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ABSTRACT. We present new computations of approximately length-minimizing polygons with fixed
thickness. These curves model the centerlines of “tight” knotted tubes with minimal length and fixed
circular cross-section. Our curves approximately minimize the ropelength (or quotient of length and
thickness) for polygons in their knot types. While previous authors have minimized ropelength for
polygons using simulated annealing, the new idea in our code is to minimize length over the set of
polygons of thickness at least one using a version of constrained gradient descent.

We rewrite the problem in terms of minimizing the length of the polygon subject to an infinite
family of differentiable constraint functions. We prove that the polyhedral cone of variations of a
polygon of thickness one which do not decrease thickness to first order is finitely generated, and
give an explicit set of generators. Using this cone we give a first-order minimization procedure and
a Karush-Kuhn-Tucker criterion for polygonal ropelength criticality.

Our main numerical contribution is a set of 379 almost-critical knots and links, including all
prime knots with ten and fewer crossings and all prime links with nine and fewer crossings. For
links, these are the first published ropelength figures, and for knots they improve on existing figures.
We give new maps of the self-contacts of these knots and links, and discover some highly symmetric
tight knots with particularly simple looking self-contact maps.

1. INTRODUCTION

Overview. Knots tied in rope are flexible machines which organize tensions and contact forces
to bind tightly and resist unravelling. As a technology, knots have proved remarkably effective.
For this reason there is a vast body of knowledge about their practical uses. Yet in many ways,
the design of these machines remains mysterious. As early as 1987 Maddocks and Keller were
able to study different types of hitches and predict their holding power by an analysis of their
equilibrium shapes [34]. But these shapes were rather simple, and there was no way to infer the
structures of more complicated knots from these examples. It was obvious that what was needed
was data, and by the end of the century a series of numerical experiments in knot-tightening were
underway [44, 41, 32, 52]. This paper describes a new computational approach to knot-tightening
which yields improved numerical results (a preliminary report on some of our findings appeared in
the conference proceedings [13]). To build our method, we derive some new results in the theory
of ropelength for polygonal knots.

Date: June 12, 2004; Revised: November 18, 2018.
Key words and phrases. ropelength, tight knots, ideal knots, constrained gradient descent, sparse non-negative least

squares problem (snnls), knot-tightening.
1

ar
X

iv
:1

00
2.

17
23

v1
  [

m
at

h.
D

G
] 

 8
 F

eb
 2

01
0



Defining the problem. Given any space curve γ, we can define the thickness Thi(γ) of γ to
be the supremal ε for which any point in an ε-neighborhood of γ has a unique nearest neighbor
on the curve1. Any curve with nonzero thickness is C1,1 (that is, is C1 with a Lipschitz first
derivative) [22, 11]. Given this, it has been shown that

Proposition 1.1 ([33]). If γ is a C1 curve, then the thickness Thi(γ) is given by the supremal
radius of all embedded tubes formed by taking the union of disks of uniform radius centered on
γ(s) in the planes normal to γ′(s).

This idea of thickness was first proposed by Krötenheerdt and Veit in 1976 [30, 31] and was
rediscovered in the 1990’s by Nabutovsky [37] and Buck and Orloff [6]. The thickness can be used
to define a scale-invariant quantity called ropelength:

Definition 1.2. The ropelength of a curve γ is defined by

Rop(γ) =
Len(γ)

Thi(γ)
,

where Len(γ) is the length of γ. The minimal ropelength of a knot or link type L, Rop(L), is the
minimal ropelength of all curves in that knot or link type.

The knot tightening problem is to find and describe the minimal ropelength curves in a given
knot type. It is known that such curves exist, but their exact shapes are currently the subject
of active mathematical research (c.f. [25, 26, 11]). Once found (or computed to sufficient accu-
racy), these configurations have been used to predict the relative speed of DNA knots under gel
electrophoresis [28], the pitch of double helical DNA [36], the average values of different spatial
measurements of random knots [20], and the breaking points of knots [42]. They also provide a
model for the structure of a class of subatomic particles known as glueballs [8].

Another form of the problem. Let γ :S1 → R3 now be a C2 parametrized curve, and define the
self-distance function d :S1 × S1 → R of γ by d(s, t) := ‖γ(s)− γ(t)‖. As usual, let κ(s) denote
the curvature of γ. We then define the set dcsd(γ) of doubly-critical self-distances to be the set of
critical points of d with s 6= t. Taking the partial derivatives of d, we see that (s, t) ∈ dcsd(γ) if
and only if

〈γ(s)− γ(t), γ ′(s)〉 = 0 and 〈γ(s)− γ(t), γ ′(t)〉 = 0.

A key idea in [33] is that for any τ < Thi(γ), the surface of the tube of radius τ around γ has no
self-intersections and is C2 smooth. But when τ = Thi(γ), the tube is pinched or has a tangential
self-intersection. This leads to an alternate characterization of thickness:

Theorem 1.3 ([33]). The thickness of γ is the minimum of

min
s

1

κ(s)
and min

(s,t)∈dcsd(γ)

d(s, t)

2
.

Figure 1 shows curves where the first and second of these terms control the thickness.
1Federer referred to this number as the reach of γ [22].
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FIGURE 1. The thickness of a smooth curve γ is controlled by curvature (as in the
left picture), and the length of chords in dcsd(γ) (as in the right picture).

Since length and thickness scale together, minimizing ropelength is the same as minimizing
length over the set of curves with thickness at least one. Since thickness is a min-function, the
condition Thi(γ) ≥ 1 can be viewed as an infinite family of inequality constraints on γ. These
constraints are active at places where the tube around γ forms kinks (where 1/κ is in control of the
minimum in Theorem 1.3) or has self-contacts (where the self-distance d(s,t)/2 is in control of the
minimum).

Numerical approaches to the knot-tightening problem. Previous authors have defined dis-
cretized versions of thickness for polygons or spline curves and viewed the problem as one of
minimizing the nonsmooth quotient of length and thickness. The advantage of this approach is
that it is a very simple and robust way to obtain approximately ropelength-minimizing curves. The
disadvantage is that it is very difficult to take advantage of the fact that thickness (as given in
Thm 1.3) is a min-function.

Our approach is to define a discrete version of thickness as a min-function and think of the
problem as one of minimizing a differentiable function Len(V) subject to a family of differentiable
constraints Thip(V) ≥ 1. While our approach will not quite fit into the standard framework of
constrained optimization (our family of constraints is infinite), we will be able to define a version
of constrained gradient descent which minimizes polygonal ropelength effectively.

Theoretical framework. For an equilateral space polygon V we first prove that our function
Thip(V) can be written as a min over a fixed compact family of differential functions. From here
we use Clark’s theorem to show that Thip has a one-sided derivative in the direction of any variation
W of V . For a polygon with Thip(V) = 1 we use these derivatives to define a cone of infinitesimal
variations I(V) which do not decrease Thip to first order and the dual cone of “resolvable” vari-
ations R(V). Our next main theorem is that R(V) is a finitely generated polyhedral cone whose
generators are the gradients of the lengths of certain chords of the polygon (called struts) and of a
function of certain turning angles of the polygon (called kinks). We give explicit formulae for these
gradients in terms of the vertex positions. We then compute the gradient of Len(V) and define the
constrained gradient of length to be the projection of Len(V) onto the polyhedral cone I(V). At
this point we give the expected result that a polygon is critical for polygonal ropelength if and
only if the constrained gradient of length is zero. Equivalently, a polygon is critical for polygonal
ropelength if there is a set of positive Lagrange multipliers on the struts and kinks which combine
to equal the negative of the length gradient. The theory section ends with a discussion of how to
compute the constrained gradient numerically.
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Numerical methods. Sections 3 and 4 describe the design of our polygonal ropelength minimiz-
ing software. Our algorithm essentially consists of computing the constrained gradient of length
and taking small steps in this direction until the constrained gradient is sufficiently small. However,
the details of the process are not quite so simple. Since the constraint functions are nonlinear, even
steps that are in the direction of the constrained gradient violate some constraints to second order.
Further, newly active constraints are discovered throughout the run as previously distant sections
of tube come into contact with one another. As a result, we must choose stepsizes carefully and
correct errors periodically. It is also important to run efficiently, as the size of our problem (about
one thousand variables and a similar number of active constraints) is fairly large. We have solved
these technical and engineering problems and used our software to minimize all prime knots with
ten or fewer crossings and all prime links with nine or fewer crossings, for a total of 379 different
knot and link types. We intend to address the ropelength of composite knots and links in a future
publication.

New ropelength bounds. We check our figures against previous computations of the minimum
ropelength of knots and links and against some of the few known theoretical results for the lengths
of tight links. Our results improve on all previously published computational results except for
the trefoil knot. For example, we improve the best known upper bound for the ropelength of
the well-studied figure-eight knot 41 by 0.06 to 42.0887 (as compared to the bound of [14]) and
improve the best known upper bound for the ropelength of the 920 knot by 8.12% to 80.2219
(compared to the bound of [47]). To get a sense of the difference between the configurations
produced by our method and the configurations produced by the simulated annealer of [47] we
show both configurations in Figure 2. For links, our figures are the first computational results
to appear in print, but compare well to known theoretical results. For example, the upper bound
provided by our computation of the Borromean rings link 63

2 is 58.0070 — within 0.0017% of the
exact value around 58.0060 suggested by [10], while our computation of the tight shape of the
“simple chain” link is 41.7086588 — within 0.02% of the correct value of of 6π + 2 [11].

We also compared our results to those of Gilbert [24], which are unpublished but available on
Bar-Natan’s Knot Atlas wiki. Gilbert provides Fourier cofficients and instructions for reconstruct-
ing the vertices of his configurations from this data. We followed his instructions, but our software
did not verify his claimed ropelength numbers2. According to our measurement of the ropelength
of Gilbert’s configurations, our knots are tighter in all cases but 22

1 by an average of 3.619%, with
some outliers, such as our 92

37 link, which is 71% shorter. If we compare our results to Gilbert’s
claimed ropelengths, our knots and links are tighter in 316 cases and less tight in 36. Overall, our
knots and links are (on average) 1.075% tighter than the bounds claimed by Gilbert with our 92

28

link about 4% shorter than Gilbert’s claim.

Self-contact maps. Two sets of authors (von der Mosel et al. [50] and Cantarella et al. [10]) have
given versions of a ropelength criticality criterion for knots without kinks which state roughly that
a knot γ is ropelength-critical when the elastic force given by the gradient of the length of the curve
is balanced by a system of Lagrange multipliers on the self-contacts of the tube around γ. The latter

2Our measurement of curvature by MinRad is sensitive to edgelength and seems to come out much larger than his
ropelengths would indicate. This is probably a discretization effect, and it is certainly very possible that the Fourier
knots defined by Gilbert’s data have ropelengths corresponding to Gilbert’s claimed numbers.
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FIGURE 2. These two images of the 920 knot show the tightest configurations ob-
tained by our algorithm (left) and by the TOROS algorithm described in [47] (right).
It is clear that our algorithm performs better once there are many self-contacts in the
knot. In fact, the ropelength of the left-hand configuration is bounded by 80.2219,
while the configuration on the right has ropelength bounded by 87.31.

authors used their condition to derive a ropelength critical configuration of the Borromean rings
and a surprising ropelength critical configuration of a clasp formed by two tubes stretched across
each other.

In each of these examples, the most difficult part of the result was the deduction of the structure
of the set of self-contacts for the tight configuration. Since these contact maps are very sensitive to
small perturbations of the centerline, it has been difficult to resolve them using previous numerical
methods3. These contacts and the system of Lagrange multipliers on them are explicitly computed
by our algorithm, allowing us to give medium-quality contact maps for a large number of knots
and links. The contact maps offer some support for the hypothesis that a relatively small number
of structures may reappear often in tight knots and links.

Previous work. This is not the first time gradient-like methods have been attempted for the knot-
tightening problem. Our work has been inspired by Piotr Pieranski’s SONO algorithm [41], which
follows a version of the length gradient, but does not include an explicit resolution of this vector
against the active constraints. Our thinking is also informed by John Sullivan’s “energy-ropelength
method” [52], which optimizes thickness instead of length, estimating the maximum diameter
of a uniform embedded tube around the core curve by an Lp average of the radii of embedded
cross-sectional disks and minimizing the resulting smooth functional using the conjugate-gradient
implementation in Brakke’s evolver [5].

