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AN ATLAS OF LEGENDRIAN KNOTS

WUTICHAI CHONGCHITMATE AND LENHARD NG

Abstract. We present an atlas of Legendrian knots in standard contact
three-space. This gives a conjectural Legendrian classification for all
knots with arc index at most 9, including alternating knots through 7
crossings and nonalternating knots through 9 crossings. Our method
involves a computer search of grid diagrams and applies to transverse
knots as well. The atlas incorporates a number of new, small examples
of phenomena such as transverse nonsimplicity and non-maximal non-
destabilizable Legendrian knots, and gives rise to new infinite families
of transversely nonsimple knots.

1. Introduction

A central problem in contact knot theory is the Legendrian and transverse
classification problem: how to classify all Legendrian and transverse knots
of a particular topological type in some contact 3-manifold. This is an
interesting question even for the most basic case, R3 with the standard
contact structure ker(dz − y dx). Legendrian and transverse knots have
been classified in this case for a few families of knots, including the unknot
[8], torus knots [10], and twist knots [13]. The classification problem for
most other knots, however, including many “small” knots, is currently wide
open.

In this paper, we present a conjectural Legendrian and transverse classi-
fication for all prime knots in R3 with arc index at most 9. This includes
all prime knots with 7 or fewer crossings, all prime nonalternating knots
with 9 or fewer crossings, and an assortment of other nonalternating knots.
(One can use the prime classification to similarly classify composite knots,
by the results of [12].) The classification is presented at the back end of this
paper in the form of a “Legendrian knot atlas”. A corresponding atlas of
transverse knots can be deduced from this.

The strategy behind our atlas is a “probabilistic” approach to enumer-
ating Legendrian and transverse knots, based on expressing them as grid
diagrams. Two grid diagrams representing Legendrian or transverse knots
are isotopic if and only if they are related by a sequence of elementary moves,
some subset of the so-called Cromwell moves. Roughly speaking, our algo-
rithm enumerates all grid diagrams of a particular size and attempts to
determine which of them are related by these Cromwell moves. Unfortu-
nately, one of the Cromwell moves, stabilization, changes the size of the grid
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diagram, and so the algorithm cannot prove, in finite time, that two grid di-
agrams represent nonisotopic Legendrian or transverse knots. Nevertheless
we can guess with some degree of confidence when two grids are isotopic,
under the assumption that if two grid diagrams of a certain size are related
by Cromwell moves, then they are related by moves that do not increase the
grid size by too much.

The result of the algorithm is a computer program that can show that
various grid diagrams are isotopic, and guesses that other grid diagrams are
not isotopic. This technique seems to be surprisingly effective in classifying
Legendrian and transverse knots. In many cases, one can prove by hand,
using various recently developed invariants, that the isotopy classes of grid
diagrams produced by the program are indeed distinct.

We hope that the wealth of examples produced by the atlas will be useful
to researchers working in contact geometry and related fields. A precur-
sor of sorts to this atlas, an enumeration of Legendrian representatives of
knots through 9 crossings by Melvin and Shrestha [19], has provided testing
material for various projects in contact topology, and many of the Melvin–
Shrestha examples appear in some guise as part of our atlas.

In compiling the atlas, we discovered examples of several interesting phe-
nomena for Legendrian and transverse knots that either had not been seen
before, or had only been seen in much more complicated examples. In par-
ticular, the atlas contains:

• Legendrian (respectively transverse) knots that do not maximize
Thurston–Bennequin number (self-linking number) but are not desta-
bilizable;

• knots that can be proven to be transversely nonsimple by inspection
and a bit of knot Floer homology, without computer verification or
more complicated techniques;

• knots that can be proven to be transversely nonsimple only through
a recently developed invariant, transverse homology, and not by knot
Floer homology;

• transverse knots that are conjecturally distinct from their transverse
mirrors;

• Legendrian knots with more than one linearized contact homology.

Indeed, some examples in the atlas can readily be generalized to give,
for instance, infinite families of knots that can be proven to be transversely
nonsimple by inspection. Furthermore, we show the following result, with
an analogous statement also holding for Legendrian knots.

Proposition 1. There are non-destabilizable prime transverse knots whose
self-linking number is arbitrarily far from maximal.

