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Abstract

We study the collection of group structures that can be realized
as a group of rational points on an elliptic curve over a finite field
(such groups are well known to be of rank at most two). We also
study various subsets of this collection which correspond to curves
over prime fields or to curves with a prescribed torsion. Some of
our results are rigorous and are based on recent advances in analytic
number theory, some are conditional under certain widely believed
conjectures, and others are purely heuristic in nature.
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1 Introduction

Let Fq denote the finite field with q elements. It is well known that the group
E(Fq) of points on an elliptic curve E defined over Fq has rank at most two,
and therefore,

E(Fq) ∼= Zn × Zkn (1)

for some natural numbers n and k, where Zm denotes the ring of congruence
classes modulo m for each natural number m; see [7, 13, 21, 23]. On the
other hand, little is known about the structure of the set of groups Zn×Zkn
that can be realized as the group of points on an elliptic curve defined over
a finite field. For this reason, we introduce and investigate the set

SΠ =
{

(n, k) ∈ N2 : ∃ prime power q and E/Fq with E(Fq) ∼= Zn × Zkn
}
.

We are also interested in groups Zn × Zkn with a realization (1) in which
q = p is a prime number, hence we study the subset Sπ ⊂ SΠ defined by

Sπ =
{

(n, k) ∈ N2 : ∃ prime p and E/Fp with E(Fp) ∼= Zn × Zkn
}
.

Although one can expect Sπ and SΠ to be reasonably “dense” in N2, the
complementary sets also appear to be rather large. For example, here is the
list of pairs (n, k) 6∈ SΠ with n, k 6 25:

(11, 1), (11, 14), (13, 6), (13, 25), (15, 4),

(19, 7), (19, 10), (19, 14), (19, 15), (19, 18),

(21, 18), (23, 1), (23, 5), (23, 8), (23, 19), (25, 5), (25, 14).

(2)

To investigate the distribution in N2 of the elements of Sπ and of SΠ, for
natural numbers N and K we introduce the sets

Sπ(N,K) =
{

(n, k) ∈ Sπ : n 6 N, k 6 K
}
,

SΠ(N,K) =
{

(n, k) ∈ SΠ : n 6 N, k 6 K
}
.

These sets are the main objects of study in this note.
For natural numbers n and k, we also put

P(n, k) =
{

primes p : ∃ E/Fp for which E(Fp) ∼= Zn × Zkn
}
.
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The set P(n, k) parametrizes the set of finite fields of prime cardinality over
which Zn × Zkn can be realized as the group of points on an elliptic curve.
For natural numbers N and K we study the double sum

NP(N,K) =
∑
n6N

∑
k6K

#P(n, k),

for which we obtain an asymptotic formula in certain ranges.
Finally, for natural numbers m, k we introduce and compare the sets

Nm,k =
{
n ∈ N : ∃ p prime and E/Fpm with E(Fpm) ∼= Zn × Zkn

}
,

Ñm,k =
{
n ∈ N : ∃ p prime, ` ∈ Z with pm = kn2 + `n+ 1, |`| 6 2

√
k
}
.

We remark that the distribution of group structures generated by elliptic
curves over a fixed finite field Fq has been studied in [12].

2 Notational conventions

Throughout the paper, the letter p always denotes a prime number, and q
always denotes a prime power. As usual, we use π(x) to denote the number
of p 6 x. For coprime integers a and m > 1, we put

π(x;m, a) = #
{
p 6 x : p ≡ a (mod m)

}
,

Π(x;m, a) = #
{
q 6 x : q ≡ a (mod m)

}
.

We also set
ψ(x;m, a) =

∑
n6x

n≡a (mod m)

Λ(n),

where Λ(n) is the von Mangoldt function.
For any set A ⊆ N and real x > 0, we denote A(x) =

{
a ∈ A : a 6 x

}
.

For functions F and G > 0 the notations F = O(G), F � G, and G� F
are all equivalent to the assertion that the inequality |F | 6 cG holds with
some constant c > 0. In what follows, all constants implied by the symbols
O, �, and � may depend (where obvious) on the small real parameter ε
but are absolute otherwise; we write Oρ, �ρ, and �ρ to indicate that the
implied constant depends on a given parameter ρ.
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3 Preliminaries

Lemma 1. If q is a prime power, and E is an elliptic curve defined over Fq
such that E(Fq) ∼= Zn × Zkn, then q = kn2 + `n + 1 for some integer ` that

satisfies |`| 6 2
√
k.

Proof. By the Hasse bound, we can write kn2 = q + 1 − a for some integer
a that satisfies the bound a2 6 4q. Using the Weil pairing one also sees
that q ≡ 1 (mod n), hence a = `n + 2 for some integer `, and we have
q = kn2 + `n+ 1. Since

`2n2 + 4`n+ 4 = (`n+ 2)2 = a2 6 4q = 4kn2 + 4`n+ 4,

it follows that |`| 6 2
√
k as required.

The following result of Waterhouse [23] (see also [22, Theorems 4.3]) is
a characterization of the natural numbers N that can be realized as the
cardinality of the group of Fq-rational points on an elliptic curve E defined
over Fq.

Lemma 2. Let q = pm be a prime power, and suppose that N = q+1−a for
some integer a. Then, there is an elliptic curve E defined over Fq such that
#E(Fq) = N if and only if |a| 6 2

√
q and one of the following conditions is

met:

(i) gcd(a, p) = 1;

(ii) m even and a = ±2
√
q;

(iii) m is even, p 6≡ 1 (mod 3), and a = ±√q;

(iv) m is odd, p = 2 or 3, and a = ±p(m+1)/2;

(v) m is even, p 6≡ 1 (mod 4), and a = 0;

(vi) m is odd and a = 0.