3The notable exception to this rule has been the “biarc” spline-annealing method of [14], which has produced
well-resolved contact maps for the 31 and 41 knots.
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2. A DISCRETIZATION FOR THE ROPELENGTH PROBLEM

Polygonal thickness. Consider a closed space polygon V with vertices v1, . . . , vV and edges
e1, . . . , eV . We will think of V as the vector (v1, . . . , vV ) in (R3)V = R3V , and assume that all
subscripts on vertices and edges are taken mod V . The unit tangent vector Ti to each edge of a
polygon is well-defined on the interior of the edge. At the vertex vi joining edges ei−1 and ei,
there are two tangent vectors Ti−1 and Ti. The curvature of V at vi is usually thought of as a delta
function whose mass is given by the turning angle θi from Ti−1 to Ti. We will use a somewhat
different definition of curvature for polygons:

Definition 2.1. The minimum radius of curvature (or MinRad) of V at vi is given by the radius of
the unique circle that is tangent to the two edges meeting at vi and that touches the midpoint of the
shorter one.

Rawdon has shown [44] that if θi is the turning angle of V at vi, then we can give MinRad(vi)
(and define MinRad±(vi)) by the expressions:

(1)
min{|ei−1|, |ei|}

2 tan(θi/2)
= min

{
|ei−1|

2 tan(θi/2)
,

|ei|
2 tan(θi/2)

}
= min{MinRad−(vi),MinRad+(vi)}.

It is clear that while MinRad vi is not neccesarily a differentiable function, the two functions
MinRad± vi are differentiable when they are defined. The motivation for this definition is that we
can round off all the corners of V by splicing in these circle arcs, generating a C1,1 curve with radii
of curvature equal to the MinRad(vi). We could have defined Thip(V) to be the thickness of this
curve. It turns out, however, that there is no closed form computation for that number (though it
can be computed approximately, as we will see in Section 5).

We now define a set corresponding to dcsd for polygons:

Definition 2.2. Let dcsd(V) be the set of (p, q) on V with p 6= q which are local minima of the
self-distance function on V .

There are several possible cases for (p, q) in dcsd(V), since the polygon might have a vertex at
one or both of the endpoints of the chord. These are shown in Figure 3.

FIGURE 3. We see three types of local minima of the self-distance function on a
space polygon V in the three-dimensional drawings above. From left to right, these
are an edge-edge pair, a vertex-edge pair, and a vertex-vertex pair.
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We can then define Rawdon’s polygonal thickness:

Definition 2.3. The polygonal thickness Thip(V) of a space polygon V without self-intersections
is given by the minimum of

Thip(V) := min

{
min
i

MinRad(vi), min
(p,q)∈dcsd(V)

d(p, q)

2

}
.

We have carefully constructed this definition so that when polygons Vn with increasing numbers
of edges are inscribed in a space curve γ under some mild geometric hypotheses, Thip(Vn) →
Thi(γ) [44, 45, 47].

The problem with Thip. Definition 2.3 allows us to define the set of polygons with Thip(V) ≥ 1
as the polygons obeying a family of constraints in the form MinRad(vi) ≥ 1 and d(p, q) ≥ 2 for
(p, q) ∈ dcsd(V). This is almost the standard form for constrained optimization problems:

(2) min
V∈R3V

f(V) subject to gi(V) ≥ 0,

where f and the gi are differentiable. The problem is that the set of constraint functions d(p, q) for
(p, q) ∈ dcsd(V) depends on the polygon. We will need a common set of constraint functions for
all polygons in a neighborhood of a solution.

Constraint thickness. To solve this problem, we will define a new thickness measure for poly-
gons called constraint thickness which is given in the form above. We will then prove that for
equilateral polygons, the new constraint thickness defines the same set of polygons as the old
polygonal thickness.

We first define a subset of the pairs of points on a polygon

Definition 2.4. For a given positive τ and `, let θ(τ, `) be the turning angle of a pair of edges of
length ` with MinRad = τ . We set

VB(τ, `) =

{
(p, q) ∈ V × V : vb(p, q) ≥ π

θ(τ, `)

}
,

where vb(p, q) is the smaller number of vertices between points p and q (counting p and/or q if
they are vertices) if they are on the same connected component of V and∞ otherwise.

We note that an easy computation shows that θ(τ, `) = 2 arctan( /̀2τ). We can now define our
new thickness measure

Definition 2.5. The (τ ,`)-constraint thickness CThi(τ, `,V) of a polygon V is given by

(3) CThi(τ, `,V) = min

{
min

MinRad(vi)

τ
, min

(p,q)∈VB(τ,`)

d(p, q)

2

}
.

We note that V need not be equilateral or have edgelength ` to define the constraint thickness
to defined the constraint thickness of V . We can view τ as the “stiffness” of the rope (c.f. the
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definition of λ-thickness in [9] and [7]), as it provides a lower bound on the radius of curvature
of a tube of unit radius. Though our theory (and our code) should work for any τ ≥ 1, we have
not experimented with values for τ other than 1 and so will write the (1, `)-constraint thickness
CThi(1, `,V) as CThi(`,V).

We can now prove that CThi(`,V) is an equivalent thickness to Thip for equilateral polygons of
edgelength `.

Theorem 2.6. If V is an equilateral polygon of edgelength `, Thip(V) ≥ 1 ⇐⇒ CThi(`,V) ≥ 1.

To prove the theorem we will need a lemma (c.f. Lemma 13 of [46]):

Lemma 2.7. If V is an equilateral polygon of edgelength ` and MinRad ≥ τ , then dcsd(V) ⊂
VB(τ, `).

Proof. The proof has two parts — in the first, we show that the shorter arc between any (p, q) 6∈
VB(τ, `) has total curvature t less than π, while in the second we will show that any pair joined by
such an arc cannot be in dcsd(V). So suppose that t ≥ π. We will prove that (p, q) ∈ VB(τ, `).

Since MinRad(V) ≥ τ , we know that each turning angle of V is less than θ(τ, `). If the total
curvature of the arc joining p and q is at least π, then vb(p, q) · θ(τ, `) ≥ π, so

(4) vb(p, q) ≥ π

θ(τ, `)

and (p, q) ∈ VB(τ, `), proving the claim.

Now suppose that (p, q) ∈ dcsd(V). We claim that the total curvature t of each arc joining p and
q is at least π, and hence that (p, q) ∈ VB(τ, `). Suppose not. The arc of V joining p and q together
with the chord from p to q form a closed space polygon V ′. The total curvature of this polygon is
equal to t plus the turning angles at p and q. By Fenchel’s Theorem [19], that total curvature is
at least 2π. So the angle at p and the angle at q must sum to more than π. Thus either the angle
at p or the angle at q must exceed π/2. But in that case, we could reduce d(p, q) to first order by
moving p or q along an edge from the arc which connects p and q, contradicting our assumption
that (p, q) ∈ dcsd(V). �

We are now ready to prove Theorem 2.6:

Proof. Suppose that CThi(`,V) ≥ 1. This implies that mini MinRad(vi) ≥ 1 by the definition of
CThi. Lemma 2.7 tells us that dcsd(V) ⊂ VB(1, `), so we know that

(5) min
(p,q)∈dcsd(V)

d(p, q) ≥ min
(p,q)∈VB(1,`)

d(p, q).

Together, these facts imply that Thip(V) ≥ 1, proving one direction of the theorem.

Suppose that Thip(V) ≥ 1. As above, this means that mini MinRad(vi) ≥ 1, so Lemma 2.7
applies and (5) holds. If the minimum in the right-hand side of (5) is achieved on the interior of
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p′

q′

2

θ(1, `)

FIGURE 4. The key step in the proof of Theorem 2.6 is the proof that points p′ and
q′ on an arc P are at least distance 2 apart. This arc has equal edgelengths `, each
turning angle equal to θ(1, `) := 2 arctan( /̀2) and n := dπ/θ(1, `)e edges. We
see above that these conditions imply that P has an inscribed circle of unit radius.
Further, the marked point q′ must have a larger y-coordinate than the top of the
circle, providing the required lower bound on the distance from p′ to q′.

VB(1, `), then it is a local minimum of d(p, q) where p 6= q and so is in dcsd(V). In this case, (5)
is an equality and CThi(`,V) ≥ 1, completing the proof.

We are left with the case where the minimum of d(p, q) over VB(1, `) is realized by some
(p, q) on the boundary of VB(1, `). We claim that d(p,q)/2 ≥ 1. This will complete the proof that
CThi(`,V) ≥ 1.

By definition, (p, q) is on the boundary of VB(1, `) only if vb(p, q) = dπ/θ(1,`)e. And since
vb(p, q) is constant on the interiors of edges, one of p and q (without loss of generality, q) must be
a vertex. Since each turning angle of the arc of V between p and q is bounded by θ(1, `), Schur’s
theorem [15] implies that d(p, q) is bounded below by the distance between the endpoints of p′, q′

of a planar polygonal arc P with the same edgelengths and each turning angle equal to θ(1, `). We
depict the situation in Figure 4.

We know that P has n = vb(p, q) edges and total curvature (n−1)θ(1, `). Since n = vb(p, q) =
dπ/θ(1,`)e, we have

(6) n− 1 <
π

θ(1, `)
≤ n so (n− 1)θ(1, `) < π ≤ nθ(1, `).

Thus if we add an edge to P at q′ with turning angle θ(1, `) to form an arcP+, the total curvature of
P is less than π while the total curvature of P+ is at least π. These facts imply that if the first edge
of P lies along the x-axis, the point q′ has the largest y coordinate on P+. But our turning angle
and edgelength conditions imply that P+ has an inscribed circle of unit radius, so the y-coordinate
of q′ is at least two. This implies that d(p′, q′) ≥ 2, completing the proof. �

These proofs imply an obvious corollary which will be useful in practice:
9



Corollary 2.8. If dcsd(V) ⊂ VB(τ, `) and the distance between any two vertices on the boundary
of VB is strictly greater than Thip(V), then CThi = Thip for polygons in a neighborhood of V
(regardless of whether or not V is equilateral with edgelength `).

Proof. The argument is the same as that of Theorem 2.6, using the hypotheses instead of Lemma 2.7
and the argument about turning angles. �

Struts and Kinks. In our definition of Thip, we saw that pairs of points in dcsd and vertices
with minimum MinRad were in control of thickness. We now want to develop similar sets of
“controlling” pairs of points and vertices for CThi. This will require a bit of care.

Given any two line segments e1 and e2 in space, a calculation reveals that the minimum distance
between them is attained at a single point unless e1 and e2 are parallel. In that case, the minimum is
attained at an interval of corresponding pairs (as in Figure 5). The endpoints of these intervals are
self-distances measured from an endpoint of one segment to a point on the other. Following this
line of argument we see that for any space polygon the local minima of the self-distance function
d(p, q) are isolated unless there are pairs of parallel edges, in which case there may be families of
local minima as above. Using these observations we define

Definition 2.9. The strut set Strut(V) is the set of pairs (p, q) in VB(1, `) with d(p,q)/2 = 1 and
either

• (p, q) is an isolated local minimum of d(p, q), or
• (p, q) is an endpoint of a family of local minima of d(p, q).

In the second case, (p, q) must be a vertex-edge pair joining two parallel edges of V .

We note that Strut(V) is a finite subset of dcsd(V) (which may be infinite if two edges are
parallel). It is much easier to define

Definition 2.10. The kink set Kink(V) is the set of vertices vi and signs ± with MinRad± vi = 1.

The strut and kink sets are both empty if CThi(`,V) > 1.

Polygon space and variations of CThi. We now want to describe the space of variations of a
polygon which preserve or increase CThi to first order. Given a polygon V ∈ R3V we can define a
variation of V by any W = (w1, . . . , wV ) ∈ R3V . This variation generates a family of polygons

(7) Vt = V + tW = (v1 + tw1, . . . , vV + twV ).

We now want to prove that CThi(`,V) has a one-sided derivative as we vary V according to any
variation W and to give a finite procedure for computing that variation. This will require some
setup.

10



vi−1 vi = qp

vj−1 = r s vj

FIGURE 5. When the edges ei and ej are parallel, many chords realize the minimum
distance between the segments. In this case, we show that the minimum derivative
of distance between any of these pairs occurs at one end or the other. We name the
endpoints of this family of chords p and q on ei and r and s on ej . One of each of
these pairs must be an endpoint — in this case it is q = vi and r = vj−1 that are
endpoints.

Proposition 2.11. Suppose that CThi(`,V) = 1. Then viewing every pair of points (p, q) on V
and every MinRad± vi as functions of t, the forward time derivative below exists and satisfies

(8) DW CThi(`,V) =
d

dt+
CThi(Vt)

∣∣∣∣
t=0

= min

{
min

(vi,±)∈Kink

d

dt+
(MinRad± vi)(t)

∣∣∣∣
t=0

, min
Strut(V)

d

dt+
d(p(t), q(t))

2

∣∣∣∣
t=0

}
.