We note that similar results have been obtained by Etnyre, LaFountain,
and Tosun, but with a completely different set of examples (cables of torus
knots).
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There are a fair number of knots in the atlas (drawn in red) that we conjec-
ture, but are currently unable to prove, are distinct. It would be interesting
to know if various “modern” techniques could be applied to these knots:
Massey products on linearized contact homology [5], Legendrian Symplectic
Field Theory [23], and so forth.

The atlas itself is available as a standalone file from

http://www.math.duke.edu/~ng/atlas/

where an analogous atlas for unoriented two-component Legendrian links,
as well as various source files, can also be downloaded. Any future updates
to the atlas will be posted there as well.

In Section 2, we provide a quick summary of the terms we use in the atlas,
and describe the algorithm used to produce the Legendrian knot atlas. We
discuss the particular examples and families of examples, illustrating the
aforementioned unusual phenomena and others, in Section 3. The Legen-
drian knot atlas itself comprises Section 4.
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2. Background and Methodology

2.1. Background. Of the various ways to depict Legendrian and transverse
knots in standard contact R3, we will exclusively use grid diagrams. Here
we briefly recall the salient features of grid diagrams and their relationship
to Legendrian and transverse knots; a more detailed discussion can be found
in, e.g., [26, 28], and a more general introduction to contact knot theory in
[9].

A grid diagram is an n × n square grid containing n X’s and n O’s in
distinct squares, such that each row and each column contains exactly one
X and one O. The grid number of a grid diagram is n. Given a grid diagram,
one can obtain a diagram of an oriented link in R3 by connecting O’s to X’s
horizontally and X’s to O’s vertically, and having all vertical line segments
pass over all horizontal line segments wherever they cross. We will use grid
diagrams and the associated link diagrams interchangeably. One can also
obtain a front diagram for an oriented Legendrian link in R3 by rotating the
link diagram 45◦ counterclockwise and smoothing corners. Any topological
knot, and indeed any Legendrian knot, can be represented by a grid diagram;
the arc index of a topological knot is the minimum grid number over all grid
diagrams representing the knot.

http://www.math.duke.edu/~ng/atlas/
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X:NEX:NW

X:SW X:SE

Figure 1. The four types of X stabilizations on a grid diagram.

There are three Cromwell moves relating grid diagrams, each of which
preserves topological link type:

• torus translation, which moves the topmost row (or bottommost row,
leftmost column, rightmost column) of a grid diagram to the bot-
tommost row (topmost row, rightmost column, leftmost column) of
the grid;

• commutation, which switches adjacent rows (columns) in which the
segments connecting O’s and X’s are either disjoint or nested when
projected to a single horizontal (vertical) line;

• stabilization, which increases grid number by 1 and replaces a single
X (O) in the diagram by a 2× 2 square with two X’s (O’s) and one
O (X).

Of these, the most interesting to us is stabilization and its inverse operation,
destabilization. Stabilization comes in eight flavors, four X stabilizations
and four O stabilizations, depending on whether a single X or O is replaced
and the form of the resulting 2 × 2 square. It suffices for our purposes to
consider only the X stabilizations, which are depicted in Figure 1 (the O
stabilizations are redundant).

Two grid diagrams represent isotopic topological links if and only if they
are related by some sequence of Cromwell moves. We can also consider
Legendrian and transverse links, up to Legendrian and transverse isotopy,
to be grid diagrams modulo certain Cromwell moves:

• Legendrian links are grid diagrams modulo torus translation, com-
mutation, and X:NE and X:SW stabilization and destabilization;

• transverse links are grid diagrams modulo torus translation, commu-
tation, and X:NE, X:SW, and X:SE stabilization and destabilization.
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In this language, an enumeration of Legendrian or transverse links up to
isotopy becomes an enumeration of grid diagrams up to the appropriate
equivalence relation. Also, any Legendrian link can be viewed as a transverse
link; in contact topology, the resulting transverse link is called the positive
transverse pushoff of the Legendrian link.