For every admissible cardinality N , the following result of Rück [13] (see
also [22, Theorems 4.4]) describes the group structures that are possible for
E(Fq) given that #E(Fq) = N ; see also [7, 21].
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Lemma 3. Let q = pm be a prime power, and suppose that N is an integer
such that #E(Fq) = N for some elliptic curve E defined over Fq. Write
N = pen1n2 with p - n1n2 and n1 | n2 (possibly n1 = 1). Then, there is an
elliptic curve E over Fq for which

E(Fq) ∼= Zpe × Zn1 × Zn2

if and only if

(i) n1 = n2 in case (ii) of Lemma 2;

(ii) n1 | q − 1 in all other cases of Lemma 2.

Combining Lemmas 2 and 3, we get:

Corollary 4. If p is prime and N ∈ N with |p + 1 −N | 6 2
√
p, then there

is an elliptic curve E defined over Fp with #E(Fp) = N . In this case, if we
write N = n1n3 with p - n1 and n1 | n3 (possibly n1 = 1), then n1 | p− 1 and
E(Fp) ∼= Zn1 × Zn3.

Lemma 5. A prime p lies in P(n, k) if and only if p = kn2 + `n + 1 for
some integer ` such that |`| 6 2

√
k.

Proof. By definition, if p lies in P(n, k) then there is an elliptic curve E/Fp
such that E(Fp) ∼= Zn × Zkn. According to Lemma 1, p = kn2 + `n+ 1 with

some integer ` such that |`| 6 2
√
k.

Conversely, suppose that p = kn2+`n+1 and |`| 6 2
√
k. Taking N = kn2

we have

|p+ 1−N |2 = (`n+ 2)2 = `2n2 + 4`n+ 4 6 4kn2 + 4`n+ 4 = 4p,

hence |p + 1 − N | 6 2
√
p. Applying Corollary 4 with n1 = n and n3 = kn,

we see that there is an elliptic curve E/Fp such that E(Fp) ∼= Zn ×Zkn, and
thus p ∈ P(n, k).

Next, we relate NP(N,K) to the distribution of primes in short arithmetic
progressions.

Lemma 6. For all N,K ∈ N we have

NP(N,K) =
∑
n6N
|`|62

√
K

(
π(Kn2+`n+1;n2, `n+1)−π(1

4
`2n2+`n+1;n2, `n+1)

)
.
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Proof. Fix n 6 N , and let T1(n) be the collection of pairs (`, p) such that

(i) |`| 6 2
√
K;

(ii) p is a prime congruent to `n+ 1 (mod n2);

(iii) 1
4
`2n2 + `n+ 1 6 p 6 Kn2 + `n+ 1.

Since 1
4
`2n2 + `n+ 1 = (1

2
`n+ 1)2 cannot be prime, it is easy to see that

#T1(n) =
∑
|`|62

√
K

(
π(Kn2 + `n+1;n2, `n+1)−π(1

4
`2n2 + `n+1;n2, `n+1)

)
.

Let T2(n) be the collection of pairs (k, p) such that

(iv) k 6 K;

(v) p is prime and p = kn2 + `n+ 1 for some integer ` such that |`| 6 2
√
k.

By Lemma 5, condition (v) is equivalent to the assertion that p ∈ P(n, k),
hence

#T2(n) =
∑
k6K

#P(n, k).

Since∑
n6N

#T1(n) =
∑
n6N
|`|62

√
K

(
π(Kn2 + `n+ 1;n2, `n+ 1)−π(1

4
`2n2 + `n;n2, `n+ 1)

)

and ∑
n6N

#T2(n) =
∑
n6N

∑
k6K

#P(n, k) = NP(N,K),

to prove the lemma it suffices to show that #T1(n) = #T2(n) for each n 6 N .
First, let (`, p) ∈ T1(n). By (ii) we can write p = kn2 + `n + 1 for some

integer k. Substituting into (iii) we have

1
4
`2n2 + `n+ 1 6 kn2 + `n+ 1 6 Kn2 + `n+ 1,

hence k 6 K and |`| 6 2
√
k. This shows that the pair (k, p) lies in T2(n). As

the map T1(n) → T2(n) given by (`, p) 7→ (k, p) is clearly injective, we have
#T1(n) 6 #T2(n).
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Next, suppose that (k, p) ∈ T2(n), and let ` be as in (v). By (iv) we have
|`| 6 2

√
k 6 2

√
K, and p ≡ `n + 1 (mod n2) by (v). Furthermore, since

1
4
`2 6 k 6 K the prime p = kn2 + `n+ 1 satisfies (iii). This shows that the

pair (`, p) lies in T1(n). Since the map T2(n)→ T1(n) given by (k, p) 7→ (`, p)
is injective, we have #T2(n) 6 #T1(n), and the proof is complete.

4 Primes in sparse progressions

Below, we use the following result of Baier and Zhao [2], which is a variant
of the Bombieri-Vinogradov theorem that deals with primes in arithmetic
progressions to square moduli.

Lemma 7. For fixed ε > 0 and C > 0 we have∑
m6x2/9−ε

m max
gcd(a,m)=1

∣∣∣∣ψ(x;m2, a)− x

ϕ(m2)

∣∣∣∣� x

(log x)C
,

where the implied constant depends only on ε and C.

Via partial summation one obtains the following:

Corollary 8. For fixed ε > 0 and C > 0 we have∑
m6x2/9−ε

m max
gcd(a,m)=1

∣∣∣∣π(x;m2, a)− π(x)

ϕ(m2)

∣∣∣∣� x

(log x)C
,

where the implied constant depends only on ε and C.

For our applications of Corollary 8 we also need a well known asymptotic
formula ∑

n6X

n

ϕ(n)
=

315 ζ(3)

2π4
X +O(logX); (3)

for more precise results, we refer the reader to [11, 17, 18].
For any sequence of integers A = (an)∞n=1 and any positive real numbers

λ and X, we define the sum

P(A;λ,X) =
∑
n6X

π(λn2;n2, an). (4)
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Lemma 9. Fix ε ∈ (0, 2/5). For any sequence of integers A = (an)∞n=1 such
that gcd(an, n) = 1 for all n, and for any real numbers λ and X such that
3 6 X 6 λ2/5−ε, the estimate

P(A;λ,X) =
315 ζ(3)

2π4

λX

log(λX2)
+O

(
λX(log logX)2

(logX)2

)
holds, where the implied constant depends only on ε.

