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We study the convergence properties of the series Ψs(α) :=
∑

n≥1
‖n2α‖

ns+1‖nα‖ with respect to the values of the real numbers
α and s, where ‖x‖ is the distance of x to Z. For example,
when s ∈ (0, 1], the convergence of Ψs(α) strongly depends on
the Diophantine nature of α, mainly its irrationality exponent.
We also conjecture that Ψs(α) is minimal at

√
5 for s ∈ (0, 1],

and we present evidence in favor of that conjecture. For s = 1,
we formulate a more precise conjecture about the value of the
abscissa uk where the Fk-partial sum of Ψ1(α) is minimal, Fk

being the kth Fibonacci number. A similar study is made for the
partial sums of the series Ψ̃1(α) :=

∑
n≥1(−1)n ‖n2α‖

n2‖nα‖ , which

we conjecture to be minimal at
√
2/2.

1. INTRODUCTION

The main goal of this paper is to study the following

Dirichlet series, which is one of the “Diophantine series”

mentioned in the title (others appear in Sections 3, 7,

and 8):

Ψs(α) :=
∞∑
n=1

‖n2α‖
ns+1‖nα‖

for α, s ∈ R. Here ‖x‖ stands for the distance of x to Z,

i.e., ‖x‖ := |x − �x�| with �x� the nearest integer to x

(with �1/2� = 0, say, even though this arbitrary choice

has no influence on the value ‖1/2‖). For future use,

{x} denotes the fractional part of x. For any integer

n ≥ 1, the function Dn(α) := ‖nα‖/‖α‖ is nonnegative

and continuous on (0, 1) with right limit at α = 0 and

left limit at α = 1 both equal to n; it is also clearly 1-

periodic on R\Z. Furthermore, in [Rivoal 08, Lemma 2],

it is shown that

Dn(α) ≤ n

1 + 2�n‖α‖� ≤ n

for any α ∈ R. See Figure 1 for a graph of D15.

Therefore, for any integer n ≥ 1, the function

Dn(nα) = ‖n2α‖/‖nα‖ is nonnegative and continuous on

R, bounded by n, with the value n at rational numbers
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FIGURE 1. D15 and its upper bound.

of the form j/n, j ∈ Z. It follows that the partial sum

Ψs,N(α) :=

N∑
n=1

Dn(nα)

ns+1

of Ψs(α) is a continuous function of α on R. If α = a/b

with (a, b) = 1, then the value of the summand is 1/ns

when n is divisible by b. Moreover, for any α ∈ R,

0 ≤ Ψs,N (α) ≤
N∑

n=1

1

ns
=: HN (s).

The convergence or divergence of Ψs(α) strongly de-

pends on the Diophantine properties of α, and be-

fore stating our results and conjectures, we recall some

standard notation. For any irrational number α, let

(pn/qn)n≥0 denote the sequence of the convergents to α

and let (an)n≥0 denote the sequence of partial quotients,

defined by qn+1 = an+1qn + qn−1. An irrational number

α is said to have a finite irrationality exponent μ(α) ≥ 2

if there exists a constant c(α) > 0 such that∣∣∣α− p

q

∣∣∣ ≥ 1

c(α)qμ(α)
(1–1)

for all integers p, q with q ≥ 1. We denote by m(α) the

irrationality exponent of α, defined as the infimum of all

possible μ(α), regardless of the value of c(α). By defini-

tion, Liouville numbers are precisely those real numbers

that do not have a finite irrationality exponent; they are

not only irrational but also transcendental.

When s ∈ (0, 1), let us consider the sets As of irra-

tional numbers α such that
∞∑

n=1

q1−s
n+1

qn
<∞,

and when s = 1, let us define As as the set of irrational

numbers α such that
∞∑
n=1

log
(
max(qn+1/qn, qn)

)
qn

<∞.

The following lemma was proved in [Rivoal 08]. We recall

it for completeness.

Lemma 1.1. [Rivoal 08, Lemma 1]

(i) The set A1 contains all irrational numbers with a

finite irrationality exponent. Some Liouville num-

bers belong to A1; some do not.

(ii) For any s ∈ (0, 1), the set As contains all irrational

numbers with m(α) < 2−s
1−s but none whose irra-

tionality exponent m(α) is greater than 2−s
1−s . Some

irrational numbers with m(α) = 2−s
1−s belong to As;

some do not.

(iii) For any s ∈ (0, 1], the set As has full measure.

We can now state our result concerning the conver-

gence or divergence of Ψs(α).

Theorem 1.2.

(i) For any s ∈ (0, 1] and any rational number a/b with

(a, b) = 1, we have

lim
N→+∞

1

HN (s)
Ψs,N

(a
b

)
=

1

b
.

Thus Ψs(
a
b ) = +∞.

(ii) For any s ∈ (0, 1) and any irrational number α,

there exist two constants cs, ds > 0 (which also de-

pend on α) such that

cs

m−1∑
k=1

q
(1−s)/2
k+1

q
(1+s)/2
k

≤ Ψs,N(α) ≤ ds

m∑
k=1

q1−s
k+1

qk
(1–2)

for any N such that qm ≤ N < qm+1.

For s = 1, there exist two constants c1, d1 > 0

(which depend on α) such that

c1

m−1∑
k=1

log(qk+1/qk)

qk
≤ Ψ1,N(α) (1–3)

≤ d1

m∑
k=1

log
(
max(qk+1/qk, qk)

)
qk

for any N such that qm ≤ N < qm+1.

(iii) For any s ∈ (0, 1] and any α ∈ As, the series Ψs(α)

is convergent.
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(iv) For any s ∈ (0, 1), the series Ψs(α) converges,

respectively diverges, for any irrational number α

such that m(α) < 2−s
1−s , respectively m(α) > 2

1−s .

For s = 1, the series Ψ1(α) converges for any ir-

rational number α such that m(α) is finite. On

the other hand, there exists a dense set of Liouville

numbers ξ such that for any ε > 0,

lim sup
N→+∞

Ψ1,N(ξ)

log(N)1−ε
= +∞. (1–4)

(v) When s ≤ 0, the series Ψs(α) diverges for all α ∈
R, while if s ≥ 1, it converges for all α ∈ R.

