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Self-intersection numbers of curves

in the doubly-punctured plane
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Abstract We address the problem of computing bounds for the self-intersection
number (the minimum number of self-intersection points) of members of a free
homotopy class of curves in the doubly-punctured plane as a function of their
combinatorial length L; this is the number of letters required for a minimal
description of the class in terms of the standard generators of the fundamental
group and their inverses. We prove that the self-intersection number is bounded
above by L2/4 + L/2− 1, and that when L is even, this bound is sharp; in that
case there are exactly four distinct classes attaining that bound. When L is
odd, we establish a smaller, conjectured upper bound ((L2 − 1)/4)) in certain
cases; and there we show it is sharp. Furthermore, for the doubly-punctured
plane, these self-intersection numbers are bounded below, by L/2−1 if L is even,
(L− 1)/2 if L is odd; these bounds are sharp.

1 Introduction

By the doubly-punctured plane we refer to the compact surface with boundary (fa-
miliarly known as the “pair of pants”) obtained by removing, from a closed two-
dimensional disc, two disjoint open discs. This work extends to that surface the research
reported in [6] for the punctured torus. Like the punctured torus, the doubly-punctured
plane has the homotopy type of a figure-eight. Its fundamental group is free on two
generators: once these are chosen, say a, b, a free homotopy class of curves on the
surface can be uniquely represented as a reduced cyclic word in the symbols a, b, A,B
(where A stands for a−1 and B for b−1). A cyclic word w is an equivalence class of
words related by a cyclic permutation of their letters; we will write w = 〈r1r2 . . . rn〉
where the ri are the letters of the word, and 〈r1r2 . . . rn〉 = 〈r2 . . . rnr1〉, etc. Reduced
means that the cyclic word contains no juxtapositions of a with A, or b with B. The

Key words and phrases: doubly-punctured plane, thrice-punctured sphere, pair of pants, free homo-
topy classes of curves, self-intersection.
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length (with respect to the generating set (a, b)) of a free homotopy class of curves is
the number of letters occurring in the corresponding reduced cyclic word.

This work studies the relation between length and the self-intersection number of
a free homotopy class of curves: the smallest number of self-intersections among all
general-position curves in the class. (General position in this context means as usual
that there are no tangencies or multiple intersections). The self-intersection number is
a property of the free homotopy class and hence of the corresponding reduced cyclic
word w; we denote it by SI(w). Note that a word and its inverse have the same
self-intersection number.

Theorem 1.1. (1) The self-intersection number for a reduced cyclic word of length L
on the doubly-punctured plane is bounded above by L2/4 + L/2− 1.

(2) If L is even, this bound is sharp: for L ≥ 4 and even, the cyclic words realizing
the maximal self-intersection number are (see Figure 1) (aB)L/2 and (Ab)L/2. For
L = 2, they are aa, AA, bb, BB, aB and Ab.

(3) If L is odd, the maximal self-intersection number of words of length L is at least
(L2 − 1)/4.

a b a b

Figure 1: Left: curves of the form 〈aBaBaB〉 have maximum self-intersection number
L2/4 +L/2− 1 for their length (Theorem 1.1). Right: curves of the form 〈aaBaBaB〉
have self-intersection number (L2 − 1)/4. We conjecture (Conjecture 1.2) this is max-
imal, and prove this conjecture in certain cases (Theorem 1.4).

Conjecture 1.2. The maximal self-intersection number for a reduced cyclic word of
odd length L = 2k+1 on the doubly-punctured plane is (L2−1)/4; the words realizing
the maximum have one of the four forms 〈(aB)kB〉, 〈a(aB)k〉, 〈(Ab)kb〉, 〈A(Ab)k〉.

Definition 1.3. Any reduced cyclic word is either a pure power or may be written in
the form 〈αa1

1 βb1
1 . . . αan

n βbn
n 〉, where αi ∈ {a, A}, βi ∈ {b, B} , all ai and bi are positive,

and
∑n

1 (ai+bi) = L, the length of the word. We will refer to each αai
i β

bi
i as an αβ-block,

and to n as the word’s number of αβ-blocks.
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Theorem 1.4. On the doubly-punctured plane, consider a reduced cyclic word w of
odd length L with n αβ-blocks. If L > 3n, or n is prime, or n is a power of 2, then the
self-intersection number of w satisfies SI(w) ≤ L2

−1
4

. This bound is sharp.

