Self-intersection numbers of curves in the doubly-punctured plane

Moira Chas and Anthony Phillips

November 1, 2018

Abstract

We address the problem of computing bounds for the self-intersection number (the minimum number of self-intersection points) of members of a free homotopy class of curves in the doubly-punctured plane as a function of their combinatorial length L; this is the number of letters required for a minimal description of the class in terms of the standard generators of the fundamental group and their inverses. We prove that the self-intersection number is bounded above by $L^{2} / 4+L / 2-1$, and that when L is even, this bound is sharp; in that case there are exactly four distinct classes attaining that bound. When L is odd, we establish a smaller, conjectured upper bound $\left.\left(\left(L^{2}-1\right) / 4\right)\right)$ in certain cases; and there we show it is sharp. Furthermore, for the doubly-punctured plane, these self-intersection numbers are bounded below, by $L / 2-1$ if L is even, ($L-1$)/2 if L is odd; these bounds are sharp.

1 Introduction

By the doubly-punctured plane we refer to the compact surface with boundary (familiarly known as the "pair of pants") obtained by removing, from a closed twodimensional disc, two disjoint open discs. This work extends to that surface the research reported in [6] for the punctured torus. Like the punctured torus, the doubly-punctured plane has the homotopy type of a figure-eight. Its fundamental group is free on two generators: once these are chosen, say a, b, a free homotopy class of curves on the surface can be uniquely represented as a reduced cyclic word in the symbols a, b, A, B (where A stands for a^{-1} and B for b^{-1}). A cyclic word w is an equivalence class of words related by a cyclic permutation of their letters; we will write $w=\left\langle r_{1} r_{2} \ldots r_{n}\right\rangle$ where the r_{i} are the letters of the word, and $\left\langle r_{1} r_{2} \ldots r_{n}\right\rangle=\left\langle r_{2} \ldots r_{n} r_{1}\right\rangle$, etc. Reduced means that the cyclic word contains no juxtapositions of a with A, or b with B. The

[^0]length (with respect to the generating set $(a, b))$ of a free homotopy class of curves is the number of letters occurring in the corresponding reduced cyclic word.

This work studies the relation between length and the self-intersection number of a free homotopy class of curves: the smallest number of self-intersections among all general-position curves in the class. (General position in this context means as usual that there are no tangencies or multiple intersections). The self-intersection number is a property of the free homotopy class and hence of the corresponding reduced cyclic word w; we denote it by $\operatorname{SI}(w)$. Note that a word and its inverse have the same self-intersection number.

Theorem 1.1. (1) The self-intersection number for a reduced cyclic word of length L on the doubly-punctured plane is bounded above by $L^{2} / 4+L / 2-1$.
(2) If L is even, this bound is sharp: for $L \geq 4$ and even, the cyclic words realizing the maximal self-intersection number are (see Figure 1) $(a B)^{L / 2}$ and $(A b)^{L / 2}$. For $L=2$, they are $a a, A A, b b, B B, a B$ and $A b$.
(3) If L is odd, the maximal self-intersection number of words of length L is at least $\left(L^{2}-1\right) / 4$.

Figure 1: Left: curves of the form $\langle a B a B a B\rangle$ have maximum self-intersection number $L^{2} / 4+L / 2-1$ for their length (Theorem 1.1). Right: curves of the form $\langle a a B a B a B\rangle$ have self-intersection number $\left(L^{2}-1\right) / 4$. We conjecture (Conjecture 1.2) this is maximal, and prove this conjecture in certain cases (Theorem 1.4).

Conjecture 1.2. The maximal self-intersection number for a reduced cyclic word of odd length $L=2 k+1$ on the doubly-punctured plane is $\left(L^{2}-1\right) / 4$; the words realizing the maximum have one of the four forms $\left\langle(a B)^{k} B\right\rangle,\left\langle a(a B)^{k}\right\rangle,\left\langle(A b)^{k} b\right\rangle,\left\langle A(A b)^{k}\right\rangle$.

Definition 1.3. Any reduced cyclic word is either a pure power or may be written in the form $\left\langle\alpha_{1}^{a_{1}} \beta_{1}^{b_{1}} \ldots \alpha_{n}^{a_{n}} \beta_{n}^{b_{n}}\right\rangle$, where $\alpha_{i} \in\{a, A\}, \beta_{i} \in\{b, B\}$, all a_{i} and b_{i} are positive, and $\sum_{1}^{n}\left(a_{i}+b_{i}\right)=L$, the length of the word. We will refer to each $\alpha_{i}^{a_{i}} \beta_{i}^{b_{i}}$ as an $\alpha \beta$-block, and to n as the word's number of $\alpha \beta$-blocks.

Theorem 1.4. On the doubly-punctured plane, consider a reduced cyclic word w of odd length L with $n \alpha \beta$-blocks. If $L>3 n$, or n is prime, or n is a power of 2 , then the self-intersection number of w satisfies $\mathrm{SI}(w) \leq \frac{L^{2}-1}{4}$. This bound is sharp.

