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We give a method for verifying, by a symbolic calculation,
the stability or semistability with respect to a linearization of
fixed, possibly small, degree m, of the Hilbert point of a scheme
X ∈ P(V ) having a suitably large automorphism group. We also
implement our method and apply it to analyze the stability of
bicanonical models of certain curves. Our examples are very
special, but they arise naturally in the log minimal model pro-
gram for Mg . In some examples, this connection provides a
check of our computations; in others, the computations confirm
predictions about conjectural stages of the program.

1. INTRODUCTION

We analyze the Hilbert stability of bicanonical models of
certain curves X of small genus with suitably large auto-
morphism groups with respect to linearizations of fixed
small degree m. Our examples are very special, but they
have geometrically interesting applications discussed
below.

Our analysis has two main novelties. First, we give a
method for deducing the stability, always with respect to
SL(V ), of the Hilbert point of a subscheme X of P(V ),
from a symbolic calculation of certain state polytopes.
Even the possibility of such a reduction for Hilbert points
of subschemes of large codimension is new. The key hy-
pothesis we use is that X , as a subscheme of P(V ), is
multiplicity-free (Definition 4.5): the multiplicity, in the
natural representation of Aut(X) on V , of every irre-
ducible representation is either 0 or 1. In our exam-
ples, V = H0(X,ω⊗2

X ), and we say that X is bicanonically
multiplicity-free (Definition 4.11). Most of our examples
are certain special hyperelliptic curves Wg , called Wiman
curves, that are well known in the literature on curves
with automorphisms [Breuer 00], and nodal curves that
are joins of two or more Wiman curves.

The second novelty of our examples is that they allow
us to handle fixed values of the linearization degree m.
Indeed, the values of m arising in our applications are
not merely fixed but quite small, typically 6 or less. In
contrast, existing approaches, such as those pioneered in
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[Gieseker 77, Gieseker 82, Gieseker 83], have an asymp-
totic character and satisfy Hilbert stability only with re-
spect to linearizations of sufficiently large degree m.

The bicanonical curves X and small degrees m in our
main examples are chosen because quotients of loci in the
bicanonical Hilbert schemes H in question are predicted
to yield new log minimal models of the moduli spaces of
stable curves. For further details on this connection, see
[Morrison 08, 7.5] and the references cited there. A dis-
claimer is in order here. Examples in which X is smooth
show the nonemptiness of stable loci of interest in the
log minimal model program in small genus but are far
from producing the desired quotients. This paper deals
only with our methods for checking stability and with our
examples; it discusses the construction of such quotients
only in outlining our plans for further work.

In addition to providing applications of our examples,
the log minimal model program makes, by indirect ar-
guments, very specific predictions about the degrees in
which the bicanonical Hilbert points of certain reducible
and singular X will be stable, strictly semistable, and
unstable. A number of our examples involve curves of
these types. For some of these, we use completed stages
of the minimal model program as a check on our cal-
culations. For others, our calculations verify the pro-
gram’s predictions exactly, providing further evidence for
them.

Our approach combines the hypothesis of multiplicity-
freeness with theorems of Kempf on worst destabiliz-
ing 1-parameter subgroups (henceforth 1–ps’s) to reduce
checking stability for the full group SL(V ) to checking
stability with respect to a distinguished maximal torus
T (Corollary 4.9). There is an easy naive algorithm for
checking this symbolically, but its complexity makes it
impractical except in simple cases. By adapting results
of Bayer and the first author on state polytopes, we
give, in Corollary 3.12, an algorithm efficient enough that
we are able to handle examples arising in our intended
applications.

Working with small-degree m is a sword that cuts
both ways. On the one hand, the m we work with are
well below the bounds that ensure various standard uni-
formity hypotheses for ideals of points of H, even those
that are deformations of smooth subschemes. A typical
example is that the degree-m graded pieces of the ho-
mogeneous ideals do not yield the embedding of H as a
closed subscheme of a Grassmannian needed to linearize
the PGL(V )-action. We address these complications by
replacing H with a multigraded Hilbert scheme Ĥ in the
sense of [Haiman and Sturmfels 04].

On the other hand, our algorithm is practical only
for computing state polytopes in fairly low degrees. It
involves computing all the monomial initial ideals X (in
the coordinates giving the special torus T ) and requires
a Gröbner-basis calculation for each initial ideal. In fact,
as the genus of X—and hence the bicanonical embedding
dimension—increased, we were often unable to carry even
these low-degree calculations to completion because there
are simply too many such ideals. To understand such
examples, we use several additional, somewhat ad hoc,
tricks.

The first involves a Monte Carlo strategy that com-
putes a random subpolytope of the state polytope by
computing some random initial ideals. If X is Hilbert
stable and we are fortunate, this subpolytope provides
a proof of stability. This approach can never prove that
X is unstable, but we are able to do this, when neces-
sary, by educated guesswork. Geometry—in our exam-
ples, analogies with completed stages of the log minimal
model program—often suggests what a destabilizing 1–ps
λ should be, and such a guess can be checked by a single
Gröbner-basis computation. Finally, the parabola trick
(Proposition 5.2) uses ideas of [Hassett et al. 10] to de-
duce stability of Hilbert points of smooth curves in low
degrees not accessible to our calculations from their sta-
bility in even lower degrees.

Here is the plan of the rest of the paper. The de-
tails of our multigraded setup for Hilbert points is given
in Section 2, and the results on state polytopes we
need are extended to this setting in Section 3. Section
4 reviews Kempf’s results on worst one-parameter sub-
groups and explains how, for multiplicity-free X , they
reduce checking stability to calculations with state poly-
topes. The Monte Carlo version and the parabola trick
are outlined in Section 5. Section 6 recalls facts about
Wiman curves and pluricanonical equations of hyperellip-
tic curves needed to set up the Macaulay2 calculations for
our examples, and Section 7 summarizes stability prop-
erties that are either known from or predicted by the log
minimal model program for Mg . Our examples and how
they fit with the log minimal model program are reviewed
in Section 8. Finally, we close by listing some ideas for
future work.

1.1. Accessing Raw and Commented Source Code

Our calculations are carried out in Macaulay2 [Grayson
and Stillman 08] using the StatePolytope package
of the second author, which calls the packages gfan

[Jensen 08] and polymake [Gawrilow and Joswig 00,
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Gawrilow and Joswig 07] to compute intermediate re-
sults. Some preliminary calculations are performed in
MAGMA [Magma 08] or GAP [GAP Group 08]. The source
code of our routines and detailed output from many cal-
culations are posted on the second author’s web page
at http://www.math.uga.edu/∼davids/gs/gs.html. For
the convenience of the reader, we have collected anno-
tated code snippets in a separate paper [Morrison and
Swinarski 09].

2. HILBERT POINTS AND STATE POLYTOPES

2.1. Parameter Schemes Adapted to Low Degrees

Fix an (N + 1)-dimensional vector space V over an alge-
braically closed ground field K , and a set of coordinates
{x 0 , . . . , xN} identifying V with KN+1 and the homo-
geneous coordinate ring of P(V ) with S : = K [x 0 , . . . ,
xN]. Fix also a Hilbert polynomial P of degree r and let
H be the Hilbert scheme of r -dimensional subschemes
X ⊂ P(V ) with Hilbert polynomial P .

The goal of this section is to define state polytopes
of such subschemes X—or of their homogeneous ideals
I ⊂ S—and to recall their connection to the stability
of the Hilbert point of X with respect to the action of
SL(V ) induced by the natural action on P(V ). Both of
these notions depend on the choice of the degree m that
is used to linearize this action. To make uniform sense of
either the Hilbert point or the state polytope for all X
having a fixed Hilbert polynomial P—that is, over the
whole of H—it is necessary to take m larger than the
Gotzmann number [Gotzmann 78] mP for P . An easy
calculation using the formulas there gives these numbers
for Hilbert polynomials of curves:

Lemma 2.1. The Gotzmann number of P(t) = at + b is
mP =

(
a
2

)
+ b.

However, the applications we have in mind to stability
problems arising in the log minimal model program for
Mg (cf. [Hassett and Hyeon 09, Hassett and Hyeon 2008])
require us to work with a fixed degree m < mP. The main
goal of this section is to outline how to transfer the stan-
dard constructions to this setting. This is most conve-
niently achieved using the multigraded Hilbert schemes
constructed in [Haiman and Sturmfels 04]. In doing this
we have treated general r , since doing so entails no addi-
tional complications, but for the applications cited above,
we will specialize to the case r = 1 of curves.

We begin with a definition of convenience.

Definition 2.2. An r -dimensional subscheme X of P(V )
with ideal sheaf I is called �-nice if:

1. The natural map V ∨ → Γ(X,OX (1)) is an isomor-
phism.

2. OX is (� − 1)-regular.

3. IX is �-regular.

This list of properties comes from a similar list of hy-
potheses for certain statements in [Hassett and Hyeon
08]. We note one minor change: all of the subschemes we
start with are pure r -dimensional (though their special-
izations under various 1–ps’s may not be), and so we have
omitted this condition in Definition 2.2.

The first hypothesis may be viewed more geometri-
cally as saying that X is embedded in P(V ) by a com-
plete nondegenerate linear series. The second hypothesis
implies that for m ≥ �, the sheaf OX (m) has no higher
cohomology, and hence that its Hilbert polynomial P(m)
computes h0(X,OX (m)). Likewise, the third hypothesis
implies that the restriction maps Sm → H0(X,OX (m))
are surjective for all m ≥ � and that IX is generated by
elements of degree at most �.

We denote by H� the �-nice locus in the Hilbert scheme
H of subschemes of P(V ) with Hilbert polynomial P .
Fix an �-nice subscheme X . We let R̂(m) = dimK (Sm ) =(
m+N

m

)
and Q̂�(m) = dimK (Im ) for m ≥ � and Q̂�(m) = 0

for m < �. In other words, Q̂� is the Hilbert function of
the ideal Î� given by truncating I in degrees below �. As
usual, we can recover I from any Î� by saturating. Our
hypotheses imply that Î� is generated in degree exactly �.
Finally, let P̂�(m) = R̂(m) − Q̂�(m). This is a truncation
of the Hilbert function of X and equals P(m) only for
m ≥ mP.

We denote by Ĥ� the multigraded Hilbert scheme of
ideals in S with Hilbert function P̂� and denote by [I ] the
point of Ĥ� determined by the ideal I . By [Haiman and
Sturmfels 04, Corollary 1.2], Ĥ is a projective scheme rep-
resenting the functor of locally free families of such ide-
als and hence is equipped with a universal family. Their
Lemma 4.1 identifies ĤmP

with the usual Hilbert scheme
H, and if �<mP, then truncation up to degree mP gives
a map i� : Ĥ� → H.

A few cautions are in order here. First, the �-nice lo-
cus in Ĥ� is only locally closed, and it need not even be
dense—there may be entire components of Ĥ� containing
no �-nice ideals.

Second, while i�(Ĥ�) is closed in H and i � is injective
on the �-nice locus, the map i � need not be an embedding.
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This pathology has its origin in the fact that the ideals
parameterized by Ĥ� need not be saturated, even in de-
grees above � where they are not truncated. For example,
if H contains a point X ′ whose (saturated) ideal I ′ sat-
isfies dimK (I ′�) > dimK (I�) and dimK (I ′m ) = dimK (Im )
for all m > �, then every choice of a dimK (I�)-dimensional
subspace of I ′

� determines an ideal I ′′ ∈ Ĥ� mapping to
X ′. Such examples can be found, for example, with H the
Hilbert scheme of twisted cubics (cf. Example 3.11). The
upshot is that we cannot replace the ideal I parameter-
ized by a point of Ĥ� by the subscheme X it determines
unless we know that the degree-� truncation of the satu-
ration of I has Hilbert function exactly P̂� , as we do, by
definition, over the �-nice locus.

2.2. The Hilbert Matrix

Henceforth we fix values of � and m ≥ �. In our ap-
plications, we often take � = 2. We begin with two re-
marks designed to lighten our notation. First, since m ≥
�, P̂�(m) depends only on m, so we can and will omit
the subscript � used above. Second, we introduce many
objects depending on our choice of m in this section, but
when there is no risk of confusion, we will omit the m to
simplify notation in later sections.

Let Wm =
∧P̂ (m ) Sm and let Grm ⊂ P(W ) be the

Plücker embedding of the Grassmannian Grm :=
Gr(P̂ (m), R̂(m)) of P̂ (m)-dimensional quotient spaces of
Sm. There is a Plücker map gm : Ĥ� → Grm sending [I ]
to Sm/Im. The map gm has closed image, but need not
be injective: for example, g2 has the same value on the
monomial ideals 3 and 4 in Example 3.11 and on the ide-
als 7 and 8. If, however, I is generated in degrees at most
m—in particular, for points in the �-nice locus—gm([I ])
does determine I .

We want to describe homogeneous coordinates yA of
gm ([I]) ∈ P(W ) in a form usable in tools like Macaulay2.
This is most conveniently and concretely done by work-
ing with the subspace Im of Sm rather than the quotient
Sm/Im, and using it to define m-Hilbert matrices M I ,m .
First let Bm be the monomial basis of Sm with a fixed or-
dering. Then let Cm (I) = {pi | i = 1, . . . , P̂ (m)} be any
ordered basis of Im and let M I ,m be the P̂ (m) × R̂(m)
matrix whose ij th entry is the coefficient of the j th mono-
mial of Bm in the equation pi. The Plücker coordinates
yA of Im are then simply the Q̂(m) × Q̂(m) minors of
M I ,m—one for each Plücker set A of Q̂(m) of the mono-
mials Bm . As in the discussion in [Bayer and Morrison
88, p. 211], if M ′

I ,m is the matrix associated to a sec-
ond basis C′

m (I) and E is the associated change-of-basis

matrix, then M ′ = EM , and for all A, y′
A = det(E)yA .

Hence:

1. The point gm([I ]) of P(W ) defined by the collection
of yA is independent of the choice of Cm (I).

2. Whether an individual yA vanishes at gm([I ]) is
likewise independent of this choice.

3. We may always make this choice so that M I ,m is
in echelon form.

Example 2.3. For a monomial ideal, we may take the ba-
sis Cm to be monomial, too, and then the Hilbert ma-
trix is particularly simple: it will have exactly one 1 in
each row and be 0 otherwise. Thus, for a given m, there
is exactly one nonzero Plücker coordinate, given by the
Plücker set A = Cm .

Example 2.4. Consider the ideal I of two distinct points
in P2 , for instance P = (1, 2, 3) and Q = (5, 1, −4). Let
a, b, c be the coordinates on P2 . Then we can view I as
(c − 3a, b − 2a) ∗ (a − 5b, c + 4b) and take

C2 = [2a2 − 11ab + 5b2 , 8ab − 4b2 + 2ac,

3a2 − 15ab − ac + 5bc, 12ab + 3ac − 4bc − c2 ] .

Ordering BS2 as [a2, ab, ac, b2, bc, c2], we get

MI,2 =

⎛⎜⎜⎜⎜⎝
2 −11 0 5 0 0
0 8 2 −4 −1 0
3 −15 −1 0 5 0
0 12 3 0 −4 −1

⎞⎟⎟⎟⎟⎠ .

Then the Plücker point of M I ,2 is given by the following
point, in which we have indexed the Plücker sets by the
pair of monomials omitted to save space:

1̂2 45 2̂3 55 3̂5 108
1̂3 −95 2̂4 −18 3̂6 −228
1̂4 99 2̂5 38 4̂5 22
1̂5 −154 2̂6 −13 4̂6 55
1̂6 209 3̂4 −83 5̂6 −132

.

Alternatively, the Plücker coordinates can be computed
in Macaulay2 [Morrison and Swinarski 09, CodeSam-
ple 2].

3. STABILITY AND STATE POLYTOPES

3.1. T-States and T-State Polytopes

We next want to focus on the action of SL(V ) ∼= SL(N +
1) on W :=

∧P (m ) Symm V . The Hilbert–Mumford cri-
terion says that w ∈ W is SL(V )-stable if and only if
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w is λ-stable for every 1–ps λ : Gm → SL(V ). If, in terms
of a basis of V with respect to which λ diagonalizes as
diag(tr0 , . . . , trN ), the point w has coordinates (w 0 , . . . ,
wN), we set

µL (w, λ) := −min{ri | i such that w∗
i �= 0},

and w is λ-stable if and only if µL(w , λ) < 0.

Remark 3.1. A word about the minus sign in the defi-
nition of µ. Our preferred sign convention for the index
µ of a Hilbert point w is that of [Gieseker 82, Baldwin
and Swinarski 08, Morrison 08], in which we consider the
Grassmannian as parameterizing P(m)-dimensional quo-
tients of Sm, given by restriction to H0

(
X,OX (m)

)
, and

w is stable if any λ acts with negative weight on some
nonzero coordinate of w .

The minus sign has been inserted to compensate for
the fact that here we will be calculating weights of the
action of λ on the degree-m piece of the ideal I of X
that is of dimension Q̂(m). This, of course, gives rise to
a quotient of dimension P̂ (m), and the complement of
each Plücker set A of monomials gives a basis of this
quotient. But when we take m to be small, we can no
longer identify the quotient with H0(X,OX (m)) except
on the �-nice locus, and it therefore seemed easier to us
simply to work with Im. This choice has no effect on
the notion of SL(V )-stability because the possibility of
replacing λ by its inverse means that w is stable if and
only if we can always find nonzero coordinates of w on
which λ acts with weights of opposite signs.

Remark 3.2. When we are considering stability of a
Hilbert point [X ], we will write µ([X ], λ)(m) for the index
with respect to the degree-m linearization. Replacing the
line bundle Lm on H or Ĥ that is being linearized by the
degree m, as we have implicitly been doing to this point,
is harmless because m determines Lm up to powers.

For fixed choices of x and λ, the index is represented
by a polynomial in m when m is sufficiently large—for
example, when m ≥ � if X and its specialization under λ

are both �-nice (cf. [Hassett and Hyeon 08, Sections 3.7,
3.8] and Section 5.2 below). In our examples, we will often
be interested in the roots of this polynomial and in other
aspects of the dependence of the index µ on the degree
m, so it is convenient to use a notation that highlights
this dependence.

In some examples arising out of the log minimal model
program for Mg , we will want to consider rational values
of m. For full details on rational linearizations, see [Dol-
gachev and Hu 98] or [Thaddeus 96]. However, we can
interpret what our calculations say in such cases with-

out recalling the full theory here. All we will use is that
the weights of points with respect to such a linearization
interpolate those with respect to integral linearizations
in the following sense: if [X ] and its λ specialization are
�-nice, then µ([X ], λ)(m) is computed by a polynomial
in m for any rational m ≥ �. This allows us first to de-
termine this polynomial from values at integral m, and
then to evaluate it to find µ([X ], λ)(m) at the rational
values of m that are of interest.

The connection with Gröbner theory comes via an-
other way of expressing the stability of w with respect to
the maximal torus T of SL(V ) determined by a choice of
basis B of V . Any character χ ∈ Hom(T,Gm ) of T may
be written

χ(diag(d0 , . . . , dN )) =
N∏

i=0

dzi
i ,

where the zi are integers, determined, since we are in
SL(V ), up to a common shift. Further, any representa-
tion W of T decomposes into a direct sum of character
eigenspaces W χ , where w ∈ W χ if and only if t ·w =
χ(t)w for all t ∈ T .

We define the T -state StateT (w) of w to be the set
of characters for which the eigencomponent wχ of w is
nonzero, and we define the T -state polytope PT (w) to be
the convex hull of StateT (W ) in Hom(T, Gm ).1

The group of 1-parameter subgroups of T is dual to
its character group: λ · χ is the λ-weight of χ—the power
of t determined by the homomorphism χ ◦ λ :Gm→Gm .
Viewing λ as giving a linear functional on Hom(T, Gm ),
we may rephrase our discussion of the numerical criterion
as saying that w ∈ W is stable with respect to a 1–ps λ

in T if and only if w has two nonzero eigencomponents
wχ whose character vectors lie on opposite sides of the
hyperplane on which λ vanishes. Thus we arrive at the
following characterization of GIT stability:

Criterion 3.3. A vector w ∈ W is T -stable if and only if
the trivial character lies in the interior of the state poly-
tope, and is T -strictly semistable if and only if the trivial
character lies on the boundary of the state polytope.

To interpret Criterion 3.3 for Hilbert points, first ob-
serve that each eigenspace (Sm)χ of Sm is spanned by
a single B -monomial M , and if we normalize the choice

1This is the state polytope of [Bayer and Morrison 88, Section
2] defined entirely in the fixed degree m, as opposed to that of
[Sturmfels 96, Theorem 2.5], which is the Minkowski sum of the
former for all degrees up to m.
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of the zi above by requiring that they sum to m, then
we may identify the character χ and the exponent vector
of M . The Plücker coordinates yA on W likewise give
an eigenbasis, although the eigenspaces are not neces-
sarily 1-dimensional. If we now normalize so that the zi
sum to Q̂(m)m, then we can identify the corresponding
character χA with the sum of the exponent vectors of
the Q̂(m) monomials determined by yA. For example, in∧2 Sym2K[a, b, c, d], the wedge product a2∧bc lies in the
weight space corresponding to W (2,1,1,0) .

Monomials and Plücker coordinates also diagonalize
the actions of a 1–ps λ of T on Sm and W . The weight
wλ(M ) of a monomial M is the sum of the weights of its
coordinate factors, and the weight wλ(yA) of a Plücker
coordinate yA is the sum of the weights of the monomials
in it. Moreover, these weights agree with the λ-weights
of the corresponding characters.

Thus, we think of the characters as lying on the hy-
perplane

Zm :=

{
z ∈ ZN +1

∣∣∣∣∣
N∑

i=0

zi = mP (m)

}
.

This identifies the trivial character with the point in
QN +1 having all coordinates equal to mQ̂(m )

N +1 . In the se-
quel, we will denote this point by 0m and call it the
barycenter of Zm.

To simplify two notations that we will use frequently,
we write StateT ,m (I) and PT ,m (I) for the T -state and
the T -state polytope of gm([I ]), omitting the T when no
confusion is possible.

Criterion 3.4. The mth Hilbert point gm([I ]) of an ideal I
is T -stable if and only if 0m lies in the interior of PT ,m (I)
and is T -strictly semistable if and only if 0m lies on the
boundary of PT ,m (I).

Note that Criteria 3.3 and 3.4 test only T -stability.
In Corollary 4.9, we will identify conditions under which
we can extend this to SL(V )-stability.

Example 3.5. The mth state of a monomial ideal I is
a single point, since there is only one nonzero Plücker
coordinate. Unless this point equals 0m , the mth Hilbert
point of I is unstable.

Example 3.6. If X is a hypersurface of degree d in PN ,
we may take d = m, so that P(m) = 1, and suppress the
exterior power in W . Both the characters appearing in
the decomposition of W and its Plücker coordinates are
then indexed by monomials

∏N
i=0 xzi

i of degree d , and,

FIGURE 1. Degree-3 state polytope for the cuspidal
plane cubic 〈x 2z = y3〉.

viewed as lying in the plane
∑N

i=0 ZI = d, form the dth
subdivision of an N -simplex.

