
ar
X

iv
:0

90
4.

30
41

v3
  [

m
at

h.
G

T
] 

 5
 S

ep
 2

00
9

Quadrilateral-Octagon Coordinates for

Almost Normal Surfaces

Benjamin A. Burton

August 24, 2009

Abstract

Normal and almost normal surfaces are essential tools for algorithmic 3-manifold topology,
but to use them requires exponentially slow enumeration algorithms in a high-dimensional vector
space. The quadrilateral coordinates of Tollefson alleviate this problem considerably for normal
surfaces, by reducing the dimension of this vector space from 7n to 3n (where n is the complexity of
the underlying triangulation). Here we develop an analogous theory for octagonal almost normal
surfaces, using quadrilateral and octagon coordinates to reduce this dimension from 10n to 6n.
As an application, we show that quadrilateral-octagon coordinates can be used exclusively in the
streamlined 3-sphere recognition algorithm of Jaco, Rubinstein and Thompson, reducing experi-
mental running times by factors of thousands. We also introduce joint coordinates, a system with
only 3n dimensions for octagonal almost normal surfaces that has appealing geometric properties.

AMS Classification 57N10 (57Q35)

Keywords Normal surfaces, almost normal surfaces, quadrilateral-octagon coordinates, joint
coordinates, Q-theory, 3-sphere recognition

1 Introduction

The theory of normal surfaces, introduced by Kneser [17] and developed by Haken [8, 9], is central
to algorithmic 3-manifold topology. In essence, normal surface theory allows us to search for
“interesting” embedded surfaces within a 3-manifold triangulation T by enumerating the vertices
of a polytope in a high-dimensional vector space. Normal surfaces are defined by their intersections
with the tetrahedra of T , which must be collections of disjoint triangles and/or quadrilaterals,
collectively referred to as normal discs.

In the early 1990s, Rubinstein introduced the concept of an almost normal surface, for use
with problems such as 3-sphere recognition and finding Heegaard splittings [21]. Almost normal
surfaces are essentially normal surfaces with a single unusual intersection piece, which may be
either an octagon or a tube. Thompson subsequently refined the 3-sphere recognition algorithm to
remove any need for tubes [23], and since then almost normal surfaces have appeared in algorithms
such as determining Heegaard genus [18], recognising small Seifert fibred spaces [22], and finding
bridge surfaces in knot complements [27].

In this paper we focus on octagonal almost normal surfaces; that is, almost normal surfaces in
which the unusual intersection piece is an octagon, not a tube. The reason for this restriction is that
octagonal almost normal surfaces are both tractable and useful, and have important applications
beyond 3-manifold topology. In detail:

• For practical computation, octagonal almost normal surfaces are significantly easier to deal
with than general almost normal surfaces. In particular, the translation between surfaces
and high-dimensional vectors becomes much simpler, and the enumeration of these vectors
is less fraught with complications.

• As shown by Thompson [23], octagonal almost normal surfaces are sufficient for running the
3-sphere recognition algorithm.
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• Following on from the previous point, an efficient 3-sphere recognition algorithm is important
for computation in 4-manifold topology. For example, answering even the basic question “is
T a 4-manifold triangulation?” requires us to run the 3-sphere recognition algorithm over a
neighbourhood of each vertex of T . Therefore, improving the efficiency of 3-sphere recognition
is an important step towards a general efficient computational framework for working with
4-manifold triangulations.

As suggested above, our focus here is on the efficiency of working with almost normal surfaces.
The fundamental problem that we face is that the underlying polytope vertex enumeration can
grow exponentially slowly in the number of tetrahedra. This means that in practice normal surface
algorithms cannot be run on large triangulations. Moreover, this exponential growth is not the
fault of the algorithms, but an unavoidable feature of the problems that they try to solve. For
illustrations of this, see [7] which describes cases in which the underlying vertex enumeration
problem has exponentially many solutions, or see the proof by Agol et al. that computing 3-
manifold knot genus (one of the many applications of normal surface theory) is NP-complete [1].

For almost normal surfaces, our efficiency troubles are even worse than for normal surfaces.
This is because the polytope vertex enumeration is not just exponentially slow in the number of
tetrahedra n, but also in the dimension of the underlying vector space. For normal surfaces this
dimension is 7n, whereas for octagonal almost normal surfaces this dimension is 10n, a significant
difference when dealing with an exponential algorithm.

In the realm of normal surfaces, much progress has been made in improving the efficiency
of enumeration algorithms [5, 6, 26]. One key development has been Tollefson’s quadrilateral
coordinates [26], in which we work only with quadrilateral normal discs and then reconstruct the
triangular discs afterwards. This allows us to perform our expensive polytope vertex enumeration
in dimension 3n instead of 7n, which yields substantial efficiency improvements.

There are two complications with Tollefson’s approach:

• When reconstructing a normal surface from its quadrilateral discs, we cannot recover any
vertex linking components (these components lie at the frontiers of small regular neighbour-
hoods of vertices of the triangulation). This is typically not a problem, since such components
are rarely of interest.

• When we use quadrilateral coordinates for the underlying polytope vertex enumeration, some
solutions are “lost”. That is, the resulting set of normal surfaces (called vertex normal
surfaces) is a strict subset of what we would obtain using the traditional 7n-dimensional
framework of Haken.

This latter issue can be resolved in two different ways. For some high-level topological
algorithms, such as the detection of two-sided incompressible surfaces [26], it has been proven
that at least one of the surfaces that we need to find will not be lost. As a more general
resolution to this problem, there is a fast quadrilateral-to-standard conversion algorithm
through which we can recover all of the lost surfaces [6].

The main purpose of this paper is to develop an analogous theory for octagonal almost normal
surfaces. Specifically, we show that we can work with only quadrilateral normal discs and octagonal
almost normal discs, and then reconstruct the triangular discs afterwards. As a consequence, the
dimension for our vertex enumeration drops from 10n to 6n.

We run into the same complications as before—vertex linking components cannot be recovered,
and we may lose some of our original solutions. Here we show that, as with quadrilateral coordi-
nates, these are not serious problems. In particular, we show that despite this loss of information,
quadrilateral-octagon coordinates suffice for the 3-sphere recognition algorithm. More generally,
we observe that the fast quadrilateral-to-standard conversion algorithm of [6] works seamlessly
with octagonal almost normal surfaces.

As a practical measure of benefit, we use the software package Regina [2, 4] to compare running
times for the 3-sphere recognition algorithm with and without quadrilateral-octagon coordinates.
Here we see quadrilateral-octagon coordinates improving performance by factors of thousands in
several cases. Readers can experiment with quadrilateral-octagon coordinates for themselves by
downloading Regina version 4.6 or later.

We finish this paper by introducing joint coordinates, in which we exploit natural relationships
between quadrilaterals and octagons to reduce our 6n dimensions for octagonal almost normal
surfaces down to just 3n dimensions. Although these coordinates cannot be used with existing
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enumeration algorithms (due to a loss of convexity in the underlying polytope), they have appealing
geometric properties that make them useful for visualisation, and which may help develop intuition
about the structure of the corresponding solution space.

All of the results in this paper apply only to compact 3-manifold triangulations. In particular,
they do not cover the ideal triangulations of Thurston [24], where the reconstruction of triangular
discs can result in pathological (but nevertheless useful) objects such as spun normal surfaces,
which contain infinitely many discs [25].

The layout of this paper is as follows. Section 2 begins with an overview of normal surfaces
and Tollefson’s quadrilateral coordinates, and Section 3 follows with an overview of almost normal
surfaces. In Section 4 we develop the core theory for quadrilateral-octagon coordinates, including
necessary and sufficient conditions for a 6n-dimensional vector to represent an octagonal almost
normal surface.

For the remainder of the paper we focus on applications and extensions of this theory. In
Section 5 we describe the streamlined 3-sphere recognition algorithm of Jaco, Rubinstein and
Thompson [15], and show that this algorithm remains correct when we work in quadrilateral-octa-
gon coordinates instead of the original 10n-dimensional vector space. Section 6 focuses on the
underlying polytope vertex enumeration algorithm, where we observe that state-of-the-art algo-
rithms for enumerating normal surfaces [5, 6] can be used seamlessly with octagonal almost normal
surfaces and quadrilateral-octagon coordinates. In Section 7 we offer experimental measures of
running time that show how quadrilateral-octagon coordinates improve the 3-sphere recognition
algorithm in practice, and in Section 8 we finish with a discussion of joint coordinates.

The author is grateful to the Victorian Partnership for Advanced Computing for the use of
their excellent computing resources, to the University of Melbourne for their continued support
for the software package Regina, and to the anonymous referees for their thoughtful suggestions.

2 Normal Surfaces

We assume that the reader is already familiar with the theory of normal surfaces (if not, a good
overview can be found in [10]). In this section we outline the relevant aspects of the theory, con-
centrating on the differences between Haken’s original formulation [8] and Tollefson’s quadrilateral
coordinates [26]. For a more detailed discussion of these two formulations and the relationships
between them, the reader is referred to [6].

Throughout this paper we assume that we are working with a compact 3-manifold triangulation
T formed from n tetrahedra. By a compact triangulation, we mean that every vertex of T has a
small neighbourhood whose frontier is a sphere or a disc. This ensures that T is a triangulation of
a compact 3-manifold (possibly with boundary), and rules out the ideal triangulations of Thurston
[24] in which vertices form higher-genus cusps.

To help keep the number of tetrahedra in T small, we allow different faces of a tetrahedron
to be identified (and likewise with edges and vertices). Some authors refer to triangulations with
this property as pseudo-triangulations or semi-simplicial triangulations. Faces, edges and vertices
of T that lie entirely within the 3-manifold boundary are called boundary faces, boundary edges
and boundary vertices of T respectively.

An embedded normal surface in T is a properly embedded surface (possibly disconnected or
empty) that intersects each tetrahedron of T in a collection of disjoint normal discs. Each normal
disc is either a triangle or a quadrilateral, with a boundary consisting of three or four arcs respec-
tively that cross distinct faces of the tetrahedron. Figure 1 illustrates several disjoint triangles and
quadrilaterals within a tetrahedron.

The triangles and quadrilaterals within a tetrahedron can be grouped into seven normal disc
types, according to which edges of the tetrahedron they intersect. This includes four triangular
disc types and three quadrilateral disc types, all of which are illustrated in Figure 2.

Equivalence of normal surfaces is defined by normal isotopy, which is an ambient isotopy that
preserves each simplex of the triangulation T . Throughout this paper, any two surfaces that are
related by normal isotopy are regarded as the same surface.

Vertex links are normal surfaces that play an important role in the discussion that follows. If V
is a vertex of the triangulation T then the vertex link of V , denoted ℓ(V ), is the normal surface at
the frontier of a small regular neighbourhood of V . This surface is formed entirely from triangular
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Figure 1: Several normal discs within a single tetrahedron

Figure 2: The seven different normal disc types within a tetrahedron

discs (one copy of each triangular disc type surrounding V ). Here we follow the nomenclature of
Jaco and Rubinstein [15]; Tollefson refers to vertex links as trivial surfaces.

A core strength of normal surface theory is its ability to reduce difficult problems in topology
to simpler problems in linear algebra. This is where the formulations of Haken and Tollefson
differ, and so we slow down from here onwards to give full details. The key difference between the
two formulations is that Haken works in a 7n-dimensional vector space with coordinates based on
triangle and quadrilateral disc types, whereas Tollefson works in a 3n-dimensional space based on
quadrilateral disc types only.

Definition 2.1 (Vector Representations) Let T be a compact 3-manifold triangulation formed
from the n tetrahedra ∆1, . . . ,∆n, and let S be an embedded normal surface in T . For each
tetrahedron ∆i, let ti,1, ti,2, ti,3 and ti,4 denote the number of triangular discs of S of each type
in ∆i, and let qi,1, qi,2 and qi,3 denote the number of quadrilateral discs of S of each type in ∆i.

Then the standard vector representation of S, denoted v(S), is the 7n-dimensional vector

v(S) = ( t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3 ; t2,1, t2,2, t2,3, t2,4, q2,1, q2,2, q2,3 ; . . . , qn,3 ) ,

and the quadrilateral vector representation of S, denoted q(S), is the 3n-dimensional vector

q(S) = ( q1,1, q1,2, q1,3 ; q2,1, q2,2, q2,3 ; . . . , qn,3 ) .

When we are working with v(S), we say we are working in standard coordinates (or standard
normal coordinates if we wish to distinguish between normal and almost normal surfaces). Like-
wise, when working with q(S) we say we are working in quadrilateral coordinates. The following
uniqueness results are due to Haken [8] and Tollefson [26]:

Lemma 2.2 Let T be a compact 3-manifold triangulation, and let S and S′ be embedded normal
surfaces in T .

• The standard vector representations v(S) and v(S′) are equal if and only if the surfaces S

and S′ are normal isotopic (i.e., they are the “same” normal surface).

• The quadrilateral vector representations q(S) and q(S′) are equal if and only if either (i) S

and S′ are normal isotopic, or (ii) S and S′ can be made normal isotopic by adding or
removing vertex linking components.