The classical invariants of Legendrian and transverse links in standard
contact R3, which are unchanged by Legendrian or transverse isotopy, are
defined in terms of a grid diagram as follows:

• the Thurston–Bennequin number, tb, is the writhe of the link dia-
gram (the number of crossings counted with sign) minus the number
of NE corners of the link diagram;

• the rotation number, r, is 1/2 of the total number of NE and SW
corners, counted with sign, where a corner is counted positively if it
is traversed down and to the right, and negatively if it is traversed
up and to the left;

• the self-linking number, sl, is tb− r.

The Thurston–Bennequin and rotation numbers are invariant under Leg-
endrian isotopy, while the self-linking number is invariant under transverse
isotopy.

A topological knot type is Legendrian simple (respectively transversely
simple) if any two Legendrian (transverse) knots of that type with the
same tb and r (sl) are necessarily Legendrian (transversely) isotopic. Any
Legendrian simple knot is also transversely simple. Proofs that various
knot types are Legendrian nonsimple have been obtained as applications of
certain “non-classical” Legendrian invariants, such as the Legendrian con-
tact homology of Chekanov [3] and Eliashberg and the ruling invariants of
Chekanov–Pushkar [29] and Fuchs [14]. It has historically been more difficult
to establish transverse nonsimplicity than Legendrian nonsimplicity.

The operations of X:NW and X:SE stabilization descend to Legendrian
knots, where they become positive and negative Legendrian stabilization and
change (tb, r) by (−1, 1) and (−1,−1), respectively. The operations of posi-
tive and negative Legendrian stabilization, which we denote by S+ and S−,
commute up to Legendrian isotopy: S+S−(L) = S−S+(L). Transverse knots
can be seen as Legendrian knots modulo negative Legendrian stabilization,
and the operation of X:NW stabilization descends to transverse knots, where
it is called transverse stabilization and decreases sl by 2. If a Legendrian
or transverse knot is a stabilization of another, then we say that it is desta-
bilizable. Since destabilization increases tb by 1 (Legendrian) and sl by 2
(transverse), and tb and sl are bounded above in any given topological type
by a classical result of Bennequin, there are non-destabilizable Legendrian
and transverse knots in every knot type.

In the atlas, we depict Legendrian knots of a particular topological type
via a Legendrian mountain range, whereby isotopy classes of Legendrian
knots are plotted according to their (tb, r), with tb in the vertical direction
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b b

b b b

b b b b

Figure 2. Grid diagram for a Legendrian left-handed trefoil
with (tb, r) = (−6, 1), and the Legendrian mountain range for
the left-handed trefoil. The top row of the mountain range
depicts (tb, r) = (−6,−1) and (−6, 1); the next row, (tb, r) =
(−7,−2), (−7, 0), and (−7, 2); and so forth. The arrows
represent positive (pointing to the right) and negative (to the
left) Legendrian stabilization. The mountain range continues
infinitely downwards by application of stabilizations. Note
that the left-handed trefoil is Legendrian simple: each value
of (tb, r) has at most one Legendrian representative.

and r in the horizontal direction. Positive/negative stabilization are depicted
in the mountain range by arrows pointing down and to the right/left. The
classification of transverse knots of a particular topological type can be
deduced from the Legendrian classification by modding out by the effect
of negative Legendrian stabilization. See Figure 2.

Finally, we describe certain symmetries of Legendrian and transverse
knots that are useful to consider in the atlas. Given a Legendrian knot
L, one can reverse orientation to obtain the Legendrian knot −L; this cor-
responds to switching X’s and O’s in a grid diagram, and replaces (tb, r) by
(tb,−r). (Since this operation changes the underlying topological knot to its
orientation reverse, it may change topological knot type in general, but all of
the knots in the atlas are isotopic to their orientation reverses.) We remark
that orientation reversal intertwines stabilizations: S+(−L) = −S−(L). One
can also define the Legendrian mirror µ(L) to be the result of applying the
contactomorphism (x, y, z) 7→ (−x, y,−z) to L; this corresponds to rotating
the grid diagram 180◦, and replaces (tb, r) by (tb,−r). The combination of
the two symmetries, L 7→ −µ(L), descends to transverse knots and is called
the transverse mirror.