The doubly punctured plane has the property that self-intersection numbers of
words are bounded below.

Theorem 1.5. On the doubly punctured plane, curves in the free homotopy class rep-
resented by a reduced cyclic word of length L have at least L/2− 1 self-intersections if
L is even and (L − 1)/2 self-intersections if L is odd. These bounds are achieved by

(ab)
L

2 and (AB)
L

2 if L is even and by the four words a(ab)
L−1

2 , etc. when L is odd.

Corollary 1.6. A curve with minimal self-intersection number k has combinatorial
length at most 2k + 2. There are therefore only finitely many free homotopy classes
with minimal self-intersection number k.

Remark 1.7. A surface of negative Euler characteristic which is not the doubly punc-
tured plane has infinitely many homotopy classes of simple closed curves [11]. Since
the (k + 1)st power of a simple closed curve kas self-intersection number k, it follows
that for any k there are infinitely many distinct homotopy classes of curves with self-
intersection number k. (A more elaborate argument using the mapping class group
constructs, for any k, infinitely many distinct primitive classes (not a proper power of
another class) with self-intersection number k). So the doubly punctured plane is the
unique surface of negative Euler characteristic satisfying Corollary 1.6.

The authors have benefited from discussions with Dennis Sullivan, and are very
grateful to Igor Rivin who contributed an essential element to the proof of Theorem 1.5.
Additionally, they have profited from use of Chris Arettines’ JAVA program, which
draws minimally self-intersecting representatives of free homotopy classes of curves in
surfaces. The program is currently available at

http://www.math.sunysb.edu/∼moira/applets/chrisApplet.html

1.1 Questions and related results

The doubly punctured plane admits a hyperbolic metric making its boundary geodesic.
An elementary argument shows that for curves on that surface, hyperbolic and combi-
natorial lengths are quasi-isometric. Some of our combinatorial results can be related
in this way to statements about intersection numbers and hyperbolic length.

A free homotopy class of combinatorial length L in a surface with boundary can be
represented by L chords in a fundamental polygon. Hence, the maximal self-intersection
number of a cyclic reduced word of length L is bounded above by L(L−1)

2
.

We prove in [6] that for the punctured torus the maximal self-intersection number
SImax(L) of a free homotopy class of combinatorial length L is equal to (L2−1)/4 if L is
even and to (L−1)(L−3)/4 if L is odd. This implies that the limit of SImax(L)/L

2 is 1
4
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as L approaches infinity. (Compare [9]). The same limit holds for the doubly punctured
plane (Theorem 1.1). On the other hand, according to our (limited) experiments, there
are no analogous polynomials for more general surfaces; but it seems reasonable to ask:

Question 1.8. Consider closed curves on a surface S with boundary. Let SImax(L) be
the maximum self-intersection number for all curves of combinatorial length L. Does
SImax(L)/L

2 converge? And if so, to what limit? Does this limit approach 1
2
as the

genus of the surface approaches infinity?

Question 1.9. Consider closed curves on a hyperbolic surface S (possibly closed). Let
SImax(ℓ) be the maximum self-intersection number for any curve of hyperbolic length
at most ℓ. Does SImax(ℓ)/ℓ

2 converge? And if so, to what limit?

Basmajian [1] proved for a closed, hyperbolic surface S that there exists an increas-
ing sequence Mk (for k = 1, 2, 3, ...) going to infinity so that if w is a closed geodesic
with self-intersection number k, then its geometric length is larger than Mk . Thus
the length of a closed geodesic gets arbitrarily large as its self-intersection gets large.
For the doubly punctured plane, in terms of the combinatorial length, we calculate
Mk =

√
5 + 4k − 1.

2 A linear model

In this section we will need to distinguish between a cyclically reduced linear word
w in the generators and their inverses, and the the associated reduced cyclic word w.
We introduce an algorithm for constructing from w a representative curve for w. An
upper bound for the self-intersection numbers of these representatives may be easily
estimated; taking the minimum of this bound over cyclic permutations of αβ-blocks
will yield a useful upper bound for SI(w).

2.1 Skeleton words

Given a cyclically reduced word w = 〈αa1
1 βb1

1 . . . αan
n βbn

n 〉, where αi = a or A, βi =
b or B and all ai, bi > 0, the corresponding skeleton word is wS = 〈α1β1 . . . αnβn〉, a
word of length 2n.

