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We study experimentally systems of orthogonal polynomials with
respect to self-similar measures. When the support of the mea-
sure is a Cantor set, we observe some interesting properties of the
polynomials, both on the Cantor set and in the gaps of the Cantor
set. We introduce an effective method to visualize the graph of
a function on a Cantor set. We suggest a new perspective, based
on the theory of dynamical systems, for studying families Pn(x )
of orthogonal functions as functions of n for fixed values of x .

1. INTRODUCTION

The classical theory of orthogonal polynomials
[Gautschi 04, Szegő 75] allows one to start the Gram–
Schmidt process with virtually any measure. In the
families of polynomials that are usually studied, the
measure is either absolutely continuous or discrete,
but the general theory allows one to use a singular
continuous measure. In recent years there has been
an interest in the case of fractal measures. See, for
example, [Barnsley et al. 83a, Barnsley et al. 83b,
Barnsley et al. 85, Bessis and Moussa 83, Mantica 96,
Mantica 97a, Mantica 97b, Mantica 98a, Mantica 98b,
Mantica 00]. In particular, G. Mantica has devel-
oped algorithms to efficiently compute the coefficients
of the 3-term recurrence relation, and hence the
polynomials, in the case of a self-similar measure
[Mantica 96, Mantica 00]. In this work we use these
algorithms as a tool to study the polynomials experimen-
tally, looking for interesting patterns and conjectures.
We view this as part of a general program to explore
portions of classical analysis related to fractal measures.

Let µ be a measure on the line, and for simplicity
assume that µ is a probability measure supported on the
unit interval. The related system {Pn (x)} of orthogonal
polynomials is characterized as follows:

1. Pn (x) is a polynomial of degree n with a non-
negative coefficient of xn .

238



Heilman et al.: Orthogonal Polynomials with Respect to Self-Similar Measures 239

2. Orthonormality:∫
Pn (x)Pm (x)dµ(x) = δn,m .

The general theory implies that there is a 3-term recur-
rence relation

xPn (x) = rn+1Pn+1(x) + AnPn (x) + rnPn−1 , (1–1)

where rn ,An > 0, n ∈ Z+ are determined by the mea-
sure µ and P−1 = 0, P0 = 1. The coefficients rn , An are
also called the entries of the Jacobi matrix, an infinite
symmetric tridiagonal matrix J such that Ji,i = Ai and
Ji,i+1 = Ji+1,i = ri+1 for i ∈ Z≥0 . Note that (1–1) allows
us to find the polynomials recursively:

Pn+1(x) =
1

rn+1
((x − An )Pn (x)) − rn

rn+1
Pn−1(x).

(1–2)
We should point out that while in principle (1–2) allows
computation of the coefficients of Pn , this computation
could be unstable. In the case that An is constant (as
we shall see below when our measure is supported on a
Cantor set), it is often easier to compute the coefficients
of Pn as a polynomial in (x − An ). When the An vary,
we alternatively use (1–2) to compute the values Pn (x)
for specific x-values.

A measure µ on the line is said to be self-similar if
there exist an iterated function system (IFS) of contrac-
tive similarities {Fi}N

i=1 and a set of probability weights
{pi}N

i=1 such that

µ(A) =
N∑

i=1

piµ(F−1
i A)

for any measurable set A, or equivalently,∫
f dµ =

N∑
i=1

pi

∫
f ◦ Fi dµ

for any continuous function f . In this paper we restrict
our attention to the family of IFSs with N = 2 and such
that

F1(x) =
1
R

x, F2(x) =
1
R

(x − 1) + 1,

where R ≥ 2 is a parameter. When R = 2 and p1 = P2 =
1
2 , we obtain Lebesgue measure on [0, 1], and the corre-
sponding polynomials are essentially the classical Legen-
dre polynomials. (Actually, the classical Legendre poly-
nomials are orthogonal with respect to Lebesgue mea-
sure on [−1, 1] and are normalized differently, but the
differences just involve rescaling the axes.) When R = 2
and p1 �= p2 , we refer to the corresponding polynomials

as weighted Legendre polynomials (WLP). (In other con-
texts, these are known as “biased coin” measures. See,
for example, [Talagrand 89].)

The measure µ is singular but not supported on any
proper closed subset of [0, 1]. When R > 2, we will always
take p1 = p2 = 1

2 , and we call the corresponding polyno-
mials Cantor Legendre polynomials (CLP). The measure
µ is then supported on a Cantor set CR characterized by

CR = F1CR ∪ F2CR.

The standard Cantor set and Cantor measure correspond
to R = 3. We refer to the intervals in [0, 1] \ CR as gaps.
The largest gap is the interval ( 1

R , 1 − 1
R ), and there are

2m gaps of length 1
Rm −1 (1 − 2

R ).
The behavior of Pn (x) in the CLP case is quite dif-

ferent on the gaps and on the Cantor set CR . In order
to visualize the graphs of Pn (x) on CR , we introduce
the distorted Cantor set C̃R,ε (also known as the Smith–
Volterra–Cantor set or fat Cantor set), obtained by re-
ducing the size of the gaps by a factor of ε (a parame-
ter that we choose). Note that C̃R,ε is still a topological
Cantor set, but it has positive Lebesgue measure. There
is an obvious one-to-one correspondence between CR and
C̃R,ε that identifies regions between corresponding gaps.
We use this identification to graph functions defined on
CR against C̃R,ε .

In Section 2 we present data for the entries of the Ja-
cobi matrix. In the CLP case we note the different behav-
iors of rn for even and odd n, and the occurrence of small
values. In Section 3 we display graphs of the polynomials.
In the CLP case we show graphs of the restrictions to the
Cantor set and to the gaps.

