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Abstract

We obtain explicit formulas for the number of non-isomorphic el-
liptic curves with a given group structure (considered as an abstract
abelian group). Moreover, we give explicit formulas for the number of
distinct group structures of all elliptic curves over a finite field. We use
these formulas to derive some asymptotic estimates and tight upper
and lower bounds for various counting functions related to classifica-
tion of elliptic curves accordingly to their group structure. Finally,
we present results of some numerical tests which exhibit several in-
teresting phenomena in the distribution of group structures. We pose
getting an explanation to these as an open problem.

1 Introduction

1.1 Background

Let Fq be the finite field of characteristic p with q = pk elements. An elliptic
curve E over a finite field Fq is given by the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (1)
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where the coefficients a1, a2, a3, a4, a6 are in Fq; see [8] for a general back-
ground and see [1] for cryptographic interests on elliptic curves.

As usual, let E(Fq) be the set of Fq-rational points on elliptic curve E
including the point at infinity denoted by O. It is known, see [1, 8, 11], that
E(Fq) is a finite Abelian group with the neutral element O and the cardinality
of this group satisfies the Hasse-Weil bound as

|#E(Fq)− q − 1| ≤ 2
√
q.

It is also known, see [8, 11], that the group structure of E(Fq) is expressed
by the group isomorphism

E(Fq) ' Zm × Zn,

where unique integers m,n satisfy

m | n and m | q − 1. (2)

For the prime power q and positive integers m,n, let G(q;m,n) be the
number of distinct elliptic curves E over Fq (up to isomorphism over Fq) such
that E(Fq) ' Zm × Zn. Moreover, let F (q) be the the number of distinct
group structures of all elliptic curves over the finite field Fq. In this paper,
we give explicit formulas for G(q;m,n) and F (q), for all prime powers q and
all possible values of m,n. We use these formulas to derive tight upper and
lower bounds on F (q) and aslo an asymptotic formula for the average value
of F (q) on average over prime powers q ≤ Q as Q→∞.

Finally, we also present some numerical results concerning the frequency
of the “most common” group structure over Fq, that is, for

G(q) = max
n,m

G(q;m,n). (3)

These results reveal several interesting phenomena in the behaviour of this
function and also of the parameters m, n and t = p + 1 − mn on which it
value is achieved.

Finally, we note the distribution of group structures generated by elliptic
curves generated by all possibke finite field Fq has been studied in [2].

1.2 Notation

Throughout the paper, p always denotes a prime and q = pk always denotes
a prime power.
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Let t be an integer such that gcd(t, p) = 1 and t2 ≤ 4q. Let ∆ = t2 − 4q
and let ct be the largest integer such that

c2
t | ∆ and ∆/c2

t ≡ 0 or 1 (mod 4).

Let st be the largest integer such that

s2
t | q + 1− t and st | q − 1.

We note that st | ct.
For each positive divisor m of st, let

Mt(m) = {e ∈ N : m | e, e | ct}

and
St(m) =Mt(m) \

⋃
l∈N, l>m
m|l, l|st

Mt(l).

As usual, we use d(s) and ϕ(s) to denote the number of positive integer
divisors and the Euler function of s, respectively.

Moreover, for every negative integer D with D ≡ 0 or 1 (mod 4) we
denote by h(D) the class number of some quadratic order of discriminant D.

The implied constants in the symbols ‘O’, ‘�’ and ‘�’ are absolute. We
recall that the notations U = O(V ), U � V and V � U are all equivalent
to the assertion that the inequality |U | ≤ cV holds for some constant c > 0.

2 Our Results

2.1 Explicit formulas

For p > 2, let χp be the quadratic character modulo p. So, for a positive
integer x, we have χp(x) = 0, 1 or −1, if x ≡ 0 (mod p), x ≡ a2 (mod p)
for some a 6≡ 0 (mod p) or x 6≡ a2 (mod p) for all a, respectively. Moreover,
for p = 2, let χp(x) equals 0, 1 or −1 if x ≡ 0 (mod 2), x ≡ ±1 (mod 8) or
x ≡ ±3 (mod 8), respectively.