Remark 1.3. Diophantine series similar to those in (1–3)

appear in [Martin 07, Schoissengeier 07] in related con-

texts.

The first part of item (iv) is just a consequence of

(1–2). We formulate it because it shows the link between

convergence or divergence of Ψs(α) and the irrationality

exponent m(α). It would be very interesting to obtain

the exact threshold.

Moreover, (1–4) is essentially optimal because

|Ψ1,N(α)| 
 log(N) for any α. In fact, the proof yields

more: for any function εN = o(1), we can find a dense

set of Liouville numbers ξ such that (1–4) holds with εN
instead of ε.

Theorem 1.2 is proved in Section 3. We also show in

Section 4 the highly discontinuous behavior of Ψs, which

is already visible on Figure 2. In Section 5, we obtain an

upper bound for the speed of convergence of the partial

sums of Ψs(α): unsurprisingly, this bound is not uniform

and strongly depends on the Diophantine properties of α.

A real surprise comes from the following conjecture,

which we motivate in Section 6.

Conjecture 1.4. For any s ∈ (0, 1], the function Ψs is

minimal at the points of
√
5 + Z and −√5 + Z, where it

takes the same value.

We remark that m(±√5 + k) = 2 for any k ∈ Z,

hence that Ψs(±
√
5 + k) is convergent for any s > 0. In

Section 6, we will also present evidence for the following

“finite version” of Conjecture 1.4 in the case s = 1.1

1This evidence is in the form of numerical data and graphs com-
puted and plotted with Maple, XCAS, and GP-PARI. For a given
graph plotted with each of these three programs, zooming in on
interesting parts revealed in each case the pattern described in
Conjecture 1.5.
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FIGURE 2. Graphs of Ψ1,200 and the constant
Ψ1,200(

√
5− 2) on [0, 1].

Conjecture 1.5.

(i) For any integer k ≥ 4, the partial sum Ψ1,Fk
is

minimal on [0, 1] at the points

uk :=
Fk−1Fk−2

F 2
k

and 1− uk.

Here (Fk)k≥0 is the Fibonacci sequence defined by

F0 = 0, F1 = 1, and Fk+2 = Fk+1 + Fk.

(ii) We have

lim
k→+∞

Ψ1,Fk
(uk) = Ψ1(

√
5− 2).

For s ∈ (0, 1), Conjecture 1.5 seems to hold sometimes,

but it also fails sometimes. Note that uk →
√
5− 2 at a

geometric rate, but we do not see how to deduce state-

ment (ii) from this fact. The expression “finite version” is

justified by the fact that Conjecture 1.5 implies the case

s = 1 of Conjecture 1.4. Indeed, by 1-periodicity and

symmetry of Ψ1 with respect to the vertical axis α = 1/2,

it is enough to prove minimality at
√
5 − 2. Statement

(i) implies that for any α ∈ [0, 1], Ψ1,Fk
(α) ≥ Ψ1,Fk

(uk).

Hence, by statement (ii),

lim
k→+∞

Ψ1,Fk
(α) ≥ Ψ1(

√
5− 2). (1–5)

If α belongs to the domain of convergence of Ψ1, then

(1–5) implies that Ψ1(α) ≥ Ψ1(
√
5 − 2), whereas if α

belongs to the domain of divergence of Ψ1, the value of

Ψ1(α) is +∞ and we still have Ψ1(α) ≥ Ψ1(
√
5− 2).

In Section 7, we will briefly consider the case of the

series

Ψ̃1(α) :=
∞∑

n=1

(−1)n ‖n
2α‖

n2‖nα‖ ,

which seems to present a minimum at any point of ±
√
2
2 +

Z; see Conjecture 7.1 for a more precise statement in the
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spirit of Conjecture 1.5. It is often the case that quadratic

numbers are extremal for various Diophantine statistics:√
2 is minimal for the star discrepancy of {nα}-sequences

[Dupain and Sós 84];
√
5−1
2 is conjecturally minimal for

the discrepancy of {nα}-sequences (see [Baxa 00]);
√
5−1
2

is minimal for the circular dispersion of [Niederreiter 84]

and its variation of [Jager and de Jonge 94].

2. MOTIVATION BEHIND Ψs

Even though the series Ψs is an interesting object in it-

self, it does not come from nowhere. Indeed, in order to

study how far the finite sequence ({kα})1≤k≤n is from

a subset of { 0n , 1
n , . . . ,

n−1
n }, the author introduced in

[Rivoal 08] the function

Fn(α) :=
n∑

k=1

∣∣∣∣kα− �knα�n

∣∣∣∣ = 1

n

n∑
k=1

‖knα‖.

The function Fn is 1-periodic and symmetric with respect

to the vertical axis α = 1
2 . The study of the fluctuations

of Fn(α) around 1/4 led him in particular to consider the

Dirichlet series

Gs(α) :=
∞∑
n=1

Fn(α) − 1/4

ns

for s ∈ R and to determine for which α and s the equal-

ity2

Gs(α) = − 2

π2

∞∑
k=0

Φs

(
(2k + 1)α

)
(2k + 1)2

(2–1)

holds, where

Φs(α) :=

∞∑
n=1

1

n1+s

n∑
k=1

cos(2πknα).

For s > 1, both Gs(α) and Φs(α) clearly converge ab-

solutely for any α ∈ R, and (2–1) holds. It is a little

more difficult to prove that both diverge for any α ∈ R

when s ≤ 0. Again, the situation is much more interest-

ing when s ∈ (0, 1]. The following theorem is a survey of

some of the results proved in [Rivoal 08].

Theorem 2.1. [Rivoal 08, Theorems 1 and 2]

(i) For any rational number α and any s ∈ (0, 1], the

series Gs(α) and Φs(α) diverge to −∞ and +∞ re-

spectively.