We then discuss various features of the data. In Sec-
tion 4 we discuss the associated Dirichlet kernels. Using
the Christoffel–Darboux formula, we are able to relate
approximate identity behavior with small values of rn .
In Section 5 we discuss some approximate equalities re-
lating CLP restricted to the Cantor set. In particular,
P2n (x) is approximately equal to P2n+1(x) on the right
half of CR , for large n.

We also define a “shuffle” map that approximately pre-
serves P2n+1 when n is a power of 2. In Section 6 we dis-
cuss the behavior of Pn (x) on the gaps in the CLP case.
On the central gap, for high n, Pn (x) vaguely approxi-
mates either a Gaussian or the derivative of a Gaussian,
depending on n mod 2. More precisely, we find that

P2n (x) = c2ne−d2 n xα (x )
,

where α(x) = α2n (x) = 2 at x = 1/2, and α(x) ≈ 2 for x

around 1/2. On the other gaps, for large enough n, the
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behavior is roughly the same. In Section 7 we discuss
the behavior of Pn (x) at the points x = 0, 1/4, 1/2, 3/4, 1
in the WLP case, and we contrast the results with the
known behavior for Legendre polynomials. This study
leads to the dynamical systems perspective.

Instead of thinking of Pn (x) as a function of x for
fixed n, we look at Pn (x) as a function of n, for a fixed
x. Because of the 3-term recurrence relation, it is more
natural to look at vectors (Pn (x), Pn+1(x)) in the plane.
Then there exist 2 × 2 matrices Mn (x) such that(

Pn+1(x)
Pn (x)

)
= Mn (x)

(
Pn (x)

Pn−1(x)

)
.

In fact,

Mn (x) =

(
x−An

rn + 1
− rn

rn + 1

1 0

)
.

So, we are really looking at orbits of a time-dependent
linear dynamical system. We can then define the analog of
the Mandelbrot set as all x for which the orbit is bounded.
Then for each x in this Mandelbrot set, we can define a
Julia set J(x) as the limit set of the orbit. We display
some examples of these Julia sets. We then extend the
investigation of Section 7 to generic x for WLP and CLP
in Section 8. We end with a short concluding discussion
in Section 9.

This paper should be viewed in the context of a
long-term effort to understand topics in classical analysis
extended to fractal measures. The following references
are just a sampling of this work: [Bird et al. 06, Coletta
et al. 04, Dutkay and Jorgensen 06, Huang and Strichartz
01, Jorgensen and Pedersen 00, Kigami 01, Laba and
Wang 02, Lau and Wang 93, Lund et al. 98, Strichartz 90,
Strichartz 93a, Strichartz 93b, Strichartz 94, Strichartz
98, Strichartz 00, Strichartz 05, Strichartz 06]. More
data may be found at www.math.cornell.edu/ orthopoly.

2. ENTRIES OF THE JACOBI MATRIX

The coefficients rn and An in the 3-term recurrence rela-
tion (1–1) determine the polynomials in a rather subtle
way. More work is needed to clarify this relationship. In
this section we report data for our two classes of exam-
ples. In Figures 1–4 we graph An and rn versus n, for
several choices of p1 in the WLP case. For classical Le-
gendre polynomials we have An = 1/2 for all n by sym-
metry about x = 1/2, and limn→∞ rn = 1/4. The WLP
case shows a small but significant difference from this
model case.

FIGURE 1. Plot of An vs. index n, 1 ≤ n ≤ 10000 for
p1 = 0.6

In the CLP case, all An are equal to 1/2 by symmetry
about x = 1/2. In Figure 5 we graph rn versus n for R =
8.

Problem 2.1. What is the nature of the limit set
∞⋂

N =1

cl

( ∞⋃
n=N

{rn}
)

?

Do the measures

1
m − k

m∑
n=k+1

δrn

FIGURE 2. Plot of An vs. index n, 1 ≤ n ≤ 10000 for
p1 = 0.7.



Heilman et al.: Orthogonal Polynomials with Respect to Self-Similar Measures 241

FIGURE 3. Plot of rn vs. index n, 1 ≤ n ≤ 10000 for
p1 = 0.6.

converge weakly to some fractal measure as m, k tend to
infinity in some specific manner?

A striking feature of the data is the different behavior
of rn for n even and n odd. In Figures 6 and 7 we show the
same data as in Figure 5, separating the even and odd
values of n. Another striking observation is that some
values of rn for n even are close to zero.

Problem 2.2. What is

lim inf
n→∞ rn?

FIGURE 4. Plot of rn vs. index n, 1 ≤ n ≤ 10000 for
p1 = 0.7.

FIGURE 5. Plot of rn vs. index n, 1 ≤ n ≤ 10000 for
CLP, R = 8.

In particular, is the lim inf zero? What is the sequence of
n’s along which the lim inf is attained?

As we will see later, having values of rn close to
zero has interesting implications. We could also ask for
the lim sup, but it is not clear what significance this
has.

Conjecture 2.3. We always have

rn ≤ 1
2
.

FIGURE 6. Plot of rn vs. index n, 1 ≤ n ≤ 10000 for n
odd, CLP, R = 8.
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FIGURE 7. Plot of rn vs. index n, 1 ≤ n ≤ 1000 for n
even, CLP, R = 8.

Let us now review some rigorous results on the coeffi-
cients An and rn . As stated above, for the Legendre poly-
nomials (on [0, 1]), we have An = 1/2 and lim rn = 1/4.
Any measure satisfying lim An = 1/2 and lim rn = 1/4 is
said to be in Nevai’s class M( 1

2 , 1
4 ). By Blumenthal’s the-

orem, any µ ∈ M( 1
2 , 1

4 ) has support [0, 1] along with at
most countably many other points, which can accumulate
only at the endpoints x = 0, x = 1. (See [Máté et al. 91,
Theorem 10]. This theorem is a special case of Hermann
Weyl’s theorem on compact perturbations of self-adjoint
operators on Hilbert spaces.)