The doubly punctured plane has the property that self-intersection numbers of words are bounded below.

Theorem 1.5. On the doubly punctured plane, curves in the free homotopy class represented by a reduced cyclic word of length L have at least $L / 2-1$ self-intersections if L is even and $(L-1) / 2$ self-intersections if L is odd. These bounds are achieved by $(a b)^{\frac{L}{2}}$ and $(A B)^{\frac{L}{2}}$ if L is even and by the four words $a(a b)^{\frac{L-1}{2}}$, etc. when L is odd.

Corollary 1.6. A curve with minimal self-intersection number k has combinatorial length at most $2 k+2$. There are therefore only finitely many free homotopy classes with minimal self-intersection number k.

Remark 1.7. A surface of negative Euler characteristic which is not the doubly punctured plane has infinitely many homotopy classes of simple closed curves 11]. Since the $(k+1)$ st power of a simple closed curve kas self-intersection number k, it follows that for any k there are infinitely many distinct homotopy classes of curves with selfintersection number k. (A more elaborate argument using the mapping class group constructs, for any k, infinitely many distinct primitive classes (not a proper power of another class) with self-intersection number k). So the doubly punctured plane is the unique surface of negative Euler characteristic satisfying Corollary 1.6,

The authors have benefited from discussions with Dennis Sullivan, and are very grateful to Igor Rivin who contributed an essential element to the proof of Theorem 1.5, Additionally, they have profited from use of Chris Arettines' JAVA program, which draws minimally self-intersecting representatives of free homotopy classes of curves in surfaces. The program is currently available at
http://www.math.sunysb.edu/~moira/applets/chrisApplet.html

1.1 Questions and related results

The doubly punctured plane admits a hyperbolic metric making its boundary geodesic. An elementary argument shows that for curves on that surface, hyperbolic and combinatorial lengths are quasi-isometric. Some of our combinatorial results can be related in this way to statements about intersection numbers and hyperbolic length.

A free homotopy class of combinatorial length L in a surface with boundary can be represented by L chords in a fundamental polygon. Hence, the maximal self-intersection number of a cyclic reduced word of length L is bounded above by $\frac{L(L-1)}{2}$.

We prove in [6] that for the punctured torus the maximal self-intersection number $\mathrm{SI}_{\max }(L)$ of a free homotopy class of combinatorial length L is equal to $\left(L^{2}-1\right) / 4$ if L is even and to $(L-1)(L-3) / 4$ if L is odd. This implies that the limit of $\mathrm{SI}_{\max }(L) / L^{2}$ is $\frac{1}{4}$
as L approaches infinity. (Compare [9]). The same limit holds for the doubly punctured plane (Theorem 1.1). On the other hand, according to our (limited) experiments, there are no analogous polynomials for more general surfaces; but it seems reasonable to ask:

Question 1.8. Consider closed curves on a surface S with boundary. Let $\mathrm{SI}_{\max }(L)$ be the maximum self-intersection number for all curves of combinatorial length L. Does $\mathrm{SI}_{\max }(L) / L^{2}$ converge? And if so, to what limit? Does this limit approach $\frac{1}{2}$ as the genus of the surface approaches infinity?

Question 1.9. Consider closed curves on a hyperbolic surface S (possibly closed). Let $\mathrm{SI}_{\max }(\ell)$ be the maximum self-intersection number for any curve of hyperbolic length at most ℓ. Does $\mathrm{SI}_{\max }(\ell) / \ell^{2}$ converge? And if so, to what limit?

Basmajian [1] proved for a closed, hyperbolic surface S that there exists an increasing sequence M_{k} (for $k=1,2,3, \ldots$) going to infinity so that if w is a closed geodesic with self-intersection number k, then its geometric length is larger than M_{k}. Thus the length of a closed geodesic gets arbitrarily large as its self-intersection gets large. For the doubly punctured plane, in terms of the combinatorial length, we calculate $M_{k}=\sqrt{5+4 k}-1$.

2 A linear model

In this section we will need to distinguish between a cyclically reduced linear word w in the generators and their inverses, and the the associated reduced cyclic word w. We introduce an algorithm for constructing from w a representative curve for w. An upper bound for the self-intersection numbers of these representatives may be easily estimated; taking the minimum of this bound over cyclic permutations of $\alpha \beta$-blocks will yield a useful upper bound for $\operatorname{SI}(w)$.

2.1 Skeleton words

Given a cyclically reduced word $w=\left\langle\alpha_{1}^{a_{1}} \beta_{1}^{b_{1}} \ldots \alpha_{n}^{a_{n}} \beta_{n}^{b_{n}}\right\rangle$, where $\alpha_{i}=a$ or $A, \beta_{i}=$ b or B and all $a_{i}, b_{i}>0$, the corresponding skeleton word is $w_{S}=\left\langle\alpha_{1} \beta_{1} \ldots \alpha_{n} \beta_{n}\right\rangle$, a word of length $2 n$.