Theorem 1. Let q = pk be a power of a prime p. Let m, n be positive
integers. Let t = q + 1 − mn and ∆ = t2 − 4q. Then, G(q;m,n), that is,
the number of Fq-isomorphism classes of elliptic curves E over Fq such that
E(Fq) ' Zm × Zn, equals:
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1.
∑

l∈St(m)

h

(
∆

l2

)
, if gcd(t, p) = 1, t2 ≤ 4q, m | n, and m | q − 1

2. h(−4p), if k is odd, m = 1 and n = q + 1

3. h(−p), if k is odd, p ≡ 3 (mod 4), m = 2, and n = (q + 1)/2

4. 1, if k is odd, p = 2 or 3, m = 1, and n = q + 1±√pq

5. 1− χp(−4), if k is even, m = 1, and n = q + 1

6. 1− χp(−3), if k is even, m = 1, and n = q + 1±√q

7. (p+ 6− 4χp(−3)− 3χp(−4))/12, if k is even, and m = n =
√
q ± 1

8. 0, otherwise.

The following result gives explicit formulas for the number F (q) of distinct
group structures of all elliptic curves over Fq.

Theorem 2. Let q = pk be a power of a prime p. For the number F (q) of
distinct group structures of all elliptic curves over Fq, we have

F (q) =
∑

t∈Z, t2≤4q,
gcd(t,p)=1

d(st)

+



1 +
1− χp(−1)

2
, if k is odd, p > 3,

3 +
1− χp(−1)

2
, if k is odd, p = 2, 3,

3 +
1− χp(−1)

2
− χp(−3), if k is even, p > 3,

5, if k is even, p = 2, 3.

2.2 Estimates and average values

We now present explicit upper and lower bounds on F (q).

Theorem 3. Let q = pk be a power of a prime p. For the number F (q) of
distinct group structures of all elliptic curves over Fq, we have

2π2

3

√
q

(
1− 1

p

)
+ d(q − 1) + 5 > F (q) >

 2
√
q + 2, if p = 2,

5
√
q

(
1− 1

p

)
− 2, if p ≥ 3
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We also show that the bounds of Theorem 3 are asymptotically tight.

Theorem 4. When q = pk →∞ via the set of prime powers, we have

1. lim sup
q→∞

F (q)
√
q (1− 1/p)

=
2π2

3
;

2. lim inf
q→∞
q odd

F (q)
√
q (1− 1/p)

= 5;

3. lim inf
k→∞

F (2k)

2k/2
= 2.

Finally, we derive an asymptotic formula for the average value of F (q).

Theorem 5. For Q→∞, when q runs over via the set of prime powers, we
have ∑

q≤Q

F (q) = (ϑ+ o(1))
Q3/2

logQ
,

where

ϑ =
8

3

∞∑
m=1

1

m2ϕ(m)
= 3.682609 . . . .

Our argument can also be used to obtain an explicit bound on the error
term in Theorem 5.

3 Preliminaries

3.1 Endomorphism Rings

Let E be an elliptic curve over Fq of characteristic p. Let N = #E(Fq) and
t = q+ 1−N . Let π denote the Frobenius endomorphism on E, that is given
by

π : (x, y) 7→ (xq, yq).

We note that, π is the root of the characteristic polynomial X2 − tX + q
in the ring of Fq-endomorphisms of E; This ring is denoted by EndFq(E).
Moreover, by End(E) = EndFq

(E) we denote full endomorphism ring, that

is, the ring of Fq-endomorphisms of E. Let ∆ = t2 − 4q be the discriminant
of the characteristic polynomial of E.
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Suppose gcd(t, p) = 1. Then, E is called an ordinary elliptic curve. We
have End(E) = EndFq(E). Moreover, End(E) is isomorphic to some order O

in the quadratic imaginary field K = Q(
√

∆). In particular, we have

Z [π] = Z

[
∆ +

√
∆

2

]
⊆ End(E) ⊆ OK ,

where OK is the maximal order in K, that is, the ring of algebraic integers
of K.

Let ct = [OK : Z[π]] be the conductor of Z[π], that is the largest integer
such that ∆/c2

t ≡ 0, 1 (mod 4). Then, ∆K = ∆/c2
t , called the fundamental

discriminant, is the discriminant of the field K. Also, OK = Z
[

∆K+
√

∆K

2

]
.

We note that, O = Z + cOK , where the conductor c = [OK : O] is a divisor
of ct. Furthermore, ∆ = c2∆K is the discriminant of O, so the order O is
uniquely determined by its discriminant and denoted by O(∆). We let h(O)
be the class number of O which is also denoted by h(∆).

Now, suppose p | t. Then, E is called a supersingular elliptic curve. Let
Q∞,p denote the unique quaternion algebra over Q which is only ramified at
p and ∞. Then, EndFq(E) is either a quadratic order in K = Q(

√
∆) or

a maximal order in Q∞,p. Moreover, End(E) is a maximal order in Q∞,p;
see [7, 12] or [8].

3.2 Isogeny calsses

Two elliptic curves over Fq are called isogenous over Fq if and only if they
have the same number of points over Fq. The number of Fq-rational points
of the elliptic curve E over Fq satisfies the Hasse-Weil bound. On the other
hand, Deuring-Waterhouse theorem, see [12, 11], describes all possible values
of N that can be the cardinality of E(Fq), for some elliptic curve E over Fq.

Lemma 6. Let q = pk be a power of a prime p. Let t ∈ Z and let N = q+1−t.
The integer N is the cardinality of E(Fq), for some elliptic curve E over Fq,
if and only if one of the following conditions is satisfied:

1. t2 ≤ 4q and gcd(t, p) = 1

2. k is odd and t = 0

3. k is odd, t = ±√pq, p = 2 or 3
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4. k is even, t = 0, p 6≡ 1 (mod 4)

5. k is even, t = ±√q, p 6≡ 1 (mod 3)

6. k is even, t = ±2
√
q.

Proof. See [12, 11].

Let ∆ be a negative integer with ∆ ≡ 0 or 1 (mod 4) and let c be the
largest integer such that c2 | ∆ and ∆/c2 ≡ 0 or 1 (mod 4). Let H(∆)
denote the Kronecker class number of ∆. We have

H(∆) =
∑
l|c, l>0

h

(
∆

l2

)
.

Let I(q;N) be the number of distinct elliptic curves E over Fq (up to
isomorphism over Fq) such that #E(Fp) = N . The following lemma gives
explicit formulas for the values of I(q;N).

Lemma 7. Let q = pk be a power of a prime p. Let t ∈ Z and let N =
q + 1 − t. Then, I(q;N), that is, the number of Fq-isomorphism classes of
elliptic curves E over Fq with #E(Fq) = N , equals:

1. H(t2 − 4q), if t2 ≤ 4q and gcd(t, p) = 1

2. H(−4p), if k is odd and t = 0

3. 1, if k is odd, t = ±√pq, p = 2 or 3

4. 1− χp(−4), if k is even, t = 0, p 6≡ 1 (mod 4)

5. 1− χp(−3), if k is even, t = ±√q, p 6≡ 1 (mod 3)

6. (p+ 6− 4χp(−3)− 3χp(−4))/12, if k is even, t = ±2
√
q

7. 0, otherwise.

Proof. See [7, Theorem 4.6].
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3.3 Group structures

The group of Fq-rational points on the elliptic curve E over Fq is isomorphic
to the group Zm×Zn, with unique integers m,n such that m | n and m | q−1.
We note that, every group Zm×Zn, with integers m,n satisfy later conditions,
may not occur as the group E(Fq) for some elliptic curve E over Fq. The
following theorem describes the possible group structures for elliptic curves
over finite fields, see [10].

Lemma 8. Let q = pk be a power of a prime p. Let m, n be positive integers
with m ≤ n. Let t = q + 1−mn. There is an elliptic curve E over Fq such
that E(Fq) ' Zm × Zn if and only if one of the following holds:

1. gcd(t, p) = 1, t2 ≤ 4q, m | n and m | q − 1

2. k is odd, t = 0, p 6≡ 3 (mod 4), and m = 1

3. k is odd, t = 0, p ≡ 3 (mod 4), and m = 1 or 2

4. k is odd, t = ±√pq, p = 2 or 3, and m = 1

5. k is even, t = 0, p 6≡ 1 (mod 4), and m = 1

6. k is even, t = ±√q, p 6≡ 1 (mod 3), and m = 1

7. k is even, t = ±2
√
q, and m = n =

√
q ∓ 1.