For CLP, note that An = 1/2 by symmetry, so (the
contrapositive of) Blumenthal’s theorem implies that
rn cannot converge to 1/4. And Figures 5–7 concur.
However, some weaker conditions do in fact hold. For
CLP and WLP, An and rn converge in Cesàro mean
[Fischer 95]. (A sequence {bn}∞0 converges in Cesàro
mean if 1

N

∑N −1
i=0 bn converges.) This convergence in

Cesàro mean follows because CLP and WLP are defined
by regular measures, to use the terminology of (logarith-
mic) potential theory. For a proof that the CLP measures
are regular, see [Fischer 95, Theorem 1 and Lemma 2].

According to one’s interpretation of Figures 1-4, WLP
may or may not be in M( 1

2 , 1
4 ). Nevertheless, something

stronger than convergence in Cesàro mean is known: An

and rn converge in density to 1
2 and 1

4 , respectively. We
say that {bn} converges in density to b if for all δ > 0,

lim sup
n→∞

1
n

#{k : k ≤ n, |bk − b| > δ} = 0.

As with the previous convergence result, this one can
be obtained from general assumptions. Since the WLP
measures are regular and their support is the entire in-
terval [0, 1], the convergence in density result follows;
see [Fischer 95, Theorem 2]. It remains to improve upon
these results.

3. GRAPHS OF POLYNOMIALS

In Figure 8 we show the graphs of Pn (x) for 1 ≤ n ≤ 5 for
the WLP with p1 = 1/2, so these are just (rescaled ver-
sions of) the classical Legendre polynomials, computed
using G. Mantica’s algorithm. In Figures 9 and 10 we
show the same functions for p1 = 0.6 and p1 = 0.7. Al-
ready we observe that the symmetry is broken in a de-
cisive fashion, since these functions are much larger near
x = 1 (where the measure “has less weight”) than near
x = 0 (where the measure “has more weight”).

This observation is expected, since the Gram–Schmidt
process with respect to µ almost immediately implies the
following property: Pn (x) is the unique nth-degree poly-
nomial with highest-degree coefficient dn that minimizes
the L2([0, 1], µ) norm. In the case p1 = 1/2, we have

dn =
n∏

i=1

1
bi

and 1/bi =
√

16 − 4/i2 .

Therefore, Pn is expected to be the smallest where µ

“has more support.” In Figure 11 we show the graphs of
Pn (x) for 49 ≤ n ≤ 52 for p1 = 0.7. The same graphs are
shown in Figure 12 with the y-axis truncated to display
the structure of the functions more clearly. These figures
lead us to the following problem:

Problem 3.1. For fixed p1 > 1/2 and any given ε > 0,
what is the growth rate of maxx∈[ε,1−ε] |Pn (x)| for WLP?

By [Stahl and Totik 92, Theorem 3.1.1(iii)], we know
that lim sup |Pn (x)|1/n = 1 on [0, 1], possibly excluding
sets of capacity zero. Recall that the capacity cap(K) of
a compact set K is defined as

cap(K) = exp

(
− inf

S(ν )⊂K

∫∫
log

1
|z − t|dν(z)dν(t)

)
,

where

S(ν) = supp(ν) = {x : ν([x − δ, x + δ]) > 0,∀δ > 0}.
As a result, if we fix x ≈ 1 and increase n, then |Pn (x)|
may have polynomial growth in n, but not exponential
growth. Discerning the exact growth of |Pn (x)| seems
difficult, but we make some effort toward this goal in



Heilman et al.: Orthogonal Polynomials with Respect to Self-Similar Measures 243

p1 ε = 0.1 ε = 0.01 ε = 0.001

0.6 ∗ 0.1 0.15
0.7 0.3 0.25 0.3
0.8 0.6 0.44 0.8
0.9 1.1 0.76 1.3

TABLE 1. Order of growth n( ·) of maxx∈[ε ,1−ε ] |Pn (x)|. Exper-
imentally determined orders of growth. An entry of α means
that for a certain ε and p1 , we have maxx∈[ε ,1−ε ] |Pn (x)| ≈ nα .
The star symbol (∗) indicates a very slow order of growth,
which could be a polynomial of very small degree, or loga-
rithmic growth.

Table 1. Here, we examine the function
maxx∈[ε,1−ε] |Pn (x)| for WLP with different p1 and
ε values. We see that this function typically has very
slow logarithmic or polynomial growth. Note that we
have chosen the interval [ε, 1 − ε], because the maximum
of |Pn (x)| for WLP typically occurs near the points
x = 0 and x = 1. However, as Figure 34 demonstrates,
Pn (0) becomes bounded in n, for p1 > p ≈ 0.7. This
observation suggests that we could have instead analyzed
the interval [0, 1 − ε] for such values of p1 .

Next we look at the CLP case, where certain features
of the Pn (x) increase in complexity. In Figures 13 and 14
we show the graphs of Pn (x) for 1 ≤ n ≤ 5 on the whole

FIGURE 8. Plot of Pn (x) on the unit interval with p1 =
p2 = 0.5. This gives the classical Legendre Polynomials
(up to renormalization).

FIGURE 9. Plot of Pn (x) on the unit interval with p1 =
0.6, p2 = 0.4. Recall that the 60 percent weighting is
given to the map which contracts towards zero.

interval for two different choices of R. In Figure 15 we
show the graph of P52(x) on the whole interval for R = 4.
Note that the values on the central gap are so large that
no information about the graph on the complement of
the central gap is discernible using linear scaling in the
y-axis. This is typical of Pn (x) for large even values of
n = 2k and any R > 2 (though the Pn (x) changes sign
between n = 4j + 2 and n = 4j).