We now describe a systematic way for drawing a representative curve for w_{S} starting from one of its linear forms w_{S}, and for thickening this curve to a representative for w.

The skeleton-construction algorithm: (See Figures 2 and 3) Start by marking off n points along each of the edges of the fundamental domain; corresponding points on the a, A sides are numbered $1,3,5, \ldots, 2 n-1$ starting from their common corner; and similarly corresponding points on the b, B sides are numbered $2 n, \ldots, 6,4,2$, the numbers decreasing away from the common corner.

If the first letter in w_{S} is a, draw a curve segment entering the a-side at 1 , and one exiting the A-side at 1 (vice-versa if the first letter is A). That segment is then extended to enter the b-side at 2 and exit the B-side at 2 if the next letter in w_{S} is b; vice-versa if it is B. And so forth until the curve segment exiting the b (or B)-side at $2 n$ joins up with the initial curve segment drawn.

We will refer to a segment of type $a b, b a, A B, B A$ as a corner segment, and one of type $a B, A b, b A, B a$ as a transversal. Note that (as above) a skeleton word has even length $2 n$ and therefore has $2 n$ segments (counting the bridging segment made up of the last letter and the first). The number of transversals must also be even, since if they are counted consecutively they go from lower-case to upper-case or vice-versa, and the sequence (upper, lower, ...) must end up where it starts. It follows that the number of corners is also even.

Figure 2: The skeleton curve $A b a b A b$.

Proposition 2.1. The self-intersection number of the representative of $(A b)^{n}$ or $(a B)^{n}$ given by the curve-construction algorithm equals $n^{2}+n-1$.

Proof. Consider $(A b)^{n}$; see Figure 3, left. This curve has only transversals. There are n parallel segments of type $A b$; they join $1,3, \ldots,(2 n-1)$ on the a-side to $2,4, \ldots, 2 n$ on the b-side. There are $n-1$ parallel segments of type $b A$, which join $2,4, \ldots, 2 n-2$ on the B-side to $3,5, \ldots 2 n-1$ on the A-side. Each of these intersects all n of the $A b$ segments. Finally the bridging $b A$ segment joins $2 n$ on the B-side to 1 on the A-side. This segment begins to the left of all the other segments and ends up on their right: it intersects all $2 n-1$ of them. The total number of intersections is $n(n-1)+2 n-1=n^{2}+n-1$. A symmetrical argument handles $(a B)^{n}$.

Proposition 2.2. The self-intersection number of the representative of $(a b)^{n}$ given by the curve-construction algorithm equals $(n-1)^{2}$.

Proof. (See Figure 3, right) This curve has only corners. There are n segments of type $a b$, joining $1,3, \ldots, 2 n-1$ on the A-side to $2,4, \ldots, 2 n$ on the b-side. Since their endpoints interleave, each of these curves intersects all the others. There are $n-1$ segments of type $b a$, joining $2,4, \ldots, 2 n-2$ on the B-side to $3,5, \ldots 2 n-1$ on the a-side. Again, each of these curves intersects all the others. Finally the bridging $b a$ segment joining $2 n$ to 1 spans both endpoints of all the others and so intersects none of them. The total number of intersections is $\frac{1}{2} n(n-1)+\frac{1}{2}(n-1)(n-2)=(n-1)^{2}$.

Figure 3: The skeleton curves $a b a b a b$ and $A b A b A b$.

Proposition 2.3. Let w be a skeleton word of length $2 n$. The number of corner segments in w is even, as remarked above; write it as $2 c$. Then the self-intersection number of w is bounded above by $n^{2}+n-1-2 c$.

Proof. Using Propositions 2.1 and 2.2 we can assume that w has both corner-segments and transversals. We may then choose a linear representative w with the property that the bridging segment between the end of the word and the beginning is a transversal. Of the $2 c$ corners, c will be on top (those of type $A B$ or $b a$) and c on the bottom (types $a b$ and $B A$). An $a b$ or $A B$ corner segment joins a point numbered $2 j-1$ to a point numbered $2 j$ on the same side, top or bottom, as $2 j-1$. It encloses segment endpoints $2 j+1,2 j+3, \ldots, 2 n-1,2,4, \ldots 2 j-2$, a total of $n-1$ endpoints; similarly, a $b a$ or $B A$ segment encloses $n-2$ endpoints. So there are at most $2 c(n-1)-c(c-1)$ intersections involving corners, correcting for same-side corners having been counted twice. The $2 n-2 c$ transversals intersect each other just as in the pure-transversal case, producing $(n-c)^{2}+(n-c)-1$ intersections. The total number of intersections is therefore bounded by $n^{2}+n-1-2 c$. Figure 2 shows the curve $A b a b A b$ (here $n=3, c=1$) with 8 self-intersections.

2.2 Thickening a skeleton; proof of Theorem 1.1 (1), (2)

Once the skeleton curve corresponding to w_{S} is constructed, it may be thickened to produce a representative curve for w. The algorithm runs as follows.

The skeleton-thickening algorithm. (See Figure (4) Suppose for explicitness that w starts with $A^{a_{1}}$. The extra $a_{1}-1$ copies of A, inserted after the first one, correspond to segments entering the a-side (the first one at 1) and exiting the A-side (the last one at a point opposite the displaced entrance point of the first skeleton segment); the new segments are parallel. Similarly the extra $b_{1}-1$ segments appear as parallel segments originating and ending near the 2 marks on the b and B-sides; so there are no intersections between these segments and those in the first band. Proceeding in this manner we introduce n non- intersecting bands of $a_{1}-1, b_{1}-1, a_{2}-1, \ldots, b_{n}-1$ parallel segments. New intersections occur between these bands and segments of the skeleton curve. The two outmost bands (corresponding to a_{1} and b_{n}) are each intersected by one of the skeleton segments; the next inner bands (a_{2} and b_{n-1}) each intersect three of the skeleton segments; . . ; the two innermost bands (a_{n} and b_{1}) each intersect ($2 n-1$) of the skeleton segments.

Figure 4: The skeleton curve $A b a b A b$ thickened to represent the linear word $A^{a_{1}} b^{b_{1}} a^{a_{2}} b^{b_{2}} A^{a_{3}} b^{b_{3}}$. The grey bands represent the curve segments corresponding to the extra letters: $a_{1}-1$ copies of A, etc. Notice that the segments from the skeleton curve intersect the a_{1} and b_{3} bands once, the a_{2} and b_{2} bands three times, and the a_{3} and b_{1} bands five times.

Adding these intersections to the bound on the self-intersections of the skeleton curve itself yields

$$
\mathrm{SI}(w) \leq\left(a_{1}+b_{n}-2\right)+3\left(a_{2}+b_{n-1}-2\right)+\cdots+(2 n-1)\left(a_{n}+b_{1}-2\right)+n^{2}+n-1 .
$$

Since $1+3+\cdots+(2 n-1)=n^{2}$ we may repackage this expression as

$$
\mathrm{SI}(w) \leq f\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)-n^{2}+n-1
$$

where we define f by

$$
f\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)=\left(a_{1}+b_{n}\right)+3\left(a_{2}+b_{n-1}\right)+\cdots+(2 n-1)\left(a_{n}+b_{1}\right)
$$

Applying the skeleton-thickening algorithm to the cyclic permutation $\alpha_{1}^{a_{1}} \beta_{1}^{b_{1}} \ldots \alpha_{n}^{a_{n}} \beta_{n}^{b_{n}} \rightarrow$ $\alpha_{2}^{a_{2}} \beta_{2}^{b_{2}} \ldots \alpha_{n}^{a_{n}} \beta_{n}^{b_{n}} \alpha_{1}^{a_{1}} \beta_{1}^{b_{1}}$ yields another curve representing the same word. There are n such permutations, leading to

$$
\begin{equation*}
\mathrm{SI}(w) \leq\left[\min _{i=0, \ldots, n-1} f \circ r^{i}\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)\right]-n^{2}+n-1 \tag{1}
\end{equation*}
$$

where r is the coordinate permutation $\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right) \rightarrow\left(a_{2}, \ldots, a_{n}, a_{1}, b_{2}, \ldots, b_{n}, b_{1}\right)$.
Proposition 2.4. Set $L=a_{1}+\cdots+a_{n}+b_{1}+\cdots+b_{n}$. Then $\min _{i=0, \ldots, n-1} f \circ r^{i}\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right) \leq n L$.
Proof. We write

$$
\begin{aligned}
& f\left(a_{1}, \ldots, b_{n}\right)=\left(a_{1}+b_{n}\right)+3\left(a_{2}+b_{n-1}\right)+\cdots+(2 n-1)\left(a_{n}+b_{1}\right) \\
& f \circ r\left(a_{1}, \ldots, b_{n}\right)=\left(a_{2}+b_{1}\right)+3\left(a_{3}+b_{n}\right)+\cdots+(2 n-1)\left(a_{1}+b_{2}\right)
\end{aligned}
$$

$$
f \circ r^{n-1}\left(a_{1}, \ldots, b_{n}\right)=\left(a_{n}+b_{n-1}\right)+3\left(a_{1}+b_{n-2}\right)+\cdots+(2 n-1)\left(a_{n-1}+b_{n}\right) .
$$

The average of these n functions is $\frac{1}{n}(L+3 L+\cdots(2 n-1) L)=n L$. Since the minimum of n functions must be less than their average, the proposition follows.