Proof. We begin by ignoring any MinRad vi functions which are not defined (which happens when
vi−1, vi and vi+1 are colinear). Since CThi(`,V) is equal to 1, the MinRad of these vertices will not
affect CThi(V + tW ) for small enough t. The function CThi is then the minimum of a set of dif-
ferentiable functions MinRad± vi and d(p,q)/2 indexed by the (compact) disjoint union of compact
sets {v1,±} t · · · t {vV ,±} t VB(1, `) (where we assume that any vi with MinRad vi undefined
are missing). Clark’s theorem for min-functions [16] tells us immediately that the derivative in (8)
exists.

However, Clark’s theorem tells us that

DW CThi(`,V) = min

 min
(vi,±)

MinRad± vi=1

d

dt+

∣∣∣∣
t=0

(MinRad± vi)(t), min
(p,q)∈VB(1,`)
d(p,q)/2=1

d

dt+

∣∣∣∣
t=0

d(p(t), q(t))

2

 .

The first set {(i,±) | MinRad± vi = 1} is the kink set, which matches (8). But if a pair of edges
in V are parallel and at distance 2 from one another, then Strut(V) is only a subset of {(p, q) ∈
VB(1, `) | d(p,q)/2 = 1}. We must prove that

(9) min
(p,q)∈VB(1,`)
d(p,q)/2=1

d

dt+
d(p(t), q(t))

2

∣∣∣∣
t=0

= min
(p,q)∈Strut(V)

d

dt+
d(p(t), q(t))

2

∣∣∣∣
t=0

.

For any pair of parallel edges with distance 2, we may assume that the situation is as in Figure 5.
We label points p, q, r and s as in the Figure, and parametrize the line segments between p and q
and between r and s by η ∈ [0, 1]. The pairs with η = 0 and η = 1 are in the strut set of V , but the
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pairs given by all other values of η are not. To prove (9) we must find

min
η∈[0,1]

d

dt+
‖ηp+ (1− η)q − ηr − (1− η)s‖ ,

and show that it is attained at η = 0 or η = 1. If we view p, q, r, and s as functions of time, then
for any given η, the time derivative of the corresponding length is given by

1

2
〈ηp+ (1− η)q − ηr − (1− η)s, ηp′ + (1− η)q′ − ηr′ − (1− η)s′〉,

where we have used the fact that d(ei,ej)/2 = 1. Regrouping, we can rewrite this as
1

2
〈η(p− r) + (1− η)(q − s), η(p− r)′ + (1− η)(q − s)′〉,

and using the fact that p− r = q − s at time 0, we can again rewrite this as

η〈p− r, p′ − r′〉+ (1− η)〈q − s, q′ − s′〉.
Now as η varies between 0 and 1, we note that the η derivative of the above quantity is

〈p− r, p′ − r′〉 − 〈q − s, q′ − s′〉.
In particular, this derivative is nonzero for all η ∈ [0, 1] unless 〈p− r, p′− r′〉 = 〈q− s, q′− s′〉, in
which case it vanishes identically. This means that the minimum value of this expression is always
realized when η = 0 or η = 1. This completes the proof. �

We can use Proposition 2.11 to define two sets of variations that will be of particular interest to
us. The first set consists of variations that are tangent to the boundary or pointing into the interior
of the set of polygons CThi(`,V) ≥ 1. We will allow our polygons to move in these directions.

Definition 2.12. Suppose we have a polygon V and a variation W of V . If CThi(`,V) = 1, we
say W is an infinitesimal motion of V if the forward directional derivative

(10) DW CThi(`,V) ≥ 0.

If CThi(`,V) > 1, we call every variation W an infinitesimal motion. The set of all infinitesimal
motions of V is denoted I(V).

The following Corollary follows directly from Proposition 2.11.

Corollary 2.13. The set I(V) is the dual cone of the set −∇d(p,q)/2 for (p, q) ∈ Strut(V) and
−∇MinRad± vi for (vi,±) ∈ Kink(V).

Proof. We need only recall that the dual cone A+ to a set of vectors A is the set of vectors X for
which 〈X,W 〉 ≤ 0 for all W ∈ A. Since the directional derivatives of d(p,q)/2 and MinRad± vi in
the direction X are the dot products of X with −∇d(p,q)/2 and −∇MinRad± vi, X is in the dual
cone if and only if all these directional derivatives are nonnegative. But by the Proposition, this
implies that DX CThi(`,V) is nonnegative as well. �

The second set of variations of interest will be the normal cone of the boundary of the set of
polygons with CThi(`,V) ≥ 1. We will forbid our polygons from moving in these directions.

12



R(V)

I(V)
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WR

WI

FIGURE 6. The infinitesimal motions I(V) and the resolvable motions R(V) of
V form dual convex cones. Hence, although these are not orthogonal subspaces
of R3V , a similar decomposition property holds true: any vector W may be written
uniquely as a sum of a vector WI ∈ I(V) and a vector WR ∈ R(V).

Definition 2.14. The convex cone of resolvable motions R(V) of V is the cone generated by the
set −∇d(p,q)/2 for (p, q) ∈ Strut(V) and −∇MinRad± vi for (vi,±) ∈ Kink(V). R(V) is the set
of vectors R ∈ R3V which can be expressed in the form

(11) R =
∑

(p,q)∈Strut(V)

−λ2
i∇

d(p, q)

2
+

∑
vj∈Kink(V)

−λ2
i∇MinRad vj.

Here the indices i and j just number the elements of the strut and kink sets. The constants λ2
i and

λ2
j are nonnegative numbers, as suggested by the notation.

It is a standard fact from optimization theory that R(V) = I(V)+, since for any set of vectors
{v} the double dual {v}++ is the cone generated by {v}.

Theory of constrained optimization. Given a function f(V) on the space of polygons R3V , we
can compute the negative gradient−∇f , which is a variation vector in R3V . We are now interested
in understanding how this gradient is modified by the constraint CThi(`,V) ≥ 1. This thickness
constraint models the effect of an embedded tube around the polygon: it allows some motions of
V and blocks others.

Definition 2.15. The constrained gradient (−∇f)I of−f is the closest vector in I(V) to−∇f(V).

We now recall that any convex cone and its dual cone provide a kind of orthogonal decomposi-
tion of their ambient vector space, as shown in Figure 6.

Proposition 2.16 ([51], Thm. 2.8.7). Any vector W ∈ R3V may be uniquely written

(12) W = WR +WI , where 〈WR,WI 〉 = 0,
13



WR ∈ R(V) is the closest resolvable motion to W , and WI ∈ I(V) is the closest infinitesimal
motion to W .

We note that this Proposition shows that the constrained gradient of−f is well-defined. Further,
it is easy to show that the constrained gradient is the direction of steepest descent for f within I(V).
This makes us guess that the constrained gradient should vanish at a critical point for minimizing f .
To prove it, we define critical points more carefully

Definition 2.17. We say that V is thickness-critical for minimizing f if either:

• DWf = 0, or
• CThi(`,V) = 1 and for any W with DWf(V) < 0, we have DW CThi(`,V) < 0.

In the first case, we are at an unconstrained critical point of the objective function f . In the
second, we are at a constrained critical point where motion in the direction of the negative gradient
of f is blocked by active constraints. We then have a version of the Kuhn-Tucker theorem (restated
in our language from the original form in [10]), which gives a verifiable condition for thickness-
criticality.

Theorem 2.18. The polygon V is thickness-critical for minimizing f ⇐⇒ −∇f is in R(V) ⇐⇒
the constrained gradient (−∇f)I vanishes.

Proof. It suffices to show that the first two statements are equivalent, since the second and third are
clearly equivalent by Proposition 2.16.

If −∇f is not in R(V), then Farkas’ theorem implies that there exists some W with 〈W,∇f〉 =
DWf < 0 and 〈W,R〉 ≤ 0 for all R ∈ R(V) ([40], p. 118). Using the definition of R(V) and
Proposition 2.11, this implies DW CThi(`,V) ≥ 0. Thus V is not thickness-critical for minimiz-
ing f .

If −∇f is in R(V) we will prove that V is thickness-critical for minimizing f . We first observe
that the dual cone of −∇f contains the dual cone R+(V). Now suppose we have some W with
DWf < 0. Then 〈W,−∇f〉 > 0, so W 6∈ (−∇f)+ and in particular W 6∈ R+(V). But this means
that 〈W,R〉 > 0 for some R ∈ R(V), so DW CThi(`,V) < 0. Hence V is thickness-critical for
minimizing f . �

We can give a natural interpretation of this Theorem in mathematical and physical terms by
considering the condition −∇f ∈ R(V). By definition, this means that

(13) −∇f +
∑

(p,q)∈Strut(V)

λ2
i ∇

d(p, q)

2
+

∑
vj∈Kink(V)

λ2
j ∇MinRad vi = 0.

Mathematically, the λ2
i and λ2

j are Lagrange multipliers. If we think of the thickness constraint as
an embedded tube around V , we can interpret these scalars as magnitudes of compression forces
transmitted by tube contacts (for struts) and angles where the polygon resists further bending (for
kinks).
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In general, we cannot expect every local minimum of a constrained function to be a constrained
critical point in the sense of Definition 2.17. If the set of polygons defined by CThi(`,V) had an
outward-pointing cusp we might reach a point where some W with DWf < 0 had DW CThi = 0.
For example, the constrained system

minimize f(x, y) = −x, subject to g(x, y) = min{x3 − y, y} ≥ 0

has this property at the local minimum (0, 0) for W = (1, 0). The problem here is simply that
DWg ≤ 0 for all W . This does not happen for thickness-constrained polygons, but we will need
another idea to prove it:

Definition 2.19. We say that V is constraint-qualified (in the sense of Mangasarian and Fro-
movitz [35]) if there exists some W so that DW CThi > 0.

It is then standard to show

Proposition 2.20 ([10]). Any constraint-qualified local minimum of f is a thickness-critical point
for minimizing f .

In our case, scaling V provides the desired motion, so we have

Corollary 2.21. If the polygon V is a local minimum for f , then it is a thickness-critical point for
minimizing f .

We make a final note that in general, our criticality theory works equally well for CThi and
Thip (even for polygons V which are not equilateral), as long as they obey the hypotheses of
Corollary 2.8. This is true in practice in all of our numerically computed configurations.

3. BRIDGING THEORY AND COMPUTATION

Overview of the algorithm. We have now derived enough theory to describe our algorithm in
general terms. We wish to minimize the function Len(V) subject to the constraint CThi(`,V) ≥ 1.
We will do so by computing the constrained gradient (−LenV)I and stepping in this direction.
These steps will reduce Len(V) while keeping V close to the set CThi(`,V) ≥ 1 (since the con-
straints are nonconvex, we cannot stay entirely inside this set). When (−LenV)I vanishes, the
algorithm will terminate. By Theorem 2.18 if the constrained gradient was exactly zero, the re-
sulting configuration would be a thickness-critical point for minimizing length. We note that our
algorithm will attempt to maintain an approximately equilateral polygon V but it is not required
to: constant edgelength ` is not a hypothesis of Theorem 2.18. Our only caveat is that we must
remember that CThi(V) may not be equal to Thip(V) if the final configuration fails to obey the
hypotheses of Corollary 2.8. We also note that there is nothing special about choosing Len(V) as
the function to minimize — both our theory and our code would work just as well for any other
function.

Computing the constrained gradient. To implement this algorithm, we must be able to compute
the constrained gradient (−∇f)I . This is a standard problem in linear algebra. By definition, if
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−∇f is written as (−∇f)R + (−∇f)I using Proposition 2.16, the constrained gradient is equal
to (−∇f)I . We can compute that by computing (−∇f)R, which is easy to do since we know the
generators of the cone R(V).

Definition 3.1. If CThi(`,V) = 1, the rigidity matrix A of V is the matrix whose columns are the
gradients −∇d(p,q)/2 for (p, q) ∈ Strut(V) and −∇MinRad± vi for (vi,±) ∈ Kink(V).

We can construct the rigidity matrix by finding the members of Strut(V) and Kink(V). It
follows from the definition that R(V) is the image of the positive orthant under the matrix A. By
Proposition 2.16, (−∇f)R is the closest vector in that image to −∇f . So if we solve the non-
negative least-squares (NNLS) problem

(14) min
Λ≥0
‖AΛ− (−∇f)‖,

then (−∇f)R = AΛ and (−∇f)I = −∇f − AΛ. This least-squares problem is a special kind of
quadratic programming problem which has been well-studied in numerical linear algebra (see [4]).
In our case, the problem is much easier becauseA is extremely sparse — the gradients of the d(p,q)/2

involve no more than 4 vertices (and so 12 variables), while the gradients of the MinRad± involve
only 3 vertices (and 9 variables). So each column of A, which is typically 1000 or more entries
long, contains at most 12 nonzero entries.

The gradient of Length. We can now compute (−∇Len)I if we can compute −∇Len, build the
rigidity matrix A from the strut and kink sets, and solve the NNLS problem in (14). We will take
these problems in order.