Figure 1 shows this situation for a cuspidal plane cubic
X with equation x 2z = y3 that is unstable with respect
to the 1–ps λ shown. The set of characters appearing in
the decomposition is indicated by dots, and the simplex
that is their convex hull is the outlined triangle. The state
polytope is the line segment joining the two monomials
with nonzero coefficients in the equation.

These monomials both have weight 3 with respect to
the 1–ps λ given by λ(t) = diag(t4 , t, t−5), and hence this
Hilbert point is unstable. The instability is reflected in
the fact that PT ,3([X]) does not contain 0.

A generic hypersurface in P2 would have a two-
dimensional state polytope. The degeneracy of PT ,3([X])
reflects the fact that this cuspidal cubic has a Gm ac-
tion (however, it is not normal). But adding an x 3 term
to the equation, making the state polytope the upper
subtriangle subtended by PT ,3([X]), would not affect the
instability.

Example 3.7. We return to Example 2.4 and the
ideal of [1 : 2 : 3] ∪ [5 : 1 : −4] ⊂ P2 . Every character with
nonzero eigenspace contains a nonzero Plücker coor-
dinate, and the state polytope is the two-dimensional
hexagon pictured in Figure 2. Here the barycenter (indi-
cated by the central solid circle) has coordinates ( 8

3 , 8
3 , 8

3 ).

3.2. Vertices of State Polytopes and Initial Ideals

The number of Plücker coordinates grows quickly as the
number of variables, the number of generators of the
ideal, and m grow. Thus it is impractical to compute
the state polytope from definitions for all but the very
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FIGURE 2. State2 (I) for two general points in P2 .

simplest examples. The following results, modeled closely
on analogous statements in [Bayer and Morrison 88], al-
low us to handle larger examples by giving a procedure
for finding the vertices of PT ,m (I) that avoids the need
to deal with interior Plücker coordinates.

Any 1–ps λ in T yields a partial order ≥λ on mono-
mials:

M ≥ λM ′ ⇐⇒ wλ (M) ≥ wλ(M ′) .

Since the weights wi of λ on V are integers, there will
always be ties in large degree. But in any fixed degree
m, ≥λ will give a total order for all λ not lying on a
finite collection of hyperplanes. If so, we say that λ is
m-generic. We will say that λ is generic if it is m-generic
for � ≤ m ≤ mP.

Lemma 3.8. For any I in Ĥ and any generic 1–ps λ,
there is a unique Plücker set Aλ of Q̂(m) monomials such
that:

1. yAλ
is nonzero at gm([I]).

2. If yA ′ is any other Plücker coordinate nonzero at
gm([I]), then wλ (yA ) > wλ (yA ′).

Moreover, if MI,m is an m-Hilbert matrix for I in echelon
form, then the monomials in Aλ span the >λ -initial ideal
in>λ

(I) of I in degree m.

Proof: This is the content of Lemma 3.3 and Corollary
3.4.(ii) of [Bayer and Morrison 88], and the proofs given
there apply verbatim in our situation. �

Definition 3.9. For any generic 1–ps λ, we let χλ = χAλ
.

In other words, χλ is the character given by summing the
exponent vectors of the Q̂(m) monomials in in>λ

(I)m .
By (1) of Lemma 3.8, this character is an element of
Statem (I).

Theorem 3.10. For any m-generic 1–ps λ, the character
χλ is a vertex of the state polytope PT ,m (I). Conversely,
if χ is any vertex of PT ,m (I), then the eigenspace Wχ is

one-dimensional and is spanned by the Plücker coordinate
yAλ

for some m-generic λ. In particular, χ = χλ .

Proof: The inequality in (2) of Lemma 3.8 shows that∑N
i=0wizi = wλ(yA) is a supporting hyperplane (χλ lies

on it and all other χ′ in Statem (I) lie on the negative side
of it) and hence proves the first claim. Conversely, any
supporting hyperplane

∑N
i=0wizi = b to χ may be per-

turbed so that the coefficients of its normal are the set
of weights wi of a generic 1–ps λ. But then any Plücker
coordinate yA lying in the χ-eigenspace satisfies the con-
ditions defining yAλ

in Lemma 3.8 . The lemma therefore
implies that there is a unique such Plücker coordinate and
that χ = χλ . The second claim follows. �

We note that in general, the dimension of W χ will
be quite large. Already in Figure 2, the three interior
characters have 2-dimensional eigenspaces.

Theorem 3.10 is a weaker version of [Bayer and Morri-
son 88, Theorem 3.1], which shows that if m ≥ mP, then
the set of vertices of PT ,m (I) is canonically bijective to
the set of initial ideals of I . For the small degrees that we
are treating here, where the map gm from an ideal to its
degree-m graded piece is not injective, a surjection from
initial ideals to vertices is all that we can hope for—and
all we need for our applications.

Example 3.11. Let X be the twisted cubic in P3 with
ideal I = 〈ac−b2, ad−bc, bd−c2〉. Then X has eight ini-
tial ideals (see [Morrison and Swinarski 09, CodeSam-
ple 3]):

1. 〈bd , ad , ac〉;
2. 〈c2, ad , ac〉;
3. 〈c2, bc, ac, a2d〉;
4. 〈c2, bc, b3, ac〉;
5. 〈c2, bc, b2〉;
6. 〈bd , b2, ad〉;
7. 〈bd , bc, b2, ad2〉;
8. 〈c3, bd , bc, b2〉.

We remark that State2(I) has six vertices: initial ideals
3 and 4 agree in degree 2, as do initial ideals 7 and 8. For
any m ≥ 3, Statem (I) has eight vertices.

By [Bayer 82, Proposition 1.8], given any multiplica-
tive total order >, we can find a 1–ps λ such that > and
>λ agree up to degree m. Hence we have the following
corollary.

Corollary 3.12. The state polytope PT ,m (I) is the convex
hull of the set of χA as A runs over all Plücker sets that
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are bases for the degree-m graded piece of some initial
ideal of I.

Conveniently, Anders Jensen’s program gfan [Jensen
08] computes the set of initial ideals of I . Thus, if we
compute the mth state of each initial ideal for suffi-
ciently large m, we will have the state polytope. This is
what the Macaulay2 [Grayson and Stillman 08] package
StatePolytope does.

We will not use the following geometric characteriza-
tion of Aλ but have found it helpful in thinking about
the preceding results. The action of SL(V ) on V induces
actions on the homogeneous polynomials of each degree
on V and hence on Hilbert scheme Ĥ and on the Grass-
mannian Grm for which the map gm is equivariant. Since
Ĥ is projective, we can define an ideal J giving a point
of Ĥ by

[J ] := lim
t→0

λ(t) · [I] .

Lemma 3.8 says that yAλ
is the unique Plücker coordi-

nate that is nonzero at gm([J ]) and hence that gm ([J ]) =
gM ([in>λ

(I)]). But all these arguments apply equally to
any other degree between � and mP, so that in all these
degrees, J and in>λ

(I) are equal. Hence J = in>λ
(I) in

degrees above �.

4. KEMPF’S THEORY OF THE WORST 1–PS

Let w be a point of an SL(V ) representation W . Al-
ready on page 64 in the first edition of [Fogarty et al.
94], Mumford conjectured that if w is unstable, there is
a worst destabilizing 1–ps λ as measured by the index
µ(w , λ). In this section, we review the proof of this con-
jecture in [Kempf 78] and [Rousseau 78], but to simplify,
deal only with the linear situation we need in our applica-
tions. We follow the treatment of Kempf, which contains
some complementary results that allow us to reduce the
SL(V )-stability of points w ∈ W with suitably large sta-
bilizer Stab(w) to their T -stability for a special torus
determined by this stabilizer.

We begin by reviewing some of the background of
Kempf’s arguments. First, some easy covariance prop-
erties:

Lemma 4.1. For any g ∈ SL(V ):

(i) StateT (g · w) = gStateT (w)g−1 .

(ii) µ(w, λ) = µ(g·w, g·λ·g−1).

Proof: The first statement is [Kempf 78, Lemma 3.2(d)],
and the second follows immediately from it. �

Next, let F λ be the λ weight filtration on V , and Pλ

the parabolic subgroup of block upper triangular matri-
ces in SL(V ) preserving F λ . Equivalently, Pλ consists of
those p ∈ SL(V ) for which the limit limt→0λ(t)·p · λ−1(t)
exists.

Lemma 4.2. If g ∈ SL(V ) and p ∈ Pλ then:

(i) Pgλg−1 = gPλg−1 .

(ii) p ∈ Pλ ⇐⇒ Ppλp−1 = Pλ .

(iii) If p ∈ Pλ , µ(w, λ) = µ(w, pλp−1) = µ(p−1·w, λ).
Hence, µ(w, λ) = µ(p·w, λ).

Proof: The first statement follows directly from the char-
acterization of Pλ in terms of limits, and then the sec-
ond follows because any parabolic subgroup is its own
normalizer.

The last assertion is trickier. Our proof follows that
of [Kempf 78, Lemma 3.3(e)]. The final equality follows
from the first two by inverting p. By Lemma 4.1(ii), the
second equality follows from the first. For this, the key
point is the following claim: if as t → 0,

λ(t)p−1λ−1(t) → p−1
0 and t−rλ(t) · w → w0 ,

then

t−r pλ(t)p−1 · w → pp−1
0 · w0 .

This follows because

t−r pλ(t)p−1 · w = p
(
λ(t)p−1λ−1(t)

) (
t−rλ(t) · w)

→ p p−1
0 · w0 .

Since µ(w , λ) is the largest r such that limt→0 t−rλ(t)·w
exists, the claim shows that if p ∈ Pλ , then µ(w , λ) ≤
µ(w , pλp−1), and by symmetry, (iii) follows. �

Replacing λ(t) by λk (t) := λ(tk) for any positive in-
tegral k scales all weights by k without affecting their
signs. Thus stability with respect to λ is equivalent to
that with respect to λk , but µ(w , λk ) = kµ(w , λ). We
want to normalize the Hilbert–Mumford index µ to ob-
tain a measure of “badness” that agrees on λ and λk .
To do this, choose a conjugation-invariant norm ‖·‖ on
one-parameter subgroups—for SL(V ), we can take ‖λ‖
:= (

∑N
i=0w

2
i)1/2—and define µ̂(w, λ) := µ(w,λ)

‖λ‖ . We also
define µ(w) := supλ µ̂(w, λ). A priori, it is not clear either
that µ(w) is finite, or if it is, that this sup is achieved.
A worst λ for w is one for which the function µ̂(w, λ)
achieves this maximum value.

In the case that X is a representation W , [Kempf 78,
Theorem 3.4] says the following:
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Theorem 4.3. If w is an unstable point of W, then:

1. There is an indivisible 1–ps λ such that if λ′ is any
other 1–ps, then µ̂(w, λ) ≥ µ̂(w, λ′). Hence µ(w) is
finite and equal to µ̂(w, λ).

2. The indivisible λ′ for which µ̂(w, λ′) = µ̂(w, λ) are
exactly those for which λ′ = p−1λwp for some p ∈
Pλ . In particular, Pλ ′ = Pλ , and we can write Pw

for Pλ .

3. The set of all λ′ as in (2) is a principal homoge-
neous space under the unipotent radical of Pw, and
every maximal torus T of Pw contains a unique
such λ′.

In view of Lemmas 4.1(ii) and 4.2(iii), we can infor-
mally summarize this result as saying that worst one-
parameter subgroups exist and are as unique as possible.
The complementary result we need is this:

Proposition 4.4. [Kempf 78, Corollary 3.5] Let w ∈ W be
an unstable point with associated parabolic subgroup Pw.
Then Pw contains Stabw (SL(V )).

Proof: For any g ∈ SL(V ), g · w is also unstable and
hence determines a parabolic subgroup Pg ·w . The propo-
sition will follow if we show that gPwg−1 = Pg ·w , because
any parabolic subgroup is its own normalizer.