Proof of Theorem 1.1, (1) and (2) We work with $w=\left\langle\alpha_{1}^{a_{1}} \beta_{1}^{b_{1}} \ldots \alpha_{n}^{a_{n}} \beta_{n}^{b_{n}}\right\rangle$. We have established that

$$
\mathrm{SI}(w) \leq \min _{i=0, \ldots, n-1} f \circ r^{i}\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)-n^{2}+n-1 .
$$

Using Proposition 2.4,

$$
\mathrm{SI}(w) \leq n L-n^{2}+n-1=-n^{2}+n(L+1)-1
$$

For a given L, this function has its real maximum at $n=(L+1) / 2$. Since each $\alpha \beta$ block contains at least 2 letters, n must be less than or equal to $L / 2$. So a bound on $\mathrm{SI}(w)$ is the value at $n=L / 2(L$ even $)$ or $n=(L-1) / 2(L$ odd $)$:

$$
\operatorname{SI}(w) \leq \begin{cases}L^{2} / 4+L / 2-1 & (L \text { even }) \\ L^{2} / 4+L / 2-7 / 4 & (L \text { odd })\end{cases}
$$

For L even, note (Proposition (2.1) that the skeleton words $w=(a B)^{n}$ and $w=$ $(A b)^{n}$ satisfy $\operatorname{SI}(w)=n^{2}+n-1=L^{2} / 4+L / 2-1$; so the bound for this case is sharp; furthermore since words with $n=L / 2$ must be skeleton words, it follows from Proposition 2.3 these are the only words attaining the bound.

Remark 2.5. For L odd, our numerical experiments (which go up to $L=20$) and the special cases we prove below have $\mathrm{SI}(w) \leq\left(L^{2}-1\right) / 4$, so the function constructed here does not give a sharp bound.

3 Odd length words

3.1 A lower bound for the maximal self-intersection number; proof of Theorem 1.1 (3)

Proof of Theorem 1.1, (3) (The maximum self-intersection number for words of odd length L is at least $\left.\left(L^{2}-1\right) / 4\right)$. We will show that the words of the form $a(a B)^{\frac{L-1}{2}}$ have self-intersection equal to $\left(L^{2}-1\right) / 4$. Consider a representative of w as in Figure 5, where $n=\frac{L-1}{2}$. There is an $n \times n$ grid of intersection points in the center, plus the n additional intersections $p_{2}, \ldots p_{2 n}$, a total of $n^{2}+n=\left(L^{2}-1\right) / 4$. We need to check that none of these intersections spans a bigon (this is the only way [8] that an intersection can be deformed away).

With notation from Figure 5, the only vertices that could be part of a bigon are those from which two segments exit along the same edge, i.e. $p_{2}, p_{4}, \ldots, p_{2 n}$. If we follow the segments from p_{2} through edge A they lead to 1 on edge A and $2 n+1$ on edge b, so no bigon there; the segments from p_{4} through edge A lead to $3,2 n+1$ on edge b, to $2,2 n$ on edge A and then to 1 on edge A and $2 n-1$ on edge b, so no bigon; etc. Finally the segments from $p_{2 n}$ through edge A lead to $2 n-1,2 n+1$ on edge b and eventually to 1 on edge A and 3 on edge b : no bigon.

3.2 Preliminaries for upper-bound calculation

In the analysis of self-intersections of odd length words the exact relation between L (the length of a word) and n (its number of $\alpha \beta$-blocks) becomes more important.

Figure 5: The curve $a(a B)^{n}$ represented in the fundamental domain for the doubly punctured disc.

Proposition 3.1. If a word w has length L and $n \alpha \beta$-blocks, with $L \geq 3 n$, then $\mathrm{SI}(w) \leq \frac{1}{4}\left(L^{2}-1\right)$. Note that by Theorem 1.1 (3), this estimate is sharp.

Proof. As established in the previous section (equation (1) $\operatorname{SI}(w) \leq n L-n^{2}+n-1$.
The inequality $n L-n^{2}+n-1 \leq \frac{1}{4}\left(L^{2}-1\right)$ is equivalent to $L^{2}-4 n L+4 n^{2}-4 n+3 \geq 0$. As a function of L this expression has two roots: $2 n \pm \sqrt{4 n-3}$; as soon as L is past the positive root, the inequality is satisfied.

If $n \geq 3$, then $L \geq 3 n$ implies $L \geq 2 n+\sqrt{4 n-3}$.
If $n=2$ our inequality $\mathrm{SI}(w) \leq n L-n^{2}+n-1$ translates to $\mathrm{SI}(w) \leq 2 L-3$ which is less than $\frac{1}{4}\left(L^{2}-1\right)$ always.

If $n=1$ our inequality becomes $\mathrm{SI}(w) \leq L-1$, which is less than $\frac{1}{4}\left(L^{2}-1\right)$ as soon as $L \geq 3$. The other only possibility is $L=2$, an even length.

3.3 The cases: n prime or n a power of 2 ; proof of Theorem 1.4

Other results for odd-length words require a more detailed analysis of the functions $f \circ r^{i}\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)$, keeping the notation of the previous section.

The proof of the following results is straightforward.
Lemma 3.2. For a fixed $\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)$, set

$$
\begin{gathered}
s_{a}=a_{1}+\cdots+a_{n}, \\
s_{b}=b_{1}+\cdots+b_{n}, \\
t_{i}=f \circ r^{i}\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right) .
\end{gathered}
$$

Then
(i) $t_{i+1}-t_{i}=2 n\left(a_{i}-b_{i}\right)-2\left(s_{a}-s_{b}\right)$
(ii) $t_{0}-t_{n-1}=2 n\left(a_{n}-b_{n}\right)-2\left(s_{a}-s_{b}\right)$.
(iii) $t_{i+j}-t_{i}=2 n\left(a_{i}+\cdots+a_{i+j-1}-b_{i}-\cdots-b_{i+j-1}\right)-2 j\left(s_{a}-s_{b}\right)$.

In particular, if $t_{i}=t_{i+r}$, for some $r>0$, then

$$
n\left(a_{1}-b_{1}+a_{2}-b_{2}+\cdots+a_{i+r-1}-b_{i+r-1}\right)=r\left(s_{a}-s_{b}\right) .
$$

Lemma 3.3. If n is prime and $L<3 n$, then all the numbers t_{0}, \ldots, t_{n-1} are different.
Proof. By Lemma 3.2, if $t_{i}=t_{i+r}$, for some $r>0$, then n must divide r or $s_{a}-s_{b}$. We will show each is impossible. The first cannot happen because $r<n$. As for the second, observe that $s_{a} \geq n$ and $s_{b} \geq n$, and that their sum is $L<3 n$; so $s_{a}-s_{b}=s_{a}+s_{b}-2 s_{b}<3 n-2 n=n$. So n cannot divide $s_{a}-s_{b}$ either.

Lemma 3.4. If n is a power of 2 and L is odd, then all the numbers t_{0}, \ldots, t_{n-1} are different.

Proof. Arguing as in Lemma 3.3: in this case, since $r<n$ it cannot be a multiple of n, so $s_{a}-s_{b}$ must be even. But $s_{a}-s_{b}$ is congruent $\bmod 2$ to $s_{a}+s_{b}=L$, which is odd.

Proposition 3.5. If a word w of odd length L has a number of $\alpha \beta$-blocks which is prime or a power of two then $\mathrm{SI}(w) \leq\left(L^{2}-2\right) / 4$.

Proof. Let n be the number of $\alpha \beta$-blocks in w. By Lemmas 3.3 and 3.4 the numbers t_{0}, \ldots, t_{n-1} are all different; in fact (Lemma (3.2) their differences are all even, so any two of them must be at least 2 units apart. It follows that

$$
\sum_{i=0}^{n-1} t_{i} \geq \min t_{i}+\left(\min t_{i}+2\right)+\cdots+\left(\min t_{i}+2 n-2\right)=n \min t_{i}+n(n-1)
$$

so their average, which we calculated in the proof of Proposition 2.4 to be $n L$, is greater than or equal to $\min t_{i}+n-1$, and so (using equation (1)

$$
\mathrm{SI}(w) \leq \min t_{i}-n^{2}+n-1 \leq n L-n^{2}=n(L-n) \leq L^{2} / 4
$$

since L is odd and $\operatorname{SI}(w)$ is an integer, this means

$$
\mathrm{SI}(w) \leq\left(L^{2}-1\right) / 4
$$

Propositions 3.1 and 3.5 prove Theorem 1.4 .

4 Lower bounds; proof of Theorem 1.5

Definition 4.1. A word in the generators of a surface group and their inverses is positive if no generator occurs along with its inverse. Note that a positive word is automatically cyclically reduced.

Notation 4.2. If w is a word in the alphabet $\{a, A, b, B\}$, we denote by $\alpha(w)$ (resp. $\beta(w))$ the total number of occurrences of a and A (resp. b and B).

Proposition 4.3. For any reduced cyclic word w in the alphabet $\{a, A, b, B\}$ there is a positive cyclic word w^{\prime} of the same length with $\alpha\left(w^{\prime}\right)=\alpha(w), \beta\left(w^{\prime}\right)=\beta(w)$ and $\mathrm{SI}\left(w^{\prime}\right) \leq \mathrm{SI}(w)$.