Since we are rarely interested in vertex linking components, Lemma 2.2 shows that the standard
and quadrilateral vector representations each contain everything we might want to know about an
embedded normal surface.

Not every integer vector w ∈ R
7n or w ∈ R

3n is the vector representation of a normal surface.
The necessary conditions on w include a set of matching equations as well as a set of quadrilateral
constraints, which we define as follows.
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Definition 2.3 (Standard Matching Equations) Let T be a compact 3-manifold triangula-
tion formed from the n tetrahedra ∆1, . . . ,∆n, and let w ∈ R

7n be any 7n-dimensional vector
whose coordinates we label

w = ( t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3 ; t2,1, t2,2, t2,3, t2,4, q2,1, q2,2, q2,3 ; . . . , qn,3 ) .

For each non-boundary face of T and each of the three edges surrounding it, we obtain a standard
matching equation on w as follows.

Let F be some non-boundary face of T , and let e be one of the three edges surrounding F .
Suppose that ∆i and ∆j are the two tetrahedra on either side of F . Then there is precisely one
triangular disc type and one quadrilateral disc type in each of ∆i and ∆j that meets F in an arc
parallel to e, as illustrated in Figure 3. Suppose these disc types correspond to coordinates ti,a,
qi,b, tj,c and qj,d respectively. Then we obtain the matching equation

ti,a + qi,b = tj,c + qj,d.

PSfrag replacements
F

e∆i
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Figure 3: Building the standard matching equations

Essentially, the standard matching equations ensure that all of the normal discs on either
side of a non-boundary face F can be joined together. In Figure 3, the four coordinates are
(ti,a, qi,b, tj,c, qj,d) = (1, 2, 2, 1), giving the equation 1 + 2 = 2 + 1 which is indeed satisfied. If T
is a closed triangulation (i.e., it has no boundary), then there are precisely 6n standard matching
equations for T (three for each of the 2n faces of T ).

Definition 2.4 (Quadrilateral Matching Equations) Let T be a compact 3-manifold trian-
gulation formed from the n tetrahedra ∆1, . . . ,∆n, and let w ∈ R

3n be any 3n-dimensional vector
whose coordinates we label

w = ( q1,1, q1,2, q1,3 ; q2,1, q2,2, q2,3 ; . . . , qn,3 ) .

For each non-boundary edge of T , we obtain a quadrilateral matching equation on w as follows.
Let e be some non-boundary edge of T , and arbitrarily label the two ends of e as upper and

lower. The tetrahedra containing edge e are arranged in a cycle around e, as illustrated in Fig-
ure 4. Choose some arbitrary direction around this cycle, and suppose that the tetrahedra that we
encounter as we travel in this direction around the cycle are labelled ∆i1 , . . . ,∆it .

PSfrag replacements

e

∆i1

∆i2

∆i3

Upper end

Lower end
Upward quadrilaterals Downward quadrilaterals

Direction

Figure 4: Building the quadrilateral matching equations

For each tetrahedron in this cycle, there are two quadrilateral types meeting edge e: one that
rises from the lower end of e to the upper as we travel around the cycle in the chosen direction,
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and one that falls from the upper end of e to the lower. We call these the upward quadrilaterals
and downward quadrilaterals respectively; these are again illustrated in Figure 4.

Suppose now that the coordinates corresponding to the upward and downward quadrilateral types
are qi1,u1

, qi2,u2
, . . . , qit,ut and qi1,d1 , qi2,d2 , . . . , qit,dt respectively. Then we obtain the matching

equation
qi1,u1

+ qi2,u2
+ . . .+ qit,ut = qi1,d1 + qi2,d2 + . . .+ qit,dt . (2.1)

In other words, the total number of upward quadrilaterals surrounding e equals the total number of
downward quadrilaterals surrounding e.

Note that a single tetrahedron might appear multiple times in the cycle around e, in which case a
single coordinate qi,j might appear more than once in the equation (2.1). For a closed triangulation
T with v vertices, a quick Euler characteristic calculation shows that we have precisely n+v edges
in our triangulation and therefore precisely n+ v quadrilateral matching equations.

Definition 2.5 (Quadrilateral Constraints) Let T be a compact 3-manifold triangulation
formed from the n tetrahedra ∆1, . . . ,∆n, and consider any vector

w = ( t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3 ; . . . , qn,3 ) ∈ R
7n or

w = ( q1,1, q1,2, q1,3 ; . . . , qn,3 ) ∈ R
3n
.

We say that w satisfies the quadrilateral constraints if, for every tetrahedron ∆i, at most one of
the quadrilateral coordinates qi,1, qi,2 and qi,3 is non-zero.

We can now describe a full set of necessary and sufficient conditions for a vector w ∈ R
7n or

w ∈ R
3n to be the vector representation of some embedded normal surface. The following result

is due to Haken [8] and Tollefson [26].

Theorem 2.6 Let T be a compact 3-manifold triangulation formed from n tetrahedra. An integer
vector (w ∈ R

7n or w ∈ R
3n) is the (standard or quadrilateral) vector representation of an

embedded normal surface in T if and only if:

• The coordinates of w are all non-negative;

• w satisfies the (standard or quadrilateral) matching equations for T ;

• w satisfies the quadrilateral constraints for T .

Such a vector is referred to as an admissible vector.1

Essentially, the non-negativity constraint ensures that the coordinates of w can be used to
count normal discs, the matching equations ensure that these discs can be joined together to form
a surface, and the quadrilateral constraint ensures that this surface is embedded (since any two
quadrilaterals of different types within the same tetrahedron must intersect).

Many high-level algorithms in 3-manifold topology involve the enumeration of vertex normal
surfaces, which form a basis from which we can reconstruct all embedded normal surfaces within
a triangulation T . The relevant definitions are as follows.

Definition 2.7 (Projective Solution Space) Let T be a compact 3-manifold triangulation
formed from n tetrahedra. The set of all non-negative vectors in R

7n that satisfy the standard
matching equations for T forms a rational polyhedral cone in R

7n. The standard projective so-
lution space for T is the rational polytope formed by intersecting this cone with the hyperplane
{w ∈ R

7n |
P

wi = 1}.
The quadrilateral projective solution space for T is defined in a similar fashion by working in

R
3n and using the quadrilateral matching equations instead.

Definition 2.8 (Vertex Normal Surface) Let T be a compact 3-manifold triangulation, and
let S be an embedded normal surface in T . If the standard vector representation v(S) is a positive
multiple of some vertex of the standard projective solution space, then we call S a standard vertex

1It is sometimes useful to extend the concept of admissibility to rational vectors or even real vectors in R
7n or R

3n,
as seen for instance in [6]. However, we do not need such extensions in this paper.
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normal surface. Likewise, if the quadrilateral vector representation q(S) is a positive multiple of
some vertex of the quadrilateral projective solution space, then we call S a quadrilateral vertex
normal surface.

It should be noted that the definition of a vertex normal surface varies between authors.
Definition 2.8 is consistent with Jaco and Rubinstein [15], as well as earlier work of this author [6].
Other authors impose additional conditions, such as Tollefson [26] who requires S to be connected
and two-sided, or Jaco and Oertel [14] who require the elements of v(S) to have no common factor
(and who use the alternate name fundamental edge surface).

Although vertex normal surfaces can be used as a basis for reconstructing all embedded normal
surfaces within a triangulation, this is typically not feasible since there are infinitely many such
surfaces. Instead we frequently find that, when searching for an embedded normal surface with
some desirable property, we can restrict our attention only to vertex normal surfaces. For instance,
Jaco and Oertel [14] prove for closed irreducible 3-manifolds that if a two-sided incompressible
surface exists then one can be found as a standard vertex normal surface. Likewise, Jaco and
Tollefson [16] prove that if a 3-manifold contains an essential disc or sphere then one can be found
as a standard vertex normal surface.

Using results of this type, a typical high-level algorithm based on normal surface theory includes
the following steps:

(i) Enumerate the (finitely many) vertices of the projective solution space for a given triangula-
tion T , using techniques from linear programming (see [5] for details).

(ii) Eliminate those vertices that do not satisfy the quadrilateral constraints, and then reconstruct
the vertex normal surfaces of T by taking multiples of those vertices that remain. Although
there are infinitely many such multiples, only finitely many will yield connected normal
surfaces, which is typically what we are searching for.

(iii) Test each of these vertex normal surfaces for some desirable property (such as incompress-
ibility, or being an essential disc or sphere).

Here we can see the real benefit of working in quadrilateral coordinates—the enumeration of
step (i) takes place in a vector space of dimension 7n for standard coordinates, but only 3n for
quadrilateral coordinates. Since both the running time and memory usage can become exponential
in this dimension [5], a reduction from 7n to 3n can yield dramatic improvements in performance.

However, there is a trade-off for using quadrilateral coordinates. Although every connected
quadrilateral vertex normal surface is also a standard vertex normal surface [6], the converse is
not true in general. Instead, there might be standard vertex normal surfaces (perhaps including
the incompressible surfaces, essential discs and spheres or whatever else we are searching for) that
do not show up as quadrilateral vertex normal surfaces. These “lost surfaces” can undermine the
correctness of our algorithms, which we maintain in one of two ways:

• We can resolve the problem using theory. This requires us to prove that, if the surface we
are searching for exists, then it exists not only as a standard vertex normal surface but also
as a quadrilateral vertex normal surface.

Such results can be more difficult to prove in quadrilateral coordinates than in standard
coordinates, partly because important functions such as Euler characteristic are no longer
linear. Nevertheless, examples can be found—Tollefson [26] proves such a result for two-
sided incompressible surfaces, and Jaco et al. [13] refer to similar results for essential discs
and spheres.

• We can resolve the problem using algorithms and computation. There is a fast algorithm
described in [6] that converts a full set of quadrilateral vertex normal surfaces to a full set
of standard vertex normal surfaces, thereby recovering those surfaces that were lost. This
algorithm is found to have a negligible running time, which means that we are able to work
with standard vertex normal surfaces yet still enjoy the significantly greater performance of
quadrilateral coordinates.

The main part of this paper is concerned with the development of quadrilateral-octagon coor-
dinates for almost normal surfaces, where we face a similar trade-off. In Section 5 we resolve this
problem for the 3-sphere recognition algorithm using the theoretical route, and in Section 6 we
show how the more general algorithmic solution can be used.
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3 Almost Normal Surfaces

Almost normal surfaces are an extension of normal surfaces whereby, in addition to the usual
normal discs, we allow one tetrahedron of the triangulation to contain a single unusual intersection
piece. Introduced by Rubinstein for use with the 3-sphere algorithm and related problems [20,
21], almost normal surfaces also enjoy other applications such as the determination of Heegaard
genus [18], the recognition of small Seifert fibred spaces [22], and finding bridge surfaces in knot
complements [27].

We begin this section by defining almost normal surfaces, whereupon we restrict our attention
to octagonal almost normal surfaces. Octagonal almost normal surfaces are significantly easier to
deal with, and Thompson has proven that they are sufficient for use with the 3-sphere recognition
algorithm [23].

In the remainder of this section, we define concepts similar to those seen in Section 2, such
as vector representation, matching equations and vertex almost normal surfaces. These concepts
and their corresponding results are well-known extensions to traditional normal surface theory;
see Lackenby [18] or Rubinstein [21] for a brief sketch. The details however are not explicitly laid
down in the current literature, and so we present these details here.

Definition 3.1 (Almost Normal Surface) Let T be a compact 3-manifold triangulation, and
let ∆ be some tetrahedron of T . A normal octagon in ∆ is a properly embedded disc in ∆ whose
boundary consists of eight normal arcs running across the faces of ∆, as illustrated in Figure 5.
A normal tube in ∆ is a properly embedded annulus in ∆ consisting of any two disjoint normal
discs joined by an unknotted tube, again illustrated in Figure 5.

PSfrag replacements

Normal octagon Normal tube

Figure 5: Examples of exceptional pieces in almost normal surfaces

An almost normal surface in T is a properly embedded surface whose intersection with the
tetrahedra of T consists of (i) zero or more normal discs, plus (ii) in precisely one tetrahedron of
T , either a single normal octagon or a single normal tube2 (but not both). This single octagon or
tube is referred to as the exceptional piece of the almost normal surface.

Although Definition 3.1 requires that almost normal surfaces be properly embedded, for brevity’s
sake we do not include the word “embedded” in their name. For the remainder of this paper we
concern ourselves only with octagonal almost normal surfaces, which are defined as follows.

Definition 3.2 (Octagonal Almost Normal Surface) An octagonal almost normal surface is
an almost normal surface whose exceptional piece is a normal octagon (not a tube). For contrast,
we will often refer to the almost normal surfaces of Definition 3.1 (where the exceptional piece may
be either an octagon or a tube) as general almost normal surfaces.

The possible normal octagons within a tetrahedron can be grouped into three octagon types,
according to how many times they intersect each edge of the tetrahedron. All three octagon types
are illustrated in Figure 6.

As with “embedded”, we will sometimes drop the word “octagonal” from definitions to avoid
excessively long names; see for instance the standard almost normal matching equations and vertex

2Jaco and Rubinstein [15] add the additional constraint that the tube does not join two copies of the same normal
surface.
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Figure 6: The three different octagon types within a tetrahedron

almost normal surfaces (Definitions 3.3 and 3.5), which refer exclusively to octagonal almost
normal surfaces.