We now describe a systematic way for drawing a representative curve for wS starting
from one of its linear forms wS, and for thickening this curve to a representative for w.

The skeleton-construction algorithm: (See Figures 2 and 3) Start by marking
off n points along each of the edges of the fundamental domain; corresponding points
on the a, A sides are numbered 1, 3, 5, . . . , 2n− 1 starting from their common corner;
and similarly corresponding points on the b, B sides are numbered 2n, . . . , 6, 4, 2, the
numbers decreasing away from the common corner.
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If the first letter in wS is a, draw a curve segment entering the a-side at 1, and
one exiting the A-side at 1 (vice-versa if the first letter is A). That segment is then
extended to enter the b-side at 2 and exit the B-side at 2 if the next letter in wS is b;
vice-versa if it is B. And so forth until the curve segment exiting the b (or B)-side at
2n joins up with the initial curve segment drawn.

We will refer to a segment of type ab, ba, AB,BA as a corner segment, and one of
type aB,Ab, bA,Ba as a transversal. Note that (as above) a skeleton word has even
length 2n and therefore has 2n segments (counting the bridging segment made up of
the last letter and the first). The number of transversals must also be even, since if
they are counted consecutively they go from lower-case to upper-case or vice-versa,
and the sequence (upper, lower, ... ) must end up where it starts. It follows that the
number of corners is also even.

135246

135246

A b a b A b

a

Ab

B

Figure 2: The skeleton curve AbabAb.

Proposition 2.1. The self-intersection number of the representative of (Ab)n or (aB)n

given by the curve-construction algorithm equals n2 + n− 1.

Proof. Consider (Ab)n; see Figure 3, left. This curve has only transversals. There are n
parallel segments of type Ab; they join 1, 3, . . . , (2n−1) on the a-side to 2, 4, . . . , 2n on
the b-side. There are n−1 parallel segments of type bA, which join 2, 4, . . . , 2n−2 on the
B-side to 3, 5, . . . 2n−1 on the A-side. Each of these intersects all n of the Ab segments.
Finally the bridging bA segment joins 2n on the B-side to 1 on the A-side. This segment
begins to the left of all the other segments and ends up on their right: it intersects all
2n− 1 of them. The total number of intersections is n(n− 1) + 2n− 1 = n2 + n− 1.
A symmetrical argument handles (aB)n.

Proposition 2.2. The self-intersection number of the representative of (ab)n given by
the curve-construction algorithm equals (n− 1)2.

5



Proof. (See Figure 3, right) This curve has only corners. There are n segments of
type ab, joining 1, 3, . . . , 2n− 1 on the A-side to 2, 4, . . . , 2n on the b-side. Since their
endpoints interleave, each of these curves intersects all the others. There are n − 1
segments of type ba, joining 2, 4, . . . , 2n − 2 on the B-side to 3, 5, . . . 2n − 1 on the
a-side. Again, each of these curves intersects all the others. Finally the bridging ba
segment joining 2n to 1 spans both endpoints of all the others and so intersects none of
them. The total number of intersections is 1

2
n(n− 1) + 1

2
(n− 1)(n− 2) = (n− 1)2.

135246

135246

A b A b A b

a

Ab

B
135246

135246

a b a b a b

a

Ab

B

Figure 3: The skeleton curves ababab and AbAbAb.

Proposition 2.3. Let w be a skeleton word of length 2n. The number of corner seg-
ments in w is even, as remarked above; write it as 2c. Then the self-intersection number
of w is bounded above by n2 + n− 1− 2c.

Proof. Using Propositions 2.1 and 2.2 we can assume that w has both corner-segments
and transversals. We may then choose a linear representative w with the property that
the bridging segment between the end of the word and the beginning is a transversal.
Of the 2c corners, c will be on top (those of type AB or ba) and c on the bottom
(types ab and BA). An ab or AB corner segment joins a point numbered 2j − 1 to a
point numbered 2j on the same side, top or bottom, as 2j − 1. It encloses segment
endpoints 2j+1, 2j+3, . . . , 2n− 1, 2, 4, . . . 2j− 2, a total of n− 1 endpoints; similarly,
a ba or BA segment encloses n− 2 endpoints. So there are at most 2c(n− 1)− c(c− 1)
intersections involving corners, correcting for same-side corners having been counted
twice. The 2n − 2c transversals intersect each other just as in the pure-transversal
case, producing (n− c)2 + (n− c)− 1 intersections. The total number of intersections
is therefore bounded by n2 + n − 1 − 2c. Figure 2 shows the curve AbabAb (here
n = 3, c = 1) with 8 self-intersections.
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2.2 Thickening a skeleton; proof of Theorem 1.1 (1), (2)

Once the skeleton curve corresponding to wS is constructed, it may be thickened to
produce a representative curve for w. The algorithm runs as follows.

The skeleton-thickening algorithm. (See Figure 4) Suppose for explicitness that
w starts with Aa1 . The extra a1−1 copies of A, inserted after the first one, correspond
to segments entering the a-side (the first one at 1) and exiting the A-side (the last
one at a point opposite the displaced entrance point of the first skeleton segment);
the new segments are parallel. Similarly the extra b1 − 1 segments appear as parallel
segments originating and ending near the 2 marks on the b and B-sides; so there are
no intersections between these segments and those in the first band. Proceeding in this
manner we introduce n non- intersecting bands of a1−1, b1−1, a2−1, ..., bn−1 parallel
segments. New intersections occur between these bands and segments of the skeleton
curve. The two outmost bands (corresponding to a1 and bn) are each intersected by
one of the skeleton segments; the next inner bands (a2 and bn−1) each intersect three of
the skeleton segments; . . . ; the two innermost bands (an and b1) each intersect (2n−1)
of the skeleton segments.

A  b  a  b  A  b
a2 a3a1 b1 b2 b3

a

Ab

B

a
1
-1

b
1
-1 a

2
-1

b
2
-1

a
3
-1

b
3
-1

135246

135246

Figure 4: The skeleton curve AbabAb thickened to represent the linear word
Aa1bb1aa2bb2Aa3bb3 . The grey bands represent the curve segments corresponding to
the extra letters: a1 − 1 copies of A, etc. Notice that the segments from the skeleton
curve intersect the a1 and b3 bands once, the a2 and b2 bands three times, and the a3
and b1 bands five times.

Adding these intersections to the bound on the self-intersections of the skeleton
curve itself yields

SI(w) ≤ (a1 + bn − 2) + 3(a2 + bn−1 − 2) + · · ·+ (2n− 1)(an + b1 − 2) + n2 + n− 1.
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Since 1 + 3 + · · ·+ (2n− 1) = n2 we may repackage this expression as

SI(w) ≤ f(a1, . . . , an, b1, . . . , bn)− n2 + n− 1,

where we define f by

f(a1, . . . , an, b1, . . . , bn) = (a1 + bn) + 3(a2 + bn−1) + · · ·+ (2n− 1)(an + b1).

Applying the skeleton-thickening algorithm to the cyclic permutation αa1
1 βb1

1 . . . αan
n βbn

n →
αa2
2 βb2

2 . . . αan
n βbn

n αa1
1 βb1

1 yields another curve representing the same word. There are n
such permutations, leading to

(1) SI(w) ≤ [ min
i=0,...,n−1

f ◦ ri(a1, . . . , an, b1, . . . , bn)]− n2 + n− 1,

where r is the coordinate permutation (a1, . . . , an, b1, . . . , bn) → (a2, . . . , an, a1, b2, . . . , bn, b1).

Proposition 2.4. Set L = a1+· · ·+an+b1+· · ·+bn. Then min
i=0,...,n−1

f ◦ ri(a1, . . . , an, b1, . . . , bn) ≤ nL.

Proof. We write

f(a1, . . . , bn) = (a1 + bn) + 3(a2 + bn−1) + · · ·+ (2n− 1)(an + b1)

f ◦ r(a1, . . . , bn) = (a2 + b1) + 3(a3 + bn) + · · ·+ (2n− 1)(a1 + b2)

.

.

.

f ◦ rn−1(a1, . . . , bn) = (an + bn−1) + 3(a1 + bn−2) + · · ·+ (2n− 1)(an−1 + bn).

The average of these n functions is 1
n
(L + 3L + · · · (2n − 1)L) = nL. Since the

minimum of n functions must be less than their average, the proposition follows.

Proof of Theorem 1.1, (1) and (2) We work with w = 〈αa1
1 βb1

1 . . . αan
n βbn

n 〉. We have
established that

SI(w) ≤ min
i=0,...,n−1

f ◦ ri(a1, . . . , an, b1, . . . , bn)− n2 + n− 1.