2.2. Methodology. Here we give a brief, and somewhat simplified, sum-
mary of the algorithm used to produce the Legendrian knot atlas. More
details can be found in [4]; see http://www.math.duke.edu/~ng/atlas/

for source files.
View the set of all grid diagrams (of arbitrary size), modulo torus trans-

lation, as an infinite graph Γ. Connect two vertices of Γ if they are related
by a single commutation move, or a single stabilization move (of appropri-
ate restricted type corresponding to Legendrian or transverse isotopy). The

http://www.math.duke.edu/~ng/atlas/
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connected components of Γ are precisely isotopy classes of Legendrian or
transverse knots.

The graph Γ has an increasing filtration of finite subgraphs Γn whose
vertices consist of all grid diagrams of size at most n. Determining con-
nected components of Γn is a case of the familiar pathfinding problem in
computer science, and approximates the problem of determining connected
components of Γ.

The algorithm first produces a list of vertices of Γ9, using a straight-
forward modification of the technique used by Jin, Kim, and Lee [15] to
enumerate all prime knots with arc index at most 10. We eliminate grid di-
agrams corresponding to multicomponent links and divide the rest according
to their topological knot type and classical invariants ((tb, r) for Legendrian,
sl for transverse). Given the remaining grid diagrams of a particular knot
type and classical invariants, the algorithm then runs a bidirectional search
to determine which diagrams are connected to each other in Γn, where n can
be adjusted and depends on the knot type, but is typically 10 or 11. This
allows us to reduce the set of grid diagrams to a smaller set that is guessed
by the program to represent pairwise nonisotopic Legendrian or transverse
knots.

Several timesaving features have been incorporated into the actual pro-
gram, which is implemented in Java, including: eliminating grid diagrams
that include an adjacent X-O pair and are immediately destabilizable; first
considering unoriented grid diagrams (where X’s and O’s are interchange-
able); and adding edges corresponding to other moves that preserve Legen-
drian isotopy type and grid size, including the S2 move from [26]. See [4]
for details.

Because of our algorithm for constructing Legendrian knots, the com-
pleteness of our table is related to the following.

Conjecture 2. Any Legendrian knot of maximal Thurston–Bennequin num-
ber has a grid diagram representative of minimal grid number. More gen-
erally, for a topological knot K, let tb(K) and α(K) denote the maximal
Thurston–Bennequin number and arc index of K, respectively; then any Leg-
endrian knot of type K and Thurston–Bennequin number tb(K)−m can be
represented by a grid diagram of size α(K) +m.

We have expressed this statement, which is related to a question in [22],
as a conjecture, although we suspect that it is probably false in general.
However, it appears to be true for small knots—the program failed to find
any counterexamples for small grid number—and the completeness of the
atlas relies on the conjecture being true, or approximately true, for the knots
in the table.

On a related note, it is interesting to find grid diagrams that are not
minimal within their topological type, but nevertheless cannot be destabi-
lized without first being stabilized; that is, non-minimal grid diagrams where
torus translation and commutation (the Cromwell moves that preserve grid
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number) do not suffice to produce a destabilizable diagram. The above
conjecture suggests that such grid diagrams may correspond to Legendrian
knots that have non-maximal tb but are non-destabilizable. It is easy to
modify our program to find all such grid diagrams of a certain size. Indeed,
the relevant grid diagrams of size at most 10 (which then represent knots
of arc index at most 9) all produce non-maximal Legendrian knots that
are either provably or conjecturally non-destabilizable. These appear in the
atlas as non-maximal Legendrian knots of type m(10139), m(10145), 10161,
m(10161), m(12n242), and 12n591. See also the discussion in Sections 3.2
and 3.3.

3. Notable Phenomena

In this section, we observe instances of interesting behavior in the atlas.
These include transverse nonsimplicity, which we extend to families beyond
the knots in the atlas, and non-destabilizability for certain Legendrian knots.
We also document the methods we use to distinguish various knots in the
atlas.

3.1. Transverse nonsimplicity I. Among knots with arc index at most 9,
the computer program guesses that exactly 13 are transversely nonsimple:

m(72), m(76), 944, m(945), 948, 10128, m(10132),

10136, m(10140), m(10145), 10160, m(10161), 12n591.