Proof. We show how to change w into a word written with only a and b while controlling the self-intersection number. If all the letters in w are capitals, take $w^{\prime}=$ w^{-1}. Otherwise, look in w for a maximal (cyclically) connected string of (one or more) capital letters. The letters at the ends of this string must be one of the pairs $(A, A),(A, B),(B, A),(B, B)$. In the case (B, B) (the other three cases admit a similar analysis), focus on that string and write

$$
w=\left\langle x a^{a_{1}} B^{b_{1}} A^{a_{2}} B^{b_{2}} \ldots A^{a_{i}} B^{b_{i}} a^{a_{i+1}}\right\rangle
$$

where x stands for the rest of the word.
Consider a representative of w with minimal self-intersection. In this representative consider the arcs corresponding to the segments $a B$ (joining the last a of the $a^{a_{1}}$-block to the first B of $B^{b_{1}}$) and $B a$ (joining the last B in $B^{b_{i}}$ to the first a in $a^{a_{i+1}}$). These two arcs intersect in a point p. Perform surgery around p in the following way: remove these two segments, and replace them with an $a b$ and a $b a$ respectively, using the same endpoints. This surgery links the arc $a^{a_{i+1}} x a^{a_{1}}$ to the $\operatorname{arc} B^{b_{1}} A^{a_{2}} B^{b_{2}} \ldots A^{a_{i}} B^{b_{i}}$ traversed in the opposite direction, i.e. gives a curve corresponding to the word

$$
w^{\prime}=\left\langle a^{a_{i+1}} x a^{a_{1}}\left(B^{b_{1}} A^{a_{2}} B^{b_{2}} \ldots A^{a_{i}} B^{b_{i}}\right)^{-1}\right\rangle .
$$

This word has the same α and β values as w, has lost at least one self-intersection, and has strictly fewer upper-case letters than w. The process may be repeated until all upper-case letters have been eliminated.

Proposition 4.4. In any surface S with boundary, Let w be a cyclically reduced word in the generators of $\pi_{1} S$ which does not admit a simple representative curve. Then a linear word w representing w (notation from Section (2) can be written as the concatenation $\mathrm{w}=\mathrm{u} \cdot \mathrm{v}$ of two linear words, in such a way that the associated cyclic words satisfy $\mathrm{SI}(u)+\mathrm{SI}(v)+1 \leq \mathrm{SI}(w)$. (Note that u and v are not necessarily cyclically reduced).

Proof. Consider a minimal representative of w drawn in the fundamental domain. It must have self-intersections; let p be one of them. Let $\mathrm{w}=x_{1} x_{2} \ldots x_{L}$, (where $x_{i} \in$

Figure 6: Splitting w as u•v does not add any new intersections, while the intersection corresponding to p is lost. This figure shows $\mathbf{w}=B a b b a$ (I) yielding $\mathbf{u}=a B$ and $\mathrm{v}=b b a$ (II).
$\{a, A, b, B\})$, be a linear repsesentative for w, and suppose that $x_{i} x_{i+1}$ and $x_{j} x_{j+1}$, with $i<j$, are the two segments intersecting at p, (see Figure 6, where $x_{i} x_{i+1}=B a$ and $x_{j} x_{j+1}=b a$). Set $\mathbf{u}=x_{j+1} \ldots x_{L} x_{1} x_{2} \ldots x_{i}$ and $\mathbf{v}=x_{i+1} \ldots x_{j}$. (In case $i+1=j, \mathrm{v}$ is a single-letter word). The cyclic words u and v together contain all the segments of w, except that $x_{i} x_{i+1}$ and $x_{j} x_{j+1}$ have been replaced by $x_{i} x_{j+1}$ and $x_{j} x_{i+1}$.

Furthermore, there is a one-to-one correspondence between the intersection points on $x_{i} x_{j+1} \cup x_{j} x_{i+1}$ and some subset of the intersection points on $x_{i} x_{i+1} \cup x_{j} x_{j+1}$. In fact, labeling the endpoints of the segment corresponding to $x_{i} x_{i+1}$ (resp. $x_{j} x_{j+1}$) as Q_{i} and q_{i+1} (resp. Q_{j} and q_{j+1}), as in Figure 6, observe that the segment corresponding to $x_{i} x_{j+1}$ and the broken arc $Q_{i} p q_{j+1}$ have the same endpoints, so any segment intersecting the first must intersect the second and therefore intersect part of $x_{i} x_{i+1} \cup x_{j} x_{j+1}$; similarly for $x_{j} x_{i+1}$ and $Q_{j} p q_{i+1}$ (compare Figure (6). Therefore the change from w to $u \cup v$ does not add any new intersections, while the intersection corresponding to p is lost. Hence $\mathrm{SI}(u)+\mathrm{SI}(v)+1 \leq \mathrm{SI}(w)$.

The next lemma is needed in the proof of Proposition 4.6.
Lemma 4.5. In the doubly punctured plane P, if a reduced, non-empty word has a simple representative curve, then that curve is parallel to a boundary component. Thus with the notation of Figure 1 the only such words are $a, b, a b, A, B$ and $A B$.