At this early stage we can already see one reason why octagonal almost normal surfaces are
substantially easier to deal with than general almost normal surfaces—while there are only three
octagon types within a tetrahedron, there are 25 distinct types of normal tube, giving 28 types of
exceptional piece in the general case. Not only is this messier to implement on a computer, but
it can lead to significant increases in running time and memory usage. We return to this issue at
the end of this section.

Definition 3.3 (Standard Vector Representation) Let T be a compact 3-manifold triangu-
lation formed from the n tetrahedra ∆1, . . . ,∆n, and let S be an octagonal almost normal surface
in T . For each tetrahedron ∆i, let ti,1, ti,2, ti,3 and ti,4 denote the number of triangular discs of
each type, let qi,1, qi,2 and qi,3 denote the number of quadrilateral discs of each type, and let ki,1,
ki,2 and ki,3 denote the number of octagonal discs of each type in ∆i contained in the surface S.

Then the standard vector representation of S, denoted v(S), is the 10n-dimensional vector

v(S) = ( t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3, k1,1, k1,2, k1,3 ;

t2,1, t2,2, t2,3, t2,4, q2,1, q2,2, q2,3, k2,1, k2,2, k2,3 ;

. . . , kn,3 ).

Lemma 3.4 Let T be a compact 3-manifold triangulation, and let S and S′ be octagonal almost
normal surfaces in T . Then the standard vector representations v(S) and v(S′) are equal if and
only if the surfaces S and S′ are normal isotopic (i.e., they are the “same” almost normal surface).

This result is the almost normal counterpart to Lemma 2.2. The proof is the same, and so
we do not present the details here. The key observation is that, given some number of triangles,
quadrilaterals and/or octagons of various types in a single tetrahedron, if these discs can be packed
into the tetrahedron disjointly then this packing is unique up to normal isotopy.

This brings us to another reason why octagonal almost normal surfaces are simpler to deal
with than general almost normal surfaces. In the general case, this packing need not be unique.
In particular, a tube that joins two normal discs of the same type can be interchanged with some
other normal disc of the same type without creating intersections (see Figure 7 for an illustration).
Because of this, the extension of Lemma 3.4 to general almost normal surfaces fails to hold.

Figure 7: Packing a triangle and a tube into a tetrahedron in two distinct ways

To determine precisely which vectors in R
10n represent octagonal almost normal surfaces, we

develop a set of matching equations and quadrilateral-octagon constraints in a similar fashion to
Definitions 2.3 and 2.5.
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Definition 3.5 (Standard Almost Normal Matching Equations) Let T be a compact 3-
manifold triangulation formed from the n tetrahedra ∆1, . . . ,∆n, and let w ∈ R

10n be any 10n-
dimensional vector whose coordinates we label

w = ( t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3, k1,1, k1,2, k1,3 ; . . . , kn,3 ) .

For each non-boundary face of T and each of the three edges surrounding it, we obtain a standard
almost normal matching equation on w as follows.

Let F be some non-boundary face of T , and let e be one of the three edges surrounding F .
Suppose that ∆i and ∆j are the two tetrahedra on either side of F . Precisely one triangular disc
type, one quadrilateral disc type and two octagonal disc types in each of ∆i and ∆j meet F in an
arc parallel to e. Suppose these correspond to coordinates ti,a, qi,b, ki,c and ki,d for ∆i and tj,e,
qj,f , kj,g and kj,h for ∆j . Then we obtain the matching equation

ti,a + qi,b + ki,c + ki,d = tj,e + qj,f + kj,g + kj,h. (3.2)

These matching equations are the obvious extension to the original standard matching equa-
tions of Definition 2.3—we ensure that all of the discs on one side of a non-boundary face can be
joined to all of the discs on the other side. As with normal surfaces, if T is a closed triangulation
then there are precisely 6n standard almost normal matching equations (three for each of the 2n
faces of T ).

Definition 3.6 (Quadrilateral-Octagon Constraints) Let T be a compact 3-manifold trian-
gulation formed from the n tetrahedra ∆1, . . . ,∆n, and consider any vector

w = ( t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3, k1,1, k1,2, k1,3 ; . . . , kn,3 ) ∈ R
10n

.

We say that w satisfies the quadrilateral-octagon constraints if and only if:

(i) For every tetrahedron ∆i, at most one of the six quadrilateral and octagonal coordinates qi,1,
qi,2, qi,3, ki,1, ki,2 and ki,3 is non-zero;

(ii) In the entire triangulation T , at most one of the 3n octagonal coordinates k1,1, . . . , kn,3 is
non-zero.

Like the quadrilateral constraints of Definition 2.5, condition (i) of the quadrilateral-octagon
constraints ensures that the discs within a single tetrahedron can be embedded without intersect-
ing. Condition (ii) ensures that we have at most one octagon type within a triangulation—although
this condition is not strong enough to ensure at most one octagonal disc, it does have the useful
property of invariance under scalar multiplication.

Note that a vector can still satisfy the quadrilateral-octagon constraints even if all its octagonal
coordinates are zero. This is necessary for the vertex enumeration algorithms to function properly;
we return to this issue in Section 6.

We can now give a full set of necessary and sufficient conditions for a vector in R
10n to represent

an octagonal almost normal surface.

Theorem 3.7 Let T be a compact 3-manifold triangulation formed from n tetrahedra. An integer
vector w ∈ R

10n is the standard vector representation of an octagonal almost normal surface in T
if and only if:

• The coordinates of w are all non-negative;

• w satisfies the standard almost normal matching equations for T ;

• w satisfies the quadrilateral-octagon constraints for T ;

• There is precisely one non-zero octagonal coordinate in w, and this coordinate is set to one.

Once again, such a vector is called an admissible vector.

Again the proof is essentially the same as for the corresponding theorem in normal surface
theory (Theorem 2.6), and so we do not reiterate the details here. The only difference is that
we now have a global condition in the quadrilateral-octagon constraints (at most one non-zero
octagonal coordinate in the entire triangulation), as well as an extra constraint for admissibility
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(precisely one non-zero octagonal coordinate with value one). These are to satisfy Definition 3.1,
which requires an almost normal surface to have precisely one exceptional piece.

It is occasionally useful to consider surfaces with any number of octagonal discs, though still
at most one octagonal disc type. In this case the vector representation, matching equations and
quadrilateral-octagon constraints all remain the same; the only change appears in Theorem 3.7,
where we remove the final condition (the one that requires a unique non-zero octagonal coordinate
with a value of one).

We finish by defining a vertex almost normal surface in a similar fashion to Definition 2.8.
We are careful here to specify our coordinate system—in Section 4 we define a similar concept in
quadrilateral-octagon coordinates, and (as with normal surfaces) a vertex surface in one coordinate
system need not be a vertex surface in another.

Definition 3.8 (Standard Vertex Almost Normal Surface) Let T be a compact 3-manifold
triangulation formed from n tetrahedra. The standard almost normal projective solution space for
T is the rational polytope formed by (i) taking the polyhedral cone of all non-negative vectors in
R

10n that satisfy the standard almost normal matching equations for T , and then (ii) intersecting
this cone with the hyperplane {w ∈ R

10n |
P

wi = 1}.
Let S be an octagonal almost normal surface in T . If the standard vector representation v(S)

is a positive multiple of some vertex of the standard almost normal projective solution space, then
we call S a standard vertex almost normal surface.

As with normal surfaces, we can use the enumeration of vertex almost normal surfaces as a basis
for high-level topological algorithms. The streamlined 3-sphere recognition of Jaco, Rubinstein
and Thompson [15] does just this—given a “sufficiently nice” 3-manifold triangulation T , we
(i) enumerate all standard vertex almost normal surfaces within T , and then (ii) search amongst
these vertex surfaces for an almost normal 2-sphere. We return to this algorithm in detail in
Section 5.

This suggests yet another reason to prefer octagonal almost normal surfaces over general al-
most normal surfaces. Whereas octagonal almost normal surfaces have 10n-dimensional vector
representations, in the general case we would need 35n dimensions (allowing for 25 types of tube
in addition to the ten octagons, quadrilaterals and triangles in each tetrahedron). Since both the
running time and memory usage for vertex enumeration can grow exponential in the dimension
of the underlying vector space [5], increasing this dimension from 10n to 35n could well have a
crippling effect on performance.3

4 Quadrilateral-Octagon Coordinates

At this stage we are ready to develop quadrilateral-octagon coordinates, which form the main focus
of this paper. Quadrilateral-octagon coordinates act as an almost normal analogy to Tollefson’s
quadrilateral coordinates, in that we “forget” all information regarding triangular discs. As with
quadrilateral coordinates, we happily find that—except for vertex linking components—all of the
forgotten information can be successfully recovered.

The main results of this section are (i) to show that vectors in quadrilateral-octagon coordinates
uniquely identify surfaces up to vertex linking components (Lemma 4.2), and (ii) to develop a set of
necessary and sufficient conditions for a vector in quadrilateral-octagon coordinates to represent
an octagonal almost normal surface (Theorem 4.5). Although these mirror Tollefson’s original
results in quadrilateral coordinates, the proofs follow a different course—in this sense the author
hopes that this paper and Tollefson’s paper [26] make complementary reading.

Definition 4.1 (Quadrilateral-Octagon Vector Representation) Let T be a compact 3-ma-
nifold triangulation formed from the n tetrahedra ∆1, . . . ,∆n, and let S be an octagonal almost
normal surface in T . For each tetrahedron ∆i, let qi,1, qi,2 and qi,3 denote the number of quadri-
lateral discs of each type, and let ki,1, ki,2 and ki,3 denote the number of octagonal discs of each
type in ∆i contained in the surface S.

3We can avoid a 35n-dimensional vertex enumeration by exploiting the fact that every tube corresponds to a pair of
normal discs. However, the enumeration algorithm becomes significantly more complex as a result.
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Then the quadrilateral-octagon vector representation of S, denoted k(S), is the 6n-dimensional
vector

k(S) = ( q1,1, q1,2, q1,3, k1,1, k1,2, k1,3 ; q2,1, q2,2, q2,3, k2,1, k2,2, k2,3 ; . . . , kn,3 ) .

Our first result in quadrilateral-octagon coordinates is a uniqueness lemma, analogous to
Lemma 2.2 for normal surfaces and Lemma 3.4 for standard almost normal coordinates.

Lemma 4.2 Let T be a compact 3-manifold triangulation, and let S and S′ be octagonal almost
normal surfaces in T . Then the quadrilateral-octagon vector representations k(S) and k(S′) are
equal if and only if either (i) the surfaces S and S′ are normal isotopic, or (ii) S and S′ can be
made normal isotopic by adding or removing vertex linking components.

Proof The “if” direction is straightforward. If S and S′ are normal isotopic or can be made so
by adding or removing vertex linking components, it follows from Lemma 3.4 that their standard
vector representations v(S) and v(S′) differ only in their triangular coordinates (since vertex links
consist entirely of triangular discs). Therefore the quadrilateral and octagonal coordinates are
identical in both v(S) and v(S′), and we have k(S) = k(S′).

For the “only if” direction, suppose that k(S) = k(S′). Let d = v(S) − v(S′) in standard
almost normal coordinates; it follows then that

d = ( t1,1, t1,2, t1,3, t1,4, 0, 0, 0, 0, 0, 0 ; t2,1, t2,2, t2,3, t2,4, 0, 0, 0, 0, 0, 0 ; . . . ) ∈ R
10n

for some set of triangular coordinates {ti,j}. In other words, all of the quadrilateral and octagonal
coordinates of d are zero.

We know from Theorem 2.6 that v(S) and v(S′) both satisfy the standard almost normal
matching equations, and because these equations are linear it follows that d satisfies them also.
However, with the quadrilateral and octagonal coordinates of d equal to zero, we find that each
matching equation (3.2) reduces to the form ti,a = tj,e, where ti,a and tj,e represent triangular
disc types surrounding a common vertex of the triangulation in adjacent tetrahedra (illustrated in
Figure 8).

PSfrag replacements ∆i

∆j
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tj,e

Figure 8: Adjacent triangles surrounding a common vertex

By following these matching equations around each vertex of the triangulation T , we find that
for each vertex V of T , the coordinates {ti,j} for all triangular disc types surrounding V are equal.
That is, d = v(S)−v(S′) is a linear combination of standard almost normal vector representations
of vertex links. It follows then from Theorem 3.7 that the surfaces S and S′ can be made normal
isotopic only by adding or removing vertex linking components.4

Following the pattern established in previous sections, we now turn our attention to building
a set of necessary and sufficient conditions for a 6n-dimensional vector to represent an almost
normal surface in quadrilateral-octagon coordinates. These conditions include a set of matching
equations modelled on the original quadrilateral matching equations of Tollefson (Definition 4.3),
and a recasting of the quadrilateral-octagon constraints in 6n dimensions (Definition 4.4). The
full set of necessary and sufficient conditions is laid down and proven in Theorem 4.5.

