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Let F, be a fundamental domain of the Siegel upper half-space of
degree n with respect to the Siegel modular group Sp(n, Z). Ac-
cording to Siegel himself, F, is determined by only finitely many
polynomial inequalities. In case of degree n = 2, Gottschling de-
termined the minimal set of inequalities. The boundary of F; is
of great concern in the literature not only from a homological
point of view but also from the geometry of numbers. In this pa-
per we compute the vertices of 7, under the condition that the
defining ideal is zero-dimensional (“0O-cells”). We also discuss
an equivalence relation among 0-cells.

1. INTRODUCTION

In the classical study of elliptic modular forms, the fun-
damental domain

1
fl—{z—m+y\/—160|x|§2, y >0, |221}

is well known [Serre 73], and knowledge of the fundamen-
tal domain of an arithmetic subgroup plays an important
role [Fricke and Klein 65]. But there seem to be few ar-
ticles on the fundamental domains of classical symmet-
ric domains of higher dimension. This paper is a case
study for the next difficult case. Let F» be the funda-
mental domain of the Siegel modular group Sp(2,7Z) of
genus 2 in the Siegel upper half-space Ho. In his book
[Siegel 64], C. L. Siegel proved that such a fundamental
domain in general degree is determined by only finitely
many inequalities of the form |det(CZ + D)| > 1 and
with the Minkowski condition [Klingen 90]. If the degree
is 2, Gottschling determined the minimal set of inequali-
ties [Gottschling 59]. In the following we specify the fun-
damental domain F, determined by this minimal set as
the Siegel-Gottschling fundamental domain.

In the literature, several papers are concerned
with fixed points or conjugacy classes [Ueno 71,
Ueno 72, Hashimoto 83]. Gottschling himself also com-
puted fixed points and fixed-point subgroups of Sp(2, Z)
[Gottschling 61b, Gottschling 61a]. In another direction,
there is a paper [MacPherson and McConnell 93] on the
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topology of modular groups of genus 2 that shows the
existence of a spine. See also [Yasaki 06]. There also is
an attempt to develop a non-Euclidean Voronoi theory
[Watanabe 03, Watanabe 11].

To continue the investigation of the fundamental do-
mains, we are interested in the “fine structure” of this
Siegel-Gottschling F,. The idea is as follows. We regard
Ho as a real affine space Vg of dimension 6. By the result
of Siegel and Gottschling mentioned above, the boundary
OF; of the domain F;, consists of real 5-dimensional hy-
persurfaces (“walls”), and each of them has a description
by polynomial equations. To understand the cells that
form OF; is to understand the real zeros of the system of
polynomial equations. Generally speaking, however, the
detailed structure of the intersections of these walls seem
to be unknown. Since dimg F» = 6, it seems to be very
hard to obtain a complete answer to this problem.

In this paper we restrict ourselves to a consideration of
the “O-cells” under the condition that the ideal defined
by the system of walls is O-dimensional. Our goal is to
prove several results on these 0-cells. To present the main
result, we require some notation. By [Gottschling 59,
Sétze 1 and 2], there are 28 walls defined by polynomial
equations f; =0,..., fos = 0. Foralabel L = {iy,...,4,}
(1<i; <28), let I, = (fi,,..., fi,) be the ideal in the
polynomial ring Q [V] over the rational numbers Q of six
variables. Let V(I1) be the zero set of I,. Then we have
the following theorem.

Theorem 1.1. There are 180 points p € V(I) NOF, for
some L such that I} is zero-dimensional. They are di-
vided into Sp(2,Z)-equivalence classes, and the upper

bound on the number of classes is 40, the lower bound

s 25.

The points obtained as 0-cells seem to have a greater
chance to be informative in view of Voronoi theory
[Martinet 03] and its extensions. For example, the point
Zs = ((, 0 ") with n = (1+2V/2i)/3 in OF; ap-
pears as a O-cell in OF;, which also appeared in
Gottschling’s paper. Our index model (Section 3) de-
scribes this 0-cell as lying on the intersection of three
“rank-1"7 equalities, four “rank-2” equalities, and two
Minkowski conditions, and is strictly positive in the other
19 inequalities. There is a notion of Hermite constant
in the case of the linear algebraic group [Watanabe 03].
We can prove that Zg attains the minimum det(Y)
among 180 points. We remark that it was announced in
[Kawamura 09] that Zg attains the minimum det(Y") on

Fs, which implies that Zg attains the Hermite constant
of the symplectic group of degree 2.

Now we explain the contents of the paper. In Section
2, we review Gottschling’s theorem and fix notation. We
introduce an index model based on the numbering of the
walls in Section 3. We also introduce an involution that
works efficiently during the classification process (Section
4). Then we state the main theorem of the paper in Sec-
tion 5. Since the results were obtained through exhaustive
computer search, we explain the procedure using a com-
puter algebra system step by step and give search results
in Section 6 before the proof of the main theorem (Sec-
tion 7). Lastly, in Section 8, we discuss the I'-equivalence
and inequivalence property of the set of O-cells in detail.

The authors thank the referee for a very careful read-
ing of our manuscript and many suggestions for correc-
tions.

2. SIEGEL'S FUNDAMENTAL DOMAIN OF DEGREE 2
Let Ho be the Siegel upper half-space of degree 2, namely,

Ho={Z =X + V1Y € M(C) |
'Z = Z, Y positive definite},

where M, (C) is the set of 2 x 2 complex matrices. The
discrete group I' = Sp(2,Z) is a set of symplectic matri-
ces of degree 4 whose entries are integers:

t 02 1o = 02 1y
—12 02 —12 02 .

The matrix v € I" acts on Hs discontinuously by the lin-
ear fractional transformation

Ir= {g € My(Z)

v-Z=(AZ+B)(CZ+D)"', ~= (é i).

Siegel’s fundamental domain F5 of Hy with respect to
the action of I' is given as follows [Klingen 90, Siegel 64].
Let X;;, Yi; be the (7, j)-entries of the 2 x 2 matrices X,
Y respectively. By definition, 5 consists of the points
Z =X ++/—1Y € My(C) determined by the following
three types of inequalities:

(1) X1 <1/2.

(2) Y is Minkowski reduced [Klingen 90, Section 1.2]).
Specifically, 0 < 2Y715 < Yi; < Yoo.

(3) |det(CZ+D)|>1forally= (¢ ) €T

Siegel proved that it is enough to consider only a
finite number of 4’s in the condition (3). Gottschling
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[Gottschling 59] determined a set of 15 inequalities out
of (3) that form a minimal set.

To recall Gottschling’s description, we prepare a set
of square matrices of degree 2. Let E;; be the identity
matrix and O the zero matrix. For simplicity, we set

E, = FEyy,
J = FEy + By,

Ey, = FEy, I.=FE +E,,
Ji=J4+E (i=1,2),

Theorem 2.1. [Gottschling 59, Sitze 1, 2] The condition
(3) is ezhausted by the following matriz pairs (C, D), and
no proper subset of them is sufficient to define the fun-
damental domain Fy:

rank(C) = 1:

(C,D) € {(E1, Ey), (Ey, Ey), (Ey — Ero, I + Eby),
(By — Erg, =11 — Ean)};

rank(C) = 2:

(C,D) with;C =1., +D=0,E, Ey,I.,J,Jy,J.