Proof. Let ∆ be an arbitrary real number such that X−1 6 ∆ 6 1, and let

J =

⌊
2 log logX

log(1 + ∆)

⌋
� ∆−1 log logX.

Put
Xj = X(1 + ∆)j−J (j = 0, 1, . . . , J).

Note that
X

(logX)2
6 X0 6

2X

(logX)2
,

and we have

Xj 6 Xj+1 6 2Xj and logXj � logX.

Using the trivial bound π(λn2;n2, an) 6 λ for all n 6 X0, we derive that

P(A;λ,X) =
∑

X0<n6X

π(λn2;n2, an) +O(λX0)

=
J−1∑
j=0

Sj +O

(
λX

(logX)2

)
,

(5)

where
Sj =

∑
Xj<n6Xj+1

π(λn2;n2, an) (j = 0, 1, . . . , J).

Since Xj+1 −Xj = ∆Xj, for every integer n ∈ [Xj, Xj+1] we have

n2 = X2
j +O(∆X2

j ). (6)

For any such n, the number of primes p ∈ [λX2
j , λn

2] with p ≡ an (mod n2)
does not exceed

λn2 − λX2
j

n2
+ 1�

∆λX2
j

n2
+ 1 6 ∆λ+ 1� ∆λ
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(since ∆λ > ∆X > 1). Therefore,

Sj =
∑

Xj<n6Xj+1

π(λX2
j ;n2, an) +O(∆2λXj) (j = 0, 1, . . . , J). (7)

Furthermore,∣∣∣∣∣∣
∑

Xj<n6Xj+1

π(λX2
j ;n2, an)− π(λX2

j )
∑

Xj<n6Xj+1

1

ϕ(n2)

∣∣∣∣∣∣
6

∑
Xj<n6Xj+1

∣∣∣∣π(λX2
j ;n2, an)−

π(λX2
j )

ϕ(n2)

∣∣∣∣
6

1

Xj

∑
Xj<n6Xj+1

n

∣∣∣∣π(λX2
j ;n2, an)−

π(λX2
j )

ϕ(n2)

∣∣∣∣
6

1

Xj

∑
n6Xj+1

n max
gcd(a,n)=1

∣∣∣∣π(λX2
j ;n2, a)−

π(λX2
j )

ϕ(n2)

∣∣∣∣ .
In view of the hypothesis that 3 6 X 6 λ2/5−ε we can apply Corollary 8 with
C = 4 to derive the bound∑

Xj<n6Xj+1

π(λX2
j ;n2, an)− π(λX2

j )
∑

Xj<n6Xj+1

1

ϕ(n2)
� λXj

(logX)4
. (8)

Using (6) again, we write

π(λX2
j )

∑
Xj<n6Xj+1

1

ϕ(n2)
=

∑
Xj<n6Xj+1

π(λn2) +O(∆λX2
j )

ϕ(n2)
.

Using the prime number theorem in its simplest form, namely

π(y) =
y

log y
+O

(
y

(log y)2

)
,

(see [20, Chapter II.4, Theorem 1] for a stronger statement) together with
the lower bound

ϕ(n2) = nϕ(n)� n2

log log(n+ 2)
(n ∈ N)
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(see [20, Chapter I.5, Theorem 4]) and the trivial inequalities

log(λX2) > log(λn2) > log(λX2
0 ) = log(λX2) +O(log logX),

which hold for any integer n ∈ [X0, X], we derive that

π(λX2
j )

∑
Xj<n6Xj+1

1

ϕ(n2)

= λ
∑

Xj<n6Xj+1

n2

ϕ(n2) log(λn2)
+O

(
∆λXj log logX

(logX)2
+ ∆2λXj log logX

)

=
λ

log(λX2)

∑
Xj<n6Xj+1

n

ϕ(n)
+O

(
∆λXj(log logX)2

(logX)2
+ ∆2λXj log logX

)
.

Combining this result with (7) and (8) we see that

Sj −
λ

log(λX2)

∑
Xj<n6Xj+1

n

ϕ(n)

� λXj

(logX)4
+

∆λXj(log logX)2

(logX)2
+ ∆2λXj log logX.

We insert this estimate in (5) and deduce that

P(A;λ,X)− λ

log(λX2)

∑
X0<n6X

n

ϕ(n)

�
(

λ

(logX)4
+

∆λ(log logX)2

(logX)2
+ ∆2λ log logX

) J−1∑
j=0

Xj

�
(

λ

(logX)4
+

∆λ(log logX)2

(logX)2
+ ∆2λ log logX

)
∆−1X

=
∆−1λX

(logX)4
+
λX(log logX)2

(logX)2
+ ∆λX log logX.

Taking ∆ = (logX)−2 (for which our hypothesis X−1 6 ∆ 6 1 holds for all
X > 1) and taking into account that (3) implies the estimate∑

X0<n6X

n

ϕ(n)
=

315 ζ(3)

2π4
(X −X0) +O(logX)

=
315 ζ(3)

2π4
X +O

(
X

(logX)2

)
,
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we conclude the proof.

We are certain that the error term of Lemma 9 can be improved easily, but
we have not attempted to do so as we only require the asymptotic behavior
of P(A;λ,X) stated in the next corollary.

Corollary 10. Fix ε ∈ (0, 2/5). For any sequence of integers A = (an)∞n=1

such that gcd(an, n) = 1 for all n, and for any real numbers λ and X such
that λε 6 X 6 λ2/5−ε, the estimate

P(A;λ,X) =

(
315 ζ(3)

2π4
+ o(1)

)
λX

log(λX2)

holds, where the function implied by o(1) depends only on ε.