By Lemma 4.1(ii) and the conjugation-invariance of
the norm ‖·‖, the (indivisible) worst one-parameter sub-
groups for g · w are exactly the g-conjugates of those
for w . Let λ be one of the latter. This gives the middle
equality in Pg ·w = Pgλg−1 = gPλg−1 = gPw g−1 , and the
first and last equalities follow from Lemma 4.2(i). �

Kempf applies these results to conclude stability of
Chow and Hilbert points of abelian varieties and homo-
geneous spaces [Kempf 78, Corollaries 5.2 and 5.3]: the
representations of the automorphism groups of these va-
rieties are irreducible, so the stabilizer is not contained in
any nontrivial parabolic, and hence these must be GIT
stable.

There are very few examples of pluricanonically em-
bedded smooth curves with an automorphism group act-
ing via an irreducible representation. For instance, a full
list of canonical curves with this property is found in
[Breuer 00, Appendix B]; the example of highest genus
is g = 14. Examples are even rarer as ν increases. So
Kempf’s strategy must be modified if it is to be applied
to Hilbert points of curves.

Here is how we weaken the irreducibility hypothesis.

Definition 4.5. Fix w ∈ W . We say that w is multiplicity-
free with respect to a finite subgroup G of StabSL(V )(w)
if in the representation of G on V , no G-irreducible R
has multiplicity greater than 1. When, as in our applica-
tions here, G = StabSL(V )(w), we will say simply that w
is multiplicity-free.

The key consequence of this property is that
V —indeed, any G-invariant subspace U of V —has a
canonical decomposition as a direct sum of G-irreducible
subrepresentations of V . Such a decomposition, of
course, exists for any finite G by complete reducibility.
But when w is multiplicity-free, there is, for each R ap-
pearing in V , a canonical subrepresentation UR isomor-
phic to R. Every U is then the direct sum of those UR

for which R occurs in U .

Definition 4.6. We say that a basis B of V or the asso-
ciated torus T = TB determines stability for w if:

1. There is a subgroup G ⊂ StabSL(V )(w) such that w
is multiplicity-free with respect to G .

2. The basis B is the (disjoint) union of bases BR for
each of the G-irreducible representations UR occur-
ring in V .

The justification for this terminology is the following
proposition:

Proposition 4.7. If T determines stability for w, and w is
T-semistable, then w is SL(V )-semistable.

Proof: We prove that if w is SL(V )-unstable, then w is
T -unstable, by showing that then T is a torus of Pw.

So suppose that w is multiplicity-free and unstable.
Then Proposition 4.4 says that G lies in Pw and hence
fixes the associated filtration F . We can thus write F as
a strictly nested sequence V =U 0 ⊃ U 1⊃ ··· ⊃Uh ⊃ {0}
of G-invariant subspaces of V . Each of these is a direct
sum of a subset of the G-irreducibles occurring in V .
Therefore, the basis B is compatible with the filtration
F , and in turn, T is a torus of Pw. �

We now apply this to Hilbert points. Let X be an �-
nice subscheme of P(V ) with ideal I and let AutV (X) ⊂
Aut(X) be the subgroup consisting of elements that act
linearly on V fixing X . Suppose that AutV (X) is finite
and the representation of AutV (X) on V is multiplicity-
free—in our applications AutV (X) = Aut(X). For any m
≥ �, the group AutV (X) lies in the SL(V )-stabilizer of
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gm([I ]), so the pair (gm ([I]),AutV (X)) is multiplicity-
free in the sense of Definition 4.5, independently of m.

Definition 4.8. Under the hypotheses of the preceding
paragraph, we say that X is multiplicity-free and that
any torus T constructed as in Proposition 4.7 determines
stability for X .

Combining the proposition with Criterion 3.4 gives the
first assertion below. The second, which allows us to read
off the worst 1–ps from the state polytope, follows by ele-
mentary arguments as in the proof of [Kempf 78, Lemma
2.3].

Corollary 4.9.

1. If T determines stability for X, then the mth
Hilbert point gm([I]) of X is SL(V )-stable (respec-
tively SL(V )-strictly semistable) if and only if the
barycenter 0m lies in the interior (respectively the
boundary) of the state polytope PT ,m (I).

2. Let p be the proximum to 0 in PT (w). If w is T-
unstable, so p �= 0, then p − 0m spans a rational
ray and any T-worst 1–ps has weights lying on this
ray.

Remark 4.10. Of course, multiplicity-free Hilbert points
are extremely special. Consider, for example, smooth
curves of genus g ≥ 2. These usually have trivial au-
tomorphism group, and so a trivial stabilizer for any
embedding. But even special curves can be multiplicity-
free only for low-degree embeddings, as discussed fur-
ther below. So our strategy can prove directly the sta-
bility only of low-degree models of special curves, such
as those arising in our applications here. In practice, the
complexity of the computations required blows up very
rapidly—for an indication of just how rapidly, see Table
2—making it practical to handle even such cases only for
small g .

On the other hand, by the openness of GIT stabil-
ity and the coarseness of the Zariski topology, prov-
ing that a single smoothable subscheme in any compo-
nent of the Hilbert scheme is stable proves that a gen-
eral smooth subscheme on that component is stable. As
Gieseker’s construction of Mg , and many others modeled
on it (cf. [Morrison 08]), shows, such a statement is of-
ten enough, when there is a main component containing
smooth equidimensional subschemes, to allow the con-

struction of a GIT quotient to be completed by indirect
arguments.

For the rest of the paper we specialize to the case
that X is a curve, though many arguments will continue
to apply more generally. To make this switch clear, we
write C for X , continuing to denote its ideal by I . In
looking for examples in this case, the next step is there-
fore clear. Find special models C ⊂ P(V ) of curves that
are multiplicity-free and decide when their mth-Hilbert
points are stable, at least for small m, by computing
PT ,m (I) for some T that determines stability. A natural
set of models to consider is that of pluricanonical models,
since for these AutV (C) = Aut(C).

Definition 4.11. We say that a nodal curve C is ν-
multiplicity-free if its ν-canonical model is multiplicity-
free. We will mainly be interested in the case ν = 2 when
we say that C is bicanonically multiplicity-free.

In the sequel, we focus on bicanonical models for two
reasons. First, they provide a source of tractable exam-
ples. Bicanonical embedding dimensions are small enough
both so that multiplicity-free examples exist in all gen-
era and so that it is practical to compute the relevant
state polytopes when g is sufficiently small. Second, as
noted in the introduction, the conjectural next stages in
the log minimal model program of [Hassett and Hyeon
09, Hassett and Hyeon 08] depend on understanding the
stability of bicanonical Hilbert points of degree at or
below 6.

Finally, [Maclachlan 65, Theorem 4] shows that if a
curve of genus g has an abelian automorphism group,
its order can be at most 4g + 4. Hence no such curve
can be ν-multiplicity-free for any ν > 2 unless it has very
small genus—all the irreducibles have dimension 1, and
the ν-canonical series has dimension (2ν − 1)(g − 1).
Multiplicity-free curves with nonabelian automorphism
groups seem likewise to be extremely rare. Since the
sum of the squares of the dimensions of the irreducibles
equals the order of the group, the sum of the dimen-
sions themselves is typically much less, and this more
than compensates for the largely theoretical extra head-
room given by Hurwitz’s bound of 84(g − 1) for their
orders. Our examples, reviewed in Section 6, use a fam-
ily Wg of hyperelliptic curves, one in each genus g , called
Wiman curves, whose automorphism groups are cyclic
of order—surprisingly, in view of Maclachlan’s bound—
4g + 2.
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5. COMPLEMENTARY APPROACHES TO CHECKING
STABILITY

We are almost ready to describe our applications of the
preceding results to check, by symbolic calculations, GIT
stability of certain bicanonically multiplicity-free curves
C of small genus with respect to small-m linearizations.
Given such a C with ideal I , we want to compute the
state polytope PT ,m (I) with respect to a distinguished
torus of Corollary 4.9 and check whether the barycen-
ter 0m lies in its interior, boundary, or exterior. But in
practice, already in some cases with g = 4, this plan is
impossible to carry out: there are too many initial ide-
als and we are unable to completely compute PT ,m (I).
In this section, we explain some additional ideas that we
use to settle such cases in our examples.

5.1. A Monte Carlo Pseudoalgorithm

Our first observation is that we can often check GIT sta-
bility without computing the entire state polytope. If
we can compute any set I of initial ideals correspond-
ing, in degree m, to a set of characters Ξm ⊂ Statem (I)
such that the convex hull Ξm contains 0m , then we know
that C is m-Hilbert semistable—even stable if 0m lies
in the interior of Ξm . We say that such an I checks
m-semistability of C .

Pseudoalgorithm 5.1. To verify that C is m-Hilbert
semistable, begin with I = ∅:

1. Generate a pseudorandom weight vector λ.

2. Add the ideal in>λ
(I) to I and let Ξm be the asso-

ciated set of characters in degree m.

3. If Ξm contains 0m , stop. Otherwise, return to Step
(1).

This is, of course, only a pseudoalgorithm because it
will never terminate if C is actually m-Hilbert unstable.
In fact, even if C is m-Hilbert semistable, we cannot be
sure it will terminate: we may simply not have gener-
ated vectors in enough directions to produce a Ξ that
checks semistability. In practice, however, we have not
encountered either problem. Guided by the predictions
of the log minimal model program, we have been able to
apply it only to testing C that actually were m-Hilbert
semistable. In all the examples we have run, Pseudoalgo-
rithm 5.1 has produced a Ξ that checks stability quickly,
typically in a tiny fraction of the time required for our
calculation of the full state polytope to complete—or fail
to complete due to hardware and software limitations.

We have also been able to check the m-Hilbert insta-
bility of C in all cases we expect it by exploiting a basic
asymmetry of stability calculations: verifying semistabil-
ity is hard, but proving instability is easy, if we can guess
a destabilizing 1–ps. To check such a guess, it suffices to
compute the in>λ

initial ideal (adding a tie-breaking pro-
cedure if necessary). The ideal I is m-Hilbert unstable if
and only if the monomial basis of this ideal in degree m
has negative weight: by Lemma 3.8, this weight equals
µ(gm(I ), λ). Hassett, Hyeon, and Lee’s Macaulay2 func-
tion MUm computes µ by this method (see [Hassett et al.
10] for both the code and documentation).

In our examples, the log minimal model program sug-
gests what 1–ps to try. It gives a geometric description
of those curves whose instability it predicts that suggests
both the filtration and the weights of a candidate destabi-
lizing 1–ps λ. These candidates have proven to be desta-
bilizing in all our examples. In practice, we can often
even check instability with respect to these λ deductively,
because λ-weights have a geometric interpretation. This
pattern is familiar to those who have computational ex-
perience, symbolic or deductive, with Hilbert stability.

5.2. The Parabola Trick

For a fixed curve C ∈ P(V ), the complexity of computing
the state polytope PT ,m (I) grows quite rapidly with m
because

(
m+N

m

)
, the number of monomials of degree m,

grows like N m for N >> m. This often means that we
can check �-Hilbert stability for some � but not m-Hilbert
stability for m a somewhat larger, but still small, degree
of greater geometric interest. Typically � = 2, and with
applications to the log minimal model program for Mg

in mind, m ≤ 6. The following proposition sometimes
lets us deduce what we want to know from what we can
compute.

The key technical tool is a lemma due to Hassett and
Hyeon:

Proposition 5.2. (The parabola trick.) Let λ be a nontriv-
ial 1–ps. Suppose that C and its λ specialization are both
�-nice. Then the weight function µ([C], λ)(m) is com-
puted by a quadratic polynomial for m ≥ �, and this poly-
nomial has the form a(m−1)(m − r) for some rational a
and r. In particular, any two values of µ([C], λ)(m′) with
m′ ≥ � determine µ([C], λ)(m) for all m ≥ �.