3. INDEX-ORIENTED MODEL OF THE BOUNDARY

Let OF, be the boundary of F;. We want to understand
0F, from the viewpoint of real algebraic geometry as
semialgebraic subsets in F,. From the definition of F5,
we introduce the defining polynomials f) to describe 0F5.

Now we define a finite set A indexing the conditions
(1), (2), and (3). For the condition (1), we set

fx (Z2) =1/2 = X11, fx,(Z) =1/2 = Xy,
Ix,(Z)=1/2 = X5 fox,(Z2) =1/2+ X1,
fox, (Z) =1/24 Xaa, fox,(Z)=1/2+ X1s.

Secondly, for the condition (2), we set
M (Z)=Yaa Y1, fv,(Z)=Y1 —2Y12, fv,(2)=N12.

Thirdly, we consider the condition (3) with the help of
Theorem 2.1. For simplicity we set 1 = (E}, Fs) € A, 2 =
(EQ,El) S A, R= (E1 — E12,1+ +E21) € A7 and R =
(El — Elg, —I+ — Egl) € A in the case of rank 1 in The-
orem 2.1. For these A € A, we put f\(Z) =|det(CZ +
D)? — 1. In the case of rank 2, C' is always the identity.
So we represent (C,D) € A by D. Then for D € A, we
put

fp(Z) =|det(Z + D)* - 1.

Thus A consists of 28 elements: 6 +3 + 4 + 15 = 28.
Put W), = {Z eF ‘ f)\ (Z) = 0} ObViOUSly, o0Fy =
Uxea W). Moreover, define the extended notation W;, =

Ny e W for a subset L in A. Note that the labels are
inclusion-reversing, i.e., L C L' = W, D Wy,.

Though we do not know the substance of the labeled
subset Wy, of 0F,, we hope that the contiguity of W, are
useful to parameterize the cells in OF;. Besides, we can
see the substance of W, pretty much in the 0-dimensional
case. We remark that the naive expectation dim Wy =
6 — |L| is not true for |L| > 2.

Let us introduce a notion of 0O-cells, a candidate for
“vertices” in this model. Let V be the affine space in
which the coordinate (X11 s Xlg, XQQ, )/11 s }/127 )/22) lives.
Put I, = (f\ | A € L), L C A, for the ideal generated by
L and consider the zero set V(Ir). Then one has Wi =
V()N Fs.

Definition 3.1.

1. Alabel L or Wy, is called a 0-cell if the dimension
of V(I) is zero.

2. A label L is called trivial if the corresponding
ideal I, is trivial (i.e., I, 3 1).

4. INVOLUTIONS

We set Fio(z) = —% for z € C. We introduce involutive
real-analytic diffeomorphisms 6;, i = 1,2,3, on Hy by

0,(2) = Fo(Zi) 2
' AD Zs ]’

05(2) = Z Z2
Ziy  Fx(Zn))

[ “Zn Foo(Z12)
() = (Foc(Zm) Za2 ) .

Moreover we put 6(Z) = 0,6:05(Z), which is a normalizer
of I' in the group of diffeomorphisms of Hs. For ~ =
(19), we also define 0¢(Z) =~-Z = (gfj gif ). Let A
be the finite group of order 16 generated by 6;,i = 1,2, 3,
and oy with relation o¢6;09 = 6. We say that two points
Z,Z" in Hy are A-equivalent if there is a 6 € A such
that §(Z) = Z', and this fact is denoted by Z 2 7. In
each A-equivalence class, we may choose a representative
point Z whose X;;-coordinates are all nonnegative and
X112 Xoo.

We define fy)(Z) = f1(0Z). Then we have a more eco-
nomical description of A:

A:{1a25m7}1271{%0}u{D59D|
D=RI. I ,J,E,Ji (i=1,2),X, (k=123
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5. 0-CELLS AND MAXIMAL LABELS

In this section we exhaust the whole set of 0-cells in our
definition. The procedure consists of a few steps; each
step is carried out by a computer algebra system. We
enumerate all the possible L such that dim(Vz) =0 to
get a finite set Vo = Ugim v (1, )=0V (IL)r . A detailed ex-
planation of the method and the computer computations
are presented in Section 6. There are 752 370 possibilities
by the results of step 1.

Next, for each L such that dim V' (I;) =0, we check
Wi, =V(I,)gr NOFy # & in the finite set ;. We explain
the details of the method by an example in Section 7. The
corresponding algorithm is given in Section 6 (step 2).

Then the number of remaining L such that W is
nonempty is 2146, and we find that the set

U wm
LCA
dim V (I )=0

W, 40

Wy =

consists of 180 points. Lastly, we check the maximality
condition (3) for L in Theorem 5.1 below.

To state the main result, we define 180 points and their
associated labels a priori, which are to be 0O-cells. Define
e, 0 <1 <39, as given in Table 1.

In the table, we put 7(z) = v/1 — 2% and set w; to be
the algebraic number given by a real root of §2; specified
uniquely by indicated additional conditions in Tables 2
and 3. Their floating-point expressions are given in Table
4. Finally, we define 180 actual points using the action of
A. With a given point p, we associate a label L,. They
both are given in Tables 5 and 6. The points e; are the
representatives of 40 A-equivalence classes.

Summing up, we can state the main result of this pa-
per.

Theorem 5.1. Let p be a point and L = L, the label asso-
ciated with p in Tables 5 and 6. Then we have

(1) Iy, is zero-dimensional.
(2) peWr.
(3) L is maximal, i.e., p ¢ W, for L' D L.

Computation of det(Y) from p = X + /—1Y gives the
following corollary.

Corollary 5.2. The points 03e; and 603e; attain the min-
imum det(Y") among the 180 points in Tables 5 and 6.

Remark 5.3. Theorem 5.1 does not necessarily mean that
we have a set of L’s such that dim(W;) = 0. Specifi-
cally, there could be L C A such that dim W =0 but
dim V(1) > 0.

6. PROCEDURE TO OBTAIN 0-CELLS
6.1. The Number of Nontrivial Labels

Logically speaking, the computation in this subsection is
not necessary, but it is helpful in grasping the complexity
of the computations.

Define T to be the set of trivial labels with size
n (cf. Definition 3.1). We put Tyt = 7 \ Uy, TH.
Obviously, T(!) = @. Tt is also clear the trivial labels of
size 2 are

T(Q) = T(2> = {[Xlanl]v [X37 0X3]7 [X279X2]}

new
By computer search, we obtain |TI§§&’ =0, |T§§&| = 16,
| Tion | = 64, |Tiew| = 1024.
The nontrivial labels are obtained as

M\ U e |Lcry.
n>2 [ern)
The inclusion—exclusion principle computes the cardinal-
ity. We restrict ourselves to the case n < 4. If we put
T=T2uy T,E;QM then the cardinality of possibly nontriv-
ial labels is given by 228 — 204166 144 = 64269 312.