Length is a differentiable function of polygons V ∈ R3V , whose gradient is given by a straight-
forward calculation:

Proposition 3.2. The gradient of length of a polygon Vn is given by the collection of n vectors

(15) ∇Len(V)k =
vk−1 − vk
‖vk−1 − vk‖

+
vk+1 − vk
‖vk+1 − vk‖

.

The gradient of d(p,q)/2. Given a pair of points (p, q) on V , the gradient of the distance between
them is a set of four vectors located at the endpoints of the edges on which p and q lie. These
vectors are given by a calculation:

Proposition 3.3. Suppose that (p, q) ∈ Strut(V). If p = αvi + (1 − α)vi+1 and q = βvj + (1 −
β)vj+1 then

∇d(p, q)

2
=

1

2d(p, q)
{α(p− q), (1− α)(p− q), β(q − p), (1− β)(q − p)} .

where these three vectors are applied to vi, vi+1, vj and vj+1 in order.

The gradient of MinRad±. As we noted above, the MinRad± are differentiable where they
are defined. We now compute the gradient on MinRad+, noting that the gradient of MinRad− is
similar.
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Proposition 3.4. Given a vertex i on Vn with finite MinRad±(vi), we let n denote the oriented
normal vector to the plane defined by vi−1, vi, vi+1 and define the scalar constant

K =
‖vi+1 − vi‖
2 cos θ − 2

and the vector constants

V =
vi+1 − vi

2 tan(θ/2)‖vi+1 − vi‖
, W = K

(vi−1 − vi)× n
‖vi−1 − vi‖2

, X = K
n× (vi+1 − vi)
‖vi+1 − vi‖2

.

Then if we write the gradient of MinRad+ as a triple of vectors located at vi−1, vi, and vi+1 we
have

∇MinRad+(vi) = {W,−W −X − V,X + V }.

Proof. The proof is a lengthy calculation. We want to compute the gradient of MinRad+(vi) =
‖vi+1−vi‖
2 tan(θ/2)

, where θ is the turning angle at vertex vi. We start with a change of variables. Let
A = vi−1 − vi and B = vi+1 − vi. We can rewrite MinRad+ in terms of these variables and
compute its gradient as follows:

(16) ∇ ‖B‖
2 tan(θ/2)

=
1

2 tan(θ/2)

(
0,

B

‖B‖

)
− 1

2

[
‖B‖

tan2(θ/2)
· d
dθ

tan(θ/2)

]
∇θ.

Now

(17)
d

dθ
tan(θ/2) =

1

2 cos2(θ/2)
=

1

21+cos θ
2

=
1

1 + cos θ
, and tan2(θ/2) =

1− cos θ

1 + cos θ
.

So we can rewrite (16) as

∇ ‖B‖
2 tan(θ/2)

=
1

2 tan(θ/2)

(
0,

B

‖B‖

)
− ‖B‖

2− 2 cos θ
∇θ = (0, V ) +K∇θ.

Keeping track of the sign of the exterior angle, we see that if n is the oriented unit normal to the
plane containing A and B, we have

∇θ =

(
A× n
‖A‖2

,
n×B
‖B‖2

)
so ∇ ‖B‖

2 tan(θ/2)
= (W,X + V ).

Using the definition of A and B to change back to the original variables completes the proof. �

The function MinRad(vi) provides a discrete analog to the radius of curvature for the polygonal
curve V at vi. Since this is a numerical computation of a second derivative, we expect the function
to be quite sensitive to small changes in the positions of the vertices of V . This sensitivity will
limit the accuracy of our computations, so we record an estimate of the norm of the gradient of
MinRad+(vi).

Corollary 3.5. If V is an equilateral polygon with edgelength ` and MinRad vi = 1 then

‖∇MinRad± vi‖ ≥
2

`2
.
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Proof. Consider

‖W‖ =
‖vi+1 − vi‖
|2 cos θ − 2|

‖(vi−1 − vi)× n‖
‖vi−1 − vi‖2

.

Since the polygon is equilateral, and n is a unit vector normal to vi−1 − vi, this is just ‖W‖ =
1/|2 cos θ−2|. If MinRad = 1, then (squaring MinRad and using both half-angle formulae for tan-
gent) we see that ‖W‖ = |2+2 cos θ|/`2. Since W appears alone in the formula for ∇MinRad+, this
is a lower bound for the norm of the entire gradient. �

4. PROGRAM DESIGN

Issues of scale. The design and implementation of our algorithm ridgerunner were shaped
by the scale of the knot-minimizing problems we intended to solve and the amount of computer
power we had on hand to solve them. To inform the discussion that follows, we will now take a
moment to consider the dimensions of our problems. In a typical run, we started by minimizing
the length of a low-resolution version of our knot or link with 2 vertices per unit of ropelength (80
to 150 vertices). Once that configuration was minimized, a medium resolution run at 4 vertices
per unit of ropelength was performed. A final run followed at 8 vertices per unit ropelength.
Most of the runtime was spent during the final run, which took 20 − 40 CPU hours on a desktop
computer. During the final run, the average edgelength ` for our curves was approximately 0.061,
which meant that there were 658 edges. The average size of the strut set was 919 pairs of points,
while the average size of the kink set was 19 vertices. The rigidity matrix was then on average
a 938 × 1974 matrix which was 99.4% sparse (no more than 11199 of its 1851612 entries were
nonzero). A typical run contained several hundred thousand steps.

The algorithm. Our method is based loosely on the method of constrained gradient descent.
The basic idea is to generate a series of polygons Vi which converge to a limit polygon which is
thickness-critical for minimizing a function f(V) by taking a series of steps in the form

(18) Vk+1 = Vk + α(−∇f)I , where α is chosen by a search algorithm.

When CThi(`,V) > 1, this is just the method of steepest descent, since (−∇f)I = −∇f . When
CThi(`,V) = 1, these steps are tangent to the boundary of CThi(`,V) ≥ 1 and in principle
decrease CThi by no more than O(α2). In some circumstances, such as when two sections of tube
touch for the first time, we can decrease CThi by O(α) (which is much larger, since α << 1). We
control this error by searching for an α which keeps CThi(`,Vk + α(−∇f)I) within acceptable
bounds. When CThi(`,Vk) becomes too small, we correct the accumulated error using a Newton’s
method-type solver. The code terminates when we the constrained gradient is small enough to
convince us that we are near a point which is thickness-critical for minimizing f . This procedure
is summarized in Algorithm 1.

In the rest of this section, we will comment on each of these steps in turn.
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Algorithm 1: The outline of the ridgerunner algorithm.

input : A polygon V0 and an error bound error bound MaxErr.
output: A sequence of positions Vk with CThi(`,Vk) ≥ 1−MaxErr.

1 repeat
2 Compute −∇f = −∇Len(Vk) +−∇Eq(Vk);
3 Find Strut(V) and Kink(V) and construct the rigidity matrix A;
4 Compute constrained gradient (−∇f)I .;
5 Search for α so that Vk + α(−∇f)I minimizes ropelength and is computationally

acceptable and set Vk+1 = Vk + α(−∇f)I ;
6 if CThi(`,Vk+1) < 1−MaxErr then
7 Correct CThi(`,Vk+1) by Newton’s method;
8 end
9 until ‖(−∇f)I‖/‖−∇f‖ is sufficiently small;

Step 2. Equilateral polygons, CThi and Thip. We have only proved that CThi ≥ 1 ⇐⇒
Thip ≥ 1 for equilateral polygons. It is therefore important that our Vk remain at least approxi-
mately equilateral during a run. We enforce this constraint by defining a penalty function Eq(V)
which is minimized when Vk is equilateral and minimizing the sum Len(V) + Eq(V). This is
quite effective (a typical run recorded an average error in edgelength of about 0.385%) in practice.
We note that while CThi and Thip might not be equal for nonequilateral polygons, we avoid any
problems that might result by performing all of our final ropelength calculations with respect to
the original Thip thickness.

Step 3. Finding Strut(V) and Kink(V). In principle, the strut and kink sets could be found by
direct inspection of all pairs of edges and all vertices of V . But since there are usually 106 such
pairs, this naive method consumes too much runtime. So to find the strut and kink sets, we used
the clustering code octrope of Ashton and Cantarella described in [1]. This was fast enough that
over 30 seconds of a typical4 run about 10% of runtime was spent finding Strut(V) and Kink(V).
The algorithm in octrope does not take advantage of the fact that it is called successively on data
which vary little between calls, so a much faster customized strut-finding code could be written
into ridgerunner. However, these figures show that this project would have little impact on
overall performance.

Step 4. Finding the constrained gradient. Once we have Strut(V) and Kink(V) we can use the
gradient formulae given in Propositions 3.3 and 3.4 to construct the rigidity matrix A. We must
then solve the sparse non-negative least squares (SNNLS) problem minΛ≥0‖AΛ− (−∇f)‖, which
we recall as Equation 14 on page 16.

We use the freely available tsnnls library of Cantarella, Piatek, and Rawdon [12], which
is an implementation of the block-pivoting algorithm of Portugal, Judice and Vicente [43]. The
PJV algorithm solves a sequence of unconstrained least-squares problems to find a partition of

4a 400 edge 5.1 knot with about 600 struts
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the variables of Λ into complementary sets F and G representing variables which will be nonzero
and zero in the solution to (14). It is very important to take advantage of the sparsity of A in
order to solve these (rather large) problems in an acceptable amount of time, as this step makes
the dominant contribution to our overall runtime in most cases. To this end, tsnnls solves the
least-squares problem Ax = b by solving the “normal equations” ATAx = AT b. Since ATA is
symmetric, we can solve this system using a Cholesky factorization. This is done very quickly
using the multifrontal supernodal sparse Cholesky code TAUCS of Toledo et al. [53].

We have sacrificed some accuracy in favor of speed, since the condition number of ATA is the
square of the condition number of A. A standard “rule of thumb” in such situations is that the
error in the solution is on the order of machine epsilon (10−16) multiplied by condition number.
To verify that this was small in practice, we used the rcond function in LAPACK to estimate the
condition number of the rigidity matrices of all of our final configurations. The average condition
number was on the order of 104 with none being worse than 8 × 105. Thus we expect to have an
average error on the order of 10−8 and a worst-case error of 10−6 in our final computations of the
constrained gradient.

It is also worth noting that the TAUCS code will fail if the rigidity matrix is singular, which
will occur when there is more than one way to balance gradient force. This is expected for very
complicated knots, but seems to be rare among knots in our dataset. A more advanced version of
tsnnls would calculate a minimum-norm solution to the least-squares problem in this case.

Step 5. Choosing a stepsize. When CThi(V) > 1 our code sets a small maximum stepsize
of 10−2 and proceeds by Euler integration5. Once CThi(V) = 1, thickness typically decreases
by a small amount on each step. We choose α by a line search algorithm, finding the minimum
ropelength of configurations in the given direction using Brent’s method with a relatively low
precision.

However, we do not always accept the ropelength-minimizing α. Instead, we apply a collection
of ad hoc conditions which we describe as α being “computationally acceptable”. These include an
upper bound on stepsize of 10−2, a lower bound of 10−6, and the requirement that the linear algebra
solver of Step 4 can compute a new direction −∇fI at the new location. These are motivated by
several practical considerations. If the stepsize is permitted to be too large, loose configurations
will often form large kinked regions before the tube contacts itself. Kinks reduce stepsizes by
orders of magnitude– in practice, this means that such a run takes an unacceptably long time to
converge. If the stepsize is permitted to be too small, the solver can stall just before discovering a
new self-contact. In these cases it has proved better to take the risk of a slight increase in ropelength
in order to improve the strut set. Finally, even when the stepsize is less than 10−2, if an arc of the
knot suddenly contacts another arc, introducing too many new struts into the rigidity matrix, the
matrix can become numerically singular, defeating the tsnnls solver of Step 4. Thus, we must
look ahead and make sure the next position will be acceptable to tsnnls before locking in a
stepsize.

5We could improve the accuracy and speed of this portion of the computation by using a smarter ODE solving
method. But these steps have no linear algebra involved, so they are already orders of magnitude faster than the ones
to come. In practice, this portion of the run consumes < 1% of the total runtime.
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Step 7. Error correction. When the error bound MaxErr = 10−4 is reached, we use Newton’s
method to return Vk to a configuration with larger thickness. For any given variationW of V we can
estimate the change in the d(p,q)/2 for (p, q) ∈ Strut(V) and in MinRad± vi for (vi,±) ∈ Kink(V)
by ATW , where A is the rigidity matrix we have already computed.