We note that, the Case 1 in Lemma 8 corresponds to ordinary elliptic
curves and the other cases corresponds to suppersingular elliptic curves.

As usual, we let E[l] be the set of l-torsion points of the elliptic curve E
over Fq, that is,

E[l] =
{
P : P ∈ E(Fq), lP = O

}
.

We note that, if gcd(l, q) = 1, then

E[l] ∼= Z/lZ× Z/lZ.

Lemma 9. Let E be an ordinary elliptic curve over Fq. The following are
equivalent:

1. m = max {l : l ∈ N, gcd(l, q) = 1, E[l] ⊆ E(Fq)}
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2. m = max
{
l : l ∈ N, l | q − 1, l2 | #E(Fq), O

(
∆
l2

)
⊆ End(E)

}
3. E(Fq) ' Zm × Zn, where m | n and m | q − 1.

Proof. We recall, [7, Prposition 3.7], that for all positive integers l with
gcd(l, q) = 1, we have E[l] ⊆ E(Fq) if and only if l | q − 1, l2 | #E(Fq) and
O
(

∆
l2

)
⊆ End(E). Therefore, the descriptions of m in Cases 1 and 2 are the

same.
Moreover, for all positive integers l with gcd(l, q) = 1, we have E[l] '

Zl × Zl. Suppose E(Fq) ' Zm × Zn, where m | n and m | q − 1. Then, for
all l with gcd(l, q) = 1, we have E[l] ⊆ E(Fq) if and only if l | m. Hence,
Cases 1 and 3 are also equivalent.

We recall the definition of the numbers ct and st and of the sets St(m)
given in Section 1.

Lemma 10. Let E be an ordinary elliptic curve over Fq. Assume that m,n
are positive integers with m | n, m | q − 1 and mn = #E(Fq) = q + 1 − t.
Then, we have E(Fq) ' Zm × Zn if and only if

End(E) = O

(
∆

l2

)
for some l ∈ St(m).

Proof. We note that

End(E) = O

(
∆

l2

)
,

where l is some positive divisor of ct. By assumption, m is a divisor of st.
¿From Lemma 9, we have E(Fq) ' Zm × Zn if and only if m is the largest
divisor of st satisfying O

(
∆
m2

)
⊆ End(E) = O

(
∆
l2

)
. The latter is equivalent

to have l ∈ St(m) which completes the proof.

3.4 Primes in arithmetic progressions

For a real z ≥ 2 and integers s > r ≥ 0 we denote by π(z; s, r) the number
of primes p ≤ z such that p ≡ r (mod s).

An asymptotic estimate of the number of primes in arithmetic progres-
sions is given by the Siegel–Walfisz theorem, see [3, Theorem 1.4.6].
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Lemma 11. For every fixed A > 0 there exists C > 0 such that for z ≥ 2
and for all positive integers s ≤ (log z)A,

max
gcd(r,s)=1

∣∣∣∣π(z; s, r)− li z

ϕ(s)

∣∣∣∣ = O
(
z exp

(
−C
√

log z
))

,

where

li z =

∫ z

2

d u

log u
.

4 Proofs

4.1 Proof of Theorem 1

We note that G(q;m,n) 6= 0 if and only if m,n satisfy one of the cases given
by Lemma 8. So, we study the nonzero number G(q;m,n) for the possible
values of m,n as follows.

For Case 1, we assume that gcd(t, p) = 1 and t2 ≤ 4q. From Lemma 8,
we see that G(q;m,n) 6= 0 if and only if m | n and m | q − 1. So, let
m,n be positive integers satisfying the latter conditions. From Lemma 10,
for all elliptic curve E over Fq, we have E(Fq) ' Zm × Zn if and only if
End(E) = O(∆

l2
) for some l ∈ St(m). We also note that, all orders O(∆

l2
) whit

l ∈ St(m), will occur as the endomorphism ring of some elliptic curves over
Fq, see [12, Theorem 4.2]. Moreover, the number of Fq isomorphism classes of
elliptic curves with End(E) = O(∆

l2
) is h

(
∆
l2

)
(e.g. see [7, 12, Theorem 4.5]).