4It is important to realise that we can in fact add vertex linking components to an arbitrary surface without causing
intersections. This is possible because we can “shrink” a vertex link arbitrarily close to the vertex that it surrounds,
allowing us to avoid any other normal or almost normal discs.
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Definition 4.3 (Quadrilateral-Octagon Matching Equations) Let T be a compact 3-mani-
fold triangulation formed from the n tetrahedra ∆1, . . . ,∆n, and let w ∈ R

6n be any 6n-dimensional
vector whose coordinates we label

w = ( q1,1, q1,2, q1,3, k1,1, k1,2, k1,3 ; . . . , kn,3 ) .

For each non-boundary edge of T , we obtain a quadrilateral-octagon matching equation on w as
follows.

Let e be some non-boundary edge of T . As with Tollefson’s original quadrilateral matching
equations, we arbitrarily label the two ends of e as upper and lower. The tetrahedra containing
edge e are arranged in a cycle around e, as illustrated in the leftmost diagram of Figure 9. Choose
some arbitrary direction around this cycle, and suppose that the tetrahedra that we encounter as
we travel in this direction around the cycle are labelled ∆i1 , . . . ,∆it .
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Figure 9: Building the quadrilateral-octagon matching equations

Consider any tetrahedron ∆ij in this cycle. Within this tetrahedron, there are two quadrilateral
types and two octagon types that meet edge e precisely once. For one quadrilateral and one octagon
type, the intersection with e acts as a “hinge” about which two adjacent edges of the disc rise from
the lower end of e to the upper end of e as we travel around the cycle in the chosen direction.
We call these disc types the upward quadrilateral and the upward octagon in ∆ij , and we call the
remaining two disc types the downward quadrilateral and the downward octagon in ∆ij . All four
disc types are illustrated in the rightmost portion of Figure 9.

Suppose now that the coordinates corresponding to the upward quadrilateral and octagon types
are qi1,u1

, qi2,u2
, . . . , qit,ut and ki1,u′

1
, ki2,u′

2
, . . . , kit,u′

t
respectively, and that the coordinates cor-

responding to the downward quadrilateral and octagon types are qi1,d1 , qi2,d2 , . . . , qit,dt and ki1,d′1 ,

ki2,d′2 , . . . , kit,d
′

t
respectively.5 Then we obtain the matching equation

qi1,u1
+ . . .+ qit,ut + ki1,u′

1
+ . . .+ kit,u′

t
= qi1,d1 + . . .+ qit,dt + ki1,d′1 + . . .+ kit,d′t . (4.3)

In other words, the total number of upward quadrilaterals and octagons surrounding e equals the
total number of downward quadrilaterals and octagons surrounding e.

Note that each tetrahedron surrounding e contains a third quadrilateral type and a third
octagon type, neither of which appears in equation (4.3). The third quadrilateral type is missing

5If we number the quadrilateral and octagon types within each tetrahedron in a natural way, we find that u′

j = dj

and d′j = uj for each j. That is, our numbering scheme associates each upward quadrilateral type with a downward
octagon type and vice versa. We return to this matter in Section 8.
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because it does not intersect with the edge e at all. The third octagon type is missing because,
although it intersects e twice, these intersections behave in a similar fashion to two triangular discs
(one at each end of e). Details can be found in the proof of Theorem 4.5.

As with Tollefson’s original quadrilateral matching equations, if our triangulation T is closed
and has precisely v vertices then we obtain a total of n+v quadrilateral-octagon matching equations
(one for each of the n+ v edges of T ).

Definition 4.4 (Quadrilateral-Octagon Constraints) Let T be a compact 3-manifold trian-
gulation formed from the n tetrahedra ∆1, . . . ,∆n, and consider any vector

w = ( q1,1, q1,2, q1,3, k1,1, k1,2, k1,3 ; . . . , kn,3 ) ∈ R
6n
.

We say that w satisfies the quadrilateral-octagon constraints if and only if:

(i) For every tetrahedron ∆i, at most one of the six quadrilateral and octagonal coordinates qi,1,
qi,2, qi,3, ki,1, ki,2 and ki,3 is non-zero;

(ii) In the entire triangulation T , at most one of the 3n octagonal coordinates k1,1, . . . , kn,3 is
non-zero.

Note that Definition 4.4 is essentially a direct copy of the quadrilateral-octagon constraints for
standard almost normal coordinates (Definition 3.6), merely recast in 6n dimensions instead of
10n.

We can now describe the full set of necessary and sufficient conditions for a vector to represent
an almost normal surface in quadrilateral-octagon coordinates. The resulting theorem incorporates
aspects of both Theorem 2.6 (which uses Tollefson’s original quadrilateral matching equations) and
Theorem 3.7 (which introduces the quadrilateral-octagon constraints).

Theorem 4.5 Let T be a compact 3-manifold triangulation formed from n tetrahedra. An integer
vector w ∈ R

6n is the quadrilateral-octagon vector representation of an octagonal almost normal
surface in T if and only if:

• The coordinates of w are all non-negative;

• w satisfies the quadrilateral-octagon matching equations for T ;

• w satisfies the quadrilateral-octagon constraints for T ;

• There is precisely one non-zero octagonal coordinate in w, and this coordinate is set to one.

Yet again, such a vector is called an admissible vector.

Proof We begin by showing that the four conditions listed in Theorem 4.5 are necessary. Let S
be some octagonal almost normal surface in T . It is clear from Theorem 3.7 that the quadrilateral-
octagon vector representation k(S) is a non-negative vector that satisfies the quadrilateral-octagon
constraints, and that there is precisely one non-zero octagonal coordinate in k(S) whose value is
set to one. All that remains then is to show that k(S) satisfies the quadrilateral-octagon matching
equations, which is a simple matter of combining the standard almost normal matching equations
appropriately. The details are as follows.

Suppose that S has standard vector representation

v(S) = ( t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3, k1,1, k1,2, k1,3 ; . . . , kn,3 ) .

Let e be any non-boundary edge of T , and arbitrarily label the two ends of e as upper and lower.
Following Definition 4.3, let the tetrahedra containing e be labelled ∆i1 , . . . ,∆it as we cycle in some
arbitrary direction around e, let coordinates qi1,u1

, qi2,u2
, . . . , qit,ut and ki1,u′

1
, ki2,u′

2
, . . . , kit,u′

t
cor-

respond to the upward quadrilateral and octagon types, and let coordinates qi1,d1 , qi2,d2 , . . . , qit,dt
and ki1,d′1 , ki2,d

′

2
, . . . , kit,d′t correspond to the downward quadrilateral and octagon types.

We continue labelling coordinates as follows. Suppose that ti1,a1
, ti1,a2

, . . . , ti1,at correspond
to the triangular disc types surrounding the upper end of e, as illustrated in the left-hand portion
of Figure 10. Furthermore, suppose that ki1,b1 , ki2,b2 , . . . , kit,bt correspond to the octagonal disc
types in each tetrahedron that are neither upward nor downward octagons, as illustrated in the
right-hand portion of Figure 10.
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Calling on Theorem 3.7 again, we know that v(S) satisfies the standard almost normal matching
equations (Definition 3.5). Amongst those matching equations that involve the adjacent pairs of
tetrahedra (∆i1 ,∆i2), (∆i2 ,∆i3), . . . , (∆it ,∆i1), we find the t equations

ti1,a1
+ qi1,u1

+ ki1,u′

1
+ ki1,b1 = ti2,a2

+ qi2,d2 + ki2,d′2 + ki2,b2 ,

ti2,a2
+ qi2,u2

+ ki2,u′

2
+ ki2,b2 = ti3,a3

+ qi3,d3 + ki3,d′3 + ki3,b3 ,

...

tit,at + qit,ut + kit,u′

t
+ kit,bt = ti1,a1

+ qi1,d1 + ki1,d′1 + ki1,b1 .

(4.4)

Summing these together and cancelling the common terms {tij ,aj
} and {kij ,bj }, we obtain

qi1,u1
+ . . .+ qit,ut + ki1,u′

1
+ . . .+ kit,u′

t
= qi1,d1 + . . .+ qit,dt + ki1,d′1 + . . .+ kit,d′t .

That is, the quadrilateral-octagon vector representation k(S) satisfies the quadrilateral-octagon
matching equations.

We now turn to the more interesting task of proving that our list of conditions is sufficient for
an integer vector w ∈ R

6n to represent an octagonal almost normal surface. Let

w = ( q1,1, q1,2, q1,3, k1,1, k1,2, k1,3 ; . . . , kn,3 ) ∈ R
6n

be an arbitrary integer vector that satisfies the four conditions listed in the statement of this
theorem. Our aim is to extend w to an integer vector

w′ = ( t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3, k1,1, k1,2, k1,3 ; . . . , kn,3 ) ∈ R
10n

that satisfies the conditions of Theorem 3.7. If we can do this, it will follow from Theorem 3.7 that
w′ is the standard almost normal vector representation of some octagonal almost normal surface
in T , whereupon w must be the quadrilateral-octagon vector representation of this same surface.

Given our conditions on w ∈ R
6n, it is clear that any non-negative extension w′ ∈ R

10n

will satisfy the quadrilateral-octagon constraints, and will have precisely one non-zero octagonal
coordinate whose value is set to one. All we must do then is show that we can find a set of non-
negative triangular coordinates {ti,j} that satisfy the standard almost normal matching equations
of Definition 3.5.

Our broad strategy is to use the vertex links of T as a “canvas” on which we write the triangular
coordinates ti,j , and to reformulate the matching equations as local constraints on this canvas.
In doing this, we show that the standard almost normal matching equations describe a cochain
α ∈ C1(D), where D is the dual polygonal decomposition of the vertex links, and that a solution
{ti,j} exists if and only if α is a coboundary. Using the quadrilateral-octagon matching equations
we then find that α is a cocycle, whereupon the result follows from the trivial homology of the
vertex links. The details are as follows.

Because T is a compact triangulation, each of its vertex links is a triangulated sphere or disc,
as illustrated in the left-hand diagram of Figure 11. Each triangular disc type appears once and
only once amongst the vertex links, and so we can write each integer ti,j on the corresponding
vertex link triangle as illustrated in the right-hand diagram of Figure 11. This is the sense in
which we use the vertex links as a “canvas”.
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Figure 11: Writing the coordinates ti,j on the triangulated vertex links

We can now reformulate the standard almost normal matching equations as constraints on this
canvas. Recall that each standard matching equation involves a face F of T and arcs parallel to
some edge e of this face, as illustrated in the left-hand diagram of Figure 12. We can associate
every such equation with a single non-boundary edge g of a triangulated vertex link, where this
edge g also appears as an arc of the face F parallel to e, as illustrated in the right-hand diagram
of Figure 12. In this way, the standard almost normal matching equations and the non-boundary
edges of the triangulated vertex links are in one-to-one correspondence.
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Figure 12: Associating a standard matching equation with an edge of a vertex link

Now consider some standard matching equation ti,a + qi,b + ki,c + ki,d = tj,e + qj,f + kj,g + kj,h
(as seen in Definition 3.5), and let g be the corresponding edge of the triangulated vertex links.
The coordinates ti,a and tj,e correspond to the triangles on either side of g, and so we can write
this equation in the form

ti,a − tj,e = K,

where K depends only on the quadrilateral and octagonal coordinates of w. In other words, K is
a fixed quantity (dependent on the chosen edge g) that we can evaluate by looking at our original
vector w ∈ R

6n. We express this equation on our canvas by drawing an arrow from the triangle
containing tj,e to the triangle containing ti,a, and by labelling this arrow with the constant K.
This procedure is illustrated in Figure 13.
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Figure 13: Representing a standard matching equation by a labelled arrow

Our situation is now as follows. On our canvas—the triangulated vertex links of T —we have
a labelled arrow crossing each non-boundary edge, and our task is to fill each triangle with an
integer such that the difference across each edge matches the label on the corresponding arrow.
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An example of such a solution for a triangulated disc is illustrated in Figure 14. It is clear at this
point that we do not need to worry about our non-negativity condition, since we can always add
a constant to every triangle without changing the differences across the edges.
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Figure 14: Solving the standard matching equations

We can rephrase this using the language of cohomology. Let D be the dual polygonal decompo-
sition of the set of all vertex links, so that each triangle of a vertex link becomes a vertex of D and
each labelled arrow becomes a directed edge of D. Then together the arrows describe a cochain
α ∈ C1(D) that maps each dual edge to the corresponding label. A solution {ti,j} corresponds to
a cochain β ∈ C0(D) that maps each dual vertex to the integer in the corresponding triangle, and
the “difference condition” that such a solution must satisfy is simply α = δβ. That is, a solution
{ti,j} exists if and only if α is a coboundary.

We now turn to the quadrilateral-octagon matching equations, which we assume hold for our
original vector w ∈ R

6n. These equations do not involve the triangular coordinates at all. Instead
they tell us about the relations between different quadrilateral and octagonal coordinates of w,
which means they give us information about the labels on our arrows.