5 The sets Sπ(N,K) and SΠ(N,K)

We begin with the observation that

#Sπ(N,K) >
∑
n6N

π(Kn2;n2, 1). (9)

Indeed, if p = kn2 + 1 is a prime which does not exceed Kn2, then the pair
(n, (p− 1)/n2) lies in Sπ(N,K). Clearly, Corollary 10 can be applied to the
sum on the right hand side of (9) to derive the lower bound

#Sπ(N,K) >

(
315 ζ(3)

2π4
+ o(1)

)
KN

log(KN2)

provided that Kε 6 N 6 K2/5−ε. Moreover, even without the condition
N > Kε we are able to get a lower bound of the same strength.

Theorem 11. Fix ε ∈ (0, 2/5), and suppose that N 6 K2/5−ε. Then, the
following bound holds:

#Sπ(N,K)� KN

logK
.

Proof. Using (9) together with the elementary bound

ψ(x;m, a)

log x
6 Π(x;m, a) = π(x;m, a) +O

(
x1/2 log x

)
,
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we have

#Sπ(N,K) >
∑

N/26n6N

π(Kn2;n2, 1)

>
∑

N/26n6N

(
ψ(Kn2;n2, 1)

log(Kn2)
+O

(
K1/2n log(Kn2)

))
� 1

logK

∑
N/26n6N

ψ(1
4
KN2;n2, 1) +O

(
K1/2N2 logK

)
=

1

logK

∑
N/26n6N

KN2

4ϕ(n2)
+ E(N,K) +O

(
K1/2N2 logK

)
,

where ∣∣E(N,K)
∣∣ 6 1

logK

∑
N/26n6N

∣∣∣∣ψ(1
4
KN2;n2, 1)− KN2

4ϕ(n2)

∣∣∣∣
6

2

N logK

∑
N/26n6N

n

∣∣∣∣ψ(1
4
KN2;n2, 1)− KN2

4ϕ(n2)

∣∣∣∣ .
Applying Lemma 7 with x = 1

4
KN2 and C = 1 (which is permissible since

our assumption N 6 K2/5−ε implies that N 6 (1
4
KN2)2/9−δ for a suitable

δ > 0 that depends only on ε) we see that

E(N,K)� KN

(logK)2
,

and therefore,

#Sπ(N,K)� KN2

logK

∑
N/26n6N

1

ϕ(n2)
+O

(
K1/2N2 logK +

KN

(logK)2

)
.

Since ∑
N/26n6N

1

ϕ(n2)
>

∑
N/26n6N

1

n2
� 1

N
,

the result follows.

Theorem 12. For any fixed K ∈ N we have

#Sπ(N,K)�K
N

logN
.

12



Proof. The Selberg sieve provides the following upper bound on the number
of primes represented by an irreducible polynomial F (n) = an2 + bn+ 1 with
integer coefficients (see Halberstam and Richert [6, Theorem 5.3] for a more
general statement):

#
{
n 6 x : F (n) is prime

}
6 2

∏
p

(
1− χp(b

2 − 4a)

p− 1

)
× x

log x

(
1 +OF

(
log log 3x

log x

))
,

(10)

where χp is the quadratic character modulo p, that is, the Dirichlet character
afforded by the Legendre symbol. The constant implied by OF depends on F ,
and this is the reason that K is fixed in the statement of the theorem.

Trivially, we have

#Sπ(N,K) 6
∑
k6K

∑
|`|<2

√
k

#
{
n 6 N : kn2 + `n+ 1 is prime

}
.

Applying (10) with F (n) = kn2 + `n+ 1, the result is immediate.

Corollary 13. For any fixed K ∈ N we have

#SΠ(N,K)�K
N

logN
.

Proof. We have

#SΠ(N,K) 6 #Sπ(N,K) +
∞∑
j=2

#S(j)
Π (N,K), (11)

where for each j > 2, we use S(j)
Π (N,K) to denote the set of pairs (n, k) in

SΠ(N,K) associated with prime powers of the form q = pj with p prime. It
is easy to see that

#S(j)
Π (N,K)� K3/2π

((
KN2+2K1/2N+1

)1/j)� {
K2N/ logN if j = 2,

K11/6N2/3 if j > 3.

Indeed, for fixed k and p there are only O(K1/2) possibilities for `. Thus, for
fixed p there are O(K3/2) possibilities for (n, k), where the implied constant

13



is absolute. Furthermore, S(j)
Π (N,K) = ∅ for all but O (log(KN)) choices

of j. Thus, from (11) we deduce that

#SΠ(N,K) 6 #Sπ(N,K) +OK(N/ logN),

and the result follows from Theorem 12.

An immediate consequence of Corollary 13 is that there are infinitely
many pairs (n, k) that do not lie in SΠ. In fact, if k ∈ N is fixed, then we see
that (n, k) 6∈ SΠ for almost all n ∈ N.

The situation is very different when n ∈ N is fixed, for in this case we
expect that the pair (n, k) lies in the smaller set Sπ for all but finitely many
k ∈ N. To prove this, one needs to show that

π((k1/2n+ 1)2;n, 1)− π((k1/2n− 1)2;n, 1) > 0

for all sufficiently large k. Although this problem is intractable at present,
the probabilistic model of Cramér (see, for example, [5, 19]) predicts that

π((k1/2n+ 1)2;n, 1)− π((k1/2n− 1)2;n, 1)�n k
1/2/ log k

for all large k. Unconditionally, it may be possible to answer the following
questions:

• If n ∈ N is fixed, is it true that (n, k) ∈ SΠ for almost all k ∈ N?

• Is it true that for almost all n ∈ N, there are only finitely many pairs
(n, k) that do not lie in SΠ?