Using Proposition 2.4,

SI(w) ≤ nL− n2 + n− 1 = −n2 + n(L+ 1)− 1.

8



For a given L, this function has its real maximum at n = (L + 1)/2. Since each αβ-
block contains at least 2 letters, n must be less than or equal to L/2. So a bound on
SI(w) is the value at n = L/2 (L even) or n = (L− 1)/2 (L odd):

SI(w) ≤
{

L2/4 + L/2− 1 (L even)
L2/4 + L/2− 7/4 (L odd).

For L even, note (Proposition 2.1) that the skeleton words w = (aB)n and w =
(Ab)n satisfy SI(w) = n2 + n − 1 = L2/4 + L/2 − 1; so the bound for this case is
sharp; furthermore since words with n = L/2 must be skeleton words, it follows from
Proposition 2.3 these are the only words attaining the bound.

Remark 2.5. For L odd, our numerical experiments (which go up to L = 20) and the
special cases we prove below have SI(w) ≤ (L2−1)/4, so the function constructed here
does not give a sharp bound.

3 Odd length words

3.1 A lower bound for the maximal self-intersection number;

proof of Theorem 1.1 (3)

Proof of Theorem 1.1, (3) (The maximum self-intersection number for words of odd

length L is at least (L2 − 1)/4). We will show that the words of the form a(aB)
L−1

2

have self-intersection equal to (L2−1)/4. Consider a representative of w as in Figure 5,
where n = L−1

2
. There is an n× n grid of intersection points in the center, plus the n

additional intersections p2, . . . p2n, a total of n
2+n = (L2−1)/4. We need to check that

none of these intersections spans a bigon (this is the only way [8] that an intersection
can be deformed away).

With notation from Figure 5, the only vertices that could be part of a bigon are
those from which two segments exit along the same edge, i.e. p2, p4, . . . , p2n . If we
follow the segments from p2 through edge A they lead to 1 on edge A and 2n + 1 on
edge b, so no bigon there; the segments from p4 through edge A lead to 3, 2n + 1 on
edge b, to 2, 2n on edge A and then to 1 on edge A and 2n− 1 on edge b, so no bigon;
etc. Finally the segments from p2n through edge A lead to 2n−1, 2n+1 on edge b and
eventually to 1 on edge A and 3 on edge b: no bigon.

3.2 Preliminaries for upper-bound calculation

In the analysis of self-intersections of odd length words the exact relation between L
(the length of a word) and n (its number of αβ-blocks) becomes more important.
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a

b

1

1

2462n

2n2n+ 1

2n+ 1 2n-1

2n-1 2n-2

2

4

3

3

5

5

. . . 

. . . 

. . . 

. . . 

2n-2
p

2n
p

2
p

4
p

Figure 5: The curve a(aB)n represented in the fundamental domain for the doubly
punctured disc.

Proposition 3.1. If a word w has length L and n αβ-blocks, with L ≥ 3n, then
SI(w) ≤ 1

4
(L2 − 1). Note that by Theorem 1.1 (3), this estimate is sharp.

Proof. As established in the previous section (equation 1) SI(w) ≤ nL− n2 + n− 1.

The inequality nL−n2+n−1 ≤ 1
4
(L2−1) is equivalent to L2−4nL+4n2−4n+3 ≥ 0.

As a function of L this expression has two roots: 2n ±
√
4n− 3; as soon as L is past

the positive root, the inequality is satisfied.

If n ≥ 3, then L ≥ 3n implies L ≥ 2n+
√
4n− 3.

If n = 2 our inequality SI(w) ≤ nL−n2+n− 1 translates to SI(w) ≤ 2L− 3 which
is less than 1

4
(L2 − 1) always.

If n = 1 our inequality becomes SI(w) ≤ L−1, which is less than 1
4
(L2−1) as soon

as L ≥ 3. The other only possibility is L = 2, an even length.

3.3 The cases: n prime or n a power of 2; proof of Theorem 1.4

Other results for odd-length words require a more detailed analysis of the functions
f ◦ ri(a1, . . . , an, b1, . . . , bn), keeping the notation of the previous section.

The proof of the following results is straightforward.

Lemma 3.2. For a fixed (a1, . . . , an, b1, . . . , bn), set

sa = a1 + · · ·+ an,

sb = b1 + · · ·+ bn,

ti = f ◦ ri(a1, . . . , an, b1, . . . , bn).
Then

10



(i) ti+1 − ti = 2n(ai − bi)− 2(sa − sb)

(ii) t0 − tn−1 = 2n(an − bn)− 2(sa − sb).

(iii) ti+j − ti = 2n(ai + · · ·+ ai+j−1 − bi − · · · − bi+j−1)− 2j(sa − sb).

In particular, if ti = ti+r, for some r > 0, then

n(a1 − b1 + a2 − b2 + · · ·+ ai+r−1 − bi+r−1) = r(sa − sb).

Lemma 3.3. If n is prime and L < 3n, then all the numbers t0, . . . , tn−1 are different.

Proof. By Lemma 3.2, if ti = ti+r, for some r > 0, then n must divide r or sa − sb.
We will show each is impossible. The first cannot happen because r < n. As for
the second, observe that sa ≥ n and sb ≥ n, and that their sum is L < 3n; so
sa − sb = sa + sb − 2sb < 3n− 2n = n. So n cannot divide sa − sb either.

Lemma 3.4. If n is a power of 2 and L is odd, then all the numbers t0, . . . , tn−1 are
different.

Proof. Arguing as in Lemma 3.3: in this case, since r < n it cannot be a multiple of
n, so sa − sb must be even. But sa − sb is congruent mod 2 to sa + sb = L, which is
odd.

Proposition 3.5. If a word w of odd length L has a number of αβ-blocks which is
prime or a power of two then SI(w) ≤ (L2 − 2)/4.

Proof. Let n be the number of αβ-blocks in w. By Lemmas 3.3 and 3.4 the numbers
t0, . . . , tn−1 are all different; in fact (Lemma 3.2) their differences are all even, so any
two of them must be at least 2 units apart. It follows that

n−1
∑

i=0

ti ≥ min ti + (min ti + 2) + · · ·+ (min ti + 2n− 2) = nmin ti + n(n− 1)

so their average, which we calculated in the proof of Proposition 2.4 to be nL, is greater
than or equal to min ti + n− 1, and so (using equation 1)

SI(w) ≤ min ti − n2 + n− 1 ≤ nL− n2 = n(L− n) ≤ L2/4;

since L is odd and SI(w) is an integer, this means

SI(w) ≤ (L2 − 1)/4.

Propositions 3.1 and 3.5 prove Theorem 1.4.
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4 Lower bounds; proof of Theorem 1.5

Definition 4.1. A word in the generators of a surface group and their inverses is
positive if no generator occurs along with its inverse. Note that a positive word is
automatically cyclically reduced.

Notation 4.2. If w is a word in the alphabet {a, A, b, B}, we denote by α(w) (resp.
β(w)) the total number of occurrences of a and A (resp. b and B).

Proposition 4.3. For any reduced cyclic word w in the alphabet {a, A, b, B} there is
a positive cyclic word w′ of the same length with α(w′) = α(w), β(w′) = β(w) and
SI(w′) ≤ SI(w).

Proof. We show how to change w into a word written with only a and b while con-
trolling the self-intersection number. If all the letters in w are capitals, take w′ =
w−1. Otherwise, look in w for a maximal (cyclically) connected string of (one or
more) capital letters. The letters at the ends of this string must be one of the pairs
(A,A), (A,B), (B,A), (B,B). In the case (B,B) (the other three cases admit a similar
analysis), focus on that string and write

w = 〈xaa1Bb1Aa2Bb2 . . . AaiBbiaai+1〉

where x stands for the rest of the word.

Consider a representative of w with minimal self-intersection. In this representative
consider the arcs corresponding to the segments aB (joining the last a of the aa1-block
to the first B of Bb1) and Ba (joining the last B in Bbi to the first a in aai+1). These
two arcs intersect in a point p. Perform surgery around p in the following way: remove
these two segments, and replace them with an ab and a ba respectively, using the
same endpoints. This surgery links the arc aai+1xaa1 to the arc Bb1Aa2Bb2 . . . AaiBbi

traversed in the opposite direction, i.e. gives a curve corresponding to the word

w′ = 〈aai+1xaa1(Bb1Aa2Bb2 . . . AaiBbi)−1〉.

This word has the same α and β values as w, has lost at least one self-intersection,
and has strictly fewer upper-case letters than w. The process may be repeated until
all upper-case letters have been eliminated.