We use this observation in a straightforward way. We construct a vector C of desired corrections
which is equal to (1− MaxErr/2)− d(p,q)/2 for (p, q) ∈ Strut(V) and (1− MaxErr/2)−MinRad± vi for
(vi,±) ∈ Kink(V). Having done so, we find a minimum-norm solution to ATW = C. We then
step according to W , using a search algorithm to decide the stepsize, rebuild the rigidity matrix in
case we have changed the strut or kink set in the correction step, and iterate.

We note that we do not attempt to correct all of the error in CThi(V) during this procedure. If
we did so, we would risk losing struts and kinks when we rebuild the rigidity matrix. In that case,
the next Newton step, ignoring those pairs or vertices, might rediscover them as struts and kinks.
In principle, this cycling behavior could delay or prevent convergence of the Newton procedure,
as noted by Fletcher [23]. Our method does not eliminate this possibility entirely (in the current
version of the code, we have observed occasional failures of the Newton solver) but in practice the
Newton solver almost always converges in only a few iterations.

The main problem with the Newton solver is that it is slow for large problems. The matrix
AT is mapping from a high-dimensional space of variations to a relatively low-dimensional space
of struts and kinks, so it has a large kernel. Hence the matrix AAT is not positive definite, and
so we cannot solve ATW = C using the method of normal equations and the fast Cholesky
decomposition of TAUCS. Instead, we must use the older lsqr code of Paige and Saunders [39]
to find a minimum-norm solution to the problem. This can be very slow. For instance, in a 640
edge trefoil with 975 struts and 10 kinks, correction steps consumed anywhere between 3 and 25
seconds of runtime. Normal steps completed in less than a second. We always have the option of
sidestepping Newton correction by simply scaling the knot (as in Pieranski’s SONO algorithm).
This preserves ropelength but destroys the strut set completely, requiring us to rebuild the strut set
during subsequent steps. Our experience has been that this can improve performance during the
middle stages of a run, when a fairly large number of struts and kinks have formed but the knot is
still far from tight, but it is better to use Newton correction in the final stages of a run when one is
trying to adjust a converged strut set to improve the final results.

At the moment, the speed of lsqr controls the overall performance of our code. We hope to
find an improved error-correction procedure in future versions of the software.

Modified versions of the algorithm. We have also modified our algorithm to handle some
special cases, such as open curves with fixed endpoints or endpoints constrained to lie in planes.
In these cases, the gradients of the endpoint constraints are added to the rigidity matrix and the
gradient of length is resolved against them in Step 4. In addition, a specialized error-correction
algorithm enforces the constraints after each step to prevent numerical error from causing the
endpoints to drift away from their positions over time. The general Newton’s method algorithm
for error-correction is also modified in these cases to take endpoint constraints into account.
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In addition, we have found that curves whose final tight positions have long segments with
no struts or kinks as well as tightly curved regions with many struts and kinks often take a very
large number of steps to tighten completely. Sections of the curve with no struts or kinks simply
minimize length with no constraints and must therefore end up as straight lines. But as they
approach this position, the gradient of length approaches zero, while regions where the gradient
of length is balanced by struts and kinks have comparatively large length gradients. Since the
step size is controlled by the tightly curved regions, it may take a very long time for the strut and
kink-free regions to finish straightening. We have had some success in these cases with a modified
version of our algorithm which detects sections of curve with no struts or kinks and scales up the
length gradient on those portions of the curve alone.

5. RESULTS OF COMPUTATIONS

We now present the main results of our computations. To summarize, we have significantly
extended the range and quality of existing computations of tight knots and links. The new data
support some interesting conjectures about the geometric structure of these configurations.

Validation of ridgerunner computations. To verify that the system works, we checked the
results of ridgerunner against some theoretical results. The results of the comparison appear
in Table 1. As we can see from the Table, the relative error in these ropelength computations is as
small as 0.0017%.

The paper [10] also gives an explicit strut set for the Borromean rings. To compare the numeri-
cally computed strut set to the theoretical one, we plot them together in Figure 7. The Figure shows
that the numerically computed strut set is quite close to the actual one. Figure 8 shows a similar
comparison between theoretical results and a ridgerunner computation for the strut set of the
“simple clasp” formed by two strands looped over one another. The theoretical results in [10] for
this clasp assume that the curvature of the clasp is not bounded, so we compare with the results of
a run of our software which did not enforce curvature constraints.

Computing polygonal ropelength minimizers for many knots and links. We minimized polyg-
onal ropelength for all prime knots of 10 and fewer crossing and all prime links of 9 and fewer
crossings (a total of 379 knot and link types) at resolutions of at least 8 vertices per unit of rope-
length (several hundred vertices in total). For a few knots and links of special interest, we computed
high resolution runs with 16, 32, or 74 vertices per unit ropelength. The largest runs in our dataset
contain about 2400 vertices.

The computations were performed on clusters at the University of St. Thomas, the University of
Georgia, and the ACCRE cluster at Vanderbilt University. We began our computations with an ini-
tial low-resolution (200 vertices or fewer) polygon, which we ran until the residual was sufficiently
low. We then increased resolution by a minrad-preserving version of spline interpolation and mini-
mized again from the resulting new starting configurations. Our inital goal was a residual less than
0.01, which we achieved for 375 of the 379 knots and links in our data set. We were able to reach
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FIGURE 7. The diagonal above is labeled with arclength values along the three
components of the Borromean rings link, which is numbered 63

2 in Rolfsen’s table.
Every pair (s, t) ∈ Strut(V) is represented by a dark green square centered on
(s, t). As we see from the top plot, no tube around a component of the link is in
contact with itself (so the three triangles near the diagonal are empty). But each of
the components makes contact with the other two, as shown by the boxes plotted in
the rectangles forming the remainder of the plot. We can see that the contacts break
up naturally into “lantern-shaped” structures. In the bottom plot, we compare one
“lantern” to the self-contact set predicted by [10], which is represented by a black
line.
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Link name Clasp Hopf link (22
1) 22

1#22
1 Borromean rings (63

2)
Vertices 332 216 384 930
Ropp bound 4.2841 25.1406 41.7131 58.0192
Rop bound 4.2837 25.1334 41.7086588 58.0070
Smooth length 4.2629[10] 8π[11] 12π+ 4[11] 58.0060[10]
Relative error 0.4% 0.02% 0.02% 0.0017%

TABLE 1. Numerical results from ridgerunner compared to the minimum ro-
pelength values from [11] and [10]. The relative errors in the computations are quite
small.

FIGURE 8. The left-hand picture shows a (loose) configuration of the “simple
clasp” — a simple two-strand tangle which serves as an interesting model for the
interaction between two ropes passing over each other at right angles. A ropelength-
critical configuration of this tangle has been derived and studied extensively in [10]
and [9]. Since this derivation included an explicit strut set, it is natural to compare
ridgerunner’s results to this theoretical picture. This comparison is shown in
the two plots center and right, which plot the positions of struts in arclength coor-
dinates with the origin located where each curve first begins to turn. The enlarged
plot (right) shows the agreement between theoretical and computational results. The
data shown is from a 332 edge polygonal clasp.

a residual of 0.001 for 202 of the knots and links in our data set, proving that our knots are close
to being critical for the CThi thickness. While our knots are not quite equilateral, they all satisfy
the hypotheses of Corollary 2.8 and are hence also close to critical for the original Thip thickness.
Because of this corollary, we know that both thicknesses are equal for our configurations, so we
have computed and reported the Thip thickness and ropelength below.

We started each knot from at least five initial configurations, including the configurations from
KnotPlot [49] (similar to the configurations in Rolfsen’s table), the TOROS simulated annealer [47],
Gilbert’s minimized configurations from the online Knot Atlas [24], hand-drawn configurations
from Kawauchi’s A Survey of Knot Theory [29], and positions generated from KnotPlot’s diagram
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command. The results shown describe the lowest ropelength we achieved from any of these starting
configurations.

The polygonal ropelengths for our curves appear in the column Ropp of Tables 3-5 of Appen-
dix A, while a plot of the ropelengths organized by crossing number appears in Figure 10.

Generating upper bounds for smooth ropelength. Our computations yielded a large set of
approximate minimizers of Len(V)/Thip(V). From these, we wanted to generate upper bounds on the
minimum (smooth) ropelength of these knots and links. Rawdon has given general bounds [45, 47]
on the rate at which Thip → Thi which we could have used for this purpose. But we were
interested in small improvements in ropelength, so we used a more careful approach.

Our procedure for constructing smooth ropelength bounds from polygonal data is as follows.
Beginning with V , we splice circle arcs of radius MinRad(vi) into the corners at vertices vi as
shown on the left-hand side of Figure 9 to create a piecewise C2 curve V (s). The minimal radius
of curvature for this curve is equal to MinRad(V). But the self-distances of V (s) may be different
from those of the polygon V if they involve the new circle arcs.

vi−1

vi

vi+1

c(0) d(0)
x

c(s0) d(t0)
x+ (1 +K)ε2

FIGURE 9. On the left, we see the curve constructed from splicing a circular arc of
radius MinRad(vi) into vi−1vivi+1. This curve is C1, but not C2 at the splice points.
On the right, we see the setup for Proposition 5.1. On the left and right are arcs c
and d with curvature ≤ K and length ≤ ε. The minimum distance x between them
occurs at c(0), d(0). We prove that the distance between any other pair of points
c(s0) and d(t0) is bounded above by x+ (1 +K)ε2.

We must therefore compute the self-distances of V (s). This poses a problem: V(s) is composed
of arcs of circles and line segments and Neff has shown that there is no simple formula for the
distance between two arbitrary circle arcs in 3-space [38]. So we estimate the self-distances of
the smooth curve V (s) by taking distances between a finite number of sample points on the curve
separated from one another by some ε. We bound the error in our computation in terms of ε using
the following Proposition.

Proposition 5.1. Suppose that c(s) and d(t) are each unit-speed piecewise C2 arcs with curvature
bounded above by K. Further, suppose that ‖c(0)− d(0)‖ > 1/2 is the minimum distance between
c and d. Then for any 0 ≤ s0, t0 ≤ ε

‖c(s0)− d(t0)‖ ≤ ‖c(0)− d(0)‖+ (1 +K) ε2.

Proof. Since ‖c(s)− d(t)‖ has a local min at (0, 0), we know that

〈c′(0), c(0)− d(0)〉 = 0, and 〈d′(0), c(0)− d(0)〉 = 0.
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Further, the curvature bound tells us that ‖c′′‖, ‖d′′‖ < K. We will use these facts to estimate
‖c(s0) − d(t0)‖2. If we let C(s0) =

∫ s0
0
c′(s) ds and D(t0) =

∫ t0
0
d′(t) dt then we have c(s0) =

C(s0) + c(0) and d(t0) = D(t0) + d(0), so

(19) ‖c(s0)− d(t0)‖2 = ‖C(s0)−D(t0)‖2 − 2 〈C(s0)−D(t0), c(0)− d(0)〉+ ‖c(0)− d(0)‖2.

Since c(s) and d(t) are unit-speed curves, and 0 ≤ s0, t0 ≤ ε we know that ‖C(s0)‖, ‖D(t0)‖ < ε
and so the first term is bounded above by 4ε2.

The middle term is more interesting. As before, we can let CC(s) =
∫ s

0
c′′(x) dx and DD(t) =∫ t

0
d′′(y) dy, so c′(s) = CC(s)+c′(0) and d′(t) = DD(t)+d′(0). Since c′(0) and d′(0) are normal

to c(0)− d(0), we can then write this middle term as

−〈C(s0)−D(t0), c(0)− d(0)〉 = −
〈∫ s0

0

CC(s) ds−
∫ t0

0

DD(t) dt, c(0)− d(0)

〉
Since ‖c′′‖, ‖d′′‖ < K, we know ‖CC(s)‖ < Ks, ‖DD(t)‖ < Kt. Thus (remembering that s0,
t0 < ε) the norms of the integrals on the right above are each bounded above by Kε2/2 and the
entire dot product is bounded above by Kε2‖c(0)− d(0)‖.

Thus the right hand side of (19) is bounded by ‖c(0)−d(0)‖2 +4ε2 +2Kε2‖c(0)−d(0)‖. Since
1/2 < ‖c(0)− d(0)‖, 4ε2 < 2ε2‖c(0)− d(0)‖. Using this, we see that

4ε2 + 2Kε2‖c(0)− d(0)‖+ ‖c(0)− d(0)‖2 < ‖c(0)− d(0)‖2 + (2 + 2K)ε2‖c(0)− d(0)‖
< ‖c(0)− d(0)‖2 + (2 + 2K)ε2‖c(0)− d(0)‖+ (1 +K)2ε4

=
(
‖c(0)− d(0)‖+ (1 +K)ε2

)2
.