We conclude this section with the following:

Theorem 14. The set SΠ \ Sπ is infinite. In fact, we have

#
{
n ∈ N : (n, 1) ∈ SΠ \ Sπ

}
> (2 + o(1))

N

logN
(N →∞).

Proof. Using the prime number theorem for arithmetic progressions together
with a standard upper bound from sieve theory such as [6, Theorem 5.3], one
sees that there are (2 + o(1))N/ logN natural numbers n 6 N such either
n − 1 or n + 1 is prime, but not both, and such that the integers n2 + 1,
n2 + n+ 1 and n2 − n+ 1 are all composite. For any such n, either (n− 1)2

or (n+ 1)2 is a prime power, and we have (n, 1) ∈ SΠ; however, n2 + `n+ 1
is clearly composite for −2 6 ` 6 2, and thus (n, 1) 6∈ Sπ.
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6 The double sum NP(N,K)

Here, we study the double sum NP(N,K) using the formula of Lemma 6.
Our main result is the following:

Theorem 15. Fix ε ∈ (0, 2/5), and suppose that Kε 6 N 6 K2/5−ε. Then,
the estimate

NP(N,K) =

(
210 ζ(3)

π4
+ o(1)

)
K3/2N

log(KN2)

holds, where the function implied by o(1) depends only on ε.

Proof. Using the trivial estimate

π(x+ y; k, a) = π(x; k, a) +O(y/k + 1),

we see from Lemma 6 that NP(N,K) is equal to∑
n6N
|`|62

√
K

(
π(Kn2;n2, `n+ 1)− π(1

4
`2n2;n2, `n+ 1) +O(`/n+ 1)

)

=
∑
n6N
|`|62

√
K

(
π(Kn2;n2, `n+ 1)− π(1

4
`2n2;n2, `n+ 1)

)
+O(K logN +K1/2N)

=
∑
|`|62

√
K

(
P(A`;K,N)−P(A`; 1

4
`2, N)

)
+O(K logN),

where A` = (n`+ 1)∞n=1 for each `, and the sum P(A`;λ,X) is defined
by (4). Note that we have used the bound K1/2N � K logN , which follows
from our hypothesis that N 6 K2/5−ε.

We now put L = 2
√
K/ logK and write

NP(N,K) = S1 + S2 +O(K logN), (12)

where

S1 =
∑
|`|6L

(
P(A`;K,N)−P(A`; 1

4
`2, N)

)
,

S2 =
∑

L<|`|62
√
K

(
P(A`;K,N)−P(A`; 1

4
`2, N)

)
.

15



For S1 we use the trivial estimate

S1 6
∑
|`|6L

P(A`;K,N)

together with Corollary 10 to derive the bound

S1 �
LKN

logK
� K3/2N

(logK)2
. (13)

For S2 we apply Corollary 10 to both terms in the summation. Writing
Θ = 315 ζ(3)/(2π4), and taking into account that

log(`2N2/4) = (1 + o(1)) log(KN2) (L < |`| 6 2
√
K),

we see that

S2 =
∑

L<|`|62
√
K

(
(Θ + o(1))

KN

log(KN2)
− (Θ + o(1))

`2N

4 log(`2N2/4)

)

= (Θ + o(1))
N

log(KN2)

∑
L<|`|62

√
K

(K − `2/4) =
(

4
3
Θ + o(1)

) K3/2N

log(KN2)
.

Using this bound and (13) in (12), we finish the proof.

7 The sets Nm,k and Ñm,k

In this section, we study the sets Nm,k and Ñm,k introduced in §1. We begin
the following:

Lemma 16. For all m, k ∈ N we have Nm,k ⊆ Ñm,k.

Proof. For every n ∈ Nm,k there is a prime p and an elliptic curve E defined
over Fpm such that E(Fpm) ∼= Zn×Zkn. By Lemma 1, pm = kn2 + `n+ 1 for

some integer ` that satisfies |`| 6 2
√
k, that is, n ∈ Ñm,k.
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7.1 Results with fixed values of m

In the case that m = 1, the set inclusion of Lemma 16 is an equality.

Theorem 17. For all k ∈ N we have N1,k = Ñ1,k.

Proof. In view of Lemma 16 it suffices to show that Ñ1,k ⊆ N1,k. For every

n ∈ Ñ1,k there is a prime p such that p = kn2 + `n+ 1. Put a = n`+ 2, and
note that |a| 6 2

√
p since

a2 = n2`2 + 4n`+ 4 6 4(n2k + n`+ 1) = 4p.

If gcd(a, p) = 1, then by Lemma 2 (i) there is an elliptic curve E/Fp
such that #E(Fp) = p + 1 − a = kn2. On the other hand, if p | a, then
the inequality |a| 6 2

√
p implies that either p 6 3 and a = ±p, or a = 0.

Applying Lemma 2 (iv) in the former case and Lemma 2 (iv) in the latter, we
again conclude that there is an elliptic curve E/Fp such that #E(Fp) = kn2.
In all cases, since p ≡ 1 (mod n), Lemma 3 (ii) guarantees that there is an
elliptic curve E defined over Fp such that E(Fp) ∼= Zn × Zkn. Therefore,
n ∈ N1,k.

Lemma 18. For natural numbers n, k the set

P̃(n, k) =
{

primes p : p2 = kn2 + `n+ 1 for some ` ∈ Z with |`| 6 2
√
k
}

contains at most one prime except for the following cases:

(i) P̃(n, k) = {2, 3} if n = 1 and 4 6 k 6 9;

(ii) P̃(n, k) = {hn ± 1} if k = h2 for some h ∈ N, and both hn − 1 and
hn+ 1 are primes.

Proof. It is easy to see that

P̃(n, k) =
{

primes p ∈
[
n
√
k − 1, n

√
k + 1

]
: p2 ≡ 1 (mod n)

}
. (14)

Since the interval
[
n
√
k − 1, n

√
k + 1

]
has length two, the result follows

immediately.