Proof. Let γ be a simple, essential curve in P. Since P is planar, $P \backslash \gamma$ has two connected components, P_{1} and P_{2}. Since γ is essential, neither P_{1} nor P_{2} is contractible, hence their Euler characteristics satisfy $\chi\left(P_{1}\right) \leq 0$ and $\chi\left(P_{2}\right) \leq 0$; since $\chi(P)=-1$ and $\chi(P)=\chi\left(P_{1}\right)+\chi\left(P_{2}\right)$ it follows that either $\chi\left(P_{1}\right)=0$ or $\chi\left(P_{2}\right)=0$. Hence, one of the
two connected components is an annulus, which implies that γ is parallel to a boundary component, as desired.

Proposition 4.6. If w is a positive cyclic word representing a free homotopy class in the doubly punctured plane then $\mathrm{SI}(w) \geq \alpha(w)-1$ and $\mathrm{SI}(w) \geq \beta(w)-1$.

Proof. By Lemma 4.5 the only words corresponding to simple curves are $a, b, a b$ and their inverses; for these, the statement holds. In particular it holds for all words of length one. Suppose w is any other positive word; it has length L strictly greater than 1 . We may suppose by induction that the statement holds for all words of length less than L. By Proposition 4.4, since the curve associated to w is non-simple, the word w has a linear representative w which can be split as $u \cdot v$ so that the associated cyclic words satisfy $\mathrm{SI}(w) \geq \mathrm{SI}(u)+\mathrm{SI}(v)+1$. Note that u and v have length strictly less than L; furthermore since w is positive, so are u and v. Therefore by the induction hypothesis $\mathrm{SI}(u)+\mathrm{SI}(v)+1 \geq \alpha(u)-1+\alpha(v)-1+1$, and $\operatorname{so} \mathrm{SI}(w) \geq \alpha(u)+\alpha(v)-1=\alpha(w)-1$. The β inequality is proved in the same way.

Proof of Theorem 1.5 By Proposition 4.3 there is a positive word w^{\prime} of length L such that $\alpha\left(w^{\prime}\right)=\alpha(w), \beta\left(w^{\prime}\right)=\beta(w)$ and $\mathrm{SI}(w) \geq \mathrm{SI}\left(w^{\prime}\right)$. Then Proposition 4.6 yields $\mathrm{SI}\left(w^{\prime}\right) \geq \max \{\alpha(w), \beta(w)\}-1$. Since $\alpha(w)+\beta(w)=L$ it follows that $\mathrm{SI}(w) \geq L / 2-1$ if L is even and $\operatorname{SI}(w) \geq(L+1) / 2-1=(L-1) / 2$ if L is odd.

References

[1] A. Basmajian, The stable neighborhood theorem and lengths of closed geodesics, Proc. Amer. Math. Soc. 119(1) (1993) 217-224.
[2] J. Birman and C. Series, An algorithm for simple curves on surfaces, J. London Math. Soc. (2), 29 (1984), 331-342.
[3] M. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, SpringerVerlag, Berlin Heidelberg New York, 1991.
[4] P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Birkhauser Boston, 1992.
[5] http://www.math.sunysb.edu/ moira/CLB/CLB09/
[6] M. Chas and A. Phillips, Self-intersection of curves on the punctured torus, to appear in Experimental Mathematics.
[7] M. Cohen and M. Lustig, Paths of geodesics and geometric intersection numbers I, Combinatorial Group Theory and Topology, Alta, Utah, 1984, Ann. of Math. Studies 111, Princeton Univ. Press, Princeton, (1987), 479-500.
[8] J. Hass and P. Scott, Intersections of curves on surfaces, Israel J. Math. 51 (1985) 90-120.
[9] S. Lalley, Self-intersections of closed geodesics on a negatively curved surface: statistical regularities, Convergence in ergodic theory and probability (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., 5, de Gruyter, Berlin, 1996, pp. 263-272. MR1412610 (97h:58103)
[10] G. Margulis, Applications of ergodic theory to the investigation of manifolds of negative curvature, Funct. Anal. and Appl. 3 (1983) 573-591.
[11] M. Mirzakhani, Growth of the number of simple closed geodesics on a hyperbolic surface, Ann. of Math. 168 (2008) 97-125.
[12] I. Rivin, Simple curves on surfaces, Geom. Dedicata 87 (2001), 345-360.
[13] I. Rivin, Geodesics with one self-intersection and other stories, arXiv: 0901.2543[math.GT]

Department of Mathematics, Stony Brook University, Stony Brook NY 11794

E-mail: moira@math.sunysb.edu, tony@math.sunysb.edu

[^0]: Key words and phrases: doubly-punctured plane, thrice-punctured sphere, pair of pants, free homotopy classes of curves, self-intersection.
 2000 Mathematics Subject Classification: Primary 57M05, Secondary 57N50,30F99.