Therefore, we have

G(q;m,n) =
∑

l∈St(m)

h

(
∆

l2

)
.

For Case 2, we have t = 0. Moreover, G(q;m,n) with m = 1 is the
number of cyclic supersingular elliptic curves over Fq with trace 0 (up to
Fq-isomorphism), that is, h(−4p), see [7, Lemma 4.8].

For Case 3, we have t = 0 and q ≡ 3 (mod 4). Also, G(q;m,n) with
m = 2 is the number of non-cyclic supersingular elliptic curves over Fq with
trace 0 (up to Fq-isomorphism). This is H(−4p)− h(−4p) = h(−p).

For other cases, we have t2 = q, 2q, 3q, 4q. Also, all supersingular elliptic
curves in the corresponding isogeny class are cyclic. Then, G(q;m,n) with
m = 1 is the isogeny class number given by Lemma 7. So, the proof of
Theorem 1 is complete.
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4.2 Proof of Theorem 2

The possible group structures of elliptic curves over Fq are the groups iso-
morphic to Zm × Zn, for some values m,n described by Lemma 8. For an
integer t, let f(q; t) be the the number of distinct group structures of elliptic
curves over Fq with the trace t. Let t be a positive integer with |t| ≤ 2

√
q.

From Lemma 8, we consider the following cases for t.

1. Suppose gcd(t, p) = 1. Let N = q + 1 − t. Then, the group Zm × Zn,
for positive integers m,n with m ≤ n, is the group structure of some
elliptic curve E over Fq with trace t if and only if m | n, m | q − 1
and mn = N . This is equivalent to have m2 | N , m | q − 1 and
mn = N . As before, let st be the largest integer such that s2

t | N and
st | q− 1. Therefore, there is a one to one correspondence between the
group structures of ordinary elliptic curves over Fq with the trace t and
positive integer divisors of st. So,

f(q; t) = d(st) (4)

if gcd(t, p) = 1.

2. Suppose t | p. Then, we may have t2/q = 0, 1, 2, 3 or 4. From Lemma 8,
we see that

f(q; t) =



1 +
1− χp(−1)

2
, if k is odd, t = 0,

1, if k is odd, p = 2 or 3, t2 = pq.
1− χp(−1)

2
, if k is even, p 6= 2, t = 0,

1, if k is even, p = 2, t = 0,
1− χp(−3)

2
, if k is even, p 6= 3, t2 = q,

1, if k is even, p = 3, t2 = q,
1, if k is even, t2 = 4q,
0, otherwise.

(5)

Now, we sum up g(q; t) over all possible integer values of t. We have

F (q) =
∑

t∈Z, t2≤4q

f(q; t).

Using (4) and (5), we obtain the explicit formulas for F (q).
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4.3 Proof of Theorem 3

Let Hq be the set of integers of the Hasse-Weil interval, that is,

Hq = {N : N ∈ N, q − 2
√
q + 1 ≤ N ≤ q + 2

√
q + 1} .

We recall, from the proof of Theorem 2, that for every N ∈ Hq with gcd(N−
1, p) = 1, there is a bijection between the set of group structures of isogenous
elliptic curves E over Fq with order N and the set of positive divisors m of
q − 1 with m2 | N .

For a positive integer divisor m of q − 1, let g(q;m) be the number of
distinct group structures Zm×Zn of elliptic curves over Fq for some n ∈ N. In
other words, g(q;m) is the cardinality of the set of positive integers n where
there exists some elliptic curve E over Fq with E(Fq) ' Zm × Zn. Clearly,
we have

F (q) =
∑
m|q−1

g(q;m). (6)

Here, we express g(q;m) by counting the number of multiples of m2 in
Hq. For a positive integer divisor m of q − 1, let

Hq(m) =
{
N : N ∈ Hq, gcd(N − 1, p) = 1, m2 | N

}
.

¿From the proof of Theorem 2 and by Lemma 8, for all positive divisors m
of q − 1, we have

g(q;m) = #Hq(m) + δq(m), (7)

where

δq(m) =



1, if k is odd, p 6= 2, 3, m = 1,

1 +
1− χp(−1)

2
− χp(−3), if k is even, p 6= 2, 3, m = 1,

3, if p = 2 or 3, m = 1,
1− χp(−1)

2
, if k is odd, m = 2

1, if k is even, m =
√
q ± 1,

0, otherwise.