When m = 2, the inclusion of Lemma 16 can be proper. Fortunately, we
are able to classify those natural numbers k for which this happens.
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Theorem 19. For all k ∈ N we have N2,k = Ñ2,k except for the following
disjoint cases:

(i) k = p2 + 1 for some prime p ≡ 1 (mod 4);

(ii) k = p2 ± p+ 1 for some prime p ≡ 1 (mod 3);

(iii) k = h2 for some integer h > 1.

In cases (i) and (ii) we have Ñ2,k \ N2,k = {1}, and in case (iii) we have

Ñ2,k \ N2,k =
{
n ∈ N : hn− 1 or hn+ 1 is prime

}
. (15)

Proof. Let k be fixed, and suppose that n ∈ Ñ2,k. Let p and ` be such that

p2 = kn2 + `n+ 1, |`| 6 2
√
k, and put a = `n+ 2. Then |a| 6 2p, and using

Lemmas 2 and 3 it is easy to see that n lies in N2,k except possibly in the
following cases:

(1) a = 0 and p ≡ 1 (mod 4);

(2) a = ±p and p ≡ 1 (mod 3);

(3) a = ±2p and k is not of the form pj for any j > 0.

In case (1) we have `n = −2, which implies either that (n, `) = (2,−1)
and p2 = 4k− 1, which is impossible, or that (n, `) = (1,−2) and p2 = k− 1.

This shows that Ñ2,k \N2,k ⊆ {1} and that k satisfies the condition (i). Since

k > 26 and k 6= h2 for any h > 1, we have P̃(n, k) = {p} by Lemma 18. It
remains to show that 1 6∈ N2,k in this case. Suppose on the contrary that
1 ∈ N2,k. Then there is a prime p0 and an elliptic curve E defined over Fp20
such that E(Fp20)

∼= Z1×Zk. By Lemma 1 we see that p2
0 = k+`+1 for some

integer ` such that |`| 6 2
√
k; that is, p0 ∈ P̃(n, k). Therefore, p0 = p, and

#E(Fp2) = k. But this is impossible by Lemma 2 (v) since p ≡ 1 (mod 4).
In case (2) we have p = ±(`n+ 2) ≡ ±2 (mod n), thus p2 ≡ 4 (mod n).

Since p2 = kn2 + `n+ 1 ≡ 1 (mod n) as well, it follows that n | 3. We claim
that n 6= 3. Indeed, if n = 3, then p2 = 9k+3`+1 = 9k±p−1, and therefore
p2 ∓ p + 1 ≡ 0 (mod 9). But this is impossible as neither X2 + X + 1 nor
X2 − X + 1 has a root in Z9. If n = 1, then p2 = k + ` + 1 = k ± p − 1.
This shows that Ñ2,k \N2,k ⊆ {1} and that k satisfies the condition (ii). The
proof that 1 6∈ N2,k is similar to that of the preceding case.
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In case (3) we have p2 = kn2 ± 2p− 1, or kn2 = (p∓ 1)2; it follows that
n | p∓1, and k = h2 with h = (p∓1)/n. Since k 6= p0, we see that k satisfies
the condition (iii). It remains to establish (15).

Fix h > 1, and suppose that n ∈ Ñ2,h2 . Then P̃(n, h2) 6= ∅, where
by (14) we have

P̃(n, h2) =
{

primes p ∈ [hn− 1, hn+ 1] : p2 ≡ 1 (mod n)
}
.

First, suppose P̃(n, h2) contains a prime p in the open interval (hn−1, hn+1).

Then, using Lemma 18, we deduce that P̃(n, h2) = {p}, and thus case (3)

does not occur for any prime in P̃(n, h2). Also, the cases (1) and (2) cannot
occur, for otherwise k = h2 would satisfy (i) or (ii), respectively, rather than
(iii). Consequently, n ∈ N2,h2 in this case.

Next, suppose P̃(n, h2) does not contain a prime p in the open interval

(hn− 1, hn+ 1). If p ∈ P̃(n, h2), then p = hn± 1 for some choice of the sign,
and we have p2 + 1−h2n2 = ±2hn+ 2 = ±2p. If there were an elliptic curve
E defined over Fp2 such that E(Fp2) ∼= Zn×Zh2n, then by Lemma 2 (ii) and
Lemma 3 (i) it would follow that n = h2n, which is impossible since h > 1.
This argument shows that n 6∈ N2,h2 in this case.

Corollary 20. Suppose that k is not a perfect square. Then,

#N2,k(T )�k log T.

Proof. In view of Lemma 16, it is enough to show that #Ñ2,k(T )�k log T .

Suppose that n ∈ Ñ2,k with n 6 T . Then there is a prime p and an

integer ` such that p2 = kn2 + `n+ 1, |`| 6 2
√
k, and we have

max{2kn+ `, 2p} �k T. (16)

Since
(2kn+ `)2 − k(2p)2 = `2 − 4k,

the pair (2kn+ `, 2p) is a solution of the Pell equation

X2 − kY 2 = `2 − 4k. (17)

Note that `2 − 4k 6= 0 since k is not a perfect square. It is well known (and
easy to verify) that every solution (x, y) ∈ Z2 to an equation such as (17)
has the form

x+ y
√
k =

(
x0 + y0

√
k
)
ωt (t ∈ Z),
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where (x0, y0) is an arbitrary fixed solution, and ω is a fixed unit in Q
(√

k
)
;

therefore,
t�k log max{|x|, |y|}.

In view of (16) we have t �k log T for every solution (x, y) = (2kn + `, 2p)
to (17), and the result follows.

We remark that Theorem 19 implies

#N2,1(T ) = π(T − 1) + π(T + 1)−#
{
p 6 T − 1 : p+ 2 is prime

}
∼ 2T

log T
.