This completes the proof. �

Our code, named roundout rl6, establishes a coarse net of points on V (s)× V (s) ' [0, 1]×
[0, 1] and then eliminates subsquares of this square from consideration using Proposition 5.1. The
remaining squares are then subdivided and searched in turn. The process terminates once we have
computed the local minima of d(p, q) on the square with whatever accuracy we require.

Using roundout rl in double-precision machine arithmetic we found upper bounds for the
ropelengths of our 379 minimized configurations. These figures appear in column Rop of Tables 3-
5 of Appendix A. These figures constitute the best known dataset on the lengths of tight knots and
links. The data is summarized in Figure 10 and Table 2.

To test how accurate these final results are likely to be, we computed the relative residual
‖(−∇f)I‖/‖−∇f‖ for all these knots and links. The average residual of knots in our tabulation is
about 0.00299. We have achieved residuals as low as 2.54 × 10−5 for knots and links of special
interest, such as 818, 10123, the trefoil, and the Borromean rings. A table of these residuals appears
in Appendix A. Four knots and links in our calculation turned out to be particularly difficult for
ridgerunner: 1061, 83

10, 84
3 and 93

17.

6freely available as part of the octrope library
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FIGURE 10. This graph shows the relationship between ropelength (y-axis) and
crossing number (x-axis) for knots and links in our data set. The bottom lines show
the bound of Denne et al. [17] for ropelength of a nontrivial knot (horizontal line)
and Diao’s bound [18] for ropelength in terms of crossing number (curve). We
can see that there is a substantial overlap of ropelength values between different
crossing numbers. This is reflected in Tables 6-7 of Appendix A, which show the
knots in ropelength order. Table 2 shows the links of least and most ropelength for
each crossing number.

Cr Rop Links

3 32.74 31

4 [40.0122, 42.0887] 42
1, 41

5 [47.2016, 49.7716] 51, 52
1

6 [50.5539, 58.1013] 63
3, 62

3

7 [55.5095, 66.3147] 72
7, 72

6

8 [60.5754, 75.2592] 83
7, 84

1

9 [66.0311, 83.6092] 92
49, 92

42

10 [71.0739, 92.3565] 10124, 10123

TABLE 2. This table shows the links of smallest and largest minimum ropelength
for each crossing number (according to our data). Recall that we did not mini-
mize ten-crossing links, so it is likely that some ten-crossing link has more or less
ropelength than the 10123 and 10124 knots.

Generation of tightening animations, pictures, and strut sets. We have saved the minimiza-
tion runs for each of these knots and links as an animation showing the tightening knot. These
animations are posted on the web at http://www.jasoncantarella.com/movs/.

We have also generated images of the polygonal strut sets and approximately tight configurations
for each of the 379 knots and links in our data set. Space considerations prevent us from including
all of this data in this paper, so they are enclosed in the associated Atlas of Tight Links [2]. Figure 11
shows a typical page from the Atlas. All of our tight knot and link data, including coordinates for
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FIGURE 11. This figure shows simplified versions of two pages from the Atlas of
Tight Links for the knot 71 and the link 42

1. On each page, the top left pictures
show three views of the link. The triangular graphic shows the struts of the link as
found by ridgerunner plotted as points (s, t) in arclength coordinates along the
link. The graph on the bottom of the page shows the curvature of the curve. The
background of each plot changes color to indicate the change from one component
to the next. The key along the left-to-right diagonal is given in ropelength units and
color-coded with the pictures at upper left to show which component is referred to
by the plot.

the tight configurations, is publicly available with the publication of this paper. We note that for
technical reasons, our minimized configurations have thickness close to 1/2 (rather than 1, as in
the discussion above), and hence their maximum curvature is 2.

Discovery of symmetric tight knots. An interesting feature of the ropelength function is that
minimizing ropelength seems to break any symmetry enjoyed by the original configuration of a
given knot. For instance, while the minimizing configuration for the (3, 2) torus knot 31 appears
to be threefold symmetric (as expected), the minimizing configuration for the (5, 2) torus knot 51

is not fivefold symmetric. It was therefore somewhat surprising to discover two knots in our data
set, 818 and 10123 for which the tight configurations are highly symmetric. These knots are shown
in Figure 12. Their self-contact sets (which appear on pages 67 and 358 of the Atlas, and are
reproduced in the Appendix of this paper on pages 36 and 37) are highly suggestive, resembling
those of the Borromean rings (page 29), and appearing to consist of a single element repeated
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FIGURE 12. Two highly symmetric tight knots are the 818 knot shown above left
and the 10123 knot shown above right. Rounding the corners of these curves yields
ropelength upper bounds of 74.9063 and 92.3565, respectively. Because their strut
sets break into a particularly simple form (see pages 36 and 37), these knots may be
better candidates for an explicit solution than seemingly simpler knots such as the
trefoil.

several times. This feature implies that these knots may be better candidates for explicit solution
than the seemingly simpler trefoil knot.

6. FUTURE DIRECTIONS

Several directions for future research suggest themselves from these experiments. First, we note
that while we have given finite strut sets for several polygonal knots and observed that they are
close to the the 1-dimensional strut sets for the corresponding smooth tight configurations, we
have not proved a theorem explaining how our polygonal strut sets converge to the strut sets of
a critical polygon. We conjecture that this is part of a larger theorem which would show that if
a family of polygonal ropelength critical configurations Vn converge to a C1,1 curve V then V is
ropelength critical in the sense of [9], the strut sets of the Vn converge in Hausdorff distance to
the self-contact set of V , and the kink sets of the Vn converge to the portion of V at maximum
curvature.

There are several features of the tight knot data set that we have discovered that seem worthy
of further investigation. Carlen, Smutny and Maddocks noted in [14] that curvature constraints
seemed to be “within a rather small tolerance of being active” at several points on their numerical
approximations of the tight trefoil and figure-eight knots. Baranska et al. provided numerically
smoothed plots of the curvature of their approximately tight trefoil in [3] which appear to confirm
this observation.
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FIGURE 13. This plot shows the computed 1/MinRad values as a function of
arclength along the polygon for a 2400 edge trefoil with thickness close to 1/2,
residual 0.0018 and polygonal ropelength 32.743663 (rounding out the corners as
described above gives a smooth ropelength upper bound of 32.74352 for this con-
figuration). The value at each vertex is plotted above with no numerical smoothing.
Though there is some noise in the portions of the plot where curvature is not con-
strained, the six kinked regions are clearly resolved. A total of 117 vertices are
involved in these regions.

We have noticed the same phenomenon in our data sets. Our computation of the curvature for
the trefoil appears in Figure 13. In the Atlas of Tight Knots, we highlight the active curvature
constraints found by ridgerunner as part of the minimization process by red lines on the plot
of strut sets. These occur in 372 of the 379 knots and links minimized. This provides suggestive
numerical evidence that kinks are rather common in tight knots. We intend to provide better
evidence for this conjecture in an upcoming publication.

Several authors have proved versions of the theorem that an interval of a tight knot with curvature
less than the maximum allowed and no struts must be a straight line segment [27, 50, 9, 21]. We
see this phenomenon 338 times in the Atlas, for instance in the link 63

3 on page 28 of the Atlas (see
also Figure 14), which appears to have three straight segments of length 2.1, 1.14, and 0.56. We
highlight these segments in blue on the plots in the Atlas. These segments are almost as common
as kinked regions in our data set, suggesting that they are generic features of tight configurations.
Gonzalez has conjectured that every composite knot formed from joining a knot to its mirror image
has a critical configuration with a pair of straight segments. We do not address this conjecture
here since we only consider prime knots and links, but we do intend to compute approximately
minimizing composite knots and links in a future publication.

The paper [9] (as well as [34] under very different hypotheses) shows that a pair of arcs in a
tight knot coparametrized by a single family of struts and having curvature less than the maximum
bound form a standard double helix. As far as we can tell, this phenomenon only occurs a few
times in the Atlas, for instance in the 63

3 link on page 28, the 72
7 link on page 43, the 819 knot on

page 66, and possibly in the 83
7 link on page 91. It would be interesting to look for more critical

configurations with double-helix sections.
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FIGURE 14. This figure shows two views of our computed tight configuration of
the link 63

3 (ropelength upper bound 50.5539). Straight segments on the blue and
white components, which occur when these components lose contact with the other
components of the link, are highlighted in darker blue.

We also contemplate further improvements to our numerical knot tightening methods. The con-
strained gradient descent method presented in this paper is a significant improvement over simu-
lated annealing — in practice, it has proved to be an effective minimizer for both knots and links.
But this is surely not the last word in numerical ropelength minimization. Our method is a mem-
ber of the class of “projected-gradient” methods introduced by Rosen and Zoutendijk in the early
1960’s [48, 54]. These algorithms are subject to a number of well-known numerical problems, such
as a tendency to “wobble” when confronted with a steep-sided valley and the problem of “zigzag-
ging”, which occurs when elements repeatedly enter and leave the strut and kink sets on successive
minimization or error-correction steps. Our implementation seems to suffer from both these prob-
lems during some difficult minimizations. We have experimented with adding conjugate-gradient
features to our existing code to solve these problems, but so far the results seem to yield only a
slight improvement.

For these reasons, more modern methods such as sequential quadratic programming (SQP) have
become the norm [23]. Codes implementing these methods require the user to specify a set of
constraint functions in advance. Unfortunately, in our formulation of the constraint thickness an n-
vertex polygon hasO(n2) self-distance constraints andO(n) turning angle or MinRad constraints.
For a typical polygon with 103 vertices, this would mean a set of 106 constraints — too many to
be practical. However, if we know approximately which self-distance constraints will be active
in the final configuration, we can ignore constraints that we expect to be inactive, resulting in a
reduced constraint set of size O(n). Our approximately minimized polygons provide exactly this
information. For this reason we imagine an important use of our data will be in formulating input
problems for a future SQP-based knot-minimizer. Our polygons are already serving as input for
the biarc-based annealer of Carlen, Smutny, and Maddocks [14].

While our data set is detailed and suggestive, solving explicitly for the structure of ropelength
minimizing (smooth) knots and links is likely to require even better data. Cantarella et al. [9] have
shown that a critical shape for the simple clasp formed when ropes pass over one another at right
angles contains tiny straight segments of length a few thousandths of the total length of the curves.
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Resolving these features will require converged runs for polygonal ropelength minimizers with tens
of thousands of vertices, an ambitious goal that will keep this area of experimental mathematics
active for some time to come.
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APPENDIX A. ROPELENGTH DATA

The pages that follow contain three sets of tables of ropelength data. The first set, Tables 3-5 on
pages 38–40, show the polygonal ropelength (Ropp) and ropelength upper bounds (Rop) that we
have obtained for each of the knot types that we have considered. The knots and links are organized
according to their position in Rolfsen’s table, with the link Xy

z being the z-th example of a prime
X-crossing link of y components in the table. We have identified the two “Perko pair” knots 10161

and 10162 and renumbered the subsequent knots accordingly, so there are only 165 ten-crossing
knots in our results.

The second set, Tables 6 and 7 on pages 41–42, show the same knot and link types ordered by
ropelength upper bound. These tables are to be read down each column from the top left to the
bottom right. We can see that this order is quite different from the one in Rolfsen’s table with (for
instance) the 2-component link 72

7 occurring before any 6 or 7 crossing knot and the 10124 knot
occurring before many 8 and 9 crossing links.

The third set of tables, Tables 8–10 on pages 43–45 give the residual of each of our computed
configurations. The low residuals show that they are close to critical in the sense of Theorem 2.18.
We include this data as measure of the relative quality of each of our minimized configurations.