Next, using (6) and (7), we obtain

F (q) =
∑
m|q−1

#Hq(m) + δq(m). (8)
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We note that #Hq = 2
[
2
√
q
]

+ 1. Moreover, for all divisors m of q − 1, if
m ≥ √q + 1 then #Hq(m) = 0 and if m <

√
q + 1, then[

4
√
q

m2

]
−
[

4
√
q

m2p

]
− 1 ≤ #Hq(m) ≤

[
4
√
q

m2

]
−
[

4
√
q

m2p

]
+ 1

and so,
4
√
q

m2

(
1− 1

p

)
− 2 < #Hq(m) <

4
√
q

m2

(
1− 1

p

)
+ 2. (9)

To obtain an upper bound for F (q), we write∑
m|q−1

#Hq(m)

=
∑
m|q−1,
m<
√
q−1

#Hq(m) +
∑
m|q−1,√

q−1≤m<√q+1

#Hq(m) +
∑
m|q−1,
m≥√q+1

#Hq(m)

<
∑
m|q−1

4
√
q

m2

(
1− 1

p

)
+

∑
m|q−1,
m<
√
q−1

2 +
∑
m|q−1,√

q−1≤m<√q+1

#Hq(m).

One can see that, ∑
m|q−1,√

q−1≤m<√q+1

#Hq(m) +
∑
m|q−1

δq(m) ≤ 5.

Then, from (8), we have

F (q) < 4
√
q

(
1− 1

p

)∑
m∈N

1

m2
+d(q−1)+5 =

2π2

3

√
q

(
1− 1

p

)
+d(q−1)+5.

Now, we provide the lower bound for F (q). If p = 2, using (8), we write

F (q) ≥ #Hq(1) +
∑
m|q−1

δq(m) ≥ [2
√
q] + 3 > 2

√
q + 2.

For p ≥ 3, using (8), we write

F (q) ≥ #Hq(1) + #Hq(2) +
∑
m|q−1

δq(m).
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We see from (9) that

#Hq(m) >
4
√
q

m2

(
1− 1

p

)
− 2.

Moreover, one can see that

#Hq(2) >
√
q

(
1− 1

p

)
− 1

if q ≡ 1 (mod 4). From (7), we have∑
m|q−1

δq(m) ≥ 1.

Furthermore, ∑
m|q−1

δq(m) ≥ 2

if q ≡ 3 (mod 4). Therefore,

#Hq(2) +
∑
m|q−1

δq(m) >
√
q

(
1− 1

p

)
,

which completes the proof.

4.4 Proof of Theorem 4

To prove the result of Case 1, let us choose a sufficiently large integer L, and
let M be the least common multiple of all positive integers m ≤ L.

We now choose a prime p ≡ 1 (mod M) and put q = p. Using (6) and (7)
we derive

F (q) ≥
∑
m|q−1
m≤L

g(q;m) =
∑
m≤L

g(q;m) =
∑
m≤L

(#Hq(m) +O(1))

Since by (9) for q = p we have

#Hq(m) =
4
√
q

m2
+O(1),

14



we now derive

F (q) ≥
∑
m≤L

(
4
√
q

m2
+O(1)

)
= 4
√
q
∑
m≤L

1

m2
+O(L)

= 4
√
q

(
π2

6
+O(1/L)

)
+O(L).

Since by the prime number theorem we have

q ≥M ≥ exp ((1 + o(1))L) ,

taking L→∞ we obtain

F (q) =

(
2π2

3
+ o(1)

)
√
q =

(
2π2

3
+ o(1)

)
√
q

(
1− 1

p

)
for the above sequence of q = p.

For Case 2, we recall a result of Heath-Brown [5], which asserts that
there are infinitely many primes p such that either p = 2` + 1 for a prime
` or p = 2`1`2 + 1 for a primes `1, `2 ≥ pα for some α > 1/4 (one can take
α = 0.276 . . ., see the proof of [5, Lemma 1]). Using (6) and (7) we see that
for each such prime p and q = p we have

F (q) =
∑
m|q−1

g(q;m) =
∑
m|q−1

(#Hq(m) +O(1))

= #Hq(1) + #Hq(2) +O(1) = 5
√
q +O(1)

= 5
√
q

(
1− 1

p

)
+O(1).