These knots can be seen in the atlas as the ones whose mountain ranges
(conjecturally) contain distinct Legendrian knots with the same (tb, r) that
remain distinct under repeated stabilization of one type or the other. (These
are pictorially represented in the atlas by mountain ranges with boxes that
persist under stabilization.)

It should be emphasized that the computer program cannot prove either
transverse simplicity or transverse nonsimplicity, but it can make predic-
tions. Of the knots in the table, the program guesses that 69 are transversely
simple. Of these, 18 are currently known to be transversely simple, precisely
corresponding to torus knots [10] and certain twist knots [10, 13]:

31, m(31), 41, 51, m(51), 52, m(52), 61, m(61), 71, m(71), 72,

819, m(819), 10124, m(10124), 15n41185, m(15n41185).

Proving transverse simplicity for the remaining 51 knots appears to be dif-
ficult and might involve convex surface techniques as in [10, 13].

On the other hand, proving transverse nonsimplicity can sometimes be a

simple matter of applying one of the known transverse invariants.1 The θ̂
transverse invariant in knot Floer homology of Ozsváth, Szabó, and Thurston
[28] proves that 5 of the 13 transversely nonsimple candidates listed above

1The techniques of Birman and Menasco [1, 2] are another approach to transverse
nonsimplicity, but the knots of braid index 3 that they have proven to be transversely
nonsimple all have arc index at least 10 and are not covered in the atlas.
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are indeed transversely nonsimple: m(10132), m(10140), m(10145), m(10161),
and 12n591. In each of these cases, the computer program of [25] demon-

strates that θ̂ is zero for one of the transverse representatives and nonzero
for the other. (In particular, this precise computation is presented in [25]
for m(10132) and m(10140).) A related transverse invariant in knot Floer
homology due to [17] has been used in [27] to prove transverse nonsimplicity
for m(72).

Recently a new transverse invariant, transverse homology, has been in-
troduced by the second author in collaboration with Ekholm, Etnyre, and
Sullivan; see [7, 24]. As described in [24], transverse homology proves trans-
verse nonsimplicity for 10 of the above 13 candidates, including the 5 also
given by knot Floer homology: m(72), m(76), 944, 948, m(10132), 10136,
m(10140), m(10145), m(10161), 12n591.

In all cases involving transverse nonsimplicity, the precise statement is
as follows: for a particular knot type, there are two grid diagrams in the
atlas representing Legendrian knots L1, L2 of that knot type, such that the
positive transverse pushoffs of L1, L2 are not transversely isotopic. It follows
that arbitrary negative Legendrian stabilizations of L1, L2 are distinct, as
are arbitrary positive Legendrian stabilizations of −L1,−L2 (alternatively,
positive Legendrian stabilizations of µ(L1), µ(L2)). For an enumeration of
which specific grid diagrams in the atlas correspond to distinct transverse
knots, see Table 2 at the end of the atlas.

There are 4 instances where the atlas guesses, but the above invariants
so far fail to prove, that certain transverse knots are distinct. These are
the 3 knots m(945), 10128, and 10160, which we conjecture but cannot prove
are transversely nonsimple, and the knot 944, where the program finds three
possibly distinct transverse knots but the invariants can only distinguish
two. In all these cases, the issue is a subtle involutive operation on trans-
verse knots called the transverse mirror [26]. In terms of Legendrian knots,
this operation can be described as follows: given a Legendrian knot L, the
positive transverse pushoffs of L and −µ(L) are defined to be transverse
mirrors. (In general, transverse mirrors are topologically related by orienta-
tion reversal, but all of the topological knots in the atlas are invariant under
orientation reversal.) Transverse mirrors are difficult to distinguish using
the known invariants, and the transverse mirror pairs in the 4 knot types
above are conjectured but not proven to be distinct.

3.2. Transverse nonsimplicity II. Three of the transversely nonsimple
knot types described in the previous section—m(10145), m(10161), and 12n591—
merit further discussion. These are knots with a transverse representative
that does not maximize self-linking number but is non-destabilizable.

Proposition 3. In each of the knot types m(10145), m(10161), and 12n591,
there are transverse knots T1, T2 for which sl(T2) = sl(T1)− 2 but T2 is not
the stabilization of any transverse knot.
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Figure 3. Grid diagrams representing nondestabilizable
transverse knots of type m(10145), m(10161), and 12n591.