On pages 36–37 are reproductions of the pages from the Atlas of Tight Knots for the approxi-
mately tight 818 and 10123 knots . On the top left of each page are three views of the tight configu-
rations, with kinked regions highlighted in red. On the top right is a plot of the self-contact map of
the configuration. Each of these plots consists of a triangular region with the hypotenuse labeled
with arclength values on the knot. A green box is plotted at (s, t) on the plot if there is a strut con-
necting L(s) and L(t). Below the graph appears a plot of 1/MinRad for the polygon (to the same
scale). Kinked regions of maximum curvature are plotted in red on the graph. Each such region has
a key on the right-hand side of the plot showing the arclength positions of the start and end of the
kink (in order to give a sense of the relative scale of the kinked region). At the bottom of the page
is a line of data giving the polygonal ropelength Ropp (as measured by octrope), ropelength
upper bound Rop (from roundout rl), filename, number of vertices and struts, maximum and
minimum curvature values and number of kinked regions. The last entry shows the total arclength
of straight regions in the curves (0 for these two knots, but nonzero for many knots and links in
the Atlas).
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0.00

3.75

7.49

11.24

14.98

18.73

22.47

26.22

29.96

33.71

37.45

0

1

2

(2.059,2.084)
(2.442,2.471)
(3.074,3.100)

(6.736,6.763)
(7.126,7.153)
(7.744,7.770)

(11.427,11.453)
(11.814,11.842)
(12.432,12.482)

(16.109,16.135)
(16.495,16.525)
(17.127,17.151)

(20.782,20.809)
(21.166,21.227)
(21.780,21.830)

(25.466,25.492)
(25.849,25.878)
(26.468,26.519)

(30.152,30.179)
(30.545,30.571)
(31.157,31.206)

(34.835,34.862)
(35.228,35.254)
(35.835,35.884)

Link Ropp Rop Filename Verts Struts κ range Kink Straight

818 74.9114 74.9063 kl_8_18_hrbanff.vect 1199 5591 [0.802748, 2.00005] 24
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(7.450,7.556)

(10.934,10.983)
(11.681,11.762)
(12.066,12.171)

(15.556,15.605)
(16.303,16.385)
(16.684,16.791)

(20.172,20.221)
(20.919,21.000)
(21.304,21.410)

(24.801,24.851)
(25.543,25.624)
(25.924,26.031)

(29.414,29.480)
(30.163,30.246)
(30.544,30.652)

(34.035,34.083)
(34.780,34.862)
(35.165,35.269)

(38.653,38.720)
(39.401,39.485)
(39.783,39.890)

(43.270,43.319)
(44.014,44.101)
(44.398,44.499)

Link Ropp Rop Filename Verts Struts κ range Kink Straight

10123 92.3646 92.3565 kl_10_123_handcrafted.vect 1498 7189 [0.84917, 2.00008] 30
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TABLE 3. Part 1 of Ropelengths of Tight Knots and Links by Knot Type

Link Ropp Rop

221 25.1415 25.1334

31 32.7437 32.7436

41 42.0971 42.0887

421 40.0203 40.0122

51 47.2149 47.2016
52 49.4820 49.4701

521 49.7864 49.7716

61 56.7178 56.7058
62 57.0381 57.0235
63 57.8531 57.8392

621 54.3919 54.3768
622 56.7087 56.7000
623 58.1142 58.1013

631 57.8286 57.8141
632 58.0112 58.0070
633 50.5602 50.5539

71 61.4234 61.4067
72 63.8684 63.8556
73 63.9430 63.9285
74 64.2836 64.2687
75 65.2705 65.2560
76 65.7068 65.6924
77 65.6235 65.6086

721 64.2484 64.2345
722 65.0363 65.0204
723 65.3414 65.3257
724 65.0759 65.0602
725 66.2068 66.1915
726 66.3281 66.3147
727 55.5177 55.5095
728 57.7714 57.7631

731 65.8157 65.8062

81 70.9833 70.9669
82 71.4141 71.3985

Link Ropp Rop

82 71.4141 71.3985
83 71.1736 71.1575
84 71.4872 71.4704
85 72.1519 72.1344
86 72.4903 72.4725
87 72.2292 72.2137
88 72.7438 72.7241
89 72.4568 72.4399
810 72.9580 72.9379
811 72.9110 72.8966
812 73.9707 73.9518
813 72.8194 72.8000
814 73.7784 73.7612
815 73.9076 73.8977
816 73.5207 73.5054
817 74.5075 74.4912
818 74.9114 74.9063
819 60.9970 60.9858
820 63.1066 63.0929
821 65.5387 65.5248

821 68.4208 68.4045
822 71.0493 71.0311
823 72.7292 72.7133
824 72.5995 72.5855
825 73.9503 73.9331
826 73.2133 73.1955
827 74.3917 74.3752
828 73.7714 73.7540
829 73.2196 73.2038
8210 73.6729 73.6548
8211 72.9786 72.9608
8212 73.8018 73.7846
8213 74.1522 74.1369
8214 73.6878 73.6695
8215 64.3105 64.2996
8216 66.8148 66.8046

831 72.2765 72.2603
832 72.9357 72.9181
833 74.8824 74.8656
834 75.0026 74.9866
835 73.4072 73.3932
836 74.7320 74.7159
837 60.5897 60.5754
838 65.0195 65.0042

Link Ropp Rop

838 65.0195 65.0042
839 66.7076 66.6936
8310 68.4580 68.4503

841 75.2748 75.2592
842 67.4087 67.3937
843 66.2969 66.2865

91 75.5663 75.5461
92 78.1231 78.1066
93 78.2040 78.1892
94 78.2793 78.2665
95 78.6615 78.6447
96 79.5802 79.5597
97 79.6924 79.6731
98 80.0276 80.0080
99 79.8965 79.8778
910 79.8009 79.7855
911 80.1355 80.1180
912 80.0997 80.0834
913 80.2657 80.2498
914 80.0193 80.0001
915 80.8941 80.8725
916 80.1334 80.1143
917 80.4718 80.4530
918 81.5816 81.5673
919 80.9196 80.9004
920 80.2421 80.2219
921 81.1083 81.0920
922 81.0587 81.0390
923 81.2922 81.2733
924 80.9626 80.9451
925 81.1348 81.1198
926 80.9241 80.9053
927 81.1838 81.1813
928 81.0878 81.1352
929 81.2019 81.1821
930 81.4811 81.4883
931 81.6751 81.6581
932 81.5343 81.5175
933 82.7691 82.7541
934 82.1884 82.1706
935 79.2390 79.2165
936 80.2275 80.2064
937 81.1744 81.1674
938 81.7858 81.7697
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TABLE 4. Part 2 of Ropelengths of Tight Knots and Links by Knot Type

Link Ropp Rop

938 81.7858 81.7697
939 81.8439 81.8264
940 81.6652 81.6474
941 81.3687 81.3540
942 69.4867 69.4756
943 71.5050 71.4901
944 71.5587 71.5427
945 74.0861 74.0761
946 68.6330 68.6169
947 74.8935 74.8785
948 74.0317 74.0228
949 73.9403 73.9286

921 78.6049 78.5862
922 79.5287 79.5152
923 79.9495 79.9312
924 78.6961 78.6764
925 79.6569 79.6384
926 80.1200 80.1017
927 81.1437 81.1261
928 80.9964 80.9766
929 80.3174 80.2999
9210 80.3218 80.3036
9211 82.0329 82.0140
9212 81.9602 81.9414
9213 79.3468 79.3280
9214 80.7276 80.7104
9215 80.5659 80.5458
9216 81.3758 81.3565
9217 80.3223 80.3022
9218 81.7563 81.7461
9219 79.4706 79.4491
9220 80.1357 80.1147
9221 80.6010 80.5824
9222 81.0964 81.0794
9223 80.2592 80.2379
9224 81.7913 81.7691
9225 81.7810 81.7630
9226 82.1031 82.0859
9227 81.0288 81.0141
9228 81.3352 81.3222
9229 82.1606 82.1445
9230 82.2155 82.1987
9231 80.5732 80.5561
9232 81.4151 81.3990
9233 82.1790 82.1612

Link Ropp Rop

9233 82.1790 82.1612
9234 81.8490 81.8320
9235 81.2508 81.2318
9236 80.7066 80.6866
9237 81.9102 81.8927
9238 82.6750 82.6561
9239 81.8972 81.8758
9240 81.9680 81.9460
9241 83.6038 83.5878
9242 83.6304 83.6092
9243 66.2549 66.2398
9244 72.2072 72.1896
9245 71.0815 71.0726
9246 73.8347 73.8215
9247 69.9130 69.8983
9248 73.6563 73.6426
9249 66.0444 66.0311
9250 69.3353 69.3284
9251 70.5455 70.5299
9252 72.8271 72.8106
9253 68.0154 68.0082
9254 71.0240 71.0089
9255 73.8129 73.7998
9256 72.9013 72.8833
9257 72.2115 72.1922
9258 74.1685 74.1499
9259 72.3285 72.3130
9260 73.5589 73.5442
9261 69.3751 69.3636

931 81.1522 81.1333
932 81.7304 81.7190
933 82.2498 82.2346
934 82.5202 82.5029
935 80.2664 80.2456
936 80.9434 80.9258
937 82.0540 82.0378
938 81.1278 81.1107
939 81.5469 81.5295
9310 82.3146 82.2964
9311 82.0023 81.9867
9312 82.4811 82.4608
9313 72.2098 72.2009
9314 74.4319 74.4205
9315 74.2998 74.2810
9316 75.0113 75.0003

Link Ropp Rop

9316 75.0113 75.0003
9317 74.1280 74.1159
9318 72.4529 72.4382
9319 72.6412 72.6275
9320 75.9995 75.9845
9321 74.8967 74.8908

941 81.6096 81.5927

101 85.1146 85.0947
102 85.6050 85.5850
103 85.4483 85.4278
104 85.8181 85.7974
105 86.4952 86.4741
106 86.8353 86.8125
107 87.2979 87.2775
108 85.8620 85.8428
109 86.8410 86.8222
1010 87.2060 87.1870
1011 86.9848 86.9630
1012 87.1055 87.0824
1013 88.9148 88.8989
1014 88.3232 88.3023
1015 87.4787 87.4606
1016 87.4946 87.4684
1017 87.0473 87.0277
1018 88.4257 88.4092
1019 87.5311 87.5099
1020 86.8731 86.8514
1021 87.0497 87.0343
1022 87.2417 87.2182
1023 88.7048 88.6901
1024 88.4160 88.3963
1025 88.7767 88.7587
1026 88.4564 88.4328
1027 89.8944 89.8795
1028 87.5276 87.5061
1029 89.2410 89.2238
1030 88.3731 88.3558
1031 88.2624 88.2401
1032 88.6809 88.6597
1033 88.2952 88.2744
1034 87.0322 87.0101
1035 88.0891 88.0697
1036 88.0424 88.0233
1037 88.1319 88.1153
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TABLE 5. Part 3 of Ropelengths of Tight Knots and Links by Knot Type

Link Ropp Rop

1037 88.1319 88.1153
1038 88.3478 88.3257
1039 88.3562 88.3323
1040 89.2659 89.2464
1041 89.0725 89.0553
1042 89.9013 89.8857
1043 89.3512 89.3366
1044 88.8714 88.8515
1045 89.4836 89.4621
1046 86.4718 86.4487
1047 87.3043 87.2821
1048 87.3814 87.3643
1049 88.2914 88.2705
1050 87.3876 87.3716
1051 88.3209 88.3002
1052 88.0719 88.0565
1053 88.8361 88.8180
1054 87.5336 87.5127
1055 88.3760 88.3699
1056 89.0160 88.9973
1057 89.6126 89.5946
1058 88.9623 88.9445
1059 89.2228 89.2090
1060 89.3397 89.3190
1061 86.4755 86.4561
1062 87.5318 87.5071
1063 88.4046 88.3861
1064 87.4878 87.4742
1065 88.3918 88.3725
1066 89.0275 89.0047
1067 88.4741 88.4534
1068 88.1199 88.1013
1069 89.0983 89.0778
1070 89.2068 89.1846
1071 89.0853 89.0699
1072 89.1974 89.1779
1073 89.5332 89.5130
1074 88.1285 88.1077
1075 88.9725 88.9524
1076 88.3673 88.3479
1077 88.5689 88.5471
1078 88.5548 88.5322
1079 88.9647 88.9488
1080 89.1669 89.1556

Link Ropp Rop

1080 89.1669 89.1556
1081 90.0181 90.0007
1082 88.7011 88.6801
1083 89.5544 89.5314
1084 89.6518 89.6788
1085 87.8403 87.8164
1086 88.7050 88.6851
1087 89.1363 89.1173
1088 89.5638 89.5461
1089 89.4343 89.4178
1090 88.9330 88.9115
1091 88.9611 88.9435
1092 89.6200 89.6011
1093 88.3962 88.3773
1094 88.8514 88.8306
1095 90.0056 89.9848
1096 89.5493 89.5284
1097 89.4340 89.4163
1098 89.7172 89.6969
1099 88.8926 88.8734
10100 88.7124 88.6927
10101 89.7344 89.7210
10102 88.7969 88.7734
10103 88.7971 88.7914
10104 91.7476 91.7280
10105 89.8260 89.8055
10106 89.1546 89.1319
10107 89.7525 89.7356
10108 88.5137 88.4932
10109 91.1966 91.1789
10110 89.6275 89.6114
10111 89.6677 89.6438
10112 89.5744 89.5529
10113 90.2239 90.2141
10114 89.3062 89.2856
10115 90.4340 90.4176
10116 90.2703 90.2583
10117 89.5335 89.5245
10118 89.5261 89.5094
10119 90.1394 90.1226
10120 90.1862 90.1674
10121 89.9375 89.9240
10122 89.8258 89.8094
10123 92.3646 92.3565