Finally in Case 3, we recall that if q = 2r, where r is prime then all prime
divisors ` of q − 1 satisfy ` ≡ 1 (mod r) (since r is the multiplicative order
of 2 modulo `, thus r | `− 1). In particular for any m | q − 1 with m > 1 we

15



have m > r. Hence, as before, and also recalling (9), for q = 2r we obtain

F (q) = #Hq(1) +
∑
m|q−1
m>1

(#Hq(m) +O(1))

= #Hq(1) +O

∑
m|q−1
m>1

(
q1/2m−2 + 1

)
= #Hq(1) +O

(
q1/2

∑
m>r

m−2 + d(q − 1)

)
= #Hq(1) +O

(
q1/2(log q)−1 + d(q − 1)

)
= (2 + o(1)) q1/2

which concludes the proof.

4.5 Proof of Theorem 5

Since there are O(Q1/2) prime powers q = pk ≤ Q with k ≥ 2, using the
upper bound of Theorem 3 we obtain∑

q≤Q

F (q) =
∑
p≤Q

F (p) +O(Q). (10)

We see from (8) that

F (p) = 4
√
p
∑
m|p−1

1

m2
+O(d(p− 1)).

We recall the well-known estimate on the divisor function

d(s) = so(1), s→∞, (11)

see [4, Theorem 317]. Thus∑
p≤Q

F (p) = 4
∑
p≤Q

√
p
∑
m|p−1

1

m2
+O

(
Q1+o(1)

)
= 4

∑
m≤Q

1

m2

∑
p≤Q

p≡1 (mod m)

√
p+O

(
Q1+o(1)

)
.
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By Lemma 11, and partial summation, we see that for m ≤ logQ we have∑
p≤Q

p≡1 (mod m)

√
p =

(
2

3
+ o(1)

)
Q1/2 liQ

ϕ(m)
=

(
2

3
+ o(1)

)
Q3/2

ϕ(m) logQ
.

Furthermore, for m > logQ we use the trivial estimate∑
p≤Q

p≡1 (mod m)

√
p ≤ Q1/2

∑
2≤n≤Q

n≡1 (mod m)

1 = O(Q3/2m−1).

Therefore∑
p≤Q

F (p) =

(
8

3
+ o(1)

)
Q3/2

logQ

∑
m≤logQ

1

m2ϕ(m)
+O

(
Q3/2

∑
m>logQ

m−3

)

=

(
8

3
+ o(1)

)
Q3/2

logQ

∞∑
m=1

1

m2ϕ(m)
+O

(
Q3/2(logQ)−2

)
,

which together with (10) concludes the proof.

5 Distribution of the Most Frequent Group

Structures

5.1 Preliminaries

Here we present some numerical data concerning the values of G(q) given
by (3) and also about the values of m and n at which these values are
achieved. Furthermore, we concentrate here on prime values q = p.

First of all we note that for any N we have∑
m,n≥1
mn=N

G(p;m,n) = I(p;N),

where as before I(p;N) is the number of distinct isomorphism classes of
elliptic curves E over Fp (up to isomorphism over Fp) such that #E(Fp) = N
(see Lemma 7). In particular

max
N

I(p;N)/d(N) ≤ G(p) ≤ max
N

I(p;N). (12)

17



It is well-known that the bounds on the Kronecker class number imply
that

I(p;N)� p1/2 log p(log log p)2

and for all N ∈ [p + 1 − p1/2, p + 1 + p1/2] but maybe at most two of them,
we have

I(p;N)� p1/2/ log p,

see, for example, [6, Proposition 1.9]. Thus, recalling (11), we derive from
the inequalities (12) that

G(p) = p1/2+o(1). (13)

5.2 Numerical data

We see that from (13) that it is natural to study the values of G(p) scaled
by p1/2. In fact, our experiments with 41538 primes p < 500, 000 show that
scaling by p1/2 log p is more natural and the ratio G(p)/p1/2 log p stabilises in
a reasonably narrow strip between roughly 0.1 and 0.2, see Figure 1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

0.2

0.4
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Figure 1: Distribution of G(p)/p1/2 log p for primes p < 500, 000.