FIGURE 10. Plot of Pn (x) on the unit interval with p1 =
0.7, p2 = 0.3.
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FIGURE 11. Plot of Pn (x) on the unit interval with p1 =
0.7, p2 = 0.3 for 49 ≤ n ≤ 52.

To view these polynomials more effectively, we scale
the y-axis logarithmically, but also multiply by the sign of
Pn (x). That is, we plot sign(Pn (x)) log(|Pn (x)|) vs. x. In
Figure 16 we show the graph of P51(x) for R = 4, which
is typical of Pn (x) for n odd and large. With the same
logarithmic scaling, Figure 17 shows P52(x) for R = 4
restricted to the gap [1/R2 , (R − 1)/R2 ] = [1/16, 3/16].
This behavior is typical of Pn (x) for large n. Note that
the maximum value is quite large, but still it is small
relative to the maximum value on the central gap. We
will discuss this behavior more in Section 6.

FIGURE 12. Plot of Pn (x) on the unit interval with p1 =
0.7, p2 = 0.3 for 49 ≤ n ≤ 52 with the y-axis restricted
to the range −10 ≤ y ≤ 10.

FIGURE 13. Plot of first five Cantor Legendre polyno-
mials, R = 3.

Next, we graph CLP on the Cantor set CR using a
distorted Cantor set C̃R,ε for the x-axis. In Figures 18 and
19 we display the same functions as in Figures 13 and 14.
Already we see that the values of Pn (x) are considerably
smaller on the Cantor set. In Figure 20 we show Pn (x)
restricted to the Cantor set for 97 ≤ n ≤ 100 and R = 8.
We will comment in detail about some of the structure

FIGURE 14. Plot of first five Cantor Legendre polyno-
mials, R = 4. As in the Cantor Legendre case, the poly-
nomials have lowest absolute value where the measure
has the most weight (as expected).
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FIGURE 15. Plot of P52 (x) for CLP R = 4, logarith-
mically scaled on the entire interval. Notice the large
values obtained by the polynomials off the Cantor set
(1028 ) compared to the behavior on the Cantor set (for
1 ≤ j ≤ n large, |Pn | < 20). The overall shape in the
gap is Gaussian, and this occurs for all n = 4k, k ∈ Z+ .
For n = 4k + 2, the behavior in the gap is roughly a
negative Gaussian.

of those graphs in Section 5. Many more examples may
be viewed at [Owrutsky 05].

4. DIRICHLET KERNELS

For a general function f in L2(dµ), we can expand it as
a series

∞∑
n=0

anPn (x),

where the coefficients are given by

an =
∫

f(y)Pn (y) dµ(y).

The partial sums

N∑
n=0

anPn (x) (4–1)

may be represented as an integral∫
DN (x, y)f(y) dµ(y),

where the Dirichlet kernel is given by

Dn (x, y) =
N∑

n=0

Pn (x)Pn (y). (4–2)

FIGURE 16. Plot of P51 (x) for CLP R = 4, logarith-
mically scaled on the entire interval. This is roughly
the derivative of a Gaussian on the center gap. For all
n = 4k + 3 we observe this shape, and for n = 4k + 1,
the negative of this shape (color figure available online).

The partial sums in (4–1) converge to f in L2 norm,
but to get better convergence we need to know more
about the Dirichlet kernel. In view of related results in
[Strichartz 93b, Strichartz 94], one might hope that there
exists a sequence {Nk} along which the partial sums con-
verge uniformly if f is continuous. This would follow
by standard approximate identity arguments if we could

FIGURE 17. Plot of P52 (x) for CLP R = 4, logarithmi-
cally scaled on the secondary gap [1/R, (R − 1)/R] =
[1/16, 3/16]. Again, we observe a Gaussian shape.
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FIGURE 18. Plot of first five Cantor Legendre polyno-
mials, R = 3.

show that the quantity∫
|DNk

(x, y)| dµ(y) (4–3)

is uniformly bounded, and that

lim
k→∞

∫
|y−x|≥ε

|DNk
(x, y)| dµ(y) = 0 (4–4)

for all ε > 0. While we have no insight on how to establish
(4–3), we can say something about (4–4), thanks to the

FIGURE 19. Plot of first five Cantor Legendre polyno-
mials, R = 4.

FIGURE 20. Plot of some larger n Cantor Legendre
polynomials, R = 8, 97 ≤ n ≤ 100.

Christoffel–Darboux formula

DN (x, y) =
rN +1

x − y
(PN +1(x)PN (y) − PN (x)PN +1(y)),

(4–5)
for x �= y. (It is easy to derive (4–5) by multiplying
(4–2) by (x − y) and using the 3-term recurrence rela-
tion (1–1).) Assuming that the polynomials Pn (x) are
uniformly bounded on the support of µ, if we could find
a sequence Nk such that rNk + 1 → 0, then (4–4) would
follow from (4–5).

It appears from our data that for CLP polynomials
there exist indices n such that rn is close to zero, but
there is no evidence for a sequence tending to zero. This
means that there will be some Dirichlet kernels that seem
very concentrated near the diagonal (those with rN +1

close to zero), but it is unlikely that we can improve this
behavior indefinitely.

Figures 21 and 22 illustrate Dirichlet kernels DN (·, y)
for fixed y that are not concentrated near x = y, while
Figures 23 and 24 illustrate Dirichlet kernels that are
moderately well concentrated.

5. APPROXIMATE EQUALITIES FOR CLP
POLYNOMIALS

In this section we discuss two types of approximate equal-
ities in the CLP case. First we note that by symmetry,
Pn (x) is even under the reflection x �→ 1 − x when n is
even, and odd when n is odd. Nevertheless, the plots of
P2n (x) and P2n+1(x) appear very similar (see n = 98, 99
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FIGURE 21. Dirichlet kernel for CLP with n = 60 and
R = 8 centered at the leftmost point in the right half
of the Cantor set. We see that the graph is reasonably
small away from the center.

in Figure 20). This is especially true on the right half of
the Cantor set. In Figure 25 we graph P50(x) and P51(x)
for R = 8.

The qualitative similarity is striking, but it is difficult
to quantify. Figure 26 shows the graph of the difference,
and Figure 27 shows the graph of the ratio. We can give

FIGURE 22. Dirichlet kernel for CLP with n = 89 and
R = 8 centered at the leftmost point in the right half of
the Cantor set. Again, the kernel is small away from its
center.

FIGURE 23. Dirichlet kernel for CLP with n = 50 and
R = 8 centered at the leftmost point in the right half
of the Cantor set. This kernel takes much larger values
away from the center than the n = 60 case in Figure 21.

a rough explanation using (1–2), which for even values
may be written

P2n+1(x) =
x − 1/2
r2n+1

P2n(x) − r2n

r2n+1
P2n−1(x). (5–1)

For large values of R, we may have r2n close to zero
and r2n+1 close to 1/2. So the second term on the

FIGURE 24. Dirichlet kernel for CLP with n = 99 and
R = 8 centered at the leftmost point in the right half of
the Cantor set.
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FIGURE 25. P80 (x) and P81 (x), CLP R = 8.

right-hand side of (5–1) is close to zero. But on the right
half of the Cantor set, x is close to one, so the coefficient
(x − 1/2)/r2n+1 is close to one. Therefore, (5–1) says that
P2n+1(x) ≈ P2n (x) on the right half of CR .

By the odd–even behavior, we have P2n+1(x) ≈
−P2n (x) on the left half of CR . Since we see a quali-
tative similarity among the plots on all of CR , we must
attribute these approximate equalities to an approximate
reflectional symmetry across the x-axis of the graphs of
all Pn (x). This is roughly apparent in Figure 20, but it

FIGURE 26. P80 (x) − P81 (x), CLP R = 8.

FIGURE 27. P80 (x)/P81 (x), CLP R = 8.

does not hold up to close inspection. In particular, the
graphs of P2n+1(x) and P2n+1(1 − x) are not that close
(of course P2n+1(1 − x) = −P2n+1(x) exactly).

The second type of approximate equality refines the
above idea. If we express the points of CR as infinite
binary decimals, then x �→ (1 − x) simply interchanges
all digits in the binary expansion. Let Tm (x) denote the
map CR → CR that interchanges the first m binary dig-
its, leaving all other digits unchanged. In other words,
Tm permutes the 2m Cantor subsets of level m by re-
versing the order of the subsets. In Figure 28 we show
the plots of P17(x) and P17(T3(x)) for R = 8. There is

FIGURE 28. P17 (x) and P17 (T3 (x)), R = 8.
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FIGURE 29. α(x) for CLP R = 4, n = 50.

clearly a strong qualitative fit, but the agreement of the
two functions is not very close numerically. The same
pattern persists for P2m +1(x) and P2m +1(Tm (x)) for all
values of R. At present we have no explanation for this
phenomenon.

6. CLP POLYNOMIALS ON GAPS

We saw in Figures 15 and 17 that the graph of P2n (x)
on the gaps in CR is approximately Gaussian, for n

large. In reality, we find that P2n |[1/R,(R−1)/R ](x) =

c2n exp (−d2nxα(x)), where α(x) = α2n (x) = 2 at x =
1/2, and α(x) ≈ 2 for x around 1/2. Figure 29 shows
α(x) = α2n (x) for n = 50, CLP R = 4. Due to symme-
try, we view α only on the interval [1/R, 1/2]. From the
data, we conjecture that α2n converges as n → ∞ on any
closed interval of the form [1/R + ε, 1/2] to a function
resembling that in Figure 29.

The data also indicate exponential growth (in n) of
P2n (x) on the central gap [1/R, (R − 1)/R]. This ex-
ponential growth results from the behavior of (1–2) at
x = 1/2 (with An = 1/2 for all n) as follows:

P2n (1/2) = (−1)n
n∏

j=1

(r2j−1/r2j ). (6–1)

Numerically, we find that (r2j−1/r2j ) is bounded above
1 with few exceptions. In the CLP R = 2.5 case, there
are 134 instances in which (r2j−1/r2j ) ≤ 1 for j =
1, . . . , 5000; in the R = 3 case, there is one; and for
the R = 4 case, there are none. Thus, as R increases,
(r2j−1/r2j ) is bounded above 1 more consistently, as we
have seen in the R = 8 case in Figures 6 and 7. There-
fore, (6–1) (generally) gives exponential growth in n for
|P2n (1/2)|.

We then summarize the behavior of P2n (x) on the
gap [1/R, (R − 1)/R] as follows: c2n = P2n (1/2) grows
exponentially (according to (6–1), d2n grows linearly,
and α2n (x) appears to converge, to something resembling

FIGURE 30. Logarithmically scaled left column {αj,0} of polynomial coefficients, with error, CLP R = 8. Here we only
plot j even since for odd j, αj,0 = 0.
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FIGURE 31. Logarithmically scaled diagonal {αj,j } of polynomial coefficients, with error, CLP R = 8.

Figure 29). In fact, we can say more: for k ∈ Z+, write

Pj (x) =
j∑

k=0

αj,k (x − 1/2)k .

Equation (6–1) gives all αj,0 (observe that α2n,0 = c2n

and α2n+1,0 = 0 for all n), and then we can again use
(1–2) to compute all of the αj,k . (Here we read (1–2) as
an equation of polynomials.) If we view the coefficients
{αj,k} as a (lower triangular) matrix, then we see that
the left column {αj,0} and the diagonal {αj,j} determine
all of the other αj,k , via (1–2). Thus, the behavior of the

left column and diagonal (and the rj coefficients) dictates
the behavior of the other αj,k .