Proof: For � = 2, this follows from [Hassett and Hyeon
08, Proposition 3.17], but the same proof works, mutatis
mutandis, for any � ≥ 2. �
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We apply this trick to check both instability and sta-
bility. A typical example of the latter use is the following:

Corollary 5.3. Suppose C is 2-nice, and that we can find
a set I of initial ideals that are generated in degree � and
such that for all m between � and mP, the corresponding
set {Statem (Ij ) | Ij ∈ I} contains 0m in its convex hull.
Then C is m-Hilbert stable for all m ≥ �.

The Gotzmann number mP grows very quickly with
the genus of the curve, and therefore it is natural to won-
der whether perhaps a smaller set of degrees m might suf-
fice in the corollary. The following example dashes any
such hopes.

Example 5.4. Let W4 be the genus-4 Wiman curve dis-
cussed in Example 8.2 below. Let I be the ideal of this
curve under its bicanonical embedding (see [Morrison and
Swinarski 09, CodeSample 6]). The state polytope of I is
a subset of R9 . There is a set {Ij}9

j=1 of nine initial ideals
of I that are generated in degrees ≤7. Hence I and all
the Ij are 7-nice. For 4 ≤ m ≤ 36, but not for 37 ≤ m
≤ 64, the set {Statem (Ij )}9

j=1 contains 0m in its convex
hull. Thus we cannot apply the parabola trick to con-
clude stability from this set of initial ideals (although, as
we explain in Example 8.2 below, we can find another set
of initial ideals that does establish stability).

Remark 5.5. In Sections 2 and 3, we emphasized the
changes that must be made to the theory as it appears
in the literature in order to accommodate low degrees m.
But our approach also applies (in any dimension r) to
degrees above the Gotzmann number mP, and via these
may be used to determine Chow stability. The idea is
straightforward. Fix a saturated ideal I corresponding to
an r -dimensional subscheme X . Given any 1–ps λ, let
ξm be the character associated to in>λ

(I) in degree m.
For sufficiently large m, ξm is represented by a vector
of polynomials in m, and we may define a scaled limit
ξ∞ = limm→∞ k !

mk ξm . By [Kapranov et al. 92, Theorem
3.3], the Chow polytope (in [Kapranov et al. 92], simply
the state polytope) Chow(I) may then be defined either
as the convex hull of these scaled limits for all λ, or as
the scaled limit of the degree-m state polytopes of I .
Thus, we may compute Chow polytopes by computing
state polytopes in r + 1 sufficiently large degrees m, in-
terpolating in each coordinate, and computing the scaled
limit.

6. BACKGROUND ON WIMAN CURVES

Looking ahead to the next section, our main source of
computational examples will be a sequence Wg of hyper-
elliptic curves called Wiman curves. In this section, we
develop the theoretical background on these curves that
we will need in these applications. To begin with, we need
to have suitable equations for their pluricanonical mod-
els, and this part of the story depends only on their being
hyperelliptic.

6.1. Pluricanonical Equations of Hyperelliptic Curves

Fix a smooth hyperelliptic curve C and a canonical mul-
tiple ν, and let φν : C → P(Vν ) = PNν be the ν-canonical
embedding in Vν = H0

(
C,ω⊗ν

C

)∨. By Riemann–Roch, N ν

+ 1 = (2ν − 1)(g − 1) and φν (C ) has degree d = ν(2g
− 2). It is easy to write equations for φν (C ), and in-
deed equations for the embeddings of hyperelliptic curves
by more general linear systems. Here we do so in a
form convenient for our applications in the next sec-
tion, following [Stevens 03, pp. 137–138] and [Eisenbud
80]. To simplify notation, we fix ν and omit it where
possible.

Let π : C → P1 be the g1
2 on C . For convenience, write

k := ν(g − 1) and e := g + 1. Then φ(C ) lies on the scroll
S = P(π∗(ω⊗ν

C )), where π∗(ω⊗ν
C ) ∼= O(k) ⊕O(k + e); thus

S ∼= P(O ⊕O(−e)).
Let C be given by the affine equation y2 = f (x ), where

f (x ) is polynomial in x of degree 2g + 2 (or 2g + 1 if
the point at infinity is a branch point). Then a basis of
H 0(C , ω⊗ν

C ) is given by

Bν := {1, x, x2 , . . . , xk , y, yx, yx2 , . . . , yxk−e}. (6–1)

These sections are clearly independent, and we check that

(k + 1) + (k − e + 1) = 2ν(g − 1) − (g + 1) + 2
= (2ν − 1)(g − 1)
= h0(C,ω⊗ν

C

)
.

Abusing notation, we use these basis elements as vari-
ables on PN .

Equations for the scroll are also classical; modern ref-
erences are [Harris 95, Exercise 9.11] and [Arbarello et
al. 85, pp. 96–100]. Suppose (ν − 1)(g − 1) > 2, so that
k > e. Then the scroll equations are given by the 2 × 2
minors of the deleted catalecticant matrix(

yxk−e yxk−e−1 · · · yx | xk xk−1 · · · x

yxk−e−1 yxk−e−2 · · · y | xk−1 xk−2 · · · 1

)
. (6–2)
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We denote this matrix by M and the ideal generated by
its 2 × 2 minors by IS.

Next, choose a set Q of quadrics encoding the follow-
ing equations:

y2 = f(x),
y2x = xf(x),

· · · (6–3)
y2x2(k−e) = x2(k−e)f(x).

The particular choices of quadrics used to encode these
equations won’t matter once these are combined with the
scroll equations. Write IQ for the ideal generated by these
quadrics. The references cited above yield, in particular,
the following result:

Lemma 6.1. Suppose the hyperelliptic cover yielding C is
branched at ∞, so deg f(x) = 2g + 1. Then I(φν (C)) =
IS + IQ. That is, the ideal of φν (C) is given by the scroll
equations (the 2 × 2 minors of M) together with the 2(k
− e) + 1 additional quadratic equations coming from Q.

As an example, in [Morrison and Swinarski 09, Code-
Sample 6], we find the bicanonical equations of W4 ,
which, as we shall see in (6–4), is the curve given by
y2 = x 9 − 1.

6.2. Bicanonical Multiplicity-Freeness of Wiman
Curves

We write Wg for the Wiman curve of type I in genus
g . These curves are named for Anders Wiman, who in
1895, in his first published paper,2 [Wiman 95], showed
that Wg has the cyclic automorphism group of largest
order 4g + 2 among all smooth curves of genus g .

The curve Wg is the smooth hyperelliptic curve given
by the affine equation

y2 = x2g+1 − 1 . (6–4)

It is often convenient to think of Wg as the hypersurface
in the weighted projective space P(1, g + 1, 1) given by y2

= x 2g+1z − z 2g+2, and when we do, we call [1 : 0 : 0] the
branch point at infinity. As we have already remarked,
Aut(Wg ) is cyclic of order 4g + 2: fixing a primitive (4g +
2)nd root of unity ζ determines a generator σ ∈ Aut(Wg )
that acts with weight 2g + 1 on y (that is, as −1) and
with weight 2 on x . The key facts we will need about this
action are summarized in the following proposition:

2His last appeared 59 years later!

Proposition 6.2. Let B2 be the basis of V = H0(Wg , ω
⊗2)

given by (6–1) and let T be the corresponding torus in
SL(V ). Then:

1. Aut(Wg ) fixes the branch point at infinity.

2. The elements of B2 are eigenvectors for the action
of σ on H0(Wg , ω

⊗2) with distinct powers of ζ as
eigenvalues.

Hence, the bicanonical model of Wg is multiplicity-free,
and the torus T determines stability for it.

Proof: Since σ clearly fixes the point at infinity, the de-
scription of its action above makes the first statement
clear and shows that its action on H0(Wg , ω

⊗2) in the
basis B2 of (6–1) is by ζ2i on x i for i = 0, 1, . . . , k =
2g−2 and by ζ2i+2g+1 on yx i for i = 0, 1, . . . , k − e = g −
3. This gives the second statement, and it, in turn, shows
that the elements of B2 span invariant lines on each of
which Aut(Wg ) acts by a different character. From this,
the final claims follow immediately. �

7. RESULTS AND PREDICTIONS FROM THE LOG
MINIMAL MODEL PROGRAM

In this section, we recall some results from completed
stages of the log minimal model program for the moduli
stack Mg of stable curves and its coarse moduli scheme
Mg , and some predictions about conjectural stages. For a
more detailed overview of this program, and on the mod-
uli spaces and divisor classes discussed here, see [Hassett
and Hyeon 09, Hassett and Hyeon 08] and the recent sur-
vey. Because it makes the coefficients involved slightly
simpler, we shall state predictions in terms of divisors on
the associated moduli stack Mg .

The goal of the log minimal model program is to
construct the birational models Mg (α) determined by
the rays rα spanned by the classes KMg

+ αδ in the
Néron–Severi group of the moduli stack Mg of stable
curves, where δ is the divisor class determined by the
locus of nodal curves and 1 ≥ α ≥ 0. In view of Mum-
ford’s formula, KMg

= 13λ − 2δ, in which λ is the Hodge
class, the ray rα is also spanned by the class sαλ − δ

with slope sα = 13
2−α . For α near 1, the ray rα is am-

ple and Mg (α) = Mg , and then, as α decreases, there is
a discrete set of critical values of α or sα at which the
model Mg (α) changes, until at α = 0 we arrive as the
canonical model of Mg . Understanding the birational al-
terations involved and constructing the models Mg (α)
become more delicate as α decreases.
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Predictions about the program can be obtained by as-
suming a conjectural description of the nef cone of Mg

called the F -conjecture in [Gibney et al. 02] and using
consequences of it deduced there (in particular, Theorem
2.2 and Proposition 6.1). These results lead to predic-
tions for the successive smaller critical values α, for the
loci of stable curves contracted at each such value, and for
the nonstable singularities that replace them. Details for
α = 7

10 , for example, may be found in [Hassett and Hyeon
09, pp. 20–21]. For small g , only larger values of α arise,
and the birational alteration involved may be special—for
example, loci that are usually of higher codimension may
be divisors for small g .

On the other hand, a calculation due to Mumford
[Mumford 77, Section 5] (see also [Morrison 08, Lemma
21]) determines the slope s(ν, m) of the polarization with
which GIT naturally endows the locus of nodal curves
in the ν-canonical Hilbert scheme linearized in degree m
and shows that the polarization on the ν-canonical Chow
scheme has slope s(ν, ∞) given by letting m → ∞. His
formula for the polarization is(

m − 1
2ν − 1

)((
6ν2m − 2νm − 2ν + 1

)
λ − ν2m

2
δ

)
. (7–1)

When one of these GIT slopes equals a critical sα , the
corresponding GIT quotient is a natural candidate for
Mg (α). The goal then becomes to see that the stable
(and, in some cases, semistable) orbits of this quotient
parameterize the expected class of curves.

Table 1 summarizes the first few stages of the pro-
gram. The gmin column gives the minimal genus below
which the general picture indicated must be modified in
some way. Since most of these modifications will not be
significant in applying our results, we pass over them. A
tail is Weierstrass if the point of attachment on it is a
Weierstrass point, and is general otherwise.