Consider some vertex V of the triangulation T , let U be some non-boundary vertex of the
triangulated link ℓ(V ), and let e be the edge of T that runs through U and V as illustrated in
Figure 15. Let K1, . . . ,Kt be the labels on the arrows surrounding U , as seen in the right-hand
diagram of this figure (where we make all arrows point in the same direction around U by reversing
arrows and negating labels as necessary). Recall that by construction, each label Ki is a linear
combination of two quadrilateral and four octagonal coordinates of w.PSfrag replacements

U

U

V

e

K1

K2

K3

K4

K5

Figure 15: The triangles surrounding some vertex U of the vertex link ℓ(V )

Now consider the quadrilateral-octagon matching equation constructed from edge e. By declar-
ing V to be at the upper end of e, we can invert the procedure used earlier in equation (4.4) to
express our matching equation as

K1 + . . .+Kt = 0.

In other words, the quadrilateral-octagon matching equations tell us that around every non-
boundary vertex of a triangulated vertex link, the sum of labels on arrows is zero. We see this
for instance in Figure 14—by walking clockwise around each internal vertex and negating labels
when arrows point backwards, the left internal vertex gives 1 + 0− (−3)− 4 + 3 + (−1)− 2 = 0,
and the right internal vertex gives 2 + (−1)− 0− (−2) + (−3) = 0.

Returning to our cohomology formulation, this simply tells us that δα = 0, where α ∈ C1(D)
is the cochain described earlier. That is, α is a cocycle. However, because each vertex link is a
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sphere or a disc, the cohomology group H1(D) is trivial. Therefore α is also a coboundary, as
required.

The final step of this proof shows why we must exclude the ideal triangulations of Thurston
[24] from our consideration. In an ideal triangulation, vertices form higher-genus cusps, whereupon
the vertex links become higher-genus surfaces with non-trivial homology. Therefore, although the
quadrilateral-octagon matching equations still show that α ∈ C1(D) is a cocycle in the proof
above, we can no longer conclude from this that α is a coboundary and that the solution {ti,j}
exists.

To finish this section, we define a vertex surface in our new coordinate system using the same
pattern that we have employed several times already.

Definition 4.6 (Quadrilateral-Octagon Vertex Almost Normal Surface) Let T be a com-
pact 3-manifold triangulation, The quadrilateral-octagon projective solution space for T is the
rational polytope formed by (i) taking the polyhedral cone of all non-negative vectors in R

6n that
satisfy the quadrilateral-octagon matching equations for T , and then (ii) intersecting this cone with
the hyperplane {w ∈ R

6n |
P

wi = 1}.
Let S be an octagonal almost normal surface in T . If the quadrilateral-octagon vector repre-

sentation k(S) is a positive multiple of some vertex of the quadrilateral-octagon projective solution
space, then we call S a quadrilateral-octagon vertex almost normal surface.

It should be noted that, whilst it can be shown that a connected quadrilateral-octagon ver-
tex almost normal surface is also a standard vertex almost normal surface6, the converse is not
necessarily true. We address this problem for the 3-sphere recognition algorithm in the following
section by proving that the surface we seek does indeed appear as a vertex surface in quadrilat-
eral-octagon coordinates. More generally, we describe in Section 6 how the conversion algorithm
of [6] can reconstruct the set of all standard vertex almost normal surfaces, given the set of all
quadrilateral-octagon vertex almost normal surfaces as input.

5 3-Sphere Recognition

The algorithm to recognise the 3-sphere has seen a significant evolution since it was first introduced
by Rubinstein in 1992. Rubinstein’s original algorithm [21] involved finding a maximal disjoint
collection of embedded normal 2-spheres within a triangulation T , slicing T open along these
2-spheres, and then searching for almost normal 2-spheres within the complementary regions.
Thompson [23] gave an alternate proof of this algorithm using Gabai’s concept of thin position,
and also showed that it was only necessary to consider octagonal almost normal surfaces.

The algorithm at this stage remained extremely slow7 and fiendishly difficult to implement. The
main problems were (i) the need to locate and deal with many normal and almost normal surfaces
simultaneously, and (ii) the need to locate almost normal surfaces in complementary regions of T
containing not only tetrahedra but also sliced and truncated pieces of tetrahedra. Fortunately this
algorithm was simplified enormously by Jaco and Rubinstein [15] using the concept of 0-efficient
triangulations, to the point where a computer implementation became practical. The first real
implementation of 3-sphere recognition was in the software package Regina [4] in 2004, over a
decade after the algorithm was first introduced.

We begin this section with a brief discussion of the theory behind the final algorithm of Jaco
and Rubinstein [15], followed by the algorithm itself (Algorithm 5.4). A key step of this algorithm
(and indeed its bottleneck) is an enumeration of standard vertex almost normal surfaces. The
main result of this section is Theorem 5.5, in which we show that we can restrict our attention to
quadrilateral-octagon vertex normal surfaces instead.

As noted in the introduction, the enumeration of normal and almost normal surfaces can grow
exponentially slowly in the dimension of the underlying vector space [5]. By using Theorem 5.5
we are able to reduce this dimension from 10n to 6n, which in theory should cut down the running
time substantially. In Section 7 we test this experimentally, where indeed we find that the speed
of 3-sphere recognition improves by orders of magnitude for the cases that we examine.

6The proof is identical to the corresponding result for normal surfaces; see [6] for details.
7In theory of course, since at that stage a computer implementation did not exist.
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We turn our attention now to the most recent form of the 3-sphere recognition algorithm, as
given by Jaco and Rubinstein [15]. The advantages of this algorithm over its predecessors are due
to the use of 0-efficient triangulations, which are defined as follows.

Definition 5.1 (0-Efficiency) Let T be a closed compact 3-manifold triangulation. We say that
T is 0-efficient if the only embedded normal 2-spheres in T are vertex links.

It turns out that 0-efficient triangulations are relatively common, in that they exist for all
closed orientable irreducible 3-manifolds except for RP 3 [15, Theorem 5.5]. Moreover, Jaco and
Rubinstein provide a procedure for explicitly constructing a 0-efficient triangulation of such a
manifold. More generally, Jaco and Rubinstein prove the following:

Theorem 5.2 Let T be a closed compact 3-manifold triangulation representing some (unknown)
orientable 3-manifold M . Then there is a procedure to express M as a connected sum M =
M1# . . .#Mt, where each Mi is either given by a 0-efficient triangulation Ti, or is one of the
special spaces S2 × S1, RP 3 or the lens space L(3, 1).

The details of this procedure can be found in Theorems 5.9 and 5.10 of [15] and surrounding
comments. The key idea is to repeatedly locate embedded normal 2-spheres and crush them, until
no such 2-spheres can be found. Note that we might still be unable to identify the constituent
manifolds {Mi}, but with the 0-efficient triangulations {Ti} we may be better placed to learn more
about them. We do not expand further on this decomposition procedure of Jaco and Rubinstein—
although it plays a key role in the 3-sphere recognition algorithm, our focus for this paper is on a
different part of the algorithm instead.

The core result behind Jaco and Rubinstein’s version of the 3-sphere recognition algorithm
is the following theorem, which builds on earlier work of Rubinstein and Thompson [21, 23] by
exploiting properties of 0-efficiency. The various components of this theorem can be found in
Proposition 5.12 of [15] and surrounding comments.

Theorem 5.3 Let T be a closed compact 3-manifold triangulation that is orientable and 0-effi-
cient. Then the following statements are equivalent:

• T is a triangulation of the 3-sphere;

• T has more than one vertex, or T contains an octagonal almost normal 2-sphere;

• T has more than one vertex, or T contains an octagonal almost normal 2-sphere that is a
standard vertex almost normal surface.

Based on this result, the full 3-sphere recognition algorithm of Jaco and Rubinstein runs as
follows.

Algorithm 5.4 (3-Sphere Recognition) Let T be a closed compact 3-manifold triangulation,
and let M be the 3-manifold that T represents. The following algorithm decides whether or not M
is the 3-sphere S3:

1. Test whether M is orientable and has trivial first homology. If not, then terminate with the
result M 6= S3.

2. Using the procedure of Theorem 5.2, express the underlying 3-manifold M as a connected
sum decomposition M1#M2# . . .#Mt, where each Mi is given by a 0-efficient triangulation
Ti. If this list is empty (i.e., t = 0), then terminate with the result M = S3.

3. Of the 0-efficient triangulations T1, . . . , Tt, ignore those with more than one vertex. For each
one-vertex triangulation Ti:

(i) Enumerate the standard vertex almost normal surfaces of Ti.

(ii) Search through the resulting list of surfaces for an almost normal 2-sphere. If one cannot
be found then terminate with the result M 6= S3.

4. If we have not yet terminated, then every 0-efficient triangulation Ti has either more than
one vertex or an almost normal 2-sphere. In this case we conclude that M = S3.

There are some points worth noting about this algorithm:
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• In step 2, we do not account for the special spaces S2 × S1, L(3, 1) and RP 3 that can arise
in the decomposition procedure of Theorem 5.2. This is because the homology test in step 1
prevents any of these special spaces from appearing.

• The enumeration of surfaces in step 3 involves a modified double description method, which
is described fully in [5]. We return to the enumeration algorithm in Section 6, where we
discuss it from the perspective of quadrilateral-octagon coordinates.

We come now to the main result of this section, which is a quadrilateral-octagon analogue for
the earlier Theorem 5.3. What we essentially show is that, for the enumeration of vertex almost
normal surfaces in step 3 of the algorithm above, we can work in quadrilateral-octagon coordinates
instead of standard coordinates (in other words, 6n dimensions instead of 10n). This is important
from a practical perspective, since experience indicates that this enumeration step is typically the
bottleneck for the entire 3-sphere recognition algorithm.8

Theorem 5.5 Let T be a closed compact 3-manifold triangulation that is orientable and 0-effi-
cient. Then the following statements are equivalent:

• T is a triangulation of the 3-sphere;

• T has more than one vertex, or T contains an octagonal almost normal 2-sphere that is a
quadrilateral-octagon vertex almost normal surface.

Proof We assume that T is a one-vertex triangulation, since otherwise the result follows immedi-
ately from Theorem 5.3. Given this, it is clear from Theorem 5.3 that T triangulates the 3-sphere
if and only if T contains an octagonal almost normal 2-sphere. All we need to show is that, if
T contains an octagonal almost normal 2-sphere, then it contains one as a quadrilateral-octagon
vertex almost normal surface.

Our proof is based around an idea of Casson, used also by Jaco and Rubinstein to prove the
corresponding claim in standard coordinates. We work within a face of the projective solution
space and show that the maximum of χ′(u) − O(u) occurs at a vertex, where χ′(·) represents
Euler characteristic and O(·) is the sum of octagonal coordinates. One complication that we face
in quadrilateral-octagon coordinates is that, unlike the situation in standard coordinates, Euler
characteristic is not a linear functional. Nevertheless, we are able to work around this difficulty
by falling back to convexity instead. The details are as follows.

Suppose that T contains some octagonal almost normal 2-sphere S. Let PQO ⊆ R
6n denote

the quadrilateral-octagon projective solution space (Definition 4.6), and let F be the minimal-
dimensional face of PQO containing the vector representation k(S). This face F is the face in
which we plan to work.

We begin by showing that every point u ∈ F satisfies the quadrilateral-octagon constraints. In
contrast, suppose that some u ∈ F does not satisfy these constraints. Then for some coordinate
position i ∈ {1, . . . , 6n} we must have ui > 0 where k(S)i = 0. Let H be the hyperplane
H = {w ∈ R

6n |wi = 0}; it is clear that H is a supporting hyperplane for PQO , and so H ∩ F is a
sub-face of F containing k(S) but not u, contradicting the minimality of F .

In order to define the Euler characteristic function χ′ : F → R, we must understand the
relationship between standard and quadrilateral-octagon vector representations. With this in
mind, we define the projection map π : R10n → R

6n and the extension map ε : F → R
10n as

follows.9

• For a vector v ∈ R
10n, the projection π(v) is the vector v with all triangular coordinates

removed. That is, if

v = ( t1,1, t1,2, t1,3, t1,4, q1,1, q1,2, q1,3, k1,1, k1,2, k1,3 ; . . . , kn,3 ) ∈ R
10n

, then

π(v) = ( q1,1, q1,2, q1,3, k1,1, k1,2, k1,3 ; . . . , kn,3 ) ∈ R
6n
.

8If the manifold M is a connected sum of several high-complexity homology 3-spheres, then the decomposition
procedure of Jaco and Rubinstein becomes a greater problem for performance. However, it is reasonable to suggest that
such cases are rare in “ordinary” applications.

9These maps are the almost normal analogues to quadrilateral projection and canonical extension, which are defined
in [6] for the context of embedded normal surfaces.
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• For a vector u ∈ F ⊂ R
6n, the extension ε(u) is defined as follows. Because F ⊆ PQO , we

know that u satisfies the quadrilateral-octagon matching equations. By the same argument
used in the proof of Theorem 4.5, we can therefore solve the standard almost normal matching
equations to obtain values for the missing triangular coordinates, giving us an extension x ∈
R

10n that satisfies the standard almost normal matching equations and for which π(x) = u.

By the same argument used in the proof of Lemma 4.2, this extension is unique up to multiples
of vertex links. We therefore define ε(u) to be the “minimal” extension, in the sense that we
subtract the largest possible multiple of each vertex link without allowing any coordinates
to become negative. In other words, every coordinate of ε(u) is non-negative, and for every
vertex link ℓ(V ), the coordinate for some triangular disc type in ℓ(V ) is zero.