Proposition 4.4. In any surface S with boundary, Let w be a cyclically reduced word in
the generators of π1S which does not admit a simple representative curve. Then a linear
word w representing w (notation from Section 2) can be written as the concatenation
w = u · v of two linear words, in such a way that the associated cyclic words satisfy
SI(u) + SI(v) + 1 ≤ SI(w). (Note that u and v are not necessarily cyclically reduced).

Proof. Consider a minimal representative of w drawn in the fundamental domain. It
must have self-intersections; let p be one of them. Let w = x1x2 . . . xL, (where xi ∈
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Figure 6: Splitting w as u · v does not add any new intersections, while the intersection
corresponding to p is lost. This figure shows w = Babba (I) yielding u = aB and
v = bba (II).

{a, A, b, B}), be a linear repsesentative for w, and suppose that xixi+1 and xjxj+1, with
i < j, are the two segments intersecting at p, (see Figure 6, where xixi+1 = Ba and
xjxj+1 = ba). Set u = xj+1 . . . xLx1x2 . . . xi and v = xi+1 . . . xj . (In case i+ 1 = j, v is
a single-letter word). The cyclic words u and v together contain all the segments of w,
except that xixi+1 and xjxj+1 have been replaced by xixj+1 and xjxi+1.

Furthermore, there is a one-to-one correspondence between the intersection points
on xixj+1 ∪ xjxi+1 and some subset of the intersection points on xixi+1 ∪ xjxj+1. In
fact, labeling the endpoints of the segment corresponding to xixi+1 (resp. xjxj+1) as Qi

and qi+1 (resp. Qj and qj+1), as in Figure 6, observe that the segment corresponding to
xixj+1 and the broken arc Qipqj+1 have the same endpoints, so any segment intersecting
the first must intersect the second and therefore intersect part of xixi+1 ∪ xjxj+1;
similarly for xjxi+1 and Qjpqi+1 (compare Figure 6). Therefore the change from w to
u ∪ v does not add any new intersections, while the intersection corresponding to p is
lost. Hence SI(u) + SI(v) + 1 ≤ SI(w).

The next lemma is needed in the proof of Proposition 4.6.

Lemma 4.5. In the doubly punctured plane P , if a reduced, non-empty word has a
simple representative curve, then that curve is parallel to a boundary component. Thus
with the notation of Figure 1 the only such words are a, b, ab, A,B and AB.

Proof. Let γ be a simple, essential curve in P . Since P is planar, P \γ has two connected
components, P1 and P2. Since γ is essential, neither P1 nor P2 is contractible, hence
their Euler characteristics satisfy χ(P1) ≤ 0 and χ(P2) ≤ 0; since χ(P ) = −1 and
χ(P ) = χ(P1) + χ(P2) it follows that either χ(P1) = 0 or χ(P2) = 0. Hence, one of the
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two connected components is an annulus, which implies that γ is parallel to a boundary
component, as desired.

Proposition 4.6. If w is a positive cyclic word representing a free homotopy class in
the doubly punctured plane then SI(w) ≥ α(w)− 1 and SI(w) ≥ β(w)− 1.

Proof. By Lemma 4.5 the only words corresponding to simple curves are a, b, ab and
their inverses; for these, the statement holds. In particular it holds for all words of
length one. Suppose w is any other positive word; it has length L strictly greater than 1.
We may suppose by induction that the statement holds for all words of length less than
L. By Proposition 4.4, since the curve associated to w is non-simple, the word w has
a linear representative w which can be split as u · v so that the associated cyclic words
satisfy SI(w) ≥ SI(u) + SI(v) + 1. Note that u and v have length strictly less than L;
furthermore since w is positive, so are u and v. Therefore by the induction hypothesis
SI(u)+SI(v)+1 ≥ α(u)−1+α(v)−1+1, and so SI(w) ≥ α(u)+α(v)−1 = α(w)−1.
The β inequality is proved in the same way.

Proof of Theorem 1.5 By Proposition 4.3 there is a positive word w′ of length L such
that α(w′) = α(w), β(w′) = β(w) and SI(w) ≥ SI(w′). Then Proposition 4.6 yields
SI(w′) ≥ max{α(w), β(w)}−1. Since α(w)+β(w) = L it follows that SI(w) ≥ L/2−1
if L is even and SI(w) ≥ (L+ 1)/2− 1 = (L− 1)/2 if L is odd.
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