To clarify the situation of nontrivial labels of smaller
size, we employ the inclusion—exclusion principle again.
If the size of the labels is 2, because |T?)| = 3, the num-
ber of remaining labels of size 2 is (228) —3=2375. If

three, the number is (238) — 3(216) = 3198. If four, because

|Té§l&\ = 16, therefore (248) - 3(226) —16+3=19487. If
five and six, we have respectively (258) — 8248497 - 7=
90122 and (%) — 51762 + 1699 — 197 + 2 = 326482 for
the numbers of nontrivial labels. In conclusion, we have
the following result:

| 2 3 4 5 6

(i) 378 3276 20475 98280 376740

# of nontrivial labels 375 3198 19487 90122 326482

6.2. The 0-Dimensional Ideals

Here, we collect the steps to obtain the 0-cells.

Procedure 6.1. Consider the nontrivial labels L.
step 1. Collect the L’s where I, is zero-dimensional.

step 2. For each L such that I is zero-dimensional,
compute all real zeros {py 1 }r € V(I1).
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J X11 X2 X2 Y11 Yio Yoo

€o 1/2 0 1/2 wo 0 wo

el 1/3 1/3 1/3 w1 w1 /2 w1

€9 we 1/2 we 1 1/2 1

e3 1/2 1/2 1/2 wo 0 wo

es 1/2 1/2 0 1 1/2 1

es 1/2 0 1/2 1 1/2 1

e 0 1/2 0 1 1/2 1

er 1/2 wo —3/4 1/2 wo wo /2 (3—wp)/2
eg 1/2 1/2 1/2 w3 w3 /2 w3

€9 1/2 1/2 1/2 wo wo /2 wy

€10 1/2 1/2 0 wo wo/2 ws /16
el 1/2 0 1/2 wo wo /2 ws /16
€12 w2 (1 —-w2)/2 w2 7(w2) T(w2)/2 T(w2)
e13]| (1 —3w2)/2 (1—-wy)/2 w2 T(w2) T(w2)/2 7(w2)
erq| (1 —3w2)/2 ws (1—-3w2)/2 7(w2) T(w2)/2 T(w2)
els wo (1 —3w2)/2 wo T(w2) T(wa)/2 7(w2)
€16 1/2 w7/4 (w7+1)/2—w3/8 wo OJU/Q M
err 1/2 (2 —wr)/4 ws /8 wo wp /2 wolws44-2u7)
els 1/2 1/2 1/2 wo w91 wo

e19 1/2 1/4 4+ wowa (wo —w21)2/2 wo (wo —w21)/2 T((wo —w21)?/2)
e20|(wo —w21)?/2 (wo —wa1)?/2 (Wo —w21)?/2  T((wo —w21)?/2) G+ G- —wi; 7((wo —w21)?/2)
€91 214 1/2 w14 T(wi4) T(w14)/2 T(wig)
€22 wis 1/2 w16 T(w1s) T(w15)/2 T(w15 —wie)
€23 w17 1/2 w17 T((/J17) T(w17)/2 T(w17)
€924 w20 (1 —UJ20)/2 1/2 T(wzg) T(UJQO)/Q T(LUQU/Q)
€5 1/2 (1 —-wis)/4 1/2 w19 wig/2 w19

€26 1/2 (1+wig)/4 (1—-wig)/2 wig w19 /2 wig

€27 wo9 wa3 /2 1/2 T(w22) (wa22)/2 T(wa2)wasa /2
€98 was 1/2 w26 T(was) T(w25)/2 7(w26)
€29 1/2 1/2 0 wo war /2 1

en| g 12 1 ) o) o) (g
e31 wag 1/2 wag /2 7(wasg) T(wag)/2 7(wag/2)
€32 wag w3o wag 7(w29) T(w29)/2 T(w29)
e33| 1—2ws30 1 —wa9 —wsp w29 7(wa9) 7(wa29)/2 7(wag)
e3q| 1—2ws3 w30 — wag wag T(wa9) T(wag)/2 7(w29)
ess w31 (1+ w31 —ws3a)/2 w32 /2 T(w31) T(w31)/2 T(w32/2)
€36 w31 (1 - w31 —w32)/2 w32 /2 T(w31) T(w31)/2 T(w32/2)
e37 w33 w34 /2 w3s /4 7(ws3) T(w33)/2 T(w35/4)
€38 w33 w34/2 —w33 w3z —wsg — G4+ 1 7(w33) T(w33)/2 T(w35/4)
€39 1/2 w3s /2 w36 /2 T(w36/2) w37 /2 7(w36/2)

TABLE 1. Definition of the points e; = X +/—1Y (0 < j < 39).

step 3. For each point py 1, take the maximal L C Lyax
by inclusion. Register (p;. 1, Lmax)-

step 4. For each (p, L) registered, if p € Wy, then out-
put (p, L).

The ideal I is 0-dimensional if and only if
dim Q [V]/I < oo. So by computing the Grobner basis of
I and checking its leading exponents, one can decide on
the zero-dimensionality. Using the computer algebra sys-
tem ASIR,' this is achieved by the command zero_dim in

L Available at http://www.math.kobe-u.ac.jp/asir/asir.html.

the package gr. By an exhaustive search in 2%, we obtain
the following search result.

Search Result 6.2. There are 752370 labels L out of 2",
so that Iy, is zero-dimensional.

6.3. The Minimal Polynomials of Ideals

For each L such that I is zero-dimensional, we want to
compute all real zeros {p;} € V(I1,).

In preparation for step 2, we compute the min-
ideal I, which we now
taken from

polynomial of the
propositions

imal

review. The below are
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Qo (t) = 4t? wo = V3/2=10.866...

Qi (t) = 9¢* wi = 2v2/3=0.9428 ...

Qo (t) = 8t° —13t2+10t—1 wy =0.1163. ..

Qs(t) = 9t + 4% — 16, m:% 237 -2 =1.0627...

Q4 (t) = 65536t — 13337612 + 61009,  wy = /(3V/3045 4 521)/2° = 1.1579 ...

Qs (t) = t1 —441¢% + 42849,  ws = 3/ (V285 +49)/2 = 17.2...

Qe (t) = 4t — 813 + 126> — 8t + 1, we = 0.1593 ...

Q7 (t) = t* + 22¢% + 96¢ — 39, wr =0.3739...

Qg (t) = t* — 143 + 114> + 2250t — 3687, ws = (3+ 10w; —w?)/4 = 1.6500...

Q14 (t) = 9t* — 24¢% + 682 — 48t + 4, wig = 0.0959. ..
Qu5(t) = 9t* — 2483 4 52t — 32t 4 4, wis = 0.1670...
Q6 (t) = 12 96t4 3744t% + 522412 — 4504t + 505, wig = (3wds — 6wis + 16w — 2)/4 = 0.1299...
Qu7(t) = 15¢" — 32¢3 — 44? + 32t — 4, wi7r = 0.1291. ..
Qs (t) =t — 2t* 4 8¢3 — 259¢% + 256t — 64, wig = 0.5285. ..
Qo (t) = 230412 + 3712610 — 177665 — 2848t5 — 1016¢* — 2402 + 225, wig = (1 —w1g)/(24/2w1s — 1) = 0.9861 ...
Qoo (t) = 47 + 7t — 283 — 382 + 48t —9,  wyp = 0.241164 ...
Qa1 () = 25615 — 25615 + 224t — 848¢% + 25, wo1 = 0.1723559 . ..
Qoo (t) = 95 — 265 —57t* + 107t + 2t — 23, wag = 0.4843 ...
Qa3 (t) = 918 + 44¢° — 36t — 52¢3 + 12442 + 24t — 12, w3 = /2 + 2way — 1 — wag = 0.2386. ..
Qo (t) = 126° — 88° 4 148t* + 281> — 120t + 36t + 23, way = Wiy + (3Twiy — 148wy — 152w, + 130wa2 + 73)/36 = 2.402. ..
Qa5 () = 712 — 16t — 44610 + 36817 — 180415 + 3840t7 — 37441° — 3200t°

+12560¢1 — 6912t — 68482 + 6912t — 1344, wys = 0.2914 ...
Qog (t) = 7168412 — 34816t + 20224410 + 231936t° — 599760¢% + 22281647 + 713128t° + 31320¢° — 1793601+
+ 115725263 + 463714¢% — 470548¢ + 4511,
wag = (3997wil —4999wi? — 31374wd; + 180128wh; — 836696w]; + 1270256wS; — 551200w5; — 2995952w3
+ 4650320w3 ;5 + 1295920w2, — 4073760w25 + 989888) /572416 = 0.0096 . . .
Qo7 (t) =t + 4% —166° — 42t* — 3263 + 164¢> — 16t — 47, wor = 0.7113...

(
Qog (t) = 915 — 24t + 565 + 166> — 232¢* — 4161° + 1760t — 1088t + 144, wyg = 0.1851...
Qoo (t) = 18 — 47 +16t° — 206° — 40t* + 64¢° + 281> — 40t +4,  wa9 = 0.1105. ..
Q30(t) = 25615 — 512t7 + 128015 — 1536t° + 1888t — 1120t + 512t2 + 96t — 87

w30 = (Bwlg — 11wSg + 59whg — 88wig + T8w3y — 2w3g — 188wag + 74)/132 = 0.4036 . ..
Q31 (t) = 10 — 12615 4 88+ — 448413 + 1716¢1% — 510441 + 11896¢10 — 2195647 + 32228t — 3777617 + 35464¢°

— 25968t + 14736t* — 5744t% + 1220t — 120t + 4, w31 = 0.18587 ...

TABLE 2. Minimal polynomials of algebraic numbers appearing in the coordinates. (Note that we do not use the labels Q;, w;
(9<i<13).)

[Noro and Yokoyama 03, Saito et al. 03] with termi- Proposition 6.4. If f(X) = X, is a monomial of degree 1,
nology there and without proof. Let P =Q[V]= then

Q[Xy,...,X,] be a polynomial ring of n-variables. Let I

be an ideal of P. Let f € P. We say that m(I, f;t) € Q [{] {peVI(C)|m(, Xi;pi) =0 for alli } D V().

is a minimal polynomial of I with respect to f if

{g(t) € P | g(f) € I} = (m(I, f;1)). This proposition implies that we have candidates for
points of V(I) by combining the zeros of the mini-
mal polynomials of the indeterminates. As for deter-

Proposition 6.3. If I is zero-dimensional, then there is ¢  mining the actual zeros V(I), we have the following
unique m(I, f;t) with respect to every f € P. result.
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Q30 (t) = 10 — 815 4+ 64111 — 328413 + 1248112 — 3584111 4 651210 — 2048t° — 2147263 4 5222417 — 40448¢°
— 30848t + 75008t — 15360t° — 36352t + 6144t + 256, w3 =0.2019. ..
Q33 (t) = 270413 4+ 6656¢17 + 14600t1% + 40200¢1° — 8939114 — 422918413 4 347143112 + 483432¢11 — 462293¢1°
+ 218930t° + 2553815 — 256272¢7 + 337615 + 5844t° + 5256t — 384¢3 — 152t2 — 16t + 4, w3z =0.2726. ..
Q34 (t) = 270418 — 14976417 + 50584110 — 18153641° + 32529714 — 275424413 + 90670012 — 3114868t
+ 12229602t — 2672619647 + 220969643 + 20670736t7 — 134656607t5 — 103677140t° + 9988315441
— 1897054492t + 2036832876t> — 398345048¢ — 481484588, wsgy = 0.9447 ...
Q35 (t) = 2704418 — 58032¢17 + 283180¢16 + 4323156¢1° — 80836455t + 586982356¢1% — 517856644¢12 — 3337799388811
+333714279920¢'0 — 1388330956224t° + 939768309312t% + 16067763419136t — 73817655947264¢°
+ 140376670666752t° — 73288713666560t* — 2402804474839041° + 6557394104483841> — 673143031070720t
+ 135070115430400, w3s = —wiy + 2wgawiy — (Wi — Dwss — 2w3q + 2 = 0.2599 ...
Qa6 (t) = 918 — 30817 4 347410 — 2316t + 1553614 + 15838t — 6922112 + 153688t + 299059¢1° — 950530t°
—1504919¢% — 3251596t + 21274899t5 + 19229826t° — 104885343t* + 2209152043 + 1499544641>
— 126939648t + 28776704, wye = 0.4794 . ..
Q37(t) = 1296t'8 — 29376t17 — 41624¢'° + 14552056¢1° — 62498599t — 2452996286113 + 1170738690112
+ 194047036776t — 8793342155980 — 6258212822748t + 37344996202338¢°
+ 25623399000072t7 — 715703278407651t% + 1044863824619722t° + 3139512217604881t"
— 11114753673284056t> + 13509026011131304¢> — 7566283923018880¢ + 1647662728153744
w7 = 0.8570. ..
Qg (t) = 36t1% — 48017 + 413641° — 22220415 + 6753314 — 35042¢*% — 766479t'2 + 4336224t — 1330879810
+ 27123976t° — 38935546t% + 40272664¢7 — 2958852315 4 13701578° — 1642203t* — 2665532t% + 2118624¢>
— 805056¢ + 147044, wsyg = 0.76594 . ..

TABLE 3. Minimal polynomials of algebraic numbers (2).

pts|coordinate expression pts|coordinate expression

eo 1[0.5,0,0.5,0.866,0,0.866] €20 [0.240, 0.240, 0.240,0.9706, 0.4709, 0.9706]
er 1[0.333,0.333,0.333,0.942,0.471,0.942] €s11[0.191, 0.5,0.095,0.9953, 0.4976, 0.9953]
es 1[0.159,0.5,0.159,1,0.5, 1] €22 1[0.167,0.5,0.1299,0.985, 0.4929, 0.9993]

e3 [[0.5,0.5,0.5,0.866,0,0.866] €23([0.1291,0.5,0.1291,0.9916, 0.495, 0.9916]
es 1[0.5,0.5,0,1,0.5,1] €24([0.2411,0.3794,0.5,0.9704, 0.4852, 0.992]
es 1[0.5,0,0.5,1,0.5,1] €351[0.5,0.117,0.5,0.9861, 0.4930, 0.9861]

es 1[0,0.5,0,1,0.5,1] €16 [0.5,0.3821,0.2357,0.9861,0.4930, 0.9861]
e7 1[0.5,0.1160,0.5,0.866, 0.433, 1.066] €571[0.4843,0.1193,0.5,0.8748,0.4374, 1.0508]
es 1[0.5,0.5,0.5,1.062,0.531,1.062] €51[0.2914, 0.5, 0.0096, 0.9565, 0.4782,0.9999]
eg 1[0.5,0.5,0.5,0.866,0.433,1.157] €29([0.5,0.5,0,0.866,0.3556, 1]
e101[0.5,0.5,0,0.866,0.433,1.076] e30([0.1443,0.5,0.1443,0.9895, 0.4895, 0.9895)
e11([0.5,0,0.5,0.866,0.433,1.076] e31([0.1851,0.5,0.092,0.9827,0.4913,0.9957]
€12/[0.1163,0.441,0.1163,0.9932, 0.4966, 0.9932] e32{[0.110,0.4036,0.110,0.9938, 0.4969, 0.9938]
e13/[0.325,0.441,0.1163,0.9932, 0.4966, 0.9932]  e33([0.192,0.4857,0.110,0.9938, 0.4969, 0.9938]
€141[0.325,0.1163,0.325,0.9932, 0.4966, 0.9932]  e34([0.192,0.293,0.110,0.9938, 0.4969, 0.9938]
e15([0.1163,0.325,0.1163,0.9932, 0.4966, 0.9932] e35([0.1858,0.4919,0.100,0.9825,0.4912, 0.9948]
e16([0.5,0.093,0.480, 0.866,0.433, 1.061] e36([0.1858,0.3060, 0.100,0.9825,0.4912, 0.9948]
e17([0.5,0.406,0.206, 0.866,0.433,1.061] e37([0.272,0.472,0.064,0.962, 0.481,0.997]
e15/[0.5,0.5,0.5,0.866,0.172,0.866] e351[0.272,0.199,0.262,0.962, 0.481,0.997]
€19[0.5,0.399, 0.240, 0.866, 0.346, 0.9706] €391[0.5,0.3829,0.2397,0.9708, 0.4628, 0.9708]

TABLE 4. Numerical expression of points on (V(I) N 0F)/~ A.
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pt: p maximal label: L, pt: p maximal label: L,

€y 1,2,0, 9E1,9E2,91+,Y1,Y3,X1,X2] feg [0,Y1,Y5,0X,,0X3,0X,]
Ose 1,2,0,0E,,E,,01_,Y,,Ys,X1,0X5] e 1,0,Ys, X1, X5, X5)]

01 e 1,2,0,E,,0E,,1_,Y1,Y3,X5,0X] Oseqg 1,E,,0J1,Y5, X1, X3,0X,]
0162e0 |[1,2,0,E,,E5,1,,Y1,Y5,0X,,0X5] O3eqg 1,0I.,J,Y>, X, X5,0X;3]
0seq [1,2,0R,0E,,0E,,01.,J,Y,,Ys] 0305 eq9 [1,0E,, Jy,Ys, X1,0X3,0X5]
0105¢; 1,2,R,E|,Ey,1,,0J,Y,,Y5] 0, eg [1,E,0J5,Ys, X5, X5,0X]
Oy e9 [R,E2,0J,,Y1,Ys, X;5] 0,65¢e9 [1,1,,00,Y,,X5,0X,,0X5]
030se5 |[OR,0FE, J5,Y1,Ys,0X3] 0,0se9 [1,0E,, J;,Ys, X,,0X,,0X3]
01 es [R,Ey,0J5,Y1,Ys, X3] Oey 1,0,Y2,0X,,0X5,0X,]
0103e2 |[0R,0E,, J;,Y1,Ys,0X5] €10 1,0,0J,,Ys, X1, X;3]

es3 1,2,Y1,Y;3, X1, X3, Xo] Oseq [1,0E,J,Y2, X1,0X3]

Ose3 1,2,Y1,Y3, X1, X3,0X5] frerp 1,E,0J,Y2, X5,0X]

Ose;3 1,2,Y1,Y3, X1, Xo, 0X;5] 010se10 |[1,0,J1,Ys,0X,,0X;5]
030se3 ([1,2,Y1,Y;, X,0X3,0X,] el [1,0E,,0E,,Ys, X1, X5)]

0, e3 1,2,Y1,Y;, X3, X0,0X,] Bre1 1,0,601_ Yy, X1,0X5]
010se3 ([1,2,Y1,Y;, X3,0X:1,0X,] Orerr 1,0,1 .Yy, X5,0X,]

016ze;5 |[1,2,Y1,Y3,X0,0X,,0X;5] 0102e11  |[1,E1, Ey,Ys,0X,,0X5]

fes 1,2,Y1,Y3,0X,,0X3,0X5] 0re1o 1,2,R, Ey,Y1,Y5]

e4 [2,0,0J,,Y1,Y3, X1, X3] 0360215 |[1,2,0R,0FE;,Y1,Y5]

Oyo0es  |[1,E2,0J,Y1,Ys, X3,0X5] 0re1o [1,2,R,E,Y1,Y5]

Osey [2,0F,,J,Y1,Ys, X;,0X3] 6105e12  |[1,2,0R,0F,,Y1,Y5]
030500e4([1,0,J5,Y1,Ys,0X5,0X,] Oreq13 [2,0,F,0J,,Y1,Ys]

930’064 [ ,0E2,J}/17Y}7X276X] 93020’0613 [1 O 0E17J27}/1,n]

0re4 [2,F,0J,Y1,Ys, X3,0X] 010315 |[2,0,0E,,J1,Y1,Ys]

0,16se, |[2,0,J1,Y1,Y5,0X,,0X5] O1o0e13 |[1,0,E1,0J05,Y1,Y5]

op€ey [1,0,0J5,Y1,Ys, X5, X5] Oseyq [OR,0,0F,,0E,,Y,,Y5]

es [0R,0FE,,0FE,,Y1,Y>, X1, X5] 610se14 |[R,0,E1,Ey,Y1,Ys]

010se; |[R,E1, Ey,Y1,Ys,0X,0X5] Oseqs 1,2,0R,0,Y1,Ys]

es [1,2,R,Y1,Ys, X3] 610se15 |[1,2,R,0,Y1,Ys]

Ose6 [1,2,6R,Y1,Ys,0X3] e [1,0,0F;,0F,,Y,y, X;]

er [1,0,0FE5,Y3, X1, X5] 0302e16 |[1,0,0E,,01_,Y,, X]

Oye7 [1,0,FE,,Ys, X1,0X5] fre 1,0,E,,I ,Y,,0X]

Oser [1,0E,,01,,Ys, X, X5] feig [1,0,E,Ey,Y,,0X]

030se; |[1,0E,,01_,Ys, X;,0X5] Ore17 1,0,E5,0J,,Ys, X4]

0re7 1,E,1 Y5, X5,0X4] Oser [1,0E,,01,,J,Ys, X;]

919267 [1,E1,I+,Y72,0X1,0X2] 9102617 [17E1,I+79J,Y§70X1]

0.10se; |[1,0,0E,,Y5, X5,0X] 0103e17 |[1,0,0E,,J,,Y,,0X]

Oer [1,0,FE,,Y5,0X,,0X,] e1s 1,2,0,Y), X, X35, X5]

es [0,Y1,Y2, X1, X3, Xs] Ore1s 1,2,E,,0,,Y1,X;,X;5,0X,]
0y e5 [Ey,0J,,Y1,Ys, X1, X5,0X,] Osers 1,2,01,,J.Y), X1, X,,0X;]
0ses 01;,J,Y1,Yy, X1, X, 0X3] O50se15  |[1,2,0F,,J5,Y1, X1,0X3,0X,]
030ses  |[0E1, Jo,Y1,Ys, X1,0X5,0X5)] frers 1,2,F,,0J,,Y1, X3, X0,0X:]
01 es [Er,002,Y1,Ys, X3, Xs,0X,] 6102e15 |[1,2,1,,0J,Y1,X3,0X1,0X5)]
0162es |[I+,00,Y1,Y2, X5,0X,,0X5] 0103e15  |[1,2,0E,,J1,Y1,X5,0X,,0X3]
016ses |[0Es5, J1,Y1,Ys, X0,0X,,0X;] feis 1,2,0,Y7,0X,,0X;,0X,]

TABLE 5. Points p and its associated label L, C A.

Proposition 6.5. Let G C I be a Grébner basis of I with

respect to the lexicographic order Xi = Xo > ---

Then

InQJ

Xp]=(m

= Xp.

(I, Xp;31))-

If G is reduced, then GNQ [X,] =

m(I,X,;t).

One way to obtain the minimal polynomials is to com-
pute Grobner bases. Finally, we refer to the so-called
shape basis.
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pt: p maximal label: L, pt: p maximal label: L,
Ose19 1,2,0,E,,0J,,X;] 010se97  |[L,Ey, By, I, ,Ys,0X5)]
Ose19 1,2,0F,,01,,J, X,] 0z €98 1,2,0,0J,,Ys, X3]
610se19 |[1,2,E1,1,,0J,6X,] O305e05 |[1,2,0FE1,J,Ys,0X3]
0103e19 |[1,2,0,0F5,J,,0X] 01 es8 1,2,E,,0J,Y,, X;3]

03 e [1,2,0R,0,0FE,,0E,,Y;] 0103e25 |[1,2,0,J1,Ys,0X5]
01602e50 |[1,2,R,0,E, Ey,Y1] €29 1,2,0,0J,, X, X3]
0y e91 [2,R,0J1,Y1,Y5, X3] 03 es9 1,2,0E,,J,X,0X;]
Oyopear  |[1, R, Ey,Y1,Ys, X;] 01ea9 1,2, F,0J, X5,0X,]
050se01  |[2,0R,0E,,Y1,Y5,0X;3] 6105e29 |[1,2,0, J1,0X;,0X3]
93020’0621 [ ,0R7J2,Y1,)/279X3] 02630 [1727R,E270J17Y17X3]
01 e21 [2,R,E,Y1,Ys, X3] 0502e30 |[1,2,0R,0FE,, J>,Y,,0X;]
010321 |[2,0R,J1,Y1,Ys,0X5] 01 e3 1,2,R,E,0J5,Y1, X3]
010300e21|[1,0R,0F,,Y1,Ys,0X;5] 010se30 |[1,2,0R,0E,,J,,Y1,0X5]
bropear  |[1,R,0J5,Y1,Ys, X3] Oye31 1,2,R,0J,,Ys, X;]
0se99 [1,R, Ey,0J,,Ys, X;3] O30se31  |[1,2,0R,0FE,,Y>,0X3]
6302622 [ ,0R 9E1,Jf) }/2,0)(} 91631 [1,2,R,E17Y5,X3]

01 e20 [1,R,E,0J5,Ys, X;5] 0103e31  |[1,2,0R, J1,Ys,0X3]
0103e20 |[1,0R,0E,, J;,Ys,0X;] 0z €39 1,2,0,FE,,Y1,Ys]

€23 1,2,0,Y1,Y,, X;] 0302e30  |[1,2,0,0E,,Y1,Y5]
0ses3 [1,2,J,Y],Ys,0X;] 0, e3 1,2,0,F;,Y1,Ys]
610se05 |[1,2,0J,Y1,Ys, X3] 6105e30  |[1,2,0,0F,,Y1,Ys]
Oess 1,2,0,Y1,Y,,0X;] 0se33 [2,R, Ey,0J,,Y1,Ys]
93624 [ ,0E2,9[+,J}/27X2} 03920’0633 [176R,0E17J27}/1,)/:2]
0302e24 |[1,0,0E,, J3,Y2,0X5] 0103e33 |[2,0R,0E,,J;,Y1,Ys]
01 ea4 [1,0,E:,0J5,Ys, X5] Oi100ess  |[1, R, E1,0J5,Y1,Y3]
0162e54 |[1,E2,1,,0J,Ys,0X,] fses4 [2,0R,0,0E,Y1,Y5]
€5 [0,0E,,0E,,Y1,Ys, X1, X5)] Os00e3s  |[1,0R,0,0E,,Y1,Y5]
0y e95 [0,E5,01_,Y,,Ys, X1,0X5] 610se3, |[2,R,0,E,,Y1,Y5]

03 €5 [0E,,0F5,01,,Y1,Ys, X1, X5]  616200e34|[1, R, O, Ey, Y1, Ys]
O305e05 |[O,0E,,01_,Y1,Ys, X1,60X5] Ose35 [1,2,R, Ey,0J1,Y5]

01 es5 [O,E,I_,Y1,Ys,X5,0X] 0103e35 |[1,2,0R,0E,,J;,Y5]
01602e55 |[Er, B2, 1, ,Y1,Y2,0X,,0X5] fses6 1,2,0R,0,0E,,Y5]
010se55 |[0,0Fy, 1 ,Y1,Ys, Xo,0X1] 0102e36 |[1,2,R,0, E;,Y3]
Oess [0,FE1,Ey,Y1,Y,,0X,,0X5)] 0 e37 1,2,0,E,,0J1,Ys]
0se96 [0, Ey,0J,,Y1,Ys, X1] 6105e37  |[1,2,0,0F,,J;,Y5]
93626 [0E1,91+,J }/17Y}7X1] 03638 [176R,O79E1,9E27)/2]
03020026 |[0,0E7, J2,Y1,Y2,0X5)] 0102e35 |[1,R,0,E;,Ey,Y5]
Os00es6 |[0E2,01.,J,Y1,Ys, X5] 0z e39 [2,0,E,,0J,,Y1,X]
01602e56 |[Er,1,00,Y1,Y5,0X ] 0sesq [2,0FE,,01,,J,Y1,X;]
010s00e26|[E2, I,0J,Y,,Ys,0X5)] 030500e39|[1,0,0E,, J2,Y1,0X5)]
6105es6 |[O,0FEy, J1,Y1,Ys,0X] Os00e39  |[1,0E2,01,,J,Y;, X5]
Oropess  |[O, Er,0J5,Y1,Ys, Xo] 610se39 |[2,E1, 1, ,600,Y1,0X]
Osear [1,0E,,0F,,01,,Ys, X5] 610500€e39|[1, Er, I, ,0J,Y1,0X5]
03602e97 |[1,0,0E,,01_,Y,,0X5] 0103e39 |[2,0,0E,, J;,Y1,0X,]
0 es7 1,0,E,,1 ,Y,, X5] Oi100e39 |[1,0,E1,0J5,Y1, Xo]

Proposition 6.6. Suppose that I is zero-dimensional and
(I,X,;t)). Then there is a set of
polynomials {g;(t)} such that the Grobner basis with re-

that dim P/I = deg(m

TABLE 6. Points p and their associated labels L, C A (2).

spect to the lexicographic order is

G={X1—a(X,),Xo— g
m(I, X,;t)}.

Xn—l — On-1 (X’IL)7

(Xn), -y
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Co :{6079260791807919260}
G ={93617910261}
Cy = {92627930262791627919362}

C3 = {es,bhe3,05e3,0305e3,01e35,0105e5,0103e5,0e3}
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Cy = {647920064>03€4793920'0647930'06479164>0103e470064765701926576679366}

Cr = {@77926779167>919267},

0C; = {93677939267,9193677967}
Cs = {eSa92687936879392687‘9168701 92685‘9193687968}
Cy = {69,9269793697939269,9169,919269,9193697969}

Cio = {610793610791610791936107611792611791611,9192611}

Ciy» = {92612,91612 036200e13,010e13,0,00e14, 93615}7

0C = {9392612,9193612,926137910061379361479192615}
0Ci6 = {93928165961676361779193617}

Cis = {61676161679261779102617}7

Cis = {61876261870361870302318a91618701026187010361876618702619a036197010261970103619a9362070192620}

Co1 = {92621,93926217910300621,9100621}7
Cog = {92622,9392622}7 0Cyy = {91 622791 93622}
Co3 = {623793623}7 0Cy3 = {91 92623,9623}

Coy = {93624’9392624}7 0Cyy = {‘91 824,9192624}

0Cyy = {92006217939200621791621,9193621}

Cos = {6257 Ore35,01€25,0102€25,02e56,0105e56,0,0200€26, 01 UOeQG}a

0Cy5 = {9362579392625, 010se05, 0egs, O3 €36, 030200 €26, 0300 €26, 01 93626}

Co7 = {b3€97,0302€27 },
Cog = {9262870392628}7

0Cor = {61e27,6105€27}
0Cys = {91 628701 93628}

Cog = {6297 O3e99,01e99,6103e29,05e30,0505e30, 01 €30, 01 93630}

Cs1 = {92631,9392631}, 0Cs1 = {91 es1,th 93631}
Cso = {92632,91632,92633,910063379363479300634}7

0Csy = {93926327 0103e39 s 030200e33 5 0103e33,0105e34, 61 9200634}

Cs5 = {92635703636}7
Cy7 = {92637793638}7
Cs9 = {92639"9192639791920063979100639}7

0Cs5 = {0103e35, 016256 }
0Cs7 = {019363770192538}

0C39 = {9363979392006397 Os00e39, 0, 93639}

TABLE 7. I'-equivalence sets C;, and 6Cy,.

So the problem is reduced to obtaining the zeros of
the univariate polynomial m(I, X,,;t). The other coordi-
nates of the zeros are obtained as certain values of the
univariate polynomial.

The real roots of a one-variable polynomial are fairly
easily obtained by Newton’s method. So by the propo-
sition above, we obtain all the real zero points of V(1)
when I is zero-dimensional.

Returning to our case, the computation of a Grébner
basis with respect to the lexicographic order is some-
times too expensive. In this unfortunate situation, we
do a mixed strategy utilizing other kinds of term order.
We divide step 2 into the following;:

step 2-1. Compute the minimal polynomials
m(I, X;;;t), m(I,Y;;;t) and their real roots.

step 2-2. Check p € V(1) using floating-point computa-
tion up to a certain accuracy for all combinations
of real roots of the minimal polynomials.

In the system ASIR, this can be done by the com-
mand minipoly. The real roots are obtained by Newton’s
method.

To speed up the search, we apply the following prun-
ing. We can skip to the next L if a root violates condition
(1) or (2) in Section 2.

6.4. Step 4: Nonempty 0-Cells

We know the points in Vj of all 0-dimensional ideals I,
by step 2. Then step 3 can be easily carried out by the
inclusion-reversing property. In step 4, we decide whether
p € Vy is in Wr. This can be done by a positivity check
for fy A € A\ L by a floating-point computation in view
of step 3; if a point can attain zero on fy, A\ ¢ L, this
would violate the maximality of L.

Search Result 6.7. Among the zero-dimensional ideals I,
there are 2146 labels L, so that Wi is nonempty. In fact,
one has |Wi| =|V(IL) NoF| < 2.
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Search Result 6.8. These 2146 labels produce 180 points
on the boundary of the fundamental domain V(I,) N OF
indicated in Table 5.

Our search results suggest that Theorem 5.1 is best
possible.

7. PROOF OF THEOREM 5.1

Once the point p is explicitly given, to show that the point
satisfies the positivity fy >0, A € A\ L, is straightfor-
ward. So the remaining part of of the proof of Theorem
5.1 is to show that p € V(I1)r . This is achieved through
a point-by-point investigation, as the following example
indicates.

With the result in Section 6.3 in mind, we revisit Pro-
cedure 6.1 for the case p 2 e12. This also clarifies the
situation of maximality of labels.

Take L =[1,2,0R,0F,,Y1,Y2]. Then I, can be
checked to be zero-dimensional. The minimal polyno-
mial m(t) = m(I, Xo9;t) of Xyy is of degree 8. By fac-
torization, Xs9 should be 1/3, £1/5, or Qy(—Xs9) =0,
so X117 =1/3, £1/5, or —ws as real zeros whose absolute
values are less than 1/2.

Consider the case Xo9 = —ws. Since variables other
than Xj5 depend on Xsy very simply, what is essen-
tial is the dependency on Xjs. The shape basis says
that

— 40411800X 7, + 2571225 X3, + 91990172X5,
+ 52140601 X4, — 53576848 X35, — 50659293X 7,
+ 16986764 X5y — 14988288X 5 — 4052533 = 0.

Taking this modulo Q9(—Xs2), we obtain the value
of Xi5. In fact, taking the basis corresponding to the
graded reverse lexicographical order (grrevlex), we may
see the basis would show a simpler dependency: X5 =
—(1 —w2)/2. In any event, we can obtain 0560se15. After
checking positivity, we conclude that W, is nonempty. If
X2 = +1/5, this also gives rise to the point Z € V(I1),
but it would make fp(Z) negative, so such is not the
case. On the other hand, when X,y = 1/3, it also gives
a valid point f3e; € Wy. So |W| = 2. It turns out that
the label L is the maximal label of 8365¢e15. Consider the
label L' = [1,2,0R,0F,,0E,,01,,J,Y1,Y3]. Then L C I’
and Wi = {603e; }. This implies that the maximal label
of 9361 is L.

8. TI'-EQUIVALENCE CLASSES OF ZERO CELLS

In this section we consider the I'-equivalence classes be-
tween the 180 O-cells obtained in the previous sections.
Define 40 sets C;, and their #-images as in Table 7. We re-
mark that when k =0, 1, 2, 3, 4, 8, 9, 10, 18, 29, then C;
is f-stable, that is, Cx = 6C;,. We discuss [-equivalence
and I'-inequivalence of the Cy’s.

8.1. Equivalence Property of Cy

We start with a few lemmas.
Lemma 8.1. A set C is I'-equivalent if and only if 0C is.

Proof. Ifweput ((4 £))? = (‘4 72, then the result fol-
lows by 0vZ = ~%02. O

Lemma 8.2. The sets C., 0Cp for k=0,2,3,7,8,9,
21,22,23,24,27,28,31,39 are I'-equivalent sets.

Proof. The assertion is clear, because the equivalence in-
side Ci or 6C; can be found by oy and the translations
of the X;;-coordinates by £1. O

To show the other equivalence property, we first define

of = Labn B2 p
0 I+ Eq»

Lemma 8.3. The matriz o7 transfers 0-cells to 0-cells as
follows:

+
o) [010se13, €16, €25] = [0102e14, 02€17, O2€26]
o1 [ea, e10, 02e12,02e30, 02€33, O02€35, B2 €37],
= [es, €11, 03€15,0300€34, 0334, 03636, O3€38).

Proof. This is easily proved by a direct computation. [

Lemma 8.4. The sets Cy,0C). for k = 10,16,25, 32, 35,37

are I'-equivalent sets.

Proof. The equivalence of the sets C; and 0C;, in the as-
sertion follows by Lemmas 8.1 and 8.3 with the help of
oo and the translations of Xj;-coordinates by %1. O

Lemma 8.5. The sets Cy,0Cy for k=1,4,12,29 are I'-
equivalent sets.
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Proof. The assertion when k& =1 follows from the fact

that
E2 —I+
= , -O3e1 = 603e;.
st <E1 E2> Y1 - Uszer 3€1

Consider the case k = 4. We can check that

T S AT
4 — ) 4 €4 — €6
E2_E12 El

By Lemma 8.3, we have o] es = e5, so the equivalence
of this case is now clear. When k& = 12, we need another
equality:

Ey  En
Y12 = , Mzbeerr = 00,00€e13.
(-Em Ex

The equivalence when k£ = 12 is now obtained by the help
of Lemma 8.3.

To show the equivalence when k = 29, it is enough to
prove the following equality, which is obtained by direct
computation:

N I_+Ey —E e Ooe
29 = , "egeag = B2e30.
Ey, —Ep E

Lemma 8.6. The set Ci5 is a I'-equivalent set.

Proof. Since X;; of e;g are all 1/2, the former eight
elements in Cig are all I'-equivalent. In particular, we
have €18 fI:/ 9618. MOI‘GOVQI‘, Y18€18 = 9193619 with Y18 =
(_%1 gi ) Thus e;g L 0165¢e19. This means that

[} r
Oaerg = 00,03e19 = Oy13e18 = Yigbeis ~ egs.
. r
Since z17 = 1/2 for ejg, we have e19 ~ 61e19. Hence
r r
0102e19 ~ Ore19 ~ €13

and 93619 ’1:-/ 9193619 ’1:-‘ €18-
We have to fix the cases f3e9p and 6109e9,. Since
r .
Ore19 ~ e1g, for O3es9 we apply the equality

B B
Yigbherg = O3e99  for 4i5 = (—E2 E1> .

Finally,
0105e90 = 0(03e90) = 07, 502e19 = (715)" 00210

r
= (v}3) 01 03e19 ~ e1s.

degree/Q (vV=3)|Q (C) ¢

1 Q(vV-3) Co,Cs

2 Q(V=3,V-1) Cr,0C;

2 Qwsv/-1) G

2 Qwsv-1)  Cio

4 Q (ws +V=1) Cy

4 Q (wr +V=3) Cig,0Ci6
4 Q(w2iv—-1) Cis

4 Q (v15) Ca2,0Ca9
8 Q(wervV/—=1) Ca

8 Q (v29) C32,0Cs9
16 Q (v31) C35,0Cs5
18 Q (v33) C37,0C37

TABLE 8. The field Q (C) that contains /—3. Here v, is such
that |v,| = 1 and Re(vy,) = wy.

Summing up, we obtain the following theorem.

Theorem 8.7. Let C;. be the set defined as in Table 7 and
let OCy be its B-image. Then every Cp and every 6Cy, is a
I'-equivalence set.

Corollary 8.8. The upper bound of the number of I'-
equivalence classes Wy /I is 40.

8.2. Inequivalence Property of Cy

For Z € Ho, let Q (Z) denote Q (le,ZlQ,ZQQ), the field
generated by the point Z.
The following lemma is clear.

Lemma8.9. IfvZ = Z' foravy € I, thenQ (Z) = Q (Z').

By Lemma 8.9, Q (C) for the equivalence set C is well
defined. We list these fields in Tables 8 and 9.

Proposition 8.10. The lower bound of the number of I'-
equivalence classes Wy /L is 25.

Proof. Since one can directly check that the fields listed
in Tables 8 and 9 are all distinct, the possible number of
I'-equivalence classes is greater than or equal to 24 by
Lemma 8.9.

To show that the lower bound is 25, we prove that C
and Cs are inequivalent by contradiction. Suppose there
is an invertible integral matrix in I" that transfers e; to
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degree/Q |Q (C) C
2 Q-1 G
2 QWV=2) G
4 Q(wsv—1) Cs
6 Q (Vl) C12,0C12
8 Q (114) Co1,0C
8 Q (17) Ca3,0Ca3
10 Q (v20) C24,0Cay
12 Q (w19v/—1) Ca5,0Ca5
12 Q (v22) Car,0Cy7
16 Q (v2s Cs1,0Cs1
24 Q (v25) Cas, 0Cas
36 Q (v36) Cs9,0Cs9

TABLE 9. The field Q (C) that does not contain /—3.

e3. Then
(Ae() + B)(Ce() + .D)_1 = e3

and

(n—-1 /2 n o 1/2
nA+B_<n/2 n_l>c+(m n>D

for n = e™/% and integral 2 x 2 matrices A, B, C, and D.
By extraction, we readily find that both matrices C' and
D must have all entries even integers, a contradiction. [J

8.3. Automorphic Functions and the Inequivalence
Property: A Conjecture

We conjecture that the all C; are inequivalent, which
should mean that |W,/L| = 40. To show this inequiva-
lence property between C;’s, we should consider the case
k="7,12, 26, 21, 22, 23, 24, 25, 27, 28, 31, 32, 35, 37, 39.
They are actually inequivalences between C and its 6-
image. In this case, however, Q (C) coincides with Q (6C),
so we need additional information. Here we indicate a
possible method to solve this question.

Let Ji, Jo, J35 be the Igusa generators of the modular
function fields C (J;, Jo, J3) of the Siegel modular variety
I'\H,, which are the quotients of modular forms with ad-
equate weights such that all the Fourier coefficients be-
long to Q [Igusa 62]. Then if e; and fe; are I'-equivalent,
one has

J(ej):J(eeJ):J(e])v J:J17J27J3'

This means that e; € I"\H, defines a real point on the
canonical model of Q (Ji, Ja, J3). Therefore, our conjec-

ture is equivalent to the claim that for each j, there ex-
ists ¢ such that J;(e;) ¢ R. We can check this condition
if we can compute the numerical value of J;(e;) with
high-enough precision, applying the method of verified
numerical computation [Rump et al. 08] if necessary.
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