The left column and diagonal grow log-linearly, as
we see in Figures 30 and 31 and Table 2. Note the
similarity in the three error plots of Figures 30 and
31. If we label the (top) even-indexed error Φeven , the
(bottom) odd error Φodd, and the (even) error function
from Figure 30 Ψeven , we have the following approximate
equalities for k = 0, . . . , 50: Φeven(2k) ≈ Φodd(2k + 1) +
1.36 ≈ Ψeven(2k) + 0.67. Also, from Table 2 we see that
sign(αj,k ) = −sign(αj,k+2), for appropriate j, k. For the

αj,k /104 0 1 2 3 4 5 6 7 8 9 10

0 0.0001 0 0 0 0 0 0 0 0 0 0
1 0 0.00022678 0 0 0 0 0 0 0 0 0
2 −0.00040311 0 0.0020732 0 0 0 0 0 0 0 0
3 0 −0.0010002 0 0.0048457 0 0 0 0 0 0 0
4 0.0061259 0 −0.067032 0 0.17212 0 0 0 0 0 0
5 0 0.013607 0 −0.14851 0 0.38055 0 0 0 0 0
6 −0.027586 0 0.43733 0 −2.2537 0 3.789 0 0 0 0
7 0 −0.069611 0 1.0873 0 −5.5105 0 9.1099 0 0 0
8 1.4436 0 −31.645 0 254.75 0 −891.62 0 1146.2 0 0
9 0 3.0921 0 −67.772 0 545.53 0 −1909.1 0 2454.1 0
10 −7.2086 0 191.07 0 −1996.6 0 10284 0 −26134 0 26237

TABLE 2. CLP R = 8, matrix of (rounded) αj,k coefficients, divided by 104 .
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FIGURE 32. Slopes of best fit lines for αj,j on the left and αj,0 on the right (as in Figures 30 and 31), for R ∈
{2.5, 3, 4, 8, 16, 32}.

column and the diagonal of the matrix of αj,k , the slope of
each best-fit line varies with log R, as we see in Figure 32.

On the other gaps (i.e., the images of [1/R, (R − 1)/R]
under compositions of the maps F1 and F2), we observe
similar qualitative behavior. That is, on these smaller
gaps, Pn (x) resembles a Gaussian for all large and even
n. We have seen this self-similar behavior already in Fig-
ures 15 and 16. However, the local extremum of P2n (x)
on [1/R2 , (R − 1)/R2 ] is not in general the center of the
given gap. We glimpse this phenomenon in Figure 17. In
Figure 33 we plot the local extremum of P2n |[1/16,3/16]

in the CLP R = 4 case. The center of this gap occurs at
x = 0.125, but the local extremum fluctuates with aver-
age around 0.122.

Let us briefly mention some rigorous results that rein-
force these observations. As stated above, the CLP mea-
sures are regular, in the sense of (logarithmic) potential
theory. Let z ∈ C and consider the polynomials Pn (z) ex-
tended to the complex plane. Thus, for a CLP measure
µ, [Stahl and Totik 92, Theorem 3.1.1(ii)] says that

lim
n→∞ |Pn (z)|1/n (6–2)

= exp(− log cap(S(µ)) +
∫

dω(z) log(z − x))

locally uniformly in C ∪ {∞} \ [0, 1]. That is, for fixed
z ∈ C ∪ {∞} \ [0, 1], if zn → z, then Pn (zn ) approaches
the right-hand side of (6–2), as n → ∞. Here, ω is the
equilibrium measure for the Cantor set S(µ) = supp(µ)
(see, e.g., [Stahl and Totik 92, Appendix A] for relevant
definitions).

Thus, heuristically,

log |Pn (z)| ∼ n

(
− log cap(S(µ)) +

∫
dω(z) log(z − x)

)
.

In words, the exponential growth of Pn (z) for a
fixed z ∈ C \ [0, 1] depends exactly on the quantity
− log cap(S(µ)) +

∫
dω(z) log(z − x).

Now assume that our heuristic formula is valid
for z ∈ C \ S(µ). (Note that this assumption is not
guaranteed by [Stahl and Totik 92, Theorem 3.1.1(ii)].)
With this assumption, the logarithmic potential is a

FIGURE 33. x-value of local extremum of Pn (x) on
[1/R2 , (R − 1)/R2 ] = [1/16, 3/16] as a function of n,
CLP R = 4.
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FIGURE 34. Pn (x) values vs. n for x = 0, 1 plotted for the WLP p1 = 0.5, 0.6, 0.7, 0.8, 0.9 families (color figure available
online).



Heilman et al.: Orthogonal Polynomials with Respect to Self-Similar Measures 253

FIGURE 35. Pn (0) values vs. n logarithmically scaled in
the x-axis for WLP p1 = 0.7.

smooth function in the interval (1/3, 2/3), so it can be
approximated by its second-order Taylor polynomial at
the center point z = 1/2. Since this point is a maximum
by symmetry, the graph of the Taylor polynomial is a
parabola of the desired shape. A similar approximation
argument, which can no longer use symmetry, can be
made for other intervals in the complement of the Can-
tor set, [0, 1] \ supp(µ). This heuristic therefore explains
the approximate Gaussian observations of Figures 15, 16,
17, and 29.

7. WLP AS A FUNCTION OF n FOR FIXED x

For the classical Legendre polynomials on [0, 1], we find
structure in the values of Pn (x) as functions of n for fixed
x. As an example, for x = 0, Pn (x) = (−1)n

√
2n + 1, and

for x = 1, Pn (1) =
√

2n + 1. The computations of Pn (0)
and of Pn (1) are shown at the top of Figure 34. These
algebraic relations are a renormalization of the behav-
ior of the classical Legendre polynomials P̃n on [−1, 1],
where we recall that P̃n (1) = 1, P̃n (−1) = (−1)n , and
||P̃n ||2L2 [−1,1] = 1/(n + 1/2) for n ≥ 1 [Gautschi 04]. We
now increase the WLP weight p1 at the points x = 0, 1.
As a result, we see a perturbation of the behavior of the
classical Legendre polynomials (on [0, 1]) in Figure 34.