It is important to note that, based on the way in which we solve the standard almost normal
matching equations, if u is an integer vector then ε(u) is an integer vector also.

It is clear that π : R10n → R
6n is a linear map. For ε : F → R

10n the situation is a little more
complex. By the linearity of the matching equations, it is clear that

ε(λu) = λε(u) (5.5)

for any λ ≥ 0. On the other hand, for arbitrary u,w ∈ F we only know that ε(u + w) and
ε(u) + ε(w) are related by adding or subtracting multiples of vertex links. Since both ε(u) and
ε(w) are non-negative vectors, ε(u + w) can only subtract vertex links from their sum, yielding
the non-linear relation

ε(u+w) = ε(u) + ε(w)−
X

λiv(ℓ(Vi)), (5.6)

where each ℓ(Vi) is a vertex linking surface and each λi ≥ 0.
We can now define our Euler characteristic function as follows. It is well known that Euler

characteristic is a linear functional in standard coordinates—for an almost normal surface S the
Euler characteristic χ(S) is a linear function of the coordinates {ti,j}, {qi,j} and {ki,j},

10 and we
simply extend this to a linear functional χ : R10n → R. On our face F ⊆ PQO we then define the
Euler characteristic function χ′ : F → R by

χ
′(u) = χ(ε(u)).

Although χ′ is not linear on F , we can observe that each vertex link ℓ(Vi) is a 2-sphere, and
so χ(ℓ(Vi)) > 0. Therefore equations (5.5) and (5.6) give

χ
′(λu) = λχ

′(u) for all u ∈ F and λ ≥ 0; (5.7)

χ
′(u+w) ≤ χ

′(u) + χ
′(w) for all u,w ∈ F.

That is, χ′ is a convex function on F .
We are now able to exploit an analogue of the functional that Casson uses in standard coor-

dinates. Define the function g : F → R by g(u) = χ′(u) − O(u), where O(u) is the sum of all
octagonal coordinates in u. Since χ′ is convex and O is clearly linear, it follows that g is convex
also. Therefore the maximum of g is achieved at a vertex of the face F . Let this vertex be m ∈ F .

Our original almost normal 2-sphere S has g(k(S)) = 1, since S has Euler characteristic two,
precisely one octagonal disc, and no vertex linking components. Given that k(S) ∈ F , it follows
that g(m) > 0 also. Using the fact that PQO is a rational polytope, we can define m′ ∈ Z

6n to be
the smallest positive multiple of m with all integer coordinates.

Given that F ⊆ PQO and that every vector in F satisfies the quadrilateral-octagon constraints,
it follows that the extension ε(m′) satisfies all the conditions of admissibility in R

10n except
perhaps the requirement that the unique octagonal coordinate is set to one—instead we might
have multiple octagonal discs, or we might have none at all. We can therefore reconstruct an
embedded surface S′ with standard vector representation v(S′) = ε(m′), where S′ is one of the
following:

• an octagonal almost normal surface;

• like an octagonal almost normal surface but with more than one octagonal disc;

10The number of faces in S is simply
P

ti,j +
P

qi,j +
P

ki,j . The number of vertices in S is
P

w(ei), where w(ei)
is the number of times S intersects the edge ei of T , and where w(ei) can be written as a linear function of the discs in
some arbitrary tetrahedron containing ei. Edges of S are dealt with in a similar way.
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• an embedded normal surface with no octagonal discs at all.

We can show that the surface S′ is connected as follows. Suppose that S′ consists of distinct
components S′

1, . . . , S
′

t where t > 1. Then in quadrilateral-octagon coordinates we have m′ =
k(S′) =

P

k(S′

i), and since m′ is the smallest integer multiple of a vertex of PQO it follows that
all but one of the integer vectors k(S′

1), . . . ,k(S
′

t) must be zero. Therefore all but one of the
components S′

i are vertex links, which is impossible because the standard vector representation
v(S′) was constructed using the extension map ε.

From equation 5.7 we have χ′(m′) − O(m′) > 0, and because S′ is connected it follows that
2 ≥ χ(S′) > O(m′) ≥ 0. We must therefore be in one of the following situations:

(i) χ(S′) = 2 and O(m′) = 0.

In this case S′ is an embedded normal 2-sphere. Since our triangulation T is 0-efficient, it
follows that S′ is a vertex link and therefore k(S′) = 0, contradicting the fact that k(S′) is
a positive multiple of the vertex m ∈ PQO .

(ii) χ(S′) = 1 and O(m′) = 0.

In this case S′ is an embedded normal projective plane. Since T is orientable, S′ must be a
one-sided surface that doubles to an embedded normal sphere, giving the same contradiction
as above.

(iii) χ(S′) = 2 and O(m′) = 1.

In this case S′ has precisely one octagonal disc, and is therefore an octagonal almost normal
2-sphere.

The only case that does not yield a contradiction is (iii). Since k(S′) is a positive multiple of
the vertex m ∈ PQO , it follows that S′ is the quadrilateral-octagon vertex almost normal 2-sphere
that we seek.

6 Enumeration Algorithms

In this section we examine the practical issue of enumerating vertex almost normal surfaces. We
do not go into the full details of the enumeration algorithms, since they are intricate enough to
form the subjects of papers themselves [5, 6]. However, we do explain in broad terms why the
algorithms used for enumerating normal surfaces can also be used to enumerate almost normal
surfaces in both standard and quadrilateral-octagon coordinates, with no unexpected changes.

The layout of this section is as follows. We begin in Section 6.1 with the direct enumeration
algorithm, which is based on a filtered double description method. In Section 6.2 we discuss
the conversion algorithm from quadrilateral-octagon to standard coordinates, which allows us
to enumerate vertex surfaces in standard coordinates substantially faster than through a direct
enumeration. We conclude in Section 6.3 with some further notes on the implementation and use
of these algorithms.

The key observations that we make for quadrilateral-octagon coordinates are:

(i) Enumerating vertex surfaces in quadrilateral-octagon coordinates is a simple matter of ap-
plying the direct enumeration algorithm of [5] “out of the box”, though we cannot enforce
the “one and only one octagon” constraint until the algorithm has finished.

(ii) Likewise, we can use the conversion algorithm of [6] out of the box to convert the vertices of
the quadrilateral-octagon projective solution space into the vertices of the standard projective
solution space, though again we must be careful with our use of the “one and only one
octagon” constraint.

(iii) As a consequence of (ii), we can use quadrilateral-octagon coordinates to substantially im-
prove the speed of high-level topological algorithms, even without specific results such as
Theorem 5.5 that allow us to focus only on quadrilateral-octagon coordinates.

6.1 Direct Enumeration

At its core, the enumeration of vertex normal surfaces uses a combination of the double description
method of Motzkin et al. [19] and the filtering method of Letscher. The details can be found in
[5], but essentially the algorithm runs as follows.
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Suppose we are working in the vector space R
d with g matching equations (so for a closed one-

vertex triangulation we have d = 7n and g = 6n in standard coordinates, or d = 3n and g = n+1 in
quadrilateral coordinates). We inductively create a series of polytopes P0, . . . , Pg ⊆ R

d described
by their vertex sets V0, . . . , Vg according to the following procedure:

• The polytope P0 is the intersection of the non-negative orthant in R
d with the projective

hyperplane {x ∈ R
d |

P

xi = 1}, and the corresponding vertex set V0 consists of all unit
vectors in R

d.

• The polytope Pi is created by intersecting Pi−1 with a hyperplane corresponding to the
ith matching equation. The vertex set Vi consists of vertices v ∈ Vi−1 that lie inside this
hyperplane, as well as combinations of pairs of vertices u,v ∈ Vi−1 that lie on opposite sides
of this hyperplane.

The final polytope Pg is the projective solution space, and by rescaling the vertex set Vg into
integer coordinates we can reconstruct the corresponding vertex normal surfaces.

Although this procedure accounts for non-negativity and the matching equations, we have
not made use of the quadrilateral constraints. This is where the filtering method of Letscher
comes into play. The key idea is to enforce the quadrilateral constraints at every stage of the
double description method—specifically, we strip all vertices from each set Vi that do not satisfy
the quadrilateral constraints. Although this means that each set Vi does not give a complete
representation of the polytope Pi, by filtering out “bad” vertices at every stage of the algorithm
we can tame the exponential explosion in the size of the vertex sets Vi, improving the performance
of the algorithm in practice by a substantial amount.

It is useful to understand why this enumeration algorithm works, so that we can see whether
it can also be used with almost normal surfaces. In essence, the key reasons are as follows:

• The double description method of Motzkin et al. works because the projective solution space is
a convex polytope, defined as the intersection of the non-negative orthant with the projective
hyperplane

P

xi = 1 and an additional hyperplane for each matching equation.

• The filtering method of Letscher works because the quadrilateral constraints satisfy the
following key properties:

Property A: The quadrilateral constraints are satisfied on a union of faces of the
non-negative orthant, and therefore on a union of faces of the projective solution
space.

Property B: Let u and v be non-negative vectors in R
d. If either u or v does

not satisfy the quadrilateral constraints, then the combination αu+ βv can never
satisfy the quadrilateral constraints for any α, β > 0.

Note that property B is an immediate consequence of property A, and that property A holds
because each constraint is of the form “at most one of the coordinates {xi | i ∈ C} may be
non-zero”, where C ⊆ {1, . . . , d} is some set of coordinate positions.

We now turn our attention to the enumeration of vertex almost normal surfaces, in both
standard almost normal coordinates and quadrilateral-octagon coordinates.

• Once again, the projective solution space is the intersection of the non-negative orthant with
the projective hyperplane

P

xi = 1 and an additional hyperplane for each matching equation.
As a result, the double description method of Motzkin et al. works seamlessly with almost
normal surfaces.

• Like the original quadrilateral constraints, the quadrilateral-octagonal constraints for almost
normal surfaces are each of the form “at most one of the coordinates {xi | i ∈ C} may be
non-zero”, where C ⊆ {1, . . . , d} is some set of coordinate positions. As a result, both of the
above properties A and B hold, and we can seamlessly use the filtering method of Letscher to
enforce the quadrilateral-octagon constraints at each stage of the double description method.

However, Theorems 3.7 and 4.5 show that octagonal almost normal surfaces come with an
additional constraint:

Constraint (⋆): For v to be the vector representation of an octagonal almost normal
surface, there must be some non-zero octagonal coordinate in v, and this coordinate
must be set to one.
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It is clear that we cannot enforce (⋆) on the projective solution space, since there the coordinates
of each vector are rationals (not integers) that sum to one. From the viewpoint of the projective
solution space, this constraint is not so much a property of a vector v, but rather a property of
the smallest multiple of v with integer coordinates. It follows that the final constraint (⋆) cannot
be inserted verbatim into the filtering process.

We might instead consider enforcing a weaker version of (⋆), where every vector v ∈ Vi must
have some non-zero octagonal coordinate (therefore eliminating vectors that yield no octagons at
all). However, this variant is also unsuitable for filtering, since it satisfies neither of the properties A
or B. In essence, the reason we must keep track of normal surfaces (with no octagons) is so that
we can combine them with old almost normal surfaces to create new almost normal surfaces.

The conclusion then is that we must forget the final condition (⋆) while the algorithm is
running, and enforce it only once we have our final set of vertices Vg. Note that this is not a severe
penalty—the quadrilateral-octagon constraints already ensure that we have at most one octagon
type in each vector, and so our only inefficiency is that we must carry around vectors that yield
too many octagons of a single type, or that yield no octagons at all.

As a final note, the paper [5] offers a number of additional optimisations to the core filtered
double description method. As with the core algorithm, these optimisations can also be used
seamlessly with octagonal almost normal surfaces, as long as we remember to delay the constraint
(⋆) until after the algorithm has finished.

6.2 The Conversion Algorithm

The paper [6] describes a conversion algorithm from quadrilateral to standard coordinates for
normal surfaces. The purpose of this algorithm is not just to convert vectors between coordinate
systems (which is fairly straightforward), but to convert entire solution sets. That is, the algorithm
begins with the set of all vertices of the quadrilateral projective solution space that satisfy the
quadrilateral constraints, and converts this to the (typically much larger) set of all vertices of the
standard projective solution space that satisfy the quadrilateral constraints. We are therefore able
to recover the standard vertex normal surfaces that are “lost” in quadrilateral coordinates.

As a result, this algorithm allows us to enumerate all standard vertex normal surfaces using
the following two-step procedure:

1. Use direct enumeration (as described in Section 6.1) to enumerate all vertices of the quadri-
lateral projective solution space that satisfy the quadrilateral constraints.

2. Use the conversion algorithm (as described below) to recover all vertices of the standard
projective solution space that satisfy the quadrilateral constraints, and thereby the set of all
standard vertex normal surfaces.

Experimentation shows the conversion algorithm to have negligible running time, and as a result
this two-step procedure is found to be orders of magnitude faster than a direct enumeration in
standard coordinates [6]. The overall outcome is that we can harness the speed of quadrilateral
coordinates without the need to prove additional theorems in quadrilateral coordinates (such as
we do here for quadrilateral-octagon coordinates in Theorem 5.5).