We also notice that for all primes checked the value of G(p) is always
achieved for (m,n) with m = 1 (that is, for curves with cyclic group of
points). Moreover, for some primes the same value is also achieved for some
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pairs (m,n) with m = 2. In our experiments the value of G(p) has never
been achieved with m ≥ 3.

We also compare G(p) with

I(p) = max
N

I(p;N),

see Figure 2.
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Figure 2: Distribution of G(p)/I(p) for primes p < 500, 000.

For primes p < 500, 000, where we have computed G(p)/I(p) this ration
has achieved 1 for p2, 5, 7, 17, 29, 41, 101, 1009, 1109, 1879, 4289, where G(p)
and I(p) are achieved with the same value of t with st = 1. Also, only
four times (for p = 37591, 187651, 246391, 397591) the value of G(p)/I(p)
has been below 0.5. Unfortunately these extreme values of both types are
invisible on Figure 2. We do not know whether these primes are just some
sporadic exceptions or whether there are infinitely many such primes. More
generally, it is certainly interesting to evaluate or at least obtain nontrivial
theoretic estimates on

lim sup
p→∞

G(p)/I(p) and lim inf
p→∞

G(p)/I(p).

This may also help to explain the presence of several horizontal lines on
Figure 2 (slightly emphasised there to improve their visibility).
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Clearly, one expects that the value of G(p) is achieved for (m,n) for which
t = p + 1 − N , where N = mn, is small, so that ∆ = t2 − 4p has a large
absolute value which leads to a large value of I(p;N). However this is offset
by the fact that for N having many divisors so the value of I(p;N) is “split”
between d(st) values of G(p;m,n). This effect is observed in the numerical
results which are presented below, which show that if G(p;m,n) = G(p) then
t = p + 1 − mn is small but not necessary very small. In particular, most
of the time G(p) and I(p) are achieved on different values of t, namely in
about 82.2% of the cases within the above range of primes p (more precisely
for 34158 primes out of the total number of 41538 primes p < 500, 000).
Furthermore, it seems that the remaining 7380 cases in which G(p) and I(p)
are achieved on the same value of t, are the ones that mainly (but not entirely)
responsible for the presence of horizontal lines on Figure 2. Indeed, the same
lines are clearly visible on Figure 3 where the ratios G(p)/I(p) are plotted
only if they come from the same value of t.
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Figure 3: Distribution of G(p)/I(p) achieved on the same value of t for primes
p < 500, 000.

We also summarise this in Table 1 which gives the number of points on
horizontal lines on Figure 2 and Figure 3 (ordered by the the total number
of points).

Let
Tmax(p) = {t : t = p+ 1−mn, G(p;m,n) = G(p)} ,
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Ration G(p)/I(p) Number of primes Number of primes
on Figure 2 on Figure 3

1/2 2933 2931
2/3 2300 1968
3/5 1287 883
4/7 1236 1012
6/11 329 220
5/8 292 1
8/15 268 161
3/4 258 139
12/23 71 32
17/26 45 1
16/31 39 19
45/68 28 1
28/47 15 1
1 11 11

Table 1: Rations of G(p)/I(p) for primes p < 500, 000.

that is, for each p, Tmax(p) is the set of the traces corresponding to the
most “popular” group structures. In Table 2 we give some data about the
distribution of #Tmax(p) for primes p < 500, 000. In particular #Tmax(p) = 1
in about 52% of the cases.

#Tmax(p) Number of primes
1 21638
2 19087
3 230
4 524
5 19
6 36
7 3
10 1

Table 2: Distribution of #Tmax(p) for primes p < 500, 000.

We also remark that the set Tmax(p) is symmetric around 0 (that is,
Tmax(p) = −Tmax(p)) for 20020 primes out of the total number of 41538
primes p < 500, 000.
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Figure 4 presents the scaled values t/p1/2, where t ∈ Tmax, for primes
p < 500, 000.
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Figure 4: Distribution of t√
p
, where t ∈ Tmax, for primes p < 500, 000.

As we have mentioned, we do not have any solid theoretic explanation to
the observed facts. There is certainly more to investigate here, numerically
and theoretically, in order to understand the behaviour of G(p;m,n).
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