For p1 ≈ 0.7, a transition seems to occur in the behav-
ior of {Pn (0)}∞n=1. At this transition, we appear to have
a multiplicative periodic function Pn (0), i.e., a function
f : Z+ → R where for some a > 0 we have f(ax) = f(x)
for all x. For p1 = 0.7, we can logarithmically scale the x-
axis as in Figure 35 to see a nearly multiplicative periodic
function. For other p1 , we evidently have a multiplicative

periodic function Pn (0)/nβ for an appropriate choice of
β = β(p1).

For generic1 x ∈ [0, 1], if we plot the vectors
(Pn (x), Pn+1(x)) in the WLP p1 = 0.5 (i.e., clas-
sical) case, then these vectors are attracted to an
ellipse as n → ∞. This ellipse is centered at the
origin, and its axes and orientation vary with x.
Also, the vectors (Pn (x), Pn+1(x)) rotate around
the ellipse in a periodic way. That is, for a certain
k > 1 that depends on x (where k ∈ Z is the pe-
riod), d((Pn (x), Pn+1(x)), (Pn+k (x), Pn+k+1(x))) < ε

for some small ε > 0. Geometrically speaking,
(Pn (x), Pn+1(x), n) ∈ R 3 travels along a helix near
the surface of an ellipsoidal cylinder. Thus, plotting
(Pn (x), Pn+1(x)) projects this helix onto the plane. In
Section 8, we focus on the behavior of (Pn (x), Pn+1(x))
for generic x ∈ [0, 1]. For now, we merely note the
contrast between the images of generic and nongeneric
points.

As observed for x ∈ {{0}, {1}} (a set of two non-
generic points), increasing p1 perturbs the dynamics of
the vectors (Pn (x), Pn+1(x)). Therefore, increasing p1

should result in perturbed dynamics for other nongeneric
x. To this end, consider x ∈ {{0.25}, {0.5}, {0.75}}. For
the classical Legendre polynomials on [0, 1], these x-
values yield finite attractors for {(Pn (x), Pn+1(x))}∞n=1.
These attractors have three, four, and six points, re-
spectively. We call the corresponding number of points
kx . The vectors (Pn (x), Pn+1(x)) travel in a clockwise
fashion about the kx attracting points, as n increases.
When we increase p1 , the dynamics of (Pn (x), Pn+1(x))
for x ∈ {{0.25}, {0.5}, {0.75}} change dramatically, as we
see in Figures 36 and 37. Instead of cycling ever closer to
kx attracting points, the vectors (Pn (x), Pn+1(x)) cycle
through kx fractal spiral arms, as we see in Figure 37.

However, in the case that p1 > 0.5, the attractor of
these spiral arms is difficult to determine. By measuring
the distance of (Pn (x), Pn+1(x)) from (0, 0), it seems that
the spirals are bounded away from the origin as n → ∞.
Therefore, by the symmetry apparent from Figures 36
and 37, (Pn (x), Pn+1(x)) should be attracted to a (frac-
tal) ellipse, or a finite set of kx points. As a further con-
trast to the p1 = 0.5 behavior, we see from Figure 37 that
(Pn (x), Pn+1(x), n) ∈ R 3 travels along a “fractal helix”
with radius decreasing in n.

1 By a generic point we mean a point chosen, with respect to a
uniform distribution, among a suitable set of (rational) values in
floating-point arithmetic. In all cases, we treat only x representable
in double-precision floating-point arithmetic.
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FIGURE 36. Pn (x) values vs. n for x = 0.75, 0.5, 0.25 plotted for the WLP p1 = 0.6, 0.7, 0.8 families. Note that for p1 = 0.5,
we would get solid horizontal lines (color figure available online).

8. WLP AND CLP DYNAMICS

As promised, we now examine the dynamics of Pn (x) for
generic x. Here we examine both WLP and CLP, and we
summarize the results in Figure 38. For WLP, we recall
for p1 = 0.5 and fixed, generic x ∈ [0, 1], that there exists
an integer kx > 1 such that

d((Pn (x), Pn+1(x)), (Pn+kx
(x), Pn+kx +1(x))) < ε

(8–1)

for some small ε > 0. Here we mean that the sequence of
points {(Pn+jkx

(x), Pn+jkx +1(x))}∞j=0 is periodic of pe-
riod kx , up to a small error of ε at each step. We therefore
make kx the minimal positive integer satisfying our con-
dition (8–1). If we plot Pn (x) vs. n, we find that Pn (x)
is a superposition of kx sinusoidal functions (see entry
(1, 1) in Figure 38). These kx (approximately) periodic
functions are given by P(kx n+j )(x) for j ∈ {1, 2, . . . , kx}.

For example, we can see that k0.95 = 14 by counting
the number of distinct periodic functions in the plot of
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FIGURE 37. Vectors (Pn (x), Pn +1 (x)) for x = 0.75, 0.5, 0.25, plotted for the WLP p1 = 0.6, 0.7, 0.8 families (color figure
available online).

Pn (x) versus n. Since we essentially have a superposition
of phase-shifted cosines, it follows that the distribution
of values of Pn (x) is the function 1/

√
1 − y2 , suitably

rescaled (see entry (2, 1) in Figure 38).
Finally, if we color the iterates (Pn (x), Pn+1(x)) in a

14-periodic manner, we get entry (3, 1) in Figure 38. In
this plot, the point (Pn+1(x), Pn+2(x)) overlaps all points
of lower index.