2This result is formally obtained by means of the Fourier ex-

pansion ‖α‖ = 1
4
− 2

π2

∑∞
k=0

cos(2(2k+1)πα)

(2k+1)2
. Finding when (2–1)

holds is a problem similar to finding when Davenport’s identities
hold (see [de la Bretèche and Tenenbaum 04, Martin 07] for some
examples).

(ii) For any s ∈ (0, 1] and any α ∈ As, the series Φs(α)

converges to a finite limit.

(iii) For any s ∈ (0, 1) and any α ∈ As, the series Gs(α)
converges and identity (2–1) holds. This is also the

case when s = 1 and m(α) is finite.

(iv) For any s ∈ (0, 1) and any irrational number α such

that m(α) > 6−4s
1−s , the series Gs(α) and Φs(α) both

diverge, to −∞ and +∞ respectively. When s = 1,

there exists a dense set of Liouville numbers α such

that the same conclusion holds.

(v) When s > 1, then Gs(α) and Φs(α) converge for all

α. When s ≤ 0, both diverge for all α.

The series Ψs(α) appears as follows. We have

Φs(α) =

∞∑
n=1

cos(πn(n+ 1)α) sin(πn2α)

ns+1 sin(πnα)

and∣∣∣∣cos(πn(n+ 1)α) sin(πn2α)

sin(πnα)

∣∣∣∣ ≤ sin(π‖n2α‖)
sin(π‖nα‖) ≤

π

2

‖n2α‖
‖nα‖

because 2x ≤ sin(πx) ≤ πx for x ∈ [0, π/2]. Hence,

|Φs(α)| ≤
∞∑
n=1

∣∣∣∣cos(πn(n+ 1)α) sin(πn2α)

ns+1 sin(πnα)

∣∣∣∣ ≤ π

2
Ψs(α).

(2–2)

As we have seen earlier, Ψs(α) converges at least for every

α ∈ As, which explains part of the above theorem.

Like Ψs, the functions Gs and −Φs also have surprising

extremal properties; namely, for any fixed s ∈ (0, 1], they

seem to attain their respective maxima over [0, 1] at
√
5−1
2

and 1−
√
5−1
2 . See Figures 3 and 4 in the case s = 1. The

shift in the apparent position of extremal values (
√
5−1
2 →√

5) in (2–2) is curious.
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FIGURE 3. Graphs of G1,200 and the constant

G1,200

(√
5−1
2

)
on [0, 1].
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3. PROOF OF THEOREM 1.2

(i) We write n = kb + r with k ≥ 0 and 1 ≤ r ≤ b, so

that

Ψs,N (a/b)

=

b−1∑
r=1

‖r2a/b‖
‖ra/b‖

�(N−r)/b	∑
k=0

1

(kb+ r)s+1
+

1

bs

�N/b	∑
k=1

1

ks
.

(Since (a, b) = 1, ra/b is an integer if and only if

r = b.) Since s > 0, the term

b−1∑
r=1

‖r2a/b‖
‖ra/b‖

�(N−r)/b	∑
k=0

1

(kb+ r)s+1

converges to a finite limit when N → +∞. On the

other hand,

1

bs

�N/b	∑
k=1

1

ks
∼ 1

b
HN (s)

when N → +∞, which proves the result.

(ii) We do not repeat the proof of the right-hand in-

equalities in (1–2) and (1–3), which have been

proved in [Rivoal 08]. Let us prove the left-hand

inequalities. Obviously, we have

Ψs,N (α) ≥
m−1∑
n=0

qn+1−1∑
k=qn
qn|k

‖k2α‖
ks+1‖kα‖

=

m−1∑
n=0

1

qs+1
n

�(qn+1−1)/qn	∑
�=1

‖�2q2nα‖
�s+1‖�qnα‖ ,

where m is such that qm ≤ N < qm+1. We recall

that 1

qn + qn+1
≤ |qnα− pn| ≤ 1

qn+1
.

Hence

‖�qnα‖ ≤ |�qnα− �pn| ≤ �

qn+1
.

We also have

�2qn
qn + qn+1

≤ |(�qn)2α− �2qnpn| ≤ �2qn
qn+1

. (3–1)

Provided that � ≤ Q :=
√

qn+1

2qn
, we deduce from

(3–1) that |(�qn)2α− �2qnpn| = ‖�2q2nα‖ and that

‖�2q2nα‖ ≥
�2qn

qn + qn+1
.

It follows from all this that

Ψs,N(α) ≥
m−1∑
n=0

1

qs+1
n

�Q	∑
�=1

‖�2q2nα‖
�s+1‖�qnα‖

≥
m−1∑
n=0

qn+1

(qn+1 + qn)qsn

�Q	∑
�=1

1

�s
.

We remark now that �Q� = 0 if and only if an+1 =

1, and then
∑�Q	

�=1
1
�s = 0. Let us first discard this

case and consider only those n ≥ 0 such that an+1 ≥
2. (Note that qn+1 = an+1qn + qn−1 implies that

qn+1/(2qn) > 1.) Then

�Q	∑
�=1

1

�s
≥
{
e1 log(qn+1/qn) > 0 if s = 1,

es(qn+1/qn)
(1−s)/2 if 0 < s < 1,

for some constants es > 0 that depend on s and α.

Hence if s = 1, then

Ψs,N (α) ≥ e1

m−1∑
n=0

an+1≥2

qn+1

(qn+1 + qn)qn
log(qn+1/qn)

≥ e1
2

m−1∑
n=0

an+1≥2

log(qn+1/qn)

qn
,

while if s ∈ (0, 1), then

Ψs,N (α) ≥ es

m−1∑
n0

an+1≥2

qn+1

(qn+1 + qn)qsn
· q

(1−s)/2
n+1

q
(1−s)/2
n

≥ es
2

m−1∑
n0

an+1≥2

q
(1−s)/2
n+1

q
(1−s)/2
n

.

It remains to deal with the case an+1 = 1, which im-

plies that qn+1/qn is bounded by 2. Hence the series

∞∑
n=0

an+1=1

log(qn+1/qn)

qn
and

∞∑
n=0

an+1=1

q
(1−s)/2
n+1

q
(1+s)/2
n
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are convergent because the sequence (qn)n≥0 grows

at least geometrically. This implies that

m−1∑
n=0

an+1≥2

log(qn+1/qn)

qn
≥ f1

m−1∑
n=0

log(qn+1/qn)

qn

and
m−1∑
n=0

an+1≥2

q
(1−s)/2
n+1

q
(1+s)/2
n

≥ fs

m−1∑
n=0

q
(1−s)/2
n+1

q
(1+s)/2
n

,

for some constants fs that depend on s and α. This

completes the proof of (1–2) and (1–3).

(iii) This was proved in [Rivoal 08] as a consequence of

the right-hand inequalities in (1–2) and (1–3).

(iv) By the definition of m(α), for any μ > m(α), we

have
1

qμn
≤
∣∣∣∣α− pn

qn

∣∣∣∣ ≤ 1

qnqn+1

for n ≥ nμ. Hence qn+1 ≤ qμ−1
n and

m∑
k=nµ

q1−s
k+1

qk
≤

m∑
k=nµ

1

q
1−(μ−1)(1−s)
k

.

If μ < 2−s
1−s , then 1−(μ−1)(1−s) > 0 and the series

∞∑
k=0

1

q
1−(μ−1)(1−s)
k

is convergent. Hence by the right-hand inequality

in (1–2), the series Ψs(α) is convergent for any ir-

rational number α such that m(α) < 2−s
1−s .

On the other hand, if m(α) > μ for some μ, then

we must have qk+1 > qμ−1
k for infinitely many k

(denoted by (kn)n below); otherwise, we would have

m(α) ≤ μ because of the inequalities∣∣∣∣α− pn
qn

∣∣∣∣ ≥ 1

qn(qn+1 + qn)
� 1

qμn

for all n� 1. Therefore,

m−1∑
k=0

q
(1−s)/2
k+1

q
(1+s)/2
k

≥
∑

0≤kn≤m−1

q
(1−s)(µ−1)−(1+s)

2

k . (3–2)

If μ ≥ 2
1−s , we have (1− s)(μ− 1)− (1+ s) ≥ 0 and

the series on the right-hand side of (3–2) diverges.

Then, by the left-hand inequality in (1–2), the series

Ψs(α) is divergent.

If s = 1 and m(α) < +∞, then from qn+1 ≤ qμ−1
n

for some μ > m(α), we deduce that

∞∑
k=0

log
(
max(qk+1/qk, qk)

)
qk



∞∑
k=0

log(qk)

qk
< +∞,

which proves the first claim by the right-hand in-

equality in (1–3).

The left-hand inequality in (1–3) shows that

log(qk/qk−1)

qk−1
≤ Ψ1,qk(α)

for any α. We consider now any number ξ such that

qk−1 = o
(
log(qk)

)
as k → +∞ (which implies that

ξ is a Liouville number), so that log(qk)
1−o(1) ≤

Ψ1,qk(ξ) and thus for any ε > 0,

lim sup
N→+∞

Ψ1,N(ξ)

log(N)1−ε
= +∞.

Since we can assume that the condition qk−1 =

o
(
log(qk)

)
holds for k large enough, we can con-

struct a dense set of Liouville numbers with the

claimed property by choosing freely the first partial

quotients of ξ.

(v) The proof of item (i) above works for s ≤ 0 and

shows that Ψs(α) diverges for every rational num-

ber α when s ≤ 0. Let us now consider the case that

α is irrational. For any ε > 0, there exist infinitely

many n such that

|qnα− pn| ≤ 1

(L(α)− ε)qn
,

where L(α) is the Lagrange constant of α (defined

as lim infq
1

q‖qα‖ ). It is well known that for any ir-

rational number α, we have L(α) ≥ √5 (see [Cusick

and Flahive 89]). Therefore, for ε small enough, we

have |q2nα − qnpn| < 1
2 for infinitely many n. It

follows that for infinitely many n,

‖q2nα‖ = qn|qnα− pn| = qn‖qnα‖,

or written differently,

‖q2nα‖
qn‖qnα‖ = 1.

Hence, the series Ψs(α) cannot converge when s ≤
0. Finally, since 0 ≤ ‖n2α‖

‖nα‖ ≤ n, we have 0 ≤
Ψs(α) ≤ ζ(s) < +∞ when s > 1.

This concludes the proof of the theorem.



Rivoal: Extremality Properties of Some Diophantine Series 487

4. DISCONTINUITY OF Ψs

We now deduce from Theorem 1.2 a result concerning

the analytic behavior of Ψs. We set

Ds = {α ∈ R : Ψs(α) is convergent}.

We know that Ds = ∅ for s ≤ 0, As ⊂ Ds for any

s ∈ (0, 1], and Ds = R for s > 1. In particular, Ds has

full measure when s > 0.

Theorem 4.1. For any s ∈ (0, 1] and any u, v ∈ R, the

function Ψs has no upper bound in [u, v]∩As. In partic-

ular, the function Ψs restricted to Ds is nowhere contin-

uous.

Proof. An interval [u, v] determines the first m + 1 par-

tial quotients (an)0≤n≤m of any of its elements, where m

depends on u and v. The partial quotients (an)n>m can

be chosen freely, in particular am+1. When s ∈ (0, 1), the

left-hand inequality of (1–2) shows that for any α ∈ [u, v],

Ψs,qm+1(α) ≥ cs
q
(1−s)/2
m+1

q
(1+s)/2
m

.

Since qm+1 = am+1qm+ qm−1, we can choose am+1 large

enough so that Ψs,qm+1(α) ≥ A for any given A > 0. The

other partial quotients (an)n>m+1 can then be chosen

such that α ∈ As. If s = 1, the left-hand inequality of

(1–3) shows that

Ψ1,qm+1(α) ≥ c1
log(qm+1/qm)

qm
,

and we conclude similarly.