Proof. This result can be proven using either of the transverse invariants

discussed in the previous section, but it is easiest to use the θ̂ invariant in
knot Floer homology. Consider the grid diagrams shown in Figure 3.2 In
each case, the positive transverse pushoff T2 of the grid diagram does not
maximize self-linking number, as can be seen by inspection of the atlas.

However, it can also be seen by inspection that θ̂ is nonzero for each of the

diagrams: θ̂ is represented in the Manolescu–Ozsváth–Sarkar complex for

ĤFK by the upper-right corners of the X’s, and it is clear in each case that
this generator is not in the image of the differential, since there are no empty
rectangles with NW-SE corners at two of these upper-right corners. By a

result of [28], θ̂ = 0 for stabilizations of transverse knots; it follows that T2

is not a stabilization in each case. �

Two remarks are in order. First, the phenomenon of knots with a non-
maximal, non-destabilizable transverse representative was first demonstrated
by Etnyre and Honda [11], who showed that the (2, 3) cable of the (2, 3) torus
knot has this property; there is also recent work by Lafontaine and Tosun,
as well as Matsuda, in this regard. However, the examples in Proposition 3
are significantly simpler in various ways than cables of torus knots. For
example, Shonkwiler and Vela-Vick [30] have shown that the Legendrian
contact homology of the m(10161) knot in Proposition 3 is nontrivial, while
an analagous statement for the (2, 3) cable of the (2, 3) torus knot is still
open.

2A note on conventions: to obtain grid diagrams as in Figure 3 for which we can apply θ̂

as in [28], we either rotate a usual X-O diagram 90◦ counterclockwise and interchange X’s
and O’s (for the third diagram in Figure 3), or rotate a usual X-O diagram 90◦ clockwise
(for the first two diagrams). In the resulting diagrams, we use the convention from [28]
that horizontal segments pass over vertical segments. The resulting Legendrian front is
either identical to the original front (for the third diagram), or related to the original front
by the transformation L 7→ −µ(L) (for the first two diagrams; for both, the atlas states
that this transformation is a Legendrian isotopy), possibly along with a few elementary
moves in Gridlink [6].
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Figure 4. Grid diagrams for nondestabilizable transverse
knots Tn,2 (left) and topologically isotopic transverse knots
Tn,1 (right), for n = 1, 2.

Second, Proposition 3 is an application of the transverse HFK invariant
that involves no computation, only an inspection of a grid diagram. Previous

applications of θ̂ to transverse nonsimplicity involved a computer program
([25]), an examination of naturality ([27]), or some relatively intricate linear
algebra ([16]). The simplicity of the proof of Proposition 3 suggests that
the knots considered there might be easily generalized to infinite families of
interesting nondestabilizable transverse knots. This is indeed the case.

Proposition 4. For any n ≥ 1, there is a topological knot Kn with two
transverse representatives Tn,1, Tn,2 such that

sl(Tn,2) = sl(Tn,1)− 2n

but Tn,2 is not the stabilization of any transverse knot. In particular, Kn is
transversely nonsimple.

Proposition 4 as stated is already known and follows from work of Etnyre
and Honda [12]: given K1, one can use the n-th connected sum of K1 with
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itself as Kn. However, the family Kn we present in the proof of Proposi-
tion 4 consists of prime knots. We will only sketch a proof of primality and
segregate this result as Proposition 5 below.

It should be noted that Hiroshi Matsuda has independently obtained re-
sults similar to Proposition 4 (indeed, with apparently the same family of
examples); see the proof of Proposition 5.

Proof of Proposition 4. The grid diagram for m(10161) given in Figure 3
generalizes readily to a family of grid diagrams of size 3n + 7 and self-
linking number 2n + 1, as shown (for n = 1, 2) on the left hand side of
Figure 4; call the positive transverse pushoff of these diagrams Tn,2. By

inspection, θ̂(Tn,2) 6= 0 since there are no empty rectangles with NW-SE
corners at upper right corners of X’s. On the other hand, Tn,2 is evidently
topologically isotopic to the grid diagram on the right hand side of Figure 4,
whose positive transverse pushoff is a transverