for
χ0 �= χ ∈ Ĝ.

If we let zχ be as in Proposition 3.1, we know that

L′(E, 1, χ)
τ(χ)zχ

∈ R.

Then it follows from Corollary 6.2 that if P ∈ ETr(K)
has infinite order, then

α+
χ (P ) :=

L′(E, 1, χ)fχ
τ(χ)zχΩ+λχ(P )

is also real. Then

L′(E, 1, χ) =
τ(χ)
fχ

Ω+λχ(P )zχα+
χ (P ) (7–1)

with α+
χ (P ) ∈ R.

We note that if Q ∈ ETr(K) is any other point of
infinite order, then the rank-1 assumption implies that
nQ = ξ(P ) for some n ∈ Z, and ξ ∈ Z[G]. Therefore
using Corollary 6.2, we can write

L′(E, 1, χ) =
τ(χ)
fχ

Ω+λχ(Q)zχα+
χ (Q),

where

α+
χ (Q) =

n2

|χ(ξ)|2 α+
χ (P ). (7–2)

Remark 7.1. From the tabulated computations in Sec-
tion 9 (particularly the septic tables), it is clear that there

are several instance for which the signs of α+
χ (P ) are not

constant as χ varies in Ĝ, and therefore we conclude that
there is no point Q ∈ ETr(K) for which α+

χ (Q) = 1 for
all χ ∈ Ĝ. That is, given a choice of zχ ∈ Q(χ), there
need not exist a point Q ∈ ETr(K) for which

L′(E, 1, χ) =
τ(χ)
fχ

Ω+λχ(Q)zχ

for all χ ∈ Ĝ. This is in contrast to the analogous case
of cyclotomic fields.

A particularly striking example occurs for the curve
61A in Cremona’s tables [Cremona 92]. For this curve
we have zχ = 1 for the quintic characters χ691 and χ761

of conductors 691 and 761 respectively. The sign patterns
of α+

χ (P ) for {χ, χ2} are {−,−} and {−, +}. Since for
any Q ∈ ETr(K) the sign of α+

χ (Q) is the same as that
for α+

χ (P ) by (7–2), there can be no point Q ∈ ETr(K)
for which α+

χ (Q) = α+
χ2(Q) = 1.

Proposition 7.2. Assume the Birch–Swinnerton-Dyer
conjecture. Then for any P ∈ ETr(K), the product∏

χ0 �=χ∈Ĝ

α+
χ (P ) ∈ Q

is rational.

Proof. The Birch–Swinnerton-Dyer conjecture implies
(1–2) and therefore∏

χ0 �=χ∈Ĝ

L′(E, 1, χ) =
RK

RQ

× (Ω+)�−1 × q,

where q ∈ Q rational. By (5–1) and (5–2),

RK

RQ

=
∏

χ0 �=χ∈Ĝ

λχ(P ) × q′

with q′ ∈ Q rational. Dividing and appealing to (7–1),
we obtain ∏

χ0 �=χ∈Ĝ

τ(χ)
fχ

zχα+
χ (P ) = qq′ ∈ Q.

Since K is totally real, [Washington 82, Corollary 4.6]
proves that ∏

χ∈Ĝ

τ(χ) =
√
|d(K)|,

where d(K) is the discriminant of K. But since d(K)
is a square and τ(χ0) = 1, we see that

∏
χ0 �=χ∈Ĝ τ(χ) is

rational. Also∏
χ0 �=χ∈Ĝ

zχ =
∏

γ∈Gal(Q(χ)/Q)

zχγ =
∏

γ∈Gal(Q(χ)/Q)

γ(zχ)
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is rational, and therefore∏
χ0 �=χ∈Ĝ

α+
χ (P ) ∈ Q.

8. RANK-1 ALGEBRAICITY AND GALOIS
EQUIVARIANCE

The results of the computations described in Section 9
suggest that the numbers α+

χ (P ) are algebraic and are in
the real subfield Q(χ)+ of the cyclotomic field Q(χ).

More precisely, we suppose that � is an odd prime
(� = 3, 5, 7, 11 in our computed examples) and that χ is
a Dirichlet character of order � and conductor fχ coprime
to �. As above, K/Q is the cyclic extension of degree �

corresponding to χ and G = Gal(K/Q) = 〈σ0〉. Then for
any nonprincipal character χ1 ∈ Ĝ,

{χ ∈ Ĝ|χ �= χ0} = {χγ
1 |γ ∈ Gal(Q(χ)/Q)}.

Then it is clear that zχγ = γ(zχ), and by taking
the extension of γ ∈ G to the automorphism γ0 ∈
Gal(Q(χ, exp(2πi/fχ))/Q) such that γ0 is the identity on
Q((exp(2πi/fχ))), we have τ(χγ) = γ0(τ(χ)).

Then the computations of Section 9 suggest the fol-
lowing:

α+
χ (P ) ∈ Q(χ)+

and

α+
χγ (P ) = γ(α+

χ (P )) for all γ ∈ Gal(Q(χ)/Q).

A more precise statement is predicted by the equivariant
Tamagawa conjecture in [Burns 10].

9. NUMERICAL DATA

It is our intention in this section to provide numerical
data in support of the conjectures of Section 8. All curves
are identified using the notation in [Cremona 92].

The tables below are expressed to six decimal places
for ease of presentation. The original calculations were
performed to between 15 and 30 decimal places. Most of
the work was performed using Pari, with Magma being
used for the height calculations.1

We first searched all elliptic curves of conductor N <

10000 for which there is a Dirichlet character χ of prime
order ≤ 11 and prime conductor fχ < 10000/

√
N such

1More complete data may be found at http://www.dms.
umontreal.ca/∼jack/local/.

that L(E, 1, χ) = 0. These candidate curves were then
scanned for points over the corresponding number fields
K using a coarse search (looking for points in a small
box). This usually failed but nevertheless succeeded suf-
ficiently often to provide illustrative data.

9.1 Computational Methodology

For a successful search, we have the following data: an
elliptic curve E/Q, a Dirichlet character χ of order �

and conductor fχ for which L(E, 1, χ) = 0, and a point
P ∈ E(K) for the corresponding cyclic extension K/Q

of degree �. In the tables below it is important to fix
precisely the characters and the Galois action.

Let g be the smallest positive primitive root mod-
ulo fχ. (This is possible because we are considering only
characters χ with prime conductor.) Then the Galois
group Gal(Q(exp(2πi/fχ)/Q) is generated by σ0:

σ0 : exp(2πi/fχ) �→ exp(2πig/fχ).

The field K = Kfχ is the fixed field of σ�
0 and is generated

by

t = TrQ(exp(2πi/fχ))/K(exp(2πi/fχ)).

Fix the character χfχ by setting χfχ(σ0) = exp(2πi/�).
By abuse of notation we denote σ0|K by σ0. For

example, for the quintic subfield of conductor 11 we
have g = 2, t = 2 cos(2π/11), σ0(t) = t2 − 2, and
χ(σ0) = exp(2πi/5).

Similarly, to fix the action of Gal(Q(χ)/Q), let b de-
note the smallest positive primitive root modulo � and
define γ ∈ Gal(Q(χ)/Q) by γ(ζ) = ζb for all �th roots
of unity ζ. Then χγ(σ) = γ(χ(σ)) for all χ ∈ Ĝ and all
σ ∈ G.

9.2 Cyclic Cubic Extensions

The number fields correspond to Dirichlet characters of
conductors 7, 13, and 19 with the relevant properties
shown in Table 1.

Table 2 shows the basic properties of the elliptic
curves, the values of the derivatives of the critical L-
functions, and the values of the Gauss sums.

The data on the trace-zero points appear in Table 3,
where t is a root of the minimal polynomial indicated
above. It should be noted that the point may not nec-
essarily be the generator of the Mordell–Weil group.
An asterisk appearing in certain rows of the table in-
dicates the case in which, in the notation of Section 3,
(−1)rχwEχ(NE) = −1.
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Conductor Minimal Polynomial Galois Action

7 x3 + x2 − 2x − 1 t �→ −t2 − t + 1

13 x3 + x2 − 4x + 1 t �→ −t2 − 2t + 2

19 x3 + x2 − 6x − 7 t �→ −t2 + 4

TABLE 1. Cyclic cubic fields.

Curve Coefficients fχ L′(E, 1, χfχ) τ (χ)

38B1 [1, 1, 1, 0, 1] 13 2.33706 − 0.610180i 0.910836 + 3.48861i

40A1 [0, 0, 0,−7,−6] 7 2.92521 + 0.185634i 2.37047 − 1.17511i

42A1 [1, 1, 1,−4, 5] 19 2.52981 − 2.29354i −1.33281 + 4.15013i

44A1 [0, 1, 0, 3,−1] 13 2.62549 − 0.685485i 0.910836 + 3.48861i

50B1 [1, 1, 1,−3, 1] 19 3.69275 + 1.18593i −1.33281 + 4.15013i

54A1 [1,−1, 0, 12, 8] 7 3.40885 + 0.216326i 2.37047 − 1.17511i

54B1 [1,−1, 1, 1,−1] 7 2.84964 + 0.180839i 2.37047 − 1.17511i

54B1 [1,−1, 1, 1,−1] 13 1.80693 + 1.83025i 0.910836 + 3.48861i

TABLE 2. Elliptic L-values, cubic case.

Curve fχ Point 〈P, P σ〉 λχ(P ) α+
χ (P )

38B1∗ 13 [−t, 2t − 2] −0.40916 1.22748 −1

40A1 7 [t2 − t − 2, 1] −0.50270 1.50811 2

42A1 19 [t2 + 2t − 2, 2t2 + 4t + 2] −0.82421 2.47263 −1

44A1∗ 13 [2t2 − 3t + 1, 10t2 − 15t + 3] −0.78000 2.33999 −1

50B1∗ 19 [t2 + 3t + 3, 4t2 + 12t + 7] −0.68008 2.04025 −1

54A1 7 [2t + 3, 4t + 7] −0.82633 2.47898 1

54B1 7 [−t + 2, 3t − 4] −0.47027 1.41082 1

54B1 13 [t2 − t + 1, 3t2 − 3t − 1] −0.57726 1.73178 1

TABLE 3. Algebraic L-values, cubic case.

9.3 Cyclic Quintic Extensions

The number fields correspond to Dirichlet characters of
conductors 11 and 31 with the relevant properties shown
in Table 4.

Table 5 shows the basic properties of the elliptic
curves, the values of the derivatives of the critical L-
functions, and the values of the Gauss sums.

The data on the trace-zero points appear in Table 6,
where t is a root of the minimal polynomial indicated
above.

It should be noted that the point may not
necessarily be the generator of the Mordell–Weil group.
The asterisk in the fourth row of the table indi-
cates the case in which in the notation of Section 3,
(−1)rχwEχ(NE) = −1.

The values of α+
χ (P ) for the above five curves are (up

to our numerical accuracy) roots of

X2 − 5X + 5 = 0 for 35A1,

X2 − 5X − 5 = 0 for 106A1,

X2 − 5X + 5 = 0 for 162B1,

X2 + 5X + 5 = 0 for 208C1,

X2 − 10X + 20 = 0 for 246E1.

All these roots lie in the maximal real subfield of fifth
roots of unity.

9.4 Cyclic Septic Extensions

The number fields correspond to Dirichlet characters of
conductor 29 with minimal polynomial

x7 + x6 − 12x5 − 7x4 + 28x3 + 14x2 − 9x + 1
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Conductor Minimal Polynomial Galois Action

11 x5 + x4 − 4x3 − 3x2 + 3x + 1 t �→ t2 − 2

31 x5 + x4 − 12x3 − 21x2 + x + 5 t �→ (3t4 − t3 − 33t2 − 24t + 15)/5

TABLE 4. Cyclic quintic fields.

Curve Coefficients fχ L′(E, 1, χfχ) τ (χ)

L′(E, 1, χγ
fχ

) τ (χγ )

35A1 [0, 1, 1, 9, 1] 11 3.44288 − 1.02884i 2.63611 + 2.01270i

3.22913 + 2.12745i 2.07016 + 2.59122i

106A1 [1, 0, 0, 1, 1] 11 6.26214 + 2.20060i 2.63611 + 2.01270i

0.619026 − 2.25071i 2.07016 + 2.59122i

162B1 [1,−1, 1,−5, 5] 11 2.64258 + 3.82523i 2.63611 + 2.01270i

3.85740 − 0.176636i 2.07016 + 2.59122i

208C1 [0, 0, 0, 1, 10] 11 2.52073 − 3.30149i 2.63611 + 2.01270i

3.72533 − 2.97621i 2.07016 + 2.59122i

246E1 [1, 0, 0,−9, 9] 31 4.70188 + 1.60514i 4.55242 − 3.20554i

2.55763 + 2.00991i 5.22658 + 1.91908i

TABLE 5. Elliptic L-values, quintic case.

Curve fχ Point 〈P, P σ〉 λχ(P ) α+
χ (P )

〈P, P σ2〉 λχγ (P ) α+
χγ (P )

35A1 11 [t2 − t, t3 − t2 + 2t − 2] −0.58449 1.32877 3.61803

−0.14401 2.31371 1.38197

106A1 11 [−t3 + t2 + t,−2t4 + 2t3 + 3t2 − 1] −0.59455 0.522218 5.85410

0.08276 2.03674 −0.854102

162B1 11 [t + 2,−t4 + 4t2 + t − 2] −0.45014 0.443523 3.61803

0.04935 1.56043 1.38197

208C1∗ 11 [t, t4 − 4t2 + 2t + 4] −0.198200 1.87021 −1.38197

−0.441207 1.32683 −3.61803

246E1 31 [t2 + 2t + 1, t3 + 3t2 + t − 3] −0.341737 1.55894 7.23607

−0.300348 1.65149 2.76393

TABLE 6. Algebraic L-values, quintic case.

and Galois action

t �→ (30t6 +42t5− 350t4− 350t3 +785t2 +700t− 160)/17

and conductor 43 with minimal polynomial

x7 + x6 − 18x5 − 35x4 + 38x3 + 104x2 + 7x − 49

and Galois action

t �→ (−6t6 + 3t5 + 105t4 + 52t3 − 330t2 − 153t + 231)/7.

Table 7 shows the basic properties of the elliptic
curves, the values of the derivatives of the critical L-
functions, and the values of the Gauss sums.

The data on the points appear in Table 8, where t

is a root of the minimal polynomial indicated above. It

should be noted that the point may not necessarily be the
generator of the Mordell–Weil group. It should be noted
as well that each point Q in Table 8 is not, in fact, a
trace-zero point. The height and subsequent calculations
are based on the point P = Q − Qσ0 , which does have
zero trace.

The values of α+
χ (P ) for each of the four curves are

(up to our numerical accuracy) roots of

X3 − 196X − 3927 = 0 for 674B1,

X3 − 21X2 + 98X − 49 = 0 for 856A1,

X3 + 21X2 + 98X − 49 = 0 for 1329A1,

X3 − 126X2 + 3528X − 10584 = 0 for 1876B1.
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Curve Coefficients fχ L′(E, 1, χfχ) τ (χ)
L′(E, 1, χγ

fχ
) τ (χγ )

L′(E, 1, χγ2

fχ
) τ (χγ2

)

674B1 [1,−1, 1,−6, 5] 29 5.32925 − 1.96500i 4.60683 + 2.78875i
1.03488 − 4.61662i 1.21868 + 5.24546i
5.89043 + 5.60476i −4.48716 + 2.97748i

856A1 [0, 1, 0,−3, 2] 43 0.0301342 − 4.92124i 5.15175 − 4.05703i
3.22624 − 1.68817i 3.91562 − 5.26003i
0.515405 + 7.05781i 6.48233 + 0.989674i

1329A1 [1, 0, 1, 2, 5] 43 −0.0558510 + 9.12108i 5.15175 − 4.05703i
3.50665 − 1.83489i 3.91562 − 5.26003i

−0.270492 − 3.70404i 6.48233 + 0.989674i

1876B1 [0, 1, 0,−29, 44] 43 5.67782 − 7.03101i 5.15175 − 4.05703i
−0.0943741 − 2.83435i 3.91562 − 5.26003i

4.00073 + 13.0582i 6.48233 + 0.989674i

TABLE 7. Elliptic L-values, septic case.

Curve fχ Point(Q) 〈P, P σ〉 λχ(P ) α+
χ (P )

〈P, P σ2〉 λχγ (P ) α+
χγ (P )

〈P, P σ3〉 λ
χγ2 (P ) α+

χγ2 (P )

674B1 29 [t + 2, (4t6 + 9t5 − 41t4 − 75t3 + 82t2 + 99t − 44)/17] −0.984527 0.820468 14.9095

−0.419174 3.45051 −2.04354

0.248767 3.81356 −12.8659

856A1 43 [2t + 3, (−2t6 + 4t5 + 34t4 − 26t3 − 144t2 + 8t + 119)/7] −1.288629 0.978168 5.97823

0.458858 5.28029 0.567040

-0.297146 1.62996 14.4547

1329A1 43 [t2 + 3t + 1, (−2t6 + 33t4 + 45t3 − 38t2 − 73t − 21)/7] −2.721459 1.22222 −13.4330

1.252466 10.8412 0.454731

−0.587921 2.33500 −8.02177

1876B1 43 [t2 − t − 2,−t6 + 18t4 + 16t3 − 50t2 − 39t + 28] −0.567253 0.582918 35.8694

0.180598 2.40482 3.40224

−0.157113 0.818646 86.7284

TABLE 8. Algebraic L-values, septic case.

All of these roots lie in the maximal real subfield of sev-
enth roots of unity.

The zero-trace points mentioned above are listed here
for reference purposes. For the curve 674B1, the point is

P=[2338/493*t^6 + 2770/493*t^5 - 27356/493*t^4

- 21236/493*t^3 + 59642/493*t^2 + 43475/493*t -

10248/493, 2946/493*t^6 + 3645/493*t^5 - 34523/493*t^4

- 29015/493*t^3 + 75540/493*t^2 + 60104/493*t -

12873/493]

For the curve 856A1, it is

P = [347/301*t^6 - 2/43*t^5 - 6016/301*t^4 -

5823/301*t^3 + 15455/301*t^2 + 15287/301*t - 655/43,

836/301*t^6 + 373/301*t^5 - 2049/43*t^4 - 21166/301*t^3

+ 27745/301*t^2 + 53014/301*t + 1758/43]

For the curve 1329A1, it is

P = [13941526/34184269*t^6 + 6823816/34184269*t^5

- 272120413/34184269*t^4 - 300304659/34184269*t^3

+ 892749859/34184269*t^2 + 15348359/794983*t -

87127871/4883467, -1275747511/11520098653*t^6 -

2333533755/1645728379*t^5 + 1452560596/267909271*t^4

+ 224356347972/11520098653*t^3 -

306167740201/11520098653*t^2 -

404336548491/11520098653*t + 36986710930/1645728379]

For the curve 1876B1, it is

P = [t^2 - t - 2, -t^6 + 18*t^4 + 16*t^3 - 50*t^2 -

39*t + 28]
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Curve Coefficients fχ L′(E, 1, χfχ) τ (χ)
L′(E, 1, χγ

fχ
) τ (χγ )

L′(E, 1, χγ2

fχ
) τ (χγ2

)

L′(E, 1, χγ3

fχ
) τ (χγ3

)

L′(E, 1, χγ4

fχ
) τ (χγ4

)

5906B1 [1, 1, 0,−32, 58] 23 8.43740 + 1.56399i 0.489832 + 4.77075i
14.7072 − 7.16721i 4.09821 + 2.49092i
2.25530 + 4.78838 −0.0564765 − 4.79550i
17.2140 + 8.63991i 1.83051 + 4.43274i
8.76334 − 2.79430i 4.73001 − 0.791844i

TABLE 9. Elliptic L-values, degree 11 case.

Curve fχ 〈P, P σ〉 λχ(P ) α+
χ (P )

〈P, P σ2〉 λχγ (P ) α+
χγ (P )

〈P, P σ3〉 λ
χγ2 (P ) α+

χγ2 (P )

〈P, P σ4〉 λ
χγ3 (P ) α+

χγ3 (P )

〈P, P σ5〉 λ
χγ4 (P ) α+

χγ4 (P )

5906B1 23 −1.648409 0.273081 62.8439
−0.978593 2.56805 6.63948
1.129189 10.2034 −0.321316
−0.858499 5.15487 2.78561
0.422566 3.07181 1.70448

TABLE 10. Algebraic L-values, degree 11 case.

9.5 A Cyclic Extension of Degree 11

One curve was discovered with a point in an eleventh-
degree extension. The curve is 5906B1 with coefficients
[1, 1, 0,−32, 58]. The point was found over a field of con-
ductor 23 with minimal polynomial

x11 + x10 − 10x9 − 9x8 + 36x7 + 28x6 − 56x5 − 35x4

+ 35x3 + 15x2 − 6x − 1.

The Galois action in this field is

t �→ t5 − 5t3 + 5t.

The point Q discovered in the search was

[−t3 − 2t2 + 4t + 1,−3t10 − 2t9 + 31t8 + 15t7 − 115t6

− 34t5 + 179t4 + 23t3 − 96t2 − 2t + 8],

and the point P = Q − Qσ0 was used in the subsequent
calculations.

Table 9 shows the basic properties of the elliptic curve,
the values of the derivatives of the critical L-functions,
and the value of the Gauss sums.

The data for the trace-zero point are shown in Ta-
ble 10. It should be noted that the point may not neces-
sarily be the generator of the Mordell–Weil group.

The points α+
χ (P ) are (up to our numerical accuracy)

the roots of

23X5 − 1694X4 + 16335X3 − 45254X2

+ 29282X + 14641 = 0

and lie in the maximal real subfield of the eleventh roots
of unity.

The point P used in this analysis is

P = [8546182/50807*t^10 - 4840142/50807*t^9

- 77988935/50807*t^8 + 45093287/50807*t^7 +

10354887/2209*t^6 - 132803588/50807*t^5 -

274532428/50807*t^4 + 128641774/50807*t^3 +

102744505/50807*t^2 - 29991223/50807*t - 5420004/50807,

15797792218/2387929*t^10 - 8729122400/2387929*t^9 -

6276343301/103823*t^8 + 81888886062/2387929*t^7 +

441046362414/2387929*t^6 - 242101414169/2387929*t^5

- 507362284341/2387929*t^4 + 234319824740/2387929*t^3

+ 187634372590/2387929*t^2 - 54371726550/2387929*t -

10166772313/2387929]
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