Link Ropp Rop

10123 92.3646 92.3565
10124 71.0894 71.0739
10125 74.9907 74.9778
10126 77.6202 77.6026
10127 80.0235 80.0124
10128 76.4187 76.4026
10129 78.5739 78.5553
10130 78.8499 78.8356
10131 81.2871 81.2678
10132 74.7441 74.7330
10133 77.1813 77.1631
10134 78.6521 78.6377
10135 81.2305 81.2157
10136 78.0398 78.0276
10137 79.6352 79.6185
10138 82.5504 82.5320
10139 72.9001 72.8944
10140 73.8610 73.8477
10141 76.9687 76.9543
10142 75.8951 75.8754
10143 78.2422 78.2307
10144 81.4378 81.4275
10145 75.9194 75.9076
10146 79.7416 79.7322
10147 79.1666 79.1571
10148 79.0893 79.0742
10149 81.0500 81.0318
10150 80.1392 80.1219
10151 81.8414 81.8207
10152 79.1715 79.1556
10153 80.4764 80.4648
10154 81.5405 81.5218
10155 78.0648 78.0503
10156 79.5639 79.5443
10157 81.4731 81.4568
10158 81.6398 81.6220
10159 79.8863 79.8692
10160 78.1529 78.1472
10161 74.5460 74.5302
10162 81.0033 80.9838
10163 82.6629 82.6548
10164 82.1862 82.1698
10165 82.8211 82.8040
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TABLE 6. Part 1 of Knot and Link Types sorted by Ropelength

Link

221
31
421
41
51
52
521
633
621
727
622
61
62
728
631
63
632
623
837
819
71
820
72
73
721
74
8215
838
722
724
75
723
821
77
76
731
9249
725
9243
843
726
839
8216
842
9253
821

Link

821
8310
946
9250
9261
942
9247
9251
81
9254
822
9245
10124
83
82
84
943
944
85
9244
9257
9313
87
831
9259
9318
89
86
824
9319
823
88
813
9252
9256
10139
811
832
810
8211
826
829
835
816
9260
9248

Link

9248
8210
8214
828
814
8212
9255
9246
10140
815
949
825
812
948
945
9317
8213
9258
9315
827
9314
817
10161
836
10132
833
947
9321
818
10125
834
9316
841
91
10142
10145
9320
10128
10141
10133
10126
10136
10155
92
10160
93

Link

93
10143
94
10129
921
10134
95
924
10130
10148
10152
10147
935
9213
9219
922
10156
96
10137
925
97
10146
910
10159
99
923
914
98
10127
912
926
916
9220
911
10150
936
920
9223
935
913
929
9217
9210
917
10153
9215

Link

9215
9231
9221
9236
9214
915
919
926
936
924
928
10162
9227
10149
922
9222
921
938
925
927
931
928
937
927
929
10135
9235
10131
923
9228
941
9216
9232
10144
10157
930
932
10154
939
918
941
10158
940
931
932
9218

Link

9218
9225
9224
938
10151
939
9234
9239
9237
9212
9240
9311
9211
937
9226
9229
9233
10164
934
9230
933
9310
9312
934
10138
10163
9238
933
10165
9241
9242
101
103
102
104
108
1046
1061
105
106
109
1020
1011
1034
1017
1021

Link

1021
1012
1010
1022
107
1047
1048
1050
1015
1016
1064
1028
1062
1019
1054
1085
1036
1052
1035
1068
1074
1037
1031
1049
1033
1051
1014
1038
1039
1076
1030
1055
1065
1093
1063
1024
1018
1026
1067
10108
1078
1077
1032
1082
1086
1023

Link

1023
10100
1025
10102
10103
1053
1094
1044
1099
1013
1090
1091
1058
1079
1075
1056
1066
1041
1071
1069
1087
10106
1080
1072
1070
1059
1029
1040
10114
1060
1043
1097
1089
1045
10118
1073
10117
1096
1083
1088
10112
1057
1092
10110
10111
1084
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TABLE 7. Part 2 of Knot and Link Types sorted by Ropelength

Link

1084
1098
10101
10107

Link

10107
10105
10122
1027

Link

1027
1042
10121
1095

Link

1095
1081
10119
10120

Link

10120
10113
10116
10115

Link

10115
10109
10104
10123

Link

10123

42



TABLE 8. Part 1 of Residuals of Tight Knots and Links by Knot Type

Link Residual

221 2.45124e− 05

31 0.00621792

41 0.000996335

421 0.000999549

51 0.00981995
52 0.00994775

521 0.00998078

61 0.000999592
62 0.00897204
63 0.000979541

621 0.000999952
622 0.000999833
623 0.00999004

631 0.00998537
632 0.000705159
633 0.00627026

71 0.00105833
72 0.00998149
73 0.00999358
74 0.00100877
75 0.000999532
76 0.000979869
77 0.00100393

721 0.000999487
722 0.00101952
723 0.000999871
724 0.00099954
725 0.000999894
726 0.00100556
727 0.00320787
728 0.0018494

731 0.000999748

81 0.00898769
82 0.000982684

Link Residual

82 0.000982684
83 0.00100028
84 0.00100103
85 0.00100033
86 0.000999848
87 0.00101551
88 0.000981272
89 0.000999932
810 0.000978418
811 0.000979921
812 0.00998976
813 0.000993117
814 0.000981486
815 0.0099948
816 0.000981316
817 0.00999085
818 0.000900015
819 0.000998339
820 0.00099998
821 0.000999988

821 0.00100142
822 0.000979836
823 0.000999961
824 0.00216462
825 0.00999516
826 0.00100295
827 0.000999802
828 0.000999762
829 0.000979774
8210 0.000999858
8211 0.00997927
8212 0.000999968
8213 0.0010008
8214 0.00101123
8215 0.00099994
8216 0.000997563

831 0.00100589
832 0.000999904
833 0.00100014
834 0.00999606
835 0.000995844
836 0.00099824
837 0.00119532
838 0.00100655

Link Residual

838 0.00100655
839 0.000980533
8310 0.0208108

841 0.00100006
842 0.000999682
843 0.780186

91 0.00802077
92 0.00997484
93 0.00998254
94 8.64059e− 05
95 0.00999417
96 0.000980197
97 0.000979897
98 0.00101007
99 0.000999938
910 0.00113523
911 0.000981742
912 0.000979842
913 0.00999582
914 0.000984327
915 0.000979831
916 0.000999818
917 0.00100032
918 0.00992217
919 0.000981217
920 0.00100005
921 0.0010001
922 0.000998846
923 0.000979562
924 0.000999907
925 0.000977105
926 0.00100048
927 0.00999324
928 0.00996501
929 0.000979844
930 0.000979942
931 0.000979062
932 0.000997746
933 0.00100114
934 0.000999697
935 0.000981383
936 0.000978472
937 0.00999228
938 0.000978978

Link Residual

938 0.000978978
939 0.000999482
940 0.000999343
941 0.00899161
942 0.000999996
943 0.00898749
944 0.000999789
945 0.0099754
946 0.00099973
947 0.000998991
948 0.00998933
949 0.00099957

921 0.00107787
922 0.00100115
923 0.00100055
924 0.00099991
925 0.00100118
926 0.00126944
927 0.00104121
928 0.00100133
929 0.000999724
9210 0.00140283
9211 0.000999221
9212 0.00100137
9213 0.00100112
9214 0.000999788
9215 0.000999236
9216 0.00605
9217 0.00899775
9218 0.000999648
9219 0.00100405
9220 0.000999853
9221 0.00898977
9222 0.00943088
9223 0.000998181
9224 0.000999946
9225 0.0009999
9226 0.00100243
9227 0.00099997
9228 0.000998883
9229 0.00100157
9230 0.00099989
9231 0.000999523
9232 0.00100012
9233 0.000999711
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TABLE 9. Part 2 of Residuals of Tight Knots and Links by Knot Type

Link Residual

9233 0.000999711
9234 0.00100169
9235 0.000999778
9236 0.00100172
9237 0.000999058
9238 0.000999748
9239 0.000999888
9240 0.000999835
9241 0.00100037
9242 0.000998679
9243 0.00100109
9244 0.00100838
9245 0.00997492
9246 0.00100042
9247 0.00999831
9248 0.000999984
9249 0.000999984
9250 0.000999226
9251 0.000999443
9252 0.000999958
9253 0.00996962
9254 0.000999703
9255 0.00100064
9256 0.000979788
9257 0.00255237
9258 0.000999155
9259 0.00108631
9260 0.000999312
9261 0.00100091

931 0.000999763
932 0.000999746
933 0.00100525
934 0.000999641
935 0.00100042
936 0.000999746
937 0.000999935
938 0.000999751
939 0.000996684
9310 0.00099985
9311 0.0010755
9312 0.00100439
9313 0.00980919
9314 0.00900147
9315 0.00112426
9316 0.000999575

Link Residual

9316 0.000999575
9317 0.247874
9318 0.000999841
9319 0.00101035
9320 0.00100002
9321 0.00100039

941 0.000979958

101 0.00101691
102 0.00100023
103 0.000991435
104 0.00100846
105 0.00100194
106 0.000979506
107 0.0097283
108 0.000980356
109 0.000979784
1010 0.00999688
1011 0.00760935
1012 0.000991292
1013 0.000999947
1014 0.0010261
1015 0.000979185
1016 0.000985699
1017 0.00998848
1018 0.000979621
1019 0.00098045
1020 0.000979959
1021 0.000999057
1022 0.000991413
1023 0.00999682
1024 0.00166886
1025 0.000994731
1026 0.00098015
1027 0.000999869
1028 0.00996703
1029 0.00116525
1030 0.000999376
1031 0.000979897
1032 0.000979993
1033 0.000979857
1034 0.00098555
1035 0.000982115
1036 0.000979692
1037 0.000999835

Link Residual

1037 0.000999835
1038 0.000979821
1039 0.000986038
1040 0.00100863
1041 0.00999693
1042 0.000999751
1043 0.000980157
1044 0.00322255
1045 0.000982692
1046 0.00997656
1047 0.000980999
1048 0.00999602
1049 0.000998073
1050 0.000981787
1051 0.00098231
1052 0.000999419
1053 0.00101025
1054 0.00999263
1055 0.00998728
1056 0.00999185
1057 0.000999798
1058 0.000999966
1059 0.00995441
1060 0.000980266
1061 0.0241498
1062 0.00105699
1063 0.00998227
1064 0.00997603
1065 0.00135295
1066 0.000999872
1067 0.000979823
1068 0.00100695
1069 0.000999786
1070 0.000980057
1071 0.00999226
1072 0.000999942
1073 0.00998888
1074 0.000978382
1075 0.000981812
1076 0.000980892
1077 0.00999768
1078 0.000981017
1079 0.0010001
1080 0.000979926
1081 0.000981576
1082 0.000978946

Link Residual

1082 0.000978946
1083 0.00999433
1084 0.0099812
1085 0.000981325
1086 0.000978499
1087 0.000979621
1088 0.000979845
1089 0.0010019
1090 0.000980234
1091 0.000977397
1092 0.00100005
1093 0.000979652
1094 0.00097991
1095 0.000979668
1096 0.00018365
1097 0.000999872
1098 0.00999481
1099 0.0099926
10100 0.00101003
10101 0.00999705
10102 0.000979674
10103 0.00999479
10104 0.00999683
10105 0.000979902
10106 0.000979055
10107 0.000980096
10108 0.00127554
10109 0.000979798
10110 0.000979638
10111 0.000979851
10112 0.00104599
10113 0.00999934
10114 0.00100087
10115 0.000978725
10116 0.00998661
10117 0.00998396
10118 0.00099987
10119 0.000999834
10120 0.00100037
10121 0.00099989
10122 0.000999203
10123 0.0016528
10124 0.00100133
10125 0.00998345
10126 0.00999723
10127 0.00998882
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TABLE 10. Part 3 of Residuals of Tight Knots and Links by Knot Type

Link Residual

10127 0.00998882
10128 0.000988223
10129 0.00902523
10130 0.000999987
10131 0.00959976
10132 0.000980876
10133 0.000980018
10134 0.00999485
10135 0.00100006
10136 0.00999149
10137 0.000979856

Link Residual

10137 0.000979856
10138 0.00899453
10139 0.000979731
10140 0.0099924
10141 0.00100144
10142 0.000980204
10143 0.00993363
10144 0.00995796
10145 0.00102699
10146 0.00998505
10147 0.000999813

Link Residual

10147 0.000999813
10148 0.000981385
10149 0.00100026
10150 0.000979903
10151 0.000979813
10152 0.00999625
10153 0.0091785
10154 0.00115132
10155 0.00998753
10156 0.0009799
10157 0.000979535

Link Residual

10157 0.000979535
10158 0.000980822
10159 0.000979791
10160 0.00998455
10161 0.00899311
10162 0.000985909
10163 0.00899697
10164 0.000979519
10165 0.000979783
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