5. COMPUTATION OF Ψs

We present in this section (see Proposition 5.3 below)

bounds that ensure that we obtain an approximation of

Ψs(α) to a prescribed accuracy by computing Ψs,N(α)

for N large enough or even Ψs,N (p/q), where p/q is a

good rational approximation of α. We need two lemmas.

Lemma 5.1. For any α, β ∈ R and any integer n ≥ 1, we

have

|Dn(α) −Dn(β)| ≤ 4n2|α− β|.

Proof. There are five cases to consider.

Case 1: Assume that α, β ∈ [ jn , j+1/2
n

]
with 0 ≤ j ≤ n−1

2 ,

and also in
[
1
2 − 1

n ,
1
2 − 1

2n

]
if n is even. Then

Δ(α, β) := Dn(α) −Dn(β) =
nα− j

α
− nβ − j

β

= j
( 1
β
− 1

α

)
=

j

αβ
(α− β).

If j = 0, then Δ(α, β) = 0. If j ≥ 1, we have αβ ≥
(j/n)2, so that

|Δ(α, β)| ≤ n2

j
|α− β| ≤ n2|α− β|.

Case 2: Assume that α, β ∈
[
j+1/2

n , j+1
n

]
with 0 ≤ j ≤

n−2
2 , and also in

[
1
2 − 1

2n ,
1
2

]
if n is odd. Then

Δ(α, β) =
j + 1− nα

α
− j + 1− nβ

β
=

j + 1

αβ
(β − α).

It follows that

|Δ(α, β)| ≤ j + 1

(j + 1/2)2
n2|α− β| ≤ 4n2|α− β|.

Case 3: Assume that α, β ∈
[
j
n ,

j+1/2
n

]
with n

2 ≤ j ≤
n− 1, and also in

[
1
2 ,

1
2 + 1

2n

]
if n is odd. Then

Δ(α, β) =
nα− j

1− α
− nβ − j

1− β
=

j − n

(1− α)(1 − β)
(β − α).

Since (1 − α)(1 − β) ≥ ((n− j − 1/2)/n)2, we get again

that

|Δ(α, β)| ≤ n2(n− j)

(n− j − 1/2)2
|α− β| ≤ 4n2|α− β|.

Case 4: Assume that α, β ∈
[
j+1/2

n , j+1
n

]
with n−1

2 ≤
j ≤ n− 1, and also in

[
1
2 + 1

2n ,
1
2 + 1

n

]
if n is even. Then

Δ(α, β) =
j + 1− nα

1− α
− j + 1− nβ

1− β

=
j + 1− n

(1− α)(1 − β)
(α− β).

If j = n− 1, then Δ(α, β) = 0. If j < n− 1, then

|Δ(α, β)| ≤ n2

(n− j − 1)
|α− β| ≤ n2|α− β|.

Case 5: So far, we have proved that for every α, β ∈[
j
n ,

j+1
n

]
, for some j ∈ {0, . . . , n−1} we have |Δ(α, β)| ≤

4n2|α− β|.
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In the general case that α ≤ β are anywhere in [0, 1],

we consider the sequence

x0 = α < x1 =
j + 1

n
< x2 =

j + 2

n
< · · · < xk =

j + k

n
< xk+1 = β,

where α ∈ [ jn , j+1
n

]
and β ∈

[
j+k
n , j+k+1

n

]
. Then

|Δ(α, β)| =
∣∣∣ k∑
�=0

Δ(x�, x�+1)
∣∣∣ ≤ k∑

�=0

|Δ(x�, x�+1)|

≤ 4n2
k∑

�=0

|x� − x�+1| = 4n2|α− β|.

This concludes the proof of the lemma.

The following lemma was proved in [Rivoal 08]. Here,

μ(α) and c(α) are any positive real numbers satisfy-

ing (1–1).

Lemma 5.2. [Rivoal 08, Proposition 1] Let us fix an inte-

ger m ≥ 6.

(i) For any α ∈ As (for some s ∈ (0, 1)) and with

μ(α) < 2−s
1−s , we have

∞∑
n=qm+1

‖n2α‖
ns+1‖nα‖

≤ 2
(
1 + ζ(s+ 1)

)
(1− s)q

1−(μ(α)−1)(1−s)
m

×
(
3(1 + c(α)1−s) log(qm)

+
c(α)1−s

1−√2(μ(α)−1)(1−s)−1

)
=: Rs,m.

(ii) For any α ∈ A1 with m(α) < +∞, we have

∞∑
n=qm+1

‖n2α‖
n2‖nα‖

≤ 2(1 + ζ(2))
(
3(1 + log c(α))

log(qm)

qm

+ 5(μ(α) − 1)
log(qm)2

qm

)
=: R1,m.

We can now state a result that enables us to compute

approximations of Ψs(α).

Proposition 5.3. Under the conditions of Lemma 5.2, for

any s ∈ (0, 1], any real number β, and any integer N ≥

qm we have∣∣Ψs(α)−Ψs,N (β)
∣∣ ≤ Rs,m + 4q3−s

m

∣∣α− β
∣∣.

Proof. For N ≥ qm, we have∣∣Ψs(α)−Ψs,N (β)
∣∣

≤ ∣∣Ψs(α) −Ψs,qm(β)
∣∣

≤ ∣∣Ψs(α) −Ψs,qm(α)
∣∣+ ∣∣Ψs,qm(α) −Ψs,qm(β)

∣∣.
The term

∣∣Ψs(α) − Ψs,qm(α)
∣∣ is bounded by Rs,m by

Lemma 5.2. Moreover, using Lemma 5.1 with nα instead

of α and nβ instead of β, we get

∣∣Ψs,qm(α)−Ψs,qm(β)
∣∣ ≤ qm∑

n=1

1

n1+s

∣∣∣∣‖n2α‖
‖nα‖ −

‖n2β‖
‖nβ‖

∣∣∣∣
≤ 4
∣∣α− β

∣∣ · qm∑
n=1

n3

n1+s

≤ 4q3−s
m

∣∣α− β
∣∣.

The proposition follows.

In order to use Proposition 5.3 for a given α, we have

to choose a suitable β and to find upper bounds for μ(α)

and c(α).

Concerning the former task, simple choices are β = α

or, if one prefers to compute with rational numbers, β =

pk/qk, where pk/qk is another convergent to α. In this

case, we get

q3−s
m

∣∣∣∣α− pk
qk

∣∣∣∣ ≤ q3−s
m

qk+1
,

and one must take qk+1 large enough.

Concerning the problem of finding μ(α) and c(α),

there is unfortunately no general recipe: see the exam-

ples of e, π, π2 and real algebraic numbers in [Rivoal 08,

Proposition 3]. In particular, one form of the well-known

Liouville inequality reads as follows: for any real alge-

braic irrational number of degree d with minimal poly-

nomial
∑d

j=0 sjX
j ∈ Z[X ], we can take μ(α) = d and

c(α) = (|α| + 1)d−1
∑d

j=1 j|sj |.
The only numbers that really interest us here are

√
5+

k, with k ∈ Z. They all have m(
√
5 + k) = 2, and the

constant c(
√
5 + k) = (4 + 2|k|)(1 + |√5 + k|) is minimal

for k = −2. The 19th convergent of
√
5− 2 is

p18
q18

=
31622993

133957148
.

In Table 1, we show approximations of Ψs(
√
5−2) for var-

ious values of s, computed using GP-Pari. We use Propo-

sition 5.3 with α = β =
√
5−2 andN = qm = 133957148.

The digits within parentheses are not certified to be cor-

rect with that value of qm.
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s 1/2 2/3 3/4 4/5 1

Ψs(
√
5 − 2) 3.6(04342) 2.500(415) 2.189(498) 2.0451(34) 1.6580(68)

TABLE 1. Values of Ψs(
√
5− 2).

6. EVIDENCE FOR CONJECTURES 1.4 AND 1.5

In this section, we arrive at what seems to be the most

surprising property of Ψs(α), which was explicated as

Conjecture 1.4. We present in this section various graphs

that give evidences that for any s ∈ (0, 1], Ψs is minimal

at the points of
√
5 + Z and −√5 + Z (where it takes

the same value): see Figures 5 and 6 in the case s = 1/2

and Figures 7 and 8 in the case s = 1/5. In the case s = 1,

FIGURE 5. Graphs of Ψ1/2,50 and the constant

Ψ1/2,50(
√
5− 2) in [0, 1].

FIGURE 6. Graphs of Ψ1/2,300 and the constant

Ψ1/2,300(
√
5− 2) in [

√
5− 2− 10−3,

√
5− 2 + 10−3].

we present four graphs (Figures 9 to 12) in support of

Conjecture 1.5(i). They are zooms centered at u11 =
F9F10

F 2
11

= 1870
892 of the graph of Ψ1,F11 . A similar verifica-

tion was done for u2, . . . , u26; in particular, it seems that

Ψ1,Fk
is not differentiable at uk.

We now make a few remarks about Conjecture 1.5(ii).

Using the classical expression of Fibonacci numbers

Fk = 1√
5

(
ϕk−(1−ϕ)k), where ϕ := (

√
5+1)/2, one easily

FIGURE 7. Graphs of Ψ1/5,50 and the constant

Ψ1/5,50(
√
5− 2) in [0, 1].

FIGURE 8. Graphs of Ψ1/5,300 and the constant

Ψ1/5,300(
√
5− 2) in [

√
5− 2− 10−3,

√
5− 2 + 10−3].
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2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

x

FIGURE 9. Graphs of Ψ1,F11 and the constant
Ψ1,F11,1(u11) in [0, 1].

1.8

2

2.2

2.4

2.6

2.8

0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32

x

FIGURE 10. Graphs of Ψ1,F11 and the constant
Ψ1,F11(u11) in [u11 − 0.1, u11 + 0.1].

finds that
∣∣uk − ϕ−3

∣∣
 ϕ−2k. Note that ϕ−3 =
√
5− 2.

Unfortunately, the convergence is not fast enough to

imply Conjecture 1.5(ii) by means of Lemma 5.1, as in

the proof of Proposition 5.3. However, it seems that the

value of the derivative of En(α) :=
‖n2α‖
‖nα‖ at α =

√
5− 2

is very often of the order of n2 and not just bounded

by 4n3 (by Lemma 5.1). If it were possible to quantify

precisely this fact, then (ii) might follow. Note that

one cannot expect to replace n3 by n2 for all n, because it

1.65

1.7

1.75

1.8

1.85

0.228 0.23 0.2320.2340.2360.238 0.24 0.2420.2440.246

x

FIGURE 11. Graphs of Ψ1,F11 and the constant
Ψ1,F11(u11) in [u11 − 10−2, u11 + 10−2].

1.63

1.64

1.65

1.66

1.67

1.68

0.2352 0.2356 0.2360.2362 0.2366 0.237

x

FIGURE 12. Graphs of Ψ1,F11 and the constant
Ψ1,F11(u11) in [u11 − 10−3, u11 + 10−3].

seems that for any k,

max
n=1,...,Fk

|E′
n(
√
5− 2)| = |E′

Fk
(
√
5− 2)| � F 3

k .

More generally, we tried to find the minima of the

partial sum Ψ1,N for N = 1 to 145: the data are

summarized in Table 2, where αN ∈ [0, 1/2] is such

that Ψ1,N(αN ) is apparently minimal. These conjec-

tural values have been obtained by zooming in on the

part of the graphs where the minimum seemed to be
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N 2 3 4 5 6 7 8 9 10 11 12 13 14 15
αN

1
22

2
32

2
32

6
52

6
52

6
52

15
82

19
92

15
82

15
82

19
92

40
132

40
132

�

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
40
132

� 61
162

61
162

61
162

104
212

104
212

104
212

104
212

104
212

53
152

104
212

104
212

53
152

53
152

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
53
152

53
152

53
152

273
342

273
342

273
342

273
342

341
382

341
382

341
382

341
382

341
382

341
382

341
382

341
382

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
� 273

342
273
342

273
342

� 341
382

341
382

341
382

341
382

714
552

714
552

714
552

714
552

714
552

714
552

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
714
552

714
552

714
552

� � 714
552

� 714
552

714
552

714
552

1190
712

323
372

� 323
372

613
512

76 77 78 79 80 81 82 83 84 85 86 87 88 89 · · ·
613
512

613
512

613
512

613
512

613
512

613
512

613
512

613
512

613
512

1058
672

1663
842

1058
672

1663
842

1870
892

· · ·
109 110 · · · 113 114 · · · 123 124 125 126 127 · · · 143 144 145
1870
892

967
642

· · · 967
642

1870
892

· · · 1870
892

967
642

967
642

967
642

3808
1272

· · · 3808
1272

4895
1442

4895
1442

TABLE 2. The dots indicate that, for example, from 89 to 109, the minimum seemingly occurs at the same point 1870
892

.
In the table, it is easy to recognize that when N = Fk, then F 2

k is a denominator of αFk = uk. To get an expression for
the numerator, we simply plugged the sequence of numerators of uk into the On-Line Encyclopedia of Integer Sequences
(available at http://www.research.att.com/˜njas/sequences/index.html) to see that it matches the sequence A001654

defined by Fk−1Fk−2. This led to Conjecture 1.5.

attained.3 Except for N = 15, 17, 46, 50, 64, 65, 67, 73,

Ψ1,N does not seem to be differentiable at αN . At these

eight exceptional values, Ψ1,N seems to have a vanish-

ing derivative at αN ; we are able to get only numerical

approximations for these αN , which we do not mention

(they are getting closer and closer to
√
5−2 as expected).

It is also interesting to see that when we are able to iden-

tify it, αN is a reduced rational number whose denomi-

nator is a square.

We also computed approximations to six digits of some

values of Ψ1,Fk
(uk) for k = 4, 5, . . . , 26. They tend to

confirm Conjecture 1.5(ii), even though the convergence

is slow. See Table 3.

7. MINIMAL VALUES OF THE SERIES Ψ̃1

In this section, we present a few results concerning the

function

Ψ̃1(α) =

∞∑
n=1

(−1)n ‖n
2α‖

n2‖nα‖ ,

which is an alternating analogue of Ψ1. There are sev-

eral differences compared with the behavior of Ψ1. In

particular, a straightforward modification of the proof of

part (i) of Theorem 1.2 shows that Ψ̃1(α) converges at

any rational number α = a/b with b odd and (a, b) = 1,

while it diverges when b is even and (a, b) = 1. Of course,

3The most difficult part is to guess the exact value of αN by
successive zooms on the graph. Once it is guessed, one can center
the subsequent zooms at that point to check whether it is a good
choice.

Ψ̃1(α) converges almost everywhere because it converges

for every irrational number α ∈ A1.

As in the case of Ψ1, we focused on the extremal prop-

erties of Ψ̃1 and were led to a precise conjecture regarding

the partial sums

Ψ̃1,N (α) :=

N∑
n=1

(−1)n ‖n
2α‖

n2‖nα‖ .

Let Sk denote the kth denominator of the convergents

to
√
2
2 ; for k ≥ 1, the sequence starts with 1, 3, 7, 17, 41.

Set Tk := 2Rk + (−1)k, where Rk is defined by R0 = 0,

R1 = 1, and Rk+2 = 6Rk+1 −Rk.

Conjecture 7.1.

(i) For every k ≥ 2, the sum Ψ̃1,Sk
is minimal on [0, 1]

at the points

vk :=
Tk

2S2
k

and 1− vk.

(ii) We have

lim
k→+∞

Ψ̃1,Sk
(vk) = Ψ̃1

(√2
2

)
.

(iii) On its set of convergence, the series Ψ̃1 is minimal

at the points of ±
√
2
2 + Z, where it takes the same

value.
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k 4 5 6 7 8
Ψ1,Fk(uk) 1.0625 1.334325 1.414417 1.459825 1.545960

9 10 11 12 13 14
1.580966 1.599159 1.623628 1.634958 1.641142 1.647968

15 16 17 18 19 20
1.651493 1.653337 1.655235 1.656236 1.656780 1.657293

21 22 23 24 25 26
1.657570 1.657723 1.657860 1.657935 1.657977 1.658013

TABLE 3. Values of Ψ1,Fk(uk).

It is easy to see that Rk ∼
√
2
8 (1 +

√
2)2k and that

Sk ∼ 1
2 (1 +

√
2)k. Hence

lim
k→+∞

vk =

√
2

2
.

The first few values of the sequence vk are 13
2·32 ,

69
2·72 ,

409
2·172 ,

2377
2·412 . They were guessed by successive zooms into

the part of the graph of Ψ̃1,Sk
where the minimum seems

to be attained. Again, the numerators of the sequence

vk were found using the On-Line Encyclopedia of Inte-

ger Sequences (OEIS): the sequence Tk matches A105058

and the sequence Rk matches A001109 (which is directly

linked to A105058 in the OEIS). Of course, parts (i) and

(ii) of Conjecture 7.1 imply part (iii).

8. A RELATED DIOPHANTINE FUNCTION

In this section, we define another “Diophantine func-

tion,” namely the series

Qs,t(α) :=

∞∑
n=0

log
(
qn+1(α)/qn(α)

)t
qn(α)s

for α ∈ R and s, t > 0. The case s = 1 and t = 1 is mo-

tivated by the similarity of both sides of the inequalities

(1–3) in Theorem 1.2(ii).4 The similarity is also visible

when one compares Figure 4 and Figure 13: it would

interesting to understand better the link between Q1,1

and Φ1.

It is easy to prove that Qs,t(α) converges for almost

all irrational numbers α, in particular for all α such that

m(α) is finite. The infinite series Qs,t(α) is not defined

for rational numbers α because the sequence (qn)n is then

finite. But this can be solved as follows: we assume that

4For s ∈ (0, 1), the left- and right-hand sides of the inequalities
(1–2) are not very close. The extremality properties of the series∑∞

n=0
qn+1(α)t

qn(α)s
are not striking at first sight.

the sequence of partial quotients of α ∈ Q is of the form

(an)n=0,...,K with aK ≥ 2, so that we can set5

Qs,t(α) :=

K−1∑
n=0

log
(
qn+1(α)/qn(α)

)t
qn(α)s

for α ∈ Q.

Conjecture 8.1. Fix the real numbers s, t > 0. The series

Qs,t attains its minimum in R\Q at the points of
√
5−1
2 +

Z and 3−√
5

2 + Z.

The values at the minima are equal because Qs,t(α)

is 1-periodic and Qs,t(1−α) = Qs,t(α). In fact, it seems

that a finite version of Conjecture 8.1 holds. Set

QN,s,t(α) :=

N∑
n=0

log
(
qn+1(α)/qn(α)

)t
qn(α)s

for α ∈ R \Q and

QN,s,t(α) :=

min(N,K−1)∑
n=0

log
(
qn+1(α)/qn(α)

)t
qn(α)s

for α ∈ Q. Although this is not completely clear in the

various graphs (which are mere approximations of the re-

ality), QN,s,t is essentially a piecewise constant function.

It is continuous at every irrational number, around which

it is locally constant. It is also continuous and locally

constant around every rational number whose sequence

of partial quotients terminates at a position greater than

N + 1. But it is discontinuous at every rational num-

ber whose sequence of partial quotients terminates at a

position less than or equal to N + 1.

Conjecture 8.2. Fix any integer N ≥ 0 and any real

numbers s ≥ 0, t > 0. We consider QN,s,t as being

defined on R \Q.

5The alternative definition “(ãn)n=0,...,K+1 with ãn = an for
n < K and ãK = ak−1 and ãK+1 = 1” changes only marginally the
discussion following Conjecture 8.1 for rational numbers and does
not affect both conjectures, which concern only irrational numbers.
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FIGURE 13. Graphs of Q5,1,1 and the constant

Q5,1,1(
√
5−1
2

) on [0, 1].

(i) The series QN,s,t is constant and minimal on the

interval consisting of irrational numbers whose par-

tial quotients satisfy a0 = 0, a1 = a2 = · · · =
aN+1 = 1.

(ii) The second minimal value of QN,s,t is attained on

the interval consisting of irrational numbers whose

partial quotients satisfy a0 = 0, a1 = 2, a2 = · · · =
aN+1 = 1. It is also constant there.

If the irrational number α is in (1/2, 1) then qn(1 −
α) = qn+1(α) for all n ≥ 1 (with q0(1− α) = q0(α) = 1),

so that QN,s,t(1 − α) = QN+1,s,t(α): hence part (ii) of

the conjecture follows from (i). It is also clear that Con-

jecture 8.2(i) together with the identity Qs,t(1 − α) =

Qs,t(α) implies Conjecture 8.1 when s > 0. The first part
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FIGURE 14. Graphs of Q2,1,1 and the constant

Q2,1,1(
√
5−1
2

) on [0, 1].
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FIGURE 15. Graphs of Q3,1,1 and the constant

Q3,1,1(
√

5−1
2

) on [1/2, 1].

can be reformulated as follows: if N = 2k, then QN,s,t(α)

is constant on the interval
(F2k+2

F2k+3
, F2k+1

F2k+2

)
, where it is min-

imal. If N = 2k + 1, then QN,s,t(α) is constant on the

interval
(F2k+2

F2k+3
, F2k+3

F2k+4

)
, where it is minimal.

The conjecture is trivially true in the case s = 0 and

t = 1, because then QN,s,t(α) = log(qN+1(α)): that

quantity is minimal if and only if q0 = 1, q1 = 1, and

qn+1 = qn + qn−1 for any n such that 1 ≤ n ≤ N .

A careful analysis of many graphs similar to those pre-

sented in Figures 13 to 17 led to Conjecture 8.2. The

latter is easily proved for N = 0, 1, 2 and s = t = 1 by

a direct computation (which could probably be extended

to further values of N , s, and t):

• N = 0: we have to show that 1
q0

log(q1/q0) = log(q1)

is minimal for q1 = 1, which is obviously true.
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FIGURE 16. Graphs of Q4,1/2,1 and the constant

Q4,1/2,1(
√
5−1
2

) on [1/2, 1].
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FIGURE 17. Graphs of Q4,2,2 and the constant

Q4,2,2(
√

5−1
2

) on
[√

5−1
2

− 0.1,
√

5−1
2

+ 0.1
]
.

• N = 1: we have to show that

log(q1/q0)

q0
+

log(q2/q1)

q1
= log(q1)

(
1− 1

q1

)
+

log(q2)

q1

is minimal for q1 = 1 and q2 = 2. Clearly, we must

choose q2 minimal, i.e., q2 = q1 + q0 = q1 + 1. To

conclude, it remains to see that when q1 ≥ 1, the

function of the integer q1,

log(q1)
(
1− 1

q1

)
+

log(q1 + 1)

q1
, (8–1)

is minimal for q1 = 1.

• N = 2: we have to show that

log(q1/q0)

q0
+

log(q2/q1)

q1
+

log(q3/q2)

q2

is minimal for q1 = 1, q2 = 2, and q3 = 3. Again,

we must choose q3 minimal, i.e., q3 = q2+ q1. When

q2 ≥ q1 + 1, the function of the integer q2,

log(q2/q1)

q1
+

log((q2 + q1)/q2)

q2
,

is minimal for q2 = q1 + 1. It remains therefore to

find the minimum of the function

log(q1) +
log( q1+1

q1
)

q1
+

log(2q1+1
q1+1 )

q1 + 1
(8–2)

as a function of the integer q1 ≥ 1, and again it is

attained at q1 = 1.6 This proves this case too.

6The functions (8–1) and (8–2) viewed as functions of the real
variable q1 ≥ 1 are not minimal at q1 = 1 but somewhere between
1 and 2.
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