So, what happens when we increase p1? As in Sec-
tion 7, we observe a perturbation of the p1 = 0.5 be-

havior. This perturbation becomes more exaggerated
the larger p1 becomes. In the middle column of Fig-
ure 38, we show the same plots described in the pre-
vious paragraph, for p1 = 0.6. We again choose x = 0.95,
so k0.95 = 14, and we observe fourteen vaguely periodic
functions. In other words, for j ∈ {1, 2, . . . , kx}, we see
that P(kx n+j )(0.95) is a perturbed sinusoidal function of
n. We can see these perturbations via the distribution
function (entry (2, 2)) and the plot of (Pn (x), Pn+1(x))
(entry (3, 2)) in Figure 38. That is, the distribution of
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FIGURE 38. Summary of generic point values: pn values, their histograms, and the vectors (pn (x), pn +1 (x)) plotted for
the Legendre, WLP p1 = 0.6 and CLP, R = 4 polynomial families (color figure available online).

values of Pn (x) is a perturbed version of the function
1/
√

1 − y2 , suitably rescaled. Also, the attractor of the
vectors (Pn (x), Pn+1(x)) appears to be a thickened (frac-
tal) ellipse.

The behavior for generic x in the CLP case is displayed
in Figure 38 in the rightmost column. As an example, we
view the iterates of x = 1/5 = 1/(R + 1) ∈ CR for the
case R = 4. (Recall that Pn (x) grows exponentially for
x ∈ [0, 1] \ CR , so we expect more information by viewing

x ∈ CR .) For generic x, the distribution of Pn (x) values is
unclear (Figure 38, entry (2, 3)). Nevertheless, the Pn (x)
values do seem concentrated around the origin. Also,
the vectors (Pn (x), Pn+1(x)) exhibit a 2-periodic behav-
ior. Specifically, the points {(P2n (x), P2n+1(x))}∞n=1 clus-
ter along the line {(x, y) ∈ R 2 : y = −x} (to abuse nota-
tion). Also, the points {(P2n+1(x), P2n+2(x))}∞n=1 cluster
loosely around the origin. To observe this behavior, note
entry (3, 3) in Figure 38.
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FIGURE 39. Pn values, their histograms, and the vectors (Pn (x), Pn +1 (x)) plotted for x = 1/R, CLP R = 2.5, 3, 4, and
8 polynomial families (color figure available online).

In our investigation, we have found only one non-
generic point x ∈ CR ∩ [0, 1/2] for the CLP case (other
than the endpoint x = 0). (Note that the symme-
try of these Pn (x) across x = 1/2 reduces our inves-
tigation to CR ∩ [0, 1/2].) Unlike the generic iterates,
which demonstrate only 2-periodic behavior, the non-
generic point x = 1/R exhibits 4-periodic behavior. The
columns of Figure 39 correspond to different p1 values
and the iterates of x = 1/R. For x = 1/R, the vectors
(P4n+j (x), P4n+j+1(x)) form four disjoint attractors for
j = {1, 2, 3, 4}. The set {(P4n+j (x), P4n+j+1(x))}∞n=0 for
j = 1 resides in the lower left quadrant; for j = 2 this set
lives in the upper left quadrant; for j = 3 the upper right;
and for j = 4 the lower right.

9. CONCLUDING DISCUSSION

Experimental mathematics allows us to see patterns that
otherwise would never be observed. At times these pat-
terns allow us to formulate explicit conjectures, and even-

tually proofs may be found to turn conjectures into the-
orems. But often the story is more complicated. The ob-
served patterns may turn out, on closer inspection, to be
only approximately true. No clear-cut conjectures emerge
that are truly supported by the experimental evidence.
In such cases, what should we do?

We could simply discard the experimental results and
move on. But the approximate patterns that we observe
may be of great interest. The experiment might be trying
to tell us something that we are not quite able to capture
in the conventional format of mathematical statements.
Experimental science is often messy in exactly this way,
and we think it would be a shame to limit experimental
mathematics to only the clean paradigm.

We see the results reported in this paper in exactly
this light. We do have clean-cut conjectures on the rn

values in Section 2 and boundedness for WLP in Sec-
tion 3, but beyond that we only have messy evidence.
We see some CLP Dirichlet kernels that look more like
approximate identities than most Dirichlet kernels. We
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are able to relate this to the small size of the rn co-
efficients. The experimental evidence suggests that we
will not find a sequence with rn converging to zero. So
we cannot offer a conjecture analogous to the results of
[Strichartz 06] about uniform convergence of certain spe-
cial partial sums of the orthogonal polynomial expansion
of an arbitrary continuous function. However, the results
of [Strichartz 06] suggest that perhaps such a statement
might hold only for special values of R, and we have ex-
amined only a few choices of R.

The approximate equalities for CLP discussed in Sec-
tion 5 appear very striking when one looks at the graphs
of the polynomials. It is on closer inspection that one
observes the deviation from equality. A clean conjecture
might say that the deviation goes to zero in some limit,
but the evidence does not really support such a conjec-
ture. Nevertheless, we find the approximate equalities in-
trinsically interesting.

Similarly, a glance at the graphs of CLP on the gaps
suggests they are close to being Gaussian. Of course one
comes to expect Gaussian limits in many mathematical
situations. But here in Section 6, on closer inspection, we
see a decided deviation from the Gaussian model. In this
case we believe there is a true limit law; we just have not
been able to find it.

Perhaps the most interesting contribution of this pa-
per is the dynamical perspective discussed in Sections
7 and 8. Here we may be excused from offering ex-
plicit conjectures on the grounds that the pictures of-
fer a view of significant structures that were previously
unrecognized. We hope that others will be inspired to
investigate the dynamics perspective in a systematic
way.
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