Broadly speaking, the conversion algorithm operates as follows. Suppose the triangulation T
is formed from n tetrahedra, and contains the m vertices V1, . . . , Vm. We inductively construct
lists of vectors L0, . . . , Lm ⊂ R

7n according to the following procedure:

• The list L0 contains the input for the algorithm, which consists of all vertices of the quadri-
lateral projective solution space that satisfy the quadrilateral constraints. Each vector is
extended from R

3n to R
7n by solving the standard matching equations.

• Each subsequent list Li generates all non-negative vectors in R
7n that satisfy the quadrilateral

constraints, and that can be formed by (i) combining vectors from the previous list Li−1 and
then (ii) adding or subtracting a multiple of the vertex linking vector v(ℓ(Vi)). This list Li is
constructed from Li−1 using an algorithm similar to the filtered double description method
of Section 6.1, though there are additional complications.

The final list Lm becomes the set of all vertices of the standard projective solution space that
satisfy the quadrilateral constraints.
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The key reason why the conversion algorithm works (in addition to those reasons discussed
earlier in Section 6.1) is because of the following relationship between standard and quadrilateral
coordinates:

Property C: The projection from standard to quadrilateral coordinates (where we sim-
ply remove the triangular coordinates {ti,j}) is a linear map from the standard projective
solution space to the quadrilateral projective solution space. Moreover, the kernel of this
map is generated by the standard vector representations of the vertex links.

We can now see why the conversion algorithm works seamlessly for almost normal surfaces. If
we replace standard and quadrilateral normal coordinates with standard and quadrilateral-octa-
gon almost normal coordinates, the critical property C still holds. We can thereby follow through
the algorithm and its proof as presented in [6], and we find that the algorithm works as expected.

Specifically, what this algorithm achieves for almost normal surfaces is to begin with the set
of all vertices of the quadrilateral-octagon projective solution space that satisfy the quadrilateral-
octagon constraints, and to convert this to the (again typically much larger) set of all vertices
of the standard almost normal projective solution space that satisfy the quadrilateral-octagon
constraints.

As with direct enumeration, there is a catch involving the constraint (⋆), which we recall insists
that each vector contain a non-zero octagonal coordinate whose value is set to one. For the same
reasons as discussed in Section 6.1, we cannot enforce the constraint (⋆) at each stage of the
conversion algorithm. More importantly, we cannot enforce (⋆) on the set of input vectors—the
input must be the set of all vertices of the quadrilateral-octagon solution space that satisfy the
quadrilateral-octagon constraints, whether these vertices yield many octagonal discs or whether
they yield none. Once again, we must delay the enforcement of (⋆) until the entire algorithm has
finished running and we are ready to present our final results.

As a final note, we observe that the conversion algorithm allows us to enumerate all standard
vertex almost normal surfaces using the following two-step procedure:

1. Use direct enumeration to enumerate all vertices of the quadrilateral-octagon projective so-
lution space that satisfy the quadrilateral-octagon constraints, taking care not to enforce the
extra constraint (⋆).

2. Use the conversion algorithm to recover all vertices of the standard almost normal projective
solution space that satisfy the quadrilateral-octagon constraints, and thereby the set of all
standard vertex almost normal surfaces.

As is the case with normal surfaces, experimentation shows that this two-step procedure runs
orders of magnitude faster than a direct enumeration in standard coordinates.

6.3 Further Notes

We finish with some additional notes on the implementation and use of the enumeration and
conversion algorithms.

Our first observation is the following. Although we work in 10n and 6n dimensions for stan-
dard almost normal and quadrilateral-octagon coordinates respectively, these large dimensions
seem wasteful. The quadrilateral-octagon constraints guarantee at most one non-zero octagonal
coordinate for each vector, so a different possibility might be to “select” a desired octagonal disc
type and then work in 7n+ 1 or 3n+ 1 dimensions instead.

Casson has suggested such a technique [13], where we iterate through all 3n possible octagonal
disc types, and for each such disc type we augment a traditional coordinate system for normal
surfaces with a single coordinate for this octagon. As a result we obtain 3n distinct projective
solution spaces, each with the significantly smaller dimension 7n+ 1 or 3n+ 1.

Although this reduction in dimensions is appealing, in practice both procedures essentially
perform the same computations—by working in a full set of standard almost normal or quad-
rilateral-octagon coordinates, we are simply performing the 3n smaller enumerations of Casson
“simultaneously”. This is because the quadrilateral-octagon constraints enforce at most one non-
zero octagonal coordinate, and so the set of vertices at each stage of the enumeration algorithm is
essentially the union of all 3n vertex sets in Casson’s scheme, with no additional “junk” vertices
that must later be thrown away.
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More importantly however, any enumeration of vertex almost normal surfaces includes an
implicit enumeration of vertex normal surfaces, since the quadrilateral-octagon constraints allow
surfaces with no octagons at all. To this end, a single “simultaneous” enumeration in 10n or
6n dimensions should be more efficient—if we run 3n independent enumerations in 3n different
projective solution spaces, then we effectively perform this implicit (and potentially slow [6])
normal surface enumeration 3n distinct times.

Our second observation involves the constraint (⋆) from Section 6.1—recall that this is the
final condition of Theorems 3.7 and 4.5, where we insist that there is some non-zero octagonal
coordinate, and that this coordinate is set to one. We have already observed that (⋆) cannot be
enforced during either the enumeration or conversion algorithms, and that we must instead apply
it as a filter after the algorithms have finished.

It is worth noting that there are situations in which we do not want to enforce (⋆) at all,
even after the algorithms have run. We have already seen one example in Section 6.2, where the
conversion algorithm requires that we do not enforce (⋆) on the vertices in quadrilateral-octa-
gon coordinates. Another example arises in applications where we use the vertex almost normal
surfaces as a basis to generate all almost normal surfaces (possibly with some limitations such as
genus to keep the list finite).11

In this case we cannot enforce (⋆) either, since it is possible to obtain new admissible vectors
through combinations of old vectors that break (⋆). For instance, we could combine an almost
normal surface with a plain normal surface (having no octagonal discs) to obtain a new almost
normal surface, or we could combine a surface with two octagons with a plain normal surface to
obtain the double of a new almost normal surface, whereupon we simply divide by two.

7 Measuring Performance

In this section we measure the practical benefits of using quadrilateral-octagon coordinates. We
do this by experimentally comparing running times for the 3-sphere recognition algorithm, using
different coordinate systems for the critical step in which we enumerate vertex almost normal
surfaces.

For our experiments we use the 15 smallest-volume homology 3-spheres from the closed hyper-
bolic census of Hodgson and Weeks [12]. The reason for choosing homology 3-spheres is because
we want to focus on almost normal surface enumeration—manifolds with non-trivial homology are
eliminated in the first step of the 3-sphere recognition algorithm, and experience suggests that
most real 3-spheres simplify to trivially small pieces during the decomposition procedure in the
second step of the algorithm.12

We use 0-efficient triangulations of these homology 3-spheres, with sizes ranging from 10 to 14
tetrahedra. Table 1 lists the volume of each manifold, the size of each triangulation, and the Dehn
filling given by Hodgson and Weeks to reconstruct each manifold. Each Dehn filling is applied to
a cusped manifold from the hyperbolic census of Hildebrand and Weeks [11].

For each of our 15 triangulations, we compare the running times for the following two proce-
dures:

• 3-sphere recognition as given in Algorithm 5.4, using standard almost normal coordinates for
the vertex enumeration in step 3 of the algorithm;

• The same algorithm, but using quadrilateral-octagon coordinates for the vertex enumeration
in step 3, as authorised by Theorem 5.5.

All experiments were performed on a single 2.3GHz AMD Opteron processor using the software
package Regina [2, 4].

The running times are plotted in Figure 16 using log scales, and the results are extremely
pleasing. Even in the worst case, quadrilateral-octagon coordinates still improve the running time
by a factor of 30. At the other extreme, for several triangulations we find that quadrilateral-octa-
gon coordinates improve the running time by factors of thousands, with an increase of just under
5000 times the speed for the best example.

11Such applications do appear in the literature; see [18] and [22] for examples.
12It is, however, possible to construct arbitrarily large 0-efficient triangulations of the 3-sphere [15].
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Hyperbolic volume Dehn filling Tetrahedra

1.39850888 m004( 1, 2) 10
1.91221025 m011( 2, 3) 11
2.22671790 m015(−3, 2) 11
2.25976713 m038( 1, 2) 11
2.51622138 m081( 3, 2) 12
2.62940540 m032( 5, 2) 12
2.71245881 m120(−3, 2) 12
2.86563023 m137(−5, 1) 13
2.98683705 m137( 5, 1) 13
3.08052001 m154(−2, 3) 12
3.08386105 m137(−6, 1) 14
3.16236729 m137( 6, 1) 14
3.40043687 m222(−3, 2) 13
3.44586464 m199(−5, 1) 14
3.54091542 m260(−3, 2) 13

Table 1: The 15 homology 3-spheres used for experimentation

8 Joint Coordinates

We finish this paper with an exploratory discussion of joint coordinates for octagonal almost normal
surfaces. Where quadrilateral-octagon coordinates reduce the dimension of the underlying vector
space from 10n to 6n, joint coordinates reduce this even further from 6n to 3n. The key idea is to
use negative coordinates for octagons and positive coordinates for quadrilaterals, noting from the
quadrilateral-octagon constraints that the two cannot occur together within the same tetrahedron.

Joint coordinates have a number of appealing properties. Not only is their dimension small,
but they carry the same information as quadrilateral-octagon coordinates (in contrast to the
step from standard to quadrilateral-octagon coordinates, where we lose information about vertex
links). Moreover, joint coordinates adhere to almost the same constraints in R

3n as Tollefson’s
quadrilateral coordinates for normal surfaces—in particular, they satisfy the original quadrilateral
matching equations and quadrilateral constraints from Section 2.

There is a cost however, which is the loss of convexity. For joint coordinates, we must allow one
coordinate (but no more) to become negative. As a result we no longer work in the non-negative
orthant of R3n, but rather the non-negative orthant and the 3n “almost non-negative” orthants
that border it. This has severe consequences for the enumeration algorithms described in Section 6,
which rely on convexity as a core requirement.

Nevertheless, it is pleasing to be able to express octagonal almost normal surfaces using essen-
tially the same coordinate system as normal surfaces, and to do so in a way that portrays them as a
natural extension of Tollefson’s original framework (where our extension involves simply stepping
“just outside” the non-negative orthant).

The layout of this section is as follows. We begin by describing the way in which we number
quadrilateral and octagon types within each tetrahedron, which must be done carefully for joint
coordinates to work. Following this, we define joint coordinates and develop the corresponding
uniqueness and admissibility results. We then present an example using a one-tetrahedron trian-
gulation, where we show graphically how the vector representations of normal and almost normal
surfaces appear in the corresponding solution space in R

3. To finish, we discuss how the loss of
convexity affects both the projective solution space and the enumeration algorithms.

Definition 8.1 (Quadrilateral and Octagon Numbering) Let ∆ be any tetrahedron in some
compact 3-manifold triangulation. Within ∆, we number the quadrilateral and octagon types 1, 2
and 3 so that, for each i ∈ {1, 2, 3}, the two edges of ∆ that quadrilaterals of type i never meet
are the same two edges of ∆ that octagons of type i meet twice. This correspondence between
quadrilaterals and octagons is illustrated in Figure 17.

This numbering scheme is very natural, in that the correspondence between quadrilaterals and
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Figure 16: Performance comparisons for 3-sphere recognition

Figure 17: The correspondence between quadrilaterals and octagons

octagons reflects the natural symmetries of these discs within a tetrahedron. One can also think
of an octagon of type i as being obtained from a quadrilateral of type i by pulling each edge of
the quadrilateral around and over the nearby vertex of the tetrahedron.

With our numbering scheme in place, we are now ready to define joint coordinates. Since we
plan to present joint coordinates as a natural extension of Tollefson’s quadrilateral coordinates,
we define them for both normal and almost normal surfaces as follows.

Definition 8.2 (Joint Vector Representation) Let T be a compact 3-manifold triangulation
formed from the n tetrahedra ∆1, . . . ,∆n, and let S be an embedded normal or octagonal almost
normal surface in T . For each tetrahedron ∆i, let qi,1, qi,2 and qi,3 denote the number of quadri-
lateral discs of each type, and let ki,1, ki,2 and ki,3 denote the number of octagonal discs of each
type in ∆i contained in the surface S.

Then the joint vector representation of S, denoted j(S), is the 3n-dimensional vector

j(S) = ( q1,1 − k1,1, q1,2 − k1,2, q1,3 − k1,3 ;

q2,1 − k2,1, q2,2 − k2,2, q2,3 − k2,3 ;

. . . , qn,3 − kn,3 ).

28



Our first task is to show that joint coordinates in 3n dimensions retain all of the information
carried by quadrilateral-octagon coordinates in 6n dimensions.

Lemma 8.3 Let T be a compact 3-manifold triangulation, and let S and S′ be embedded normal
or octagonal almost normal surfaces in T . Then the joint vector representations j(S) and j(S′)
are equal if and only if the quadrilateral-octagon vector representations k(S) and k(S′) are equal.