For m > 3, the situation is more complicated. For example, it is easy
to see that 3 ∈ Ñ3,237 \ N3,237. Indeed, since 133 = 32 · 237 + 3 · 21 + 1, we

have 3 ∈ Ñ3,237. On the other hand, direct computation shows that there
is no elliptic curve over any finite field Fp3 whose group of points E(Fp3)
isomorphic to Z3 × Z3·237. In fact, the equation p3 = 32 · 237 + 3 ` + 1
with |`| < 2

√
237 = 30.79 · · · admits only one solution (p, `) = (13, 21), and

133 + 1− 9 · 237 = 5 · 13 is not a value for the parameter a that is permitted
by Lemma 2.

7.2 Results with k = 1

Here, we focus on the problem of bounding #Nm,1(T ). We begin by quoting
three results on Diophantine equations due to Lebesgue [8], to Nagell [10],
and to Ljunggren [9], respectively.

Lemma 21. For any m ∈ N, the Diophantine equation ym = x2 +1 has only
the trivial solutions (0,±1).

Lemma 22. For any m ∈ N that is not a power of three, the Diophantine
equations ym = x2 + x + 1 and ym = x2 − x + 1 have only trivial solutions
from the set {(0,±1), (±1,±1)}.

Lemma 23. The only solutions of the Diophantine equation y3 = x2 + x+ 1
are the following: {(0,±1), (−1,±1), (18, 7), (−19, 7)}.

The main result here is the following:
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Theorem 24. If m is even, then

#Nm,1(T ) = (m+ o(1))
T 2/m

log T
(T →∞).

If m > 5 and m is odd, then Nm,1 = ∅. Also, N3,1 = {18, 19}, and

#N1,1(T )� T

log T
.

Proof. First, suppose that m = 2r > 2 and n ∈ Nm,1. Then there exists a
prime p such that

p2r = n2 + `n+ 1 for some ` ∈ {0,±1,±2}.

However, the cases ` ∈ {0,±1} can be excluded in view of Lemmas 21 and 22.
Since the numbers n for which this relation holds with ` ∈ {±2} are those of
the form n = pr ± 1, by the prime number theorem it follows that

#{n 6 T : n = pr ± 1} = (2 + o(1))
T 1/r

log T 1/r
= (m+ o(1))

T 2/m

log T
,

and the proof is complete when m is even.
Next suppose that m = 2r + 1 > 5. Combining Lemmas 21, 22 and 23,

one sees that there is no integer n for which any one of the numbers n2 + 1,
n2 + n + 1, or n2 − n + 1 is the m-th power of a prime. Since the relation
(n± 1)2 = p2r+1 is also impossible, it follows Nm,1 = ∅ as stated.

When m = 3 we are lead to consider the three Diophantine equations

y3 = x2 + 1, y3 = x2 + x+ 1 and y3 = x2 − x+ 1.

The first equation has no nontrivial solution by Lemma 21, the second only
the nontrivial solution (18, 7) by Lemma 23, and the third only the nontrivial
solution (19, 7) by Lemma 23. Since gcd(7, 20) = gcd(7,−17) = 1, using
Lemmas 2 and 3 we conclude that N3,1 = {18, 19}.

As an application of Theorem 17, we deduce that

N1,1(T ) = {n 6 T : n2 + 1, n2 + n+ 1, or n2 − n+ 1 is prime}.

Using Brun sieve (see [20, Chapter I.4, Theorem 3]) or the Selberg sieve
(see (10) in §5) we see that #N1,1(T )� T/ log T as required.
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Remark 1. Recalling the asymptotic version of Schinzel’s Hypothesis H
(see [14]) given by Bateman and Horn [1], it is reasonable to conjecture
that

#N1,1(T ) = (C + o(1))
T

log T
(T →∞),

where

C =
1

2

∏
p>3

(
1−

(−1
p

)
p− 1

)
+
∏
p>3

(
1−

(−3
p

)
p− 1

)
and

( ·
p

)
is the Legendre symbol modulo p. We note that two distinct poly-

nomials are simultaneously prime for O(T/(log T )2) arguments n 6 T , so we
simply estimate the number of prime values for each of the above polynomials
independently.

7.3 Finiteness of Nm,k when m > 3

In this section, we set

Kk =
⋃
m>3

Nm,k and Mm =
⋃
k>1

Nm,k.

We show that there are only finitely many prime powers pm with m > 3 for
which there is an elliptic curve E defined over Fpm with E(Fpm) ∼= Zn × Zkn
for some n ∈ N. In other words, we have:

Theorem 25. For every k > 2 the set Kk is finite.

Proof. We apply a result of Schinzel and Tijdeman [15] which asserts that if
a polynomial f with rational coefficients has at least two distinct zeros, then
the equation ym = f(x), where x and y are integers with y 6= 0, implies that
m 6 c(f), where c(f) is a computable constant that depends only on f .

For any n ∈ Kk, there exists a prime p and integers m, ` with m > 3 and
|`| 6 2

√
k such that pm = kn2 + `n+ 1.

For values of ` with |`| < 2
√
k, the polynomial kX2 + `X + 1 has distinct

roots. Thus we apply a result of Schinzel and Tijdeman [15] which asserts
that if a polynomial f with rational coefficients has at least two distinct zeros,
then the equation ym = f(x), where x and y are integers with y 6= 0, implies
that m 6 c(f), where c(f) is a computable constant that depends only on f ,
see also [16, Theorem 10.2]. Hence, there are only finitely many possibilities
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for the number m. For any fixed pair (m, `), using a classical result in the
theory of Diophantine equations (see [16, Theorem 6.1]), we conclude that
there are only finitely many possibilities for the pair (n, p).

If ` = ±2
√
k, then k = h2 is a perfect square, and we have pm = (hn±1)2.

Thus, m is even, and h2n2 = pm + 1 − a, where a = ±2pm/2. Applying
Lemma 3 (i) it follows that kn = h2n = n; this contradicts our hypothesis
that k > 2 and shows that the case ` = ±2

√
k does not occur.

Remark 2. All of the underlying ingredients in the proof of Theorem 25 are
effective, so one can easily obtain explicit bounds on #Kk and max{n ∈ Kk}.
Using the explicit estimates of Bugeaud [3, Theorem 2], it can be shown that
Nm,k = ∅ for any m > 2137k3/2(log2 4k)6. Further a result of Bugeaud [4,
Theorem 2] on solutions of superelliptic equations imply the bound max{n ∈
Nm,k} 6 exp (c(m)k14m(log k)8m), where c(m) is an effectively computable
constant that depends only on m.

A computer search suggests that the following table lists completely the
elements in Kk for 2 6 k 6 5:

k Kk
2 {3, 11, 45, 119, 120} 24 = 2 · 32 − 3 + 1,

35 = 2 · 112 + 1,
212 = 2 · 452 + 45 + 1,
134 = 2 · 1192 + 2 · 119 + 1,
134 = 2 · 1202 − 2 · 120 + 1.

3 {5, 72, 555} 34 = 3 · 52 + 5 + 1,
56 = 3 · 722 + 72 + 1,
314 = 3 · 5552 − 555 + 1.

4 {1, 9, 23} 23 = 4 · 12 + 3 · 1 + 1,
73 = 4 · 92 + 2 · 9 + 1,
211 = 4 · 232 − 3 · 23 + 1.

5 {1, 2, 4, 56, 126} 23 = 5 · 12 + 2 · 1 + 1,
33 = 5 · 22 + 3 · 2 + 1,
34 = 5 · 42 + 1,
56 = 5 · 562 − 56 + 1,
433 = 5 · 1262 + 126 + 1.

Theorem 26. For every natural number m we have Mm = N. In other
words, for any n,m ∈ N there is a prime p and an elliptic curve E defined
over Fpm such that E(Fpm) ∼= Zn × Zkn for some k ∈ N.
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Proof. Let m ∈ N be fixed. If m > 2, then we have the identity

Xm = (Xm−2 + 2Xm−3 + · · ·+ (m− 2)X +m− 1)(X − 1)2 +m(X − 1) + 1.

For any n ∈ N, let p be a prime in the arithmetic progression 1 mod n that
does not divide m, and put d = (p− 1)/n. Applying the above identity with
X = p, we have pm = kn2 + `n+ 1, where

k = (pm−2 + 2pm−3 + · · ·+ (m− 2)p+m− 1)d2 and ` = md.

The condition |`| 6 2
√
k is easily verified since

4k > 2m(m− 1)d2 > m2d2 = `2 (m > 2).

Furthermore, a = pm + 1 − kn2 = `n + 2 = m(p − 1) is not divisible by p.
Hence, Lemma 3 shows that n ∈Mm.

If m = 1, then for any n ∈ N, let p be an odd prime in the arithmetic
progression 1 mod n2. Then p = dn2+1 for some natural number d, and since
a = p+ 1− dn2 = 2 is not divisible by p, Lemma 3 shows that n ∈M1.

8 Missed group structures

We have already given in (2) several examples of pairs (n, k) for which the
group Zn×Zkn cannot be realized as the group of points on an elliptic curve
defined over a finite field.

Here we present more extensive numerical results.
In Figure 1 we plot the counting function

f(D) = D2 −#SΠ(D,D)

of “missed” pairs (n, k) with max{n, k} 6 D for values of D up to 37550.
We immediately derive from Corollary 13 that

lim
D→∞

f(D)/D =∞,

but this statement seems weak in view of our computations.
In Figure 2 we plot the counting function

F (N,K) = NK −#SΠ(N,K)
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Figure 1: Plot of f(D) for D 6 37550

of “missed” pairs (n, k) with n 6 N and k 6 K for values of N and K up
to 1000. For each fixed N = N0 the function GN0(K) = F (N0, K) appears
to be linear and increasing for modest values of K. Clearly, Corollary 13
implies that when K = K0 is fixed then HK0(N) = F (N,K0) ∼ K0N grows
asymptotically linearly with the coefficient K0.

We now give some heuristic arguments to predict the behavior of F (N,K).
We note that a pair (n, k) contributes to F (N,K) if kn2 + `n + 1 is not a
prime power for every ` such that |`| 6 2k1/2 (and in some other exceptional
cases). Following the standard heuristic, kn2 + `n+ 1 is a prime power with
“probability” about

ρ(n, k, `) =


n

ϕ(n) log(kn2 + `n+ 1)
if kn2 + `n+ 1 > 1

0 otherwise.

(where the ratio n/ϕ(n) accounts for the fact that we seek prime powers in
the arithmetic progression 1 mod n). So (n, k) ∈ [1, N ] × [1, K] contributes
to F (N,K) with “probability” about

ϑ(n, k) =
∏

|`|62k1/2

(1− ρ(n, k, `))
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Figure 2: 3D plot of F (N,K) for N,K 6 1000

Thus, we expect that F (N,K) is close to

B(N,K) =
∑
n6N

∑
k6K

ϑ(n, k).

We have not studied the function B(N,K) analytically, but we note that for
any fixed ε > 0 we have

ϑ(n, k) ≈

{
1 if k 6 (log n)2−ε,

0 if k > (log n)2+ε.

Thus, it seems reasonable to expect that

F (N,K) ≈ B(N,K) ≈

{
NK if K 6 (logN)2−ε,

o(NK) if K > (logN)2+ε.

One can see on Figure 3 that the ratio

β(N,K) =
F (N,K)

B(N,K)

seems to stabilise when N and K are large enough.

26



ΒHN, KL

100
200

300
400

500
600

700
800

900
1000

K100
200

300
400

500
600

700
800

900
1000N

0.5

0.6

0.7

0.8

Figure 3: 3D plot of β(N,K) for N,K 6 1000
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