Interpreting the implications of each row in the table
for the GIT problems listed in the last column requires a
bit of explanation. Fix a row of the table and consider the
closure of the ν-canonical locus in the ν-canonical Hilbert
scheme, linearized in degree m, for the values given in
that row. Then, curves in the sublocus contracted in that
row (and in subloci contracted in any higher rows) should
have unstable Hilbert points. And ceteris paribus, curves
with the replacement singularities in that row (and those
in any higher rows, and nodes) but no others should have
stable Hilbert points. The italicized proviso in this last
statement is that such curves must not exhibit some other
destabilizing geometric feature. A careful description of
what these features are is necessary in constructing the

quotient but not in dealing with the pointwise stability
calculations in our examples, so we may, and will, omit
giving one.

Each row also comes with an implicit limiting case
obtained by sending m → ∞ in the known rows and by
sending ε → 0 in the predicted rows. In the former case,
the limit is the corresponding ν-canonical Chow quotient,
and in the latter, it is the ν-canonical Hilbert quotient
linearized in the limiting degree m. In this limiting GIT
problem, we expect both curves in the locus contracted in
the fixed row and curves with the replacement singulari-
ties in the fixed row to be strictly semistable—again, ab-
sent any other destabilizing geometric feature. In partic-
ular, in the predicted rows, we expect the limiting value
of m to give a linearization lying on a VGIT wall in the
sense of [Thaddeus 96, Dolgachev and Hu 88] and the
contracted and singular curves to change from stable to
unstable and from unstable to stable, respectively, as the
degree m descends across this value.

Again, we recommend the recent survey [Hyeon 10] for
more details, especially concerning the last two rows of
Table 1.

Remark 7.1. We note one additional low-genus result. It
is shown in [Hyeon and Lee 10, Proposition 19] that in
genus 3, when α < 17

28 , the locus of hyperelliptic curves
(which is a divisor in genus 3 only) is contracted in
Mg (α). The corresponding slope sα < 28

3 arises by taking
ν = 2 and m = 9

4 in (7–1). Our approach to interpreting
stability with respect to a fractional linearization of this
type is outlined in Remark 3.2. Thus, here we expect hy-
perelliptic curves to be m-stable for m > 9

4 , m-strictly
semistable for m = 9

4 , and m-unstable for m < 9
4 .

8. RESULTS

In this section, we summarize our computational results.3

In Example 8.1, we prove that the bicanonical genus-3
Wiman curve W3 is unstable for m = 2 and stable for
m ≥ 3 (which matches the predictions in [Hyeon and
Lee 07]). In Example 8.2, we prove that the bicanonical
genus-4 Wiman curve W4 is stable for m ≥ 2, and in Ex-
ample 8.3, that the genus-5, -6, -7, and -8 Wiman curves
are stable for small values of m: both examples confirm
predictions of Hassett and Hyeon.

In Example 8.4, we show that a genus-5 curve with
an elliptic bridge is unstable for all finite m, but Chow

3Both the source code files used and the resulting output can be
found at http://www.math.uga.edu/∼davids/gs/gs.html.



48 Experimental Mathematics, Vol. 20 (2011), No. 1

Replacement GIT Parameters
Status α sα gmin Locus Contracted Singularities Alteration Giving Alteration
Known 1 13 — — — — ν ≥ 5, m >> 0
Known 9

11 11 3 elliptic tails A2 : ordinary cusps contraction ν = 3 or 4, m >> 0
Known 7

10 10 4 elliptic bridges A3 : tacnodes flip ν = 2, m >> 0
Predicted 2

3
39
4 5 Weierstrass genus 2 tail A4 : rhamphoid cusps flip ν = 2, m = 6 − ε

Predicted 19
29

29
3 5 general genus 2 tail A5 : oscnodes contraction ν = 2, m = 4.5 − ε

TABLE 1. Stages of the log minimal model program.

strictly semistable. We also study genus-5 nodal curves
with Weierstrass and general genus-two tails in Examples
8.5 and 8.7. The former is unstable for m < 6, strictly
semistable for m = 6, and stable for m = 7; it specializes
to a curve with a rhamphoid cusp that we show is also
m = 6 strictly semistable in Example 8.6. The latter is
unstable for m < 4.5 and stable for m = 5, 6, 7; it spe-
cializes to a curve with an oscnode. Finally, in Example
8.8, we study a specific genus-4 ribbon; this is unstable
for all finite m, but Chow strictly semistable.

8.1. Smooth Wiman Curves

Example 8.1. (The genus-3 Wiman curve.) Genus-3 bi-
canonical curves are not explicitly covered by Section 6,
since (ν − 1)(g − 1) = 2, or equivalently, k = e. But we
can stretch the algorithm there to cover this case, too:
instead of the curve lying on a scroll given by a deleted
catalecticant matrix, in genus 3, the curve lies on a cone
over the rational normal curve given by a catalecticant
matrix. To this we can add a quadric encoding y2 = f (x ),
yielding that the ideal for W3 in K [a, b, c, d , e, f ] is (ac
− b2, ad − bc, ae − bd , bd − c2, be − cd , ce − d2, f 2 −
ab + e2).

In this case, it is not necessary to use Monte Carlo
methods. When we compute the full state polytope, gfan
[Jensen 08] finds 4615 initial ideals, taking about 1.4
MB to describe. Interestingly, while I is generated by
quadrics, some of the initial ideals have much higher
regularity—one of the initial ideals has a generator of
degree 19. (The Gotzmann number mP for the Hilbert
polynomial 8t − 2 is 26.)

We find that W3 is unstable for m = 2, and stable for
m ≥ 3. For m = 3, . . . , 12, we computed Statem (I); for
m = 13 through 27, we found random sets of six initial
ideals whose mth Hilbert points contain the barycenter
in their convex hull. By the parabola trick, this implies
that W3 is stable for all m ≥ 3. This corroborates the
predictions of Hyeon and Lee mentioned at the end of
Section 7.

We also computed the worst 1–ps when m = 2. The
proximum is

p =
(

12
5

,
12
5

,
12
5

,
12
5

,
12
5

,
10
5

)
.

We first computed this using the Maple package Convex

[Franz 06]; see [Morrison and Swinarski 09, CodeSam-
ple 7]. Later, we learned that version 1.1.2 of Convex had
a bug in its proximum function, and checked its answer
by verifying the Karush–Kuhn–Tucker conditions.4 Then
p − 02 = ( 1

15 , . . . , 1
15 ,− 1

3 ), and therefore the worst 1–ps
is one that scales the span of the rational normal curve
with equal weights and scales the cone with complemen-
tary weight.

Using the MUm function from [Hassett et al. 10] and
w = (10, 10, 10, 10, 10, 12), we get MUm(I, w, 2) = −4
and MUm(I, w, 3) = 24. Interpolating using Lemma 5.2,
this gives µ([W3 ]m , λ) = 4(m − 1)(4m − 9). Thus, with
respect to this 1–ps, [C ] is m-stable, strictly semistable,
and unstable for m respectively greater than, equal to,
and less than 9/4, confirming the predictions discussed
in Remark 7.1.

Finally, we wish to observe that in this example, the
state polytope admits a Minkowski-sum decomposition:
by [Sturmfels 96, p. 16, Ex. 4], we have State2(I) =
State2(IS ) + State2(IQ ). We do not know of a similar
decomposition for our other examples, or have reason to
expect one.

Example 8.2. (The genus-4 Wiman curve W4 .) We com-
puted the ideal of W4 in [Morrison and Swinarski 09,
CodeSample 6]. The Hilbert polynomial is 12t − 3, and
its Gotzmann number, using Lemma 2.1, is 63.

We have not been able to compute the full Gröbner
fan of this ideal. To get a sense of how large this might
be, we computed state polytopes for related embed-
dings of lower degree. On a genus-4 hyperelliptic curve,

4See http://www.math.uga.edu/∼davids/gs/wiman3/kkt.pdf .
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K ∼ 6P , where P is any Weierstrass point, so it is natu-
ral to compute state polytopes for linear systems of the
form |K + nP |.

Table 2 makes it clear that computing the full Gröbner
fan for the linear system |2K | = |K + 6P | is out of reach.
(Note: |K | is not an embedding, since C is hyperelliptic.
The linear systems |K + P | and |K + 2P | are also not
embeddings.)

Next we turned to our Monte Carlo strategy. Using
random weights, we were able to establish that W4 is
stable for m from 2 to 7. Next, we examined the output
from the m = 2 calculation more closely. Here 336 ran-
dom weights were used before stability was established.
We chose the 25 initial ideals whose second Hilbert points
were closest to the barycenter, and randomly whittled
down this set to find a set of 9 initial ideals whose mth
Hilbert points establish stability for 4 ≤ m ≤ 64 [Mor-
rison and Swinarski 09, CodeSample 4]. By the parabola
trick, this implies stability for all m ≥ 2, and hence Chow
stability. It seems plausible that there may be a set (per-
haps even many sets) of nine initial ideals that establish
stability for all m ≥ 2.

For g ≥ 4, Hyeon predicts (private communication)
that divisors of slope ≤9 contract the hyperelliptic locus.
Solving 20m−3

2m = 9 yields m = 3
2 , so the prediction is that

this curve should be stable for all m ≥ 2, which matches
our findings. Moreover, we can exhibit a 1–ps that flips
at m = 3

2 . Let

w = (−2,−2,−2,−2,−2,−2,−2, 7, 7).

Then MUm(I, w, 2) = 108, MUm(I, w, 3) = 648, and
MUm(I, w, 4) = 1620, which gives the polynomial

µ([W4 ]m , λ) = 108(m − 1)(2m − 3).

By comparing w to the setup used for this example (see
[Morrison and Swinarski 09, CodeSample 6]), we see that
(in the notation of Lemma 6.1) this 1–ps puts all nega-
tive weights on multiples of x and all positive weights on
multiples of y .

Example 8.3. (Higher-genus Wiman curves.) We applied
our Monte Carlo methods to the Wiman curves Wg for
g = 5, 6, 7, 8. The ideals of these curves may be ob-
tained using the methods of Section 6. Table 3 shows
the number of random weights required to establish sta-
bility in different degrees m. We have also included the
Hilbert polynomial for each example and the correspond-
ing Gotzmann number. Our Macaulay2 code tested sta-
bility by adding 4(N + 1) initial ideals at a time, and we
record this, too. Lastly, as m grew large, polymake, run

with its default settings, returned error messages in each
example; the table includes all our error-free runs, with
omitted cells indicating that we encountered a polymake

error. Although we are confident that such lacunae could
be filled by selecting different options within polymake,
or by using a different convex geometry software package,
we did not think the game worth the candle.

Table 3 suggests that it is easier to establish stability
for larger values of m than for m = 2. For g = 5, we also
checked some slightly larger values of m. Rather than
generating new sets of random initial ideals, we checked
that the initial ideals used in degree 7 establish stabil-
ity for degrees 4 through 11. Above degree 11, however,
polymake returned error messages once again.

We expect that the whittling procedure used in Ex-
ample 8.2 could also be applied to prove stability in all
degrees for the genus-5 curve, but we have not made a
systematic attempt to do so.

8.2. Reducible Curves

Example 8.4. (A genus-5 curve with an elliptic
bridge.) An elliptic bridge is a genus-1 subcurve that
meets the rest of the curve at two nodes. Hassett and
Hyeon show that this is unstable for finite m, but Chow
strictly semistable. We compute an example illustrating
their findings.

We build an example as follows: Let W2 be the Wiman
curve of genus 2, P the point at infinity. Let E be the
elliptic curve given by the equation y2 = x 3 − x (Kulkarni
calls curves like this Wiman curves of type II), and let
Q = [1 : 0 : 0], R = [0 : 0 : 1]. Then C = W2 ∪P =Q

E ∪R=P W2 . We choose coordinates for the bicanonical
embedding of C as follows: We choose variables a−l on
P11 and map P to the point [0 : 0 : 0 : 0 : 1 : 0 : 0 : 0 : 0
: 0 : 0 : 0] and map Q to the point [0 : 0 : 0 : 0 : 0 : 0 : 0
: 1 : 0 : 0 : 0 : 0]. The three irreducible components of C
are mapped to P11 as follows:

W2
yx : xz3 : x2z2 : x3z : x4

a : b : c : d : e

E
x3z : yxz : x2z2 : xz3

e : f : g : h

W2
x4 : x3z : x2z2 : xz3 : yx

h : i : j : k : l

We know that ω2
C |W2

∼= ω2
W2

(2P ), and ω2
C |E ∼=

ω2
E (2Q + 2R) ∼= OE (2Q + 2R). Equations for such hy-

perelliptic curves and linear systems follow from the
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Linear System Number of Initial Ideals CPU Time gfan Output File Size

|K + 3P | 3,862 3 minutes 1 MB
|K + 4P | 283,221 370 minutes 101 MB
|K + 5P | 20,694,486 30 days 25 MB

TABLE 2. Growth of complexity of state polytopes of W4 .

results in [Stevens 03] and [Eisenbud 80], but we ob-
tained them using MAGMA [Bosma et al. 97, Magma 08]: see
[Morrison and Swinarski 09, CodeSamples 5 and 1.1].

Consider the genus-2 subcurve embedded in the span
of h, i , j , k and l . The point at infinity maps to [1 : 0 :
0 : 0 : 0]. The ideal of W2 in P4 is given by

(l2 − hi + k2 , i2 − hj, ij − hk, j2 − ik),

and the generator of Aut(W2) acts on h–l with weights
8, 6, 4, 2, 7. Then the ideal of W2 in P11 is obtained
by adding (a, b, c, d , e, f , g) to this ideal, and the
Aut(W2)-action is extended to Span{a, b, c, d, e, f, g} by
giving these weight 8.

We can get equations and automorphisms for the other
tail by symmetry. The equations and automorphisms of
the elliptic-curve component are also easy to find. We
obtain

I = (a2 − de + b2 , bd − e2 , be − cd, d2 − ce, f, g, h, i, j, k, l)
∩(g2 − eh, f 2 − eg + gh, a, b, c, d, i, j, k, l)
∩(l2 − hi + k2 , i2 − hj, ij − hk, j2 − ik, a, b, c, d, e,

f, g) .

The following three matrices in GL(12) fix I :

D1 = D
(
ζ7
10 , ζ

2
10 , ζ

4
10 , ζ

6
10 , ζ

8
10 , ζ

8
10 , ζ

8
10 , ζ

8
10 , ζ

8
10 , ζ

8
10 , ζ

8
10 , ζ

8
10
)
,

D2 = D
(
ζ8
10 , ζ

8
10 , ζ

8
10 , ζ

8
10 , ζ

8
10 , ζ

8
10 , ζ

8
10 , ζ

8
10 , ζ

6
10 , ζ

4
10 , ζ

2
10 , ζ

7
10
)
,

D3 = D(−1,−1,−1,−1,−1, ζ4 , 1,−1,−1,−1,−1,−1).

The representation of the subgroup of automorphisms
generated by the three diagonal matrices above is not
multiplicity-free. (This can be checked using MAGMA

[Magma 08] or GAP [GAP Group 08]; for an example of
such a calculation, see [Morrison and Swinarski 09, Code-
Sample 8].) However, there is a fourth automorphism that
flips the two ends of the chain. It is given by the matrix
A that swaps (a, l), (b, k), (c, j ), (d , i), and (e, h), fixes
g , and scales f by ζ4 .

Let D4 = D1D2D3 , and let G = 〈D4 , A〉 be the sub-
group of GL(12) generated by D4 and A. Then G is
abelian of order 40. However, the basis diagonalizing G
is not the basis a, . . . , l above; thus, in the language of

Definition 4.8, the torus T scaling the variables a, . . . , l
does not determine stability.

The basis diagonalizing G is a + l , a − l , b + k , b
− k , c + j , c − j , d + i , d − i , e + h, e − h,f ,g . We
relabel these as variables A, B , C , . . . , L, write I ′ for
the ideal in these coordinates [Morrison and Swinarski
09, CodeSample 1.1], and write T ′ for the torus scaling
these variables.

We normalize the matrices D4 and A to have deter-
minant 1, and change them to this basis, yielding:

D′
4 = D

(
ζ3
240 , ζ

3
240 , ζ

123
240 , ζ123

240 , ζ171
240 , ζ171

240 , ζ219
240 , ζ219

240 , ζ27
240 ,

ζ27
240 , ζ

207
240 , ζ147

240
)
,

A′ = D
(
ζ5
240 , ζ

125
240 , ζ5

240 , ζ
125
240 , ζ5

240 , ζ
125
240 , ζ5

240 , ζ
125
240 ,

ζ5
240 , ζ

125
240 , ζ65

240 , ζ
5
240
)

The subgroup G ′ = 〈D′
4 , A′〉 of SL(12) is multiplicity-

free.
The generators of I ′ are far more complicated than

the generators of I , and the state polytope StateT ′(I ′)
is likely to be correspondingly more complicated than
StateT (I). Since we found that I already has 500,094 ini-
tial ideals, generated in degrees 2 through 9, we decided
to work in its coordinate system as much as possible.

The elliptic bridge is known to be bicanonically un-
stable in all degrees m ≥ 2 by [Hassett and Hyeon 08,
Section 10], where the 1–ps with weights (2, 2, 2, 2, 2, 1,
0, 2, 2, 2, 2, 2) is shown to be destabilizing. As a check, we
computed MUm(I, w, 2) = −12, MUm(I, w, 2) = −24, and
MUm(I, w, 4) = −36; hence µ([C ]m , λ)=−12(m−1). As a
further check, we verified in the extreme degrees, 2 and
9, that the corresponding state polytope did not contain
the barycenter.

The coefficient of m2 in µ([C ]m , λ) is 0. Thus, this 1–ps
is not Chow destabilizing. Indeed, this elliptic bridge is
Chow strictly semistable, as [Hassett and Hyeon 08, Sec-
tion 11] shows by deformation-theoretic arguments. To
check this, we needed to switch to the torus T ′, since
this torus determines stability. We did not attempt to
compute the full Chow polytope of I ′, but instead per-
formed a Monte Carlo calculation that found ideals that
confirmed strict Chow semistability.
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g = 5 g = 6 g = 7 g = 8

P(t) 16t−4 20t−5 24t−6 28t−7
mP 116 185 270 371

Initial Ideals per Round 48 60 72 84
Ideals Needed to Establish Stability

m = 2 336 480 1224 1344
m = 3 144 300 360 420
m = 4 48 180 144 168
m = 5 96 120 144 252
m = 6 96 60 216 168
m = 7 48 120 72 168
m = 8 48 60
m = 9 96

TABLE 3. Number of random weights required to establish stability.

Example 8.5. (A genus-5 curve with a genus-2 tail at-
tached at a Weierstrass point.) Here we consider an ex-
ample of a nodal genus-5 curve that has a genus-3 com-
ponent and a genus-2 component (hence a genus-2 tail)
where the node is a Weierstrass point of the genus-2 com-
ponent. Hassett and Hyeon predict that such a curve is
stable for m > 6, semistable for m = 6, and unstable for
m < 6 (see Table 1 and [Hyeon 10]). Our calculations
confirm this prediction.

We build our C by letting W3 be the Wiman curve
of genus 3 with P its the branch point at infinity, letting
W2 be the genus-2 Wiman curve with Q its branch
point at infinity, and setting C = W3 ∪P =Q W2 . The
linear series ω2

C is very ample, and the image of C
under the corresponding morphism φ is a degree-16
curve in P11 . We know that ω2

C |W2 = ω2
W2

(2P ) and
ω2

C |W2 = ω2
W2

(2Q). Once again we used MAGMA to ob-
tain the corresponding equations; see [Morrison and
Swinarski 09, CodeSample 5].

For W3 , coordinatize P7 using the variables a–h, and
map W3 → P7 by sending

yx6 , yzx5 , z5x5 , z4x6 , z3x7 , z2x8 , zx9 , x10

to

[a : b : c : d : e : f : g : h]

Then P maps to [0 : 0 : 0 : 0 : 0 : 0 : 0 : 1]. The ideal
of W3 in P7 is given by

(−g2 + fh,−fg + eh,−f 2 + eg,−f 2 + dh,−ef + dg,

−ef + ch,−e2 + df,−e2 + cg,−de + cf,−d2 + ce,

ag − bh, af − bg, ae − bf, ad − be, ac − bd,

b2 + c2 − fg, ab + cd − g2 , a2 + d2 − gh),

and the generator of Aut(W3) acts on a–h with weights
5, 3, 10, 12, 0, 2, 4, 6. Then the ideal of W3 in P11 is
obtained by adding (i , j , k , l) to the ideal above, and the
Aut(W3)-action is extended to Span{i, j, k, l} by giving
these weight 6.

Equations and automorphisms of the W2 component
can be found in Example 8.4. We intersect the ideals of
the two components to get the ideal of C [Morrison and
Swinarski 09, CodeSample 1.2]. Its Hilbert polynomial is
P(m) = 16m − 4.

We check that the Aut(C)-action is multiplicity-free.
The Aut(C) representation is generated by the diagonal
matrices

D
(
ζ5
14 , ζ

3
14 , ζ

10
14 , ζ12

14 , ζ0
14 , ζ

2
14 , ζ

4
14 , ζ

6
14 , ζ

6
14 , ζ

6
14 , ζ

6
14 , ζ

6
14
)

and

D
(
ζ8
10 , ζ

8
10 , ζ

8
10 , ζ

8
10 , ζ

8
10 , ζ

8
10 , ζ

8
10 , ζ

8
10 , ζ

6
10 , ζ

4
10 , ζ

2
10 , ζ

7
10
)

in GL(12). These can be normalized to elements of
SL(12):

D
(
ζ16
42 , ζ10

42 , ζ31
42 , ζ37

42 , ζ1
42 , ζ

7
42 , ζ

13
42 , ζ19

42 , ζ19
42 , ζ19

42 , ζ19
42 , ζ19

42
)

and

D
(
ζ103
120 , ζ103

120 , ζ103
120 , ζ103

120 , ζ103
120 , ζ103

120 , ζ103
120 , ζ103

120 , ζ79
120 , ζ

55
120 ,

ζ31
120 , ζ

91
120
)
.

The product of these two matrices is diagonal and has dis-
tinct eigenvalues; hence, the representation of the cyclic
group it generates is multiplicity-free.
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We ran our Monte Carlo program for small values of
m. We found, as expected, that for m = 6, C is strictly
semistable, and stable for m = 7. As a complement, we
prove deductively that C is unstable for m < 6 and
strictly semistable for m = 6. Let λ be the 1–ps that
acts with weights w = (6, 6, 6, 6, 6, 6, 6, 6, 4, 2, 0, 5).
In the notation of [Morrison 08, Proposition 3], λ has av-
erage weight α = 59

12 and induces a weight filtration on
O(m) that looks like

6m, 6m, . . . , 6m︸ ︷︷ ︸
10m−2

, 6m − 1, 6m − 2, 6m − 3, . . . , 6, 5, 4, 2, 0,

giving w(m) = 78m2 − 15m − 4. Putting this all together
gives

µ(C, λ)(m) = −(w(m) − mP (m)α) =
2
3
(m − 1)(m − 6),

with the desired roots and sign for asymptotic stability
with a flip at m = 6.

A check is provided by running the Macaulay2 func-
tion MUm on this C and λ. We find that MUm(I, w, 2) = −32
and MUm(I, w, 3) = −48, which implies by Lemma 5.2 that
µ([C ], λ)(m) = 8(m − 1)(m − 6). This is 12 times the µ

obtained in the preceding paragraph because MUm shifts
the weights by −α = 59

12 to normalize their sum to be 0,
making it necessary to scale them by 12 to make them
integral.