Here we define the quadrilateral-octagon vector representation for an embedded normal surface
in the obvious way, by setting all octagonal coordinates to zero.

Proof It is clear that if k(S) = k(S′) then j(S) = j(S′). Suppose conversely that j(S) = j(S′),
and consider the (i, t)th coordinate ji,t = qi,t − ki,t.

For both S and S′ we know that qi,t ≥ 0 and ki,t ≥ 0. Moreover, since S and S′ satisfy the
quadrilateral-octagon constraints, we know that they can each have qi,t > 0 or ki,t > 0 but not
both. It follows that for both S and S′ we have one of the following situations:

• ji,t = 0, in which case qi,t = ki,t = 0;

• ji,t = K > 0, in which case qi,t = K and ki,t = 0;

• ji,t = −K < 0, in which case qi,t = 0 and ki,t = K.

That is, we can reconstruct the individual constituents qi,t and ki,t from the joint coordinate ji,t,
whereupon we obtain k(S) = k(S′).

As an immediate consequence of Lemmas 8.3 and 4.2, we obtain the following uniqueness result
for joint vector representations:

Corollary 8.4 Let T be a compact 3-manifold triangulation, and let S and S′ be embedded normal
or octagonal almost normal surfaces in T . Then the joint vector representations j(S) and j(S′)
are equal if and only if either (i) the surfaces S and S′ are normal isotopic, or (ii) S and S′ can
be made normal isotopic by adding or removing vertex linking components.

We proceed now to give a complete classification of joint vector representations of embedded
normal and octagonal almost normal surfaces. As indicated earlier, one of the appealing features
of joint coordinates is that this classification corresponds precisely to Tollefson’s theorem for
embedded normal surfaces (Theorem 2.6), except for the fact that we must allow one coordinate
to become negative.

Theorem 8.5 Let T be a compact 3-manifold triangulation formed from n tetrahedra. An integer
vector w ∈ R

3n is the joint vector representation of an embedded normal or octagonal almost
normal surface in T if and only if:

• At most one coordinate of w is negative;

• w satisfies the quadrilateral matching equations for T (Definition 2.4);

• w satisfies the quadrilateral constraints for T (Definition 2.5);

• If there is a negative coordinate in w, then this coordinate is set to −1.

Moreover, such a vector represents an embedded normal surface in T if and only if all of its
coordinates are non-negative.

It is worth pointing out that we interpret the quadrilateral matching equations and the quadri-
lateral constraints literally for any 3n-dimensional vector. We do not try to “reconstruct” quadri-
lateral coordinates from w, but instead we read Definitions 2.4 and 2.5 precisely as given. In
particular, the vector

w = ( j1,1, j1,2, j1,3 ; . . . , jn,3 ) ∈ R
3n

is deemed to satisfy the quadrilateral constraints if at most one of ji,1, ji,2 and ji,3 is non-zero for
any given i. Likewise, w satisfies the quadrilateral matching equations if for each non-boundary
edge e of T we have

ji1,u1
+ ji2,u2

+ . . .+ jit,ut = ji1,d1 + ji2,d2 + . . .+ jit,dt ,
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where each uk is the number of an upward quadrilateral type meeting e in the ikth tetrahedron of
T , and each dk is the number of a downward quadrilateral type meeting e in the ikth tetrahedron
of T .

Proof of Theorem 8.5 Normal surfaces (as opposed to almost normal surfaces) are easily dealt
with. Suppose that S is some embedded normal surface in T . Then we have j(S) = q(S), and it
is clear from Theorem 2.6 that j(S) satisfies the four conditions given in this theorem, and that
every coordinate of j(S) is non-negative. Conversely, suppose that some integer vector w ∈ R

3n

satisfies these four conditions, and that all of its coordinates are non-negative. Then w satisfies the
conditions of Theorem 2.6, whereupon it follows that w is the quadrilateral vector representation—
and therefore also the joint vector representation—of some embedded normal surface in T .

We turn our attention now to the more interesting case of octagonal almost normal surfaces.
The key observation is the following. Consider the quadrilateral-octagon matching equation de-
rived from some non-boundary edge e of the triangulation, as described in Definition 4.3, and let
∆ be some tetrahedron containing e. If we use the numbering scheme of Definition 8.1, then the
ith quadrilateral type in ∆ is an upward quadrilateral if and only if the ith octagon type in ∆ is
a downward octagon, and vice versa. This is easily verified by examining Figure 9.

Using this observation, we can reduce each quadrilateral-octagon matching equation (4.3) to
the following:

(qi1,u1
− ki1,u1

) + . . .+ (qi1,ut − ki1,ut) = (qi1,d1 − ki1,d1) + . . .+ (qi1,dt − ki1,dt), (8.8)

where the coordinates qi1,u1
, qi2,u2

, . . . , qit,ut and qi1,d1 , qi2,d2 , . . . , qit,dt correspond to the upward
and downward quadrilaterals respectively about the edge e. Translated into joint coordinates, this
reduces further to

ji1,u1
+ . . .+ ji1,ut = ji1,d1 + . . .+ ji1,dt , (8.9)

which is identical to the corresponding quadrilateral matching equation in R
3n.

We can now finish the proof of Theorem 8.5. Suppose that S is some octagonal almost normal
surface in T . Then the following observations follow immediately from Theorem 4.5:

• Precisely one octagonal coordinate in k(S) is non-zero, and the corresponding quadrilateral
coordinate in k(S) must be zero as a result. Therefore precisely one coordinate of j(S) is
negative.

• The quadrilateral-octagon vector representation k(S) satisfies each quadrilateral-octagon
matching equation as described by (8.8). Therefore the joint vector representation j(S)
satisfies each quadrilateral matching equation, as described by (8.9).

• For each tetrahedron of T , at most one of the six corresponding quadrilateral and octag-
onal coordinates in k(S) is non-zero, and so at most one of the three corresponding joint
coordinates in j(S) is non-zero. Therefore j(S) satisfies the quadrilateral constraints.

• The unique non-zero octagonal coordinate in k(S) has value +1, and so the unique negative
coordinate in j(S) has value −1.

Therefore the joint vector representation j(S) satisfies all four conditions listed in the statement
of this theorem.

Conversely, suppose that some integer vector

w = ( j1,1, j1,2, j1,3 ; . . . , jn,3 ) ∈ R
3n

satisfies all four conditions listed in this theorem statement, and that one of its coordinates is
negative (recalling that the non-negative case was dealt with at the beginning of this proof). We
define the 6n-dimensional vector

w′ = ( q1,1, q1,2, q1,3, k1,1, k1,2, k1,3 ; . . . , kn,3 ) ∈ R
6n

by setting

qi,t =



ji,t if ji,t ≥ 0;
0 if ji,t < 0,

and ki,t =



0 if ji,t ≥ 0;
−ji,t if ji,t < 0.

By using the four conditions of this theorem statement and following the previous argument in
reverse, it is simple to show that w′ satisfies the conditions of Theorem 4.5. It follows then that
w′ is the quadrilateral-octagon vector representation of some octagonal almost normal surface in
T , and so w is the joint vector representation of this same surface.
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Because joint coordinates are 3n-dimensional, we are able to visualise them explicitly in R
3 for

a one-tetrahedron triangulation. We do just this in the following example to illustrate the various
conditions of Theorem 8.5.

Example 8.6 Let S be the following compact 3-manifold triangulation (which we will shortly
prove represents the 3-sphere). We begin with the single tetrahedron ABCD, and identify faces
ABC ↔ BCD (with a twist) and ABD ↔ ACD (folded directly over the common edge AD), as
illustrated in Figure 18. The resulting triangulation has one tetrahedron, one vertex (since A, B,
C and D are all identified), and two edges (where AB , BC , CD , BD and AC are all identified,
and AD is left in a class of its own).

PSfrag replacements
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D

Figure 18: The one-tetrahedron triangulation S

Let ∆ represent the sole tetrahedron of S , and number the three quadrilateral types in ∆ so
that types 1, 2 and 3 separate the edge pairs (AB ,CD), (AC ,BD) and (AD ,BC ) respectively.
We find then that both joint matching equations for S (one for each edge) reduce to the form
j1,1 = j1,2.

We plot the resulting solution space in R
3 in Figure 19. In the top-left diagram, we shade

the region in which w = (j1,1, j1,2, j1,3) ∈ R
3 has at most one negative coordinate (for clarity, we

restrict our shading to the interior of a sphere around the origin). In the top-right diagram, we
shade the intersection of this region with the hyperplane j1,1 = j1,2, which gives us the closed
half-plane H = {(x, x, z) |x ≥ 0}. If we wish to enforce the quadrilateral constraints then we must
restrict our attention to the three coordinate axes (where at most one coordinate is non-zero); the
final intersection of H with these three axes is plotted in the bottom-left diagram. The resulting
solution space is simply the entire j1,3 axis, taken in both directions.

From Theorem 8.5 it follows that, if we ignore vertex linking components, then the normal and
octagonal normal surfaces in S correspond precisely to the integer points

{(0, 0, k) | k ∈ Z, k ≥ −1}.

With some further investigation we can classify these surfaces as follows:

• (0, 0, 0) represents the empty surface;

• (0, 0, k) for k ≥ 1 represents k copies of the embedded normal torus surrounding the edge
AD , which is referred to by Jaco and Rubinstein as a thin edge link [15];

• (0, 0,−1) is an octagonal almost normal 2-sphere.

These surfaces are individually plotted in the bottom-right diagram of Figure 19.
To finish, we note that (i) there are no normal 2-spheres (aside from the vertex link which we

have ignored), and so S is a 0-efficient triangulation, and that (ii) S contains an octagonal almost
normal 2-sphere. Using Theorem 5.3 and noting that S is orientable, it follows that S is in fact a
triangulation of the 3-sphere.

A natural question to ask at this point is what becomes of the projective solution space in joint
coordinates. Recall that in other coordinate systems, the non-negative orthant and the matching
equations intersect to give a convex polyhedral cone, and that the projective solution space is a
cross-section of this cone, taken by intersecting the cone with the hyperplane

P

xi = 1.
The difficulty we face with joint coordinates is that we no longer have a convex polyhedral

cone to work with. Instead we begin with the union of 3n + 1 orthants in R
3n (where at most

one coordinate is non-negative), which is not even a convex set. Upon intersecting this with the
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Figure 19: Building the solution space for the triangulation S

joint matching equations, we obtain a set P with the following properties. P is a cone in the sense
that x ∈ P implies that λx ∈ P for any λ ≥ 0, but like the union of orthants before it, P might
not be convex (although in Example 8.6 it happens to be). More importantly, P can contain
diametrically opposite points (such as (0, 0,±1) in our example), and so in general we cannot form
a cross-section by slicing through P with a hyperplane.

We could perhaps take a cross-section using the unit sphere, but this would lift us out of the
world of polytopes, making it difficult to design algorithms. Perhaps the simplest solution is to
take a cross section using the “polyhedral unit sphere”

P

|xi| = 1, as illustrated in Figure 20.
Continuing with Example 8.6, the left-hand diagram of Figure 20 shows the intersection of our
four original orthants with the “sphere” |j1,1| + |j1,2| + |j1,3| = 1, and the right-hand diagram
shows the subsequent intersection with the matching equation j1,1 = j1,2.

Although we are now able to define the projective solution space in a sensible way, we do not
obtain a single convex polytope as a result. Instead we obtain 3n+1 distinct convex polytopes—one
for each of the original orthants—joined together along their boundaries. To enumerate the vertices
of this structure would therefore require 3n + 1 distinct passes through the vertex enumeration
algorithm,13 bringing us back to the scheme of Casson that we discussed in Section 6.3. It is
worth noting again that the polytope of this structure that sits within the non-negative orthant
is precisely Tollefson’s quadrilateral projective solution space for normal surfaces.

It follows then that joint coordinates do not appear practical for use in enumeration algorithms.
Nevertheless, they have appealing geometric properties that may render them useful for other
purposes:

• They live in a remarkably small number of dimensions;

• They express the space of admissible vectors for octagonal almost normal surfaces as a natural
geometric extension of Tollefson’s space for normal surfaces, obtained simply by expanding

13In fact only 3n passes are required. We can ignore the non-negative orthant, since it can be shown that every vertex
of the non-negative orthant is also a vertex of one of the 3n adjacent “almost non-negative” orthants.
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Figure 20: Constructing the “projective solution space” in joint coordinates

our scope from the non-negative orthant to include the neighbouring “almost non-negative”
orthants.

As an immediate application, these properties make joint coordinates a useful tool for visual-
ising the almost normal solution space. More generally, they could perhaps open the way for new
theoretical insights into the structure of the solution space.

To illustrate the latter point, we can draw analogies with Casson’s edge weight coordinates
for normal surfaces, which are developed and exploited in [3]. Like joint coordinates, edge weight
coordinates use very few dimensions and are geometrically appealing, but a loss of convexity makes
them impractical for use in algorithms. Nevertheless, their tight geometric structure has led to
new theoretical and combinatorial insights, and we hope that joint coordinates can offer the same.
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