Example 8.6. (A reducible genus-5 curve with a rham-
phoid cusp.) The calculation performed for the exam-
ple above also establishes semistability of a curve with
a rhamphoid cusp as well and allows us to confirm the
deformation-theoretic analysis of [Hassett and Hyeon 08,
Section 10] at the level of ideals.

Let C be the curve of the previous example, and once
again let λ be the 1–ps acting with weights w = (6, 6, 6,
6, 6, 6, 6, 6, 4, 2, 0, 5). Let C ′ be the ideal obtained as
the λ limit of C (but do not break ties, so that C ′ is not
defined by a monomial ideal). The matrices given above
for C also fix I (C ′), so C ′ is again multiplicity-free. As
shown in [Sturmfels 96, Lemma 2.6], StateC ′(I) appears
as a facet of StateC (I). The barycenter is on this facet,
so we also get Monte Carlo m = 6 semistability for C ′.

Finally, we examine C ′ more closely. On all but one
of the generators for I (C ), the 1–ps λ acts with equal
weights on each term, and so these are unchanged in the
λ specialization. In particular, the W3 component is un-
changed in the λ specialization. In contrast, the genera-
tor hi − k 2 − l2 specializes to hi − l2 under λ. Recalling
our embedding of W2 , we see that hi − l2 encodes x 7z
− y2x 2, or y2 = x 5, which is a rhamphoid cusp. Since

a rhamphoid cusp adds 2 to the arithmetic genus, and
since this component of C ′ is the flat limit of the smooth
curve W2 of arithmetic genus 2, we see that C ′ must be
a reducible curve with two irreducible components meet-
ing at a node. One component of C ′ is W3 , and the other
component is a rational curve with a rhamphoid cusp.
Note that the rational component has a Gm of automor-
phisms fixing the node and cusp that accounts for the m
= 6 strict semistability.

Example 8.7. (A reducible genus-5 curve with a general
genus-2 tail.) Here we consider an example of a nodal
genus-5 curve that has a genus-3 component and a genus-
2 component (hence a genus-2 tail) where the node is not
a Weierstrass point of the genus-2 component. Hassett
and Hyeon predict that such a curve is stable for m >

4.5, semistable for m = 4.5, and unstable for m < 4.5.
Our calculations again confirm these predictions.

As in Example 8.5, we will use W3 for the genus-3
component, and P its point at infinity. For the genus-2
component, we use a twisted model of W2 . Namely, let D
be given by y2 = x 5 + 1, and let Q be the point [0 : 1 : 1].
The hyperelliptic involution sends Q to [0 : −1 : 1], and
so Q is not a Weierstrass point. On the other hand, Q
is fixed under the automorphism T : D→D given by (x ,
y , z )�→(ζ5x , y , z ). We used MAGMA to obtain equations of
D under the embedding |2K + 2Q |; see [Morrison and
Swinarski 09, CodeSample 5]. We coordinatize P4 using
the variables h–l , and map D → P4 by

yz4 + z7 xyz3 + xz6 x4z3 x3z4 x2z5

h : i : j : k : l

Then Q maps to [1 : 0 : 0 : 0 : 0]. The ideal of W2 in P4

is given by

(k2 − jl, i2 − jk − 2hl, hk − il, hj − ik),

and T acts on h–l with weights 0, 1, 4, 3, 2. Then the
ideal of D in P11 is obtained by adding (a, b, c, d ,
e, f , g) to this ideal, and the T -action is extended to
Span{a, b, c, d, e, f, g} by giving these weight 0.

We intersect this with the ideal of the genus-3 com-
ponent to obtain the ideal of C [Morrison and Swinarski
09, CodeSample 1.3]. Its automorphism group is gener-
ated by

D
(
ζ16
42 , ζ10

42 , ζ31
42 , ζ37

42 , ζ1
42 , ζ

7
42 , ζ

13
42 , ζ19

42 , ζ19
42 , ζ19

42 , ζ19
42 , ζ19

42
)

and

D
(
1, 1, 1, 1, 1, 1, 1, 1, ζ1

5 , ζ4
5 , ζ3

5 , ζ2
5
)
.
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〈b2d2 , ad2 , ac〉 (m2 , 2m2 − m − 1, 2m2 − 4m + 4,m2 + 2m − 3)

〈c4 , ad2 , ac〉 (m2 , 3m2 − 6m + 5, 6m − 8, 2m2 − 3m + 3)
〈c3 , ac, a2d2〉 (m2 + m − 2, 3m2 − 6m + 5, 3m − 2, 2m2 − m − 1)
〈c3 , b2c2 , ac, a3d2〉 (m2 + 3m − 8, 3m2 − 8m + 11,m + 4, 2m2 + m − 7)
〈c3 , b2c2 , b4c, ac, a4d2〉 (m2 + 6m − 20, 3m2 − 12m + 27, 8, 2m2 + 3m − 15)

〈b2 , ad2〉 (2m2 − 2m + 1, 3m − 3, 3m2 − 6m + 5,m2 + 2m − 3)
〈bcd, b2 , abd2 , a2d3〉 (2m2 − 4,m + 2, 3m2 − 8m + 10,m2 + 4m − 8)
〈bcd, bc4 , b2 , abd2 , a2d4〉 (2m2 + 2m − 12, 6, 3m2 − 12m + 26,m2 + 7m − 20)

〈c3 , b2〉 (3m2 − 6m + 5, 3m − 3, 6m − 7, 3m2 − 6m + 5)
〈c3 , b2c2 , b4c, b6 , ac〉 (3m2 − 12m + 20, 15m − 33, 8, 3m2 − 6m + 5)
〈c6 , bcd, bc3 , b2 , abd3〉 (3m2 − 7m + 9, 6, 15m − 37, 3m2 − 11m + 22)
〈c5 , bcd, bc3 , b2〉 (3m2 − 6m + 5,m + 2, 10m − 17, 3m2 − 8m + 10)

TABLE 4. Initial ideals of a genus-4 ribbon.

The product of these matrices is diagonal with distinct
entries, and hence C is multiplicity-free for the cyclic
subgroup it generates.

We ran our Monte Carlo program for small values of
m. We found, as expected, that C is m-stable for m =
5, 6, and 7.

Next, we studied the 1–ps λ with weights w = (4, 4,
4, 4, 4, 4, 4, 4, 3, 0, 1, 2) (that is, weights complemen-
tary to the weights of T ). We computed MUm(I, w, 2) =
−20, MUm(I, w, 3) = −24, and MUm(I, w, 4) = −12; hence
µ([C]m , λ) = 8(m − 1)(m − 9

2 ). Thus, this curve is unsta-
ble for m < 4.5.

Once again, we study the λ specialization C ′. As in
Example 8.5, most generators in the ideal are unchanged
in the limit, with the exception of the last generator, i2 −
jk − 2hl , which specializes to i2 − 2hl under λ. Recalling
our embedding of D , we see that i2 − 2hl encodes the
oscnode or A5 singularity y2 = x 6. We thank Maksym
Fedorchuk and Jarod Alper for alerting us to an error in
this calculation in an earlier draft of this paper.

8.3. A Nonreduced Curve

Example 8.8. (A genus-4 ribbon.) Recall that a ribbon is
just a double structure on P1 , that is, a scheme C such
that Cred ∼= P1 and I2

C/C r e d
= 0. Ribbons arise as limits

of canonical curves, and thus it is natural to study their
GIT stability alongside examples from the log minimal
model program.

We study the genus-4 example given in [Bayer and
Eisenbud 85, p. 475]. Let I ⊂ k [a, b, c, d ] be the

ideal 〈ac − b2, ad2 − 2bcd + c3〉. This ideal ad-
mits a Gm -action with weights −3, −1, 1, 3 on the
variables a, b, c, d , respectively. Its ideal I has
twelve initial ideals (listed in Table 4), all generated in
degrees ≤6.

For any finite m, one can easily check that the ribbon
is Hilbert m-unstable using the λ determined by the Gm

above. But we can use the approach described in Remark
5.5 to handle all m ≥ 6 by computing the vector ξm

associated to each initial ideal in degrees 6 through 8
and interpolating to obtain the polynomial representing
ξm for any m ≥ 6 (cf. [Kapranov et al. 92, p. 202]). These
are also given in the table.

We observe that the polytope that these span, whose
dimension we would expect to be 3, lies in a plane. The
“extra” normal vector besides (1, 1, 1, 1) is (−3, −1, 1,
3), the weight vector of the Gm -action. Thus, Statem (I)
is also only two-dimensional. For example, when m = 6,
we have that Statem (I) is contained in the plane defined
by the equations a + b + c + d = 306 and −3a − b +
c + 3d = −14. On the other hand, the barycenter does
not satisfy the second equation, and is therefore outside
the state polytope.

Finally, we compute the Chow polytope of I . Examin-
ing the list above, we see that Chow(I) has four vertices,
(1, 2, 2, 1), (1, 3, 0, 2), (3, 0, 0, 3), and (2, 0, 3, 1), each
approached by one of the four groups of ideals above.
This quadrangle contains the barycenter of its ambient
plane, so I is Chow semistable. In summary, this ribbon
is Hilbert unstable for all finite m ≥ 2, but Chow strictly
semistable.
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Remark 8.9. GIT stability and semistability are open
conditions. Thus, in our previous examples, whenever
we found that our example was (semi)stable for a given
linearization, this implied that a general member of the
same component of Ĥ was also (semi)stable. But since
the unstable locus is closed, and multiplicity-free exam-
ples are very special, the behavior of the particular ex-
ample above does not indicate that a general ribbon is
unstable for finite m.

9. FUTURE STEPS

We hope to extend this work in several directions. First,
we would like to understand other examples with geom-
etry suggested by the log minimal model program. One
such class is that of irreducible curves with a rhamphoid
cusp and genus at least the gmin of 5 for such curves (cf.
Table 1). Another, suggested by [Smyth 08, Smyth 09], is
the class of “elliptic triboroughs,” curves with a genus-1
component meeting the rest of the curve in three nodes.
To date, we can neither find multiplicity-free examples
nor show that such examples do not exist, in either
class.

Although the examples here provide numerical ev-
idence for conjectural stages of the log minimal
model program, they are far from constructing any of
the quotients that would be needed to verify these
conjectures. Such constructions remain our ultimate
objective.

As a first step, we want to prove the nonemptiness
of the stable loci involved by showing that the Wiman
curves of all genera are bicanonically stable. To do so,
we must better understand the geometry of the initial
ideals arising in our examples, with the aim of finding
patterns that will allow us to replace our computational
proofs of stability by deductive ones. We can identify, in
the gfan output for our small-genus examples, initial ide-
als for which the one-parameter degeneration that pro-
duces them can be understood geometrically, in terms
that do not depend on g . This allows us to write down
an analogous degeneration for any g , and our goal is to
use these to predict the exponent vectors of the corre-
sponding monomial limits. Finally, we will need to be
able to construct enough such degenerations to prove that
the convex hull of their monomial limits always contains
the relevant barycenter. The proof of Chow semistabil-
ity in Example 8.8 can be viewed as a toy model for
this plan.

Second, it will be necessary to pass from the multi-
graded Hilbert schemes Ĥ used here to the corresponding

Grothendieck Hilbert schemes H, since it is quotients of
the latter that naturally carry the polarizations needed to
construct further log minimal models. Doing so would re-
quire, for example, showing that no codimension-1 com-
ponent of the complement of the �-nice locus in H lies
in the m-stable locus for the relevant degree m. Com-
pared to the previous problem, this is, in some ways,
much harder, since it requires dealing with curves exhibit-
ing the menagerie of pathologies typical of the Hilbert
scheme, and in others, easier, since what must be checked
is that such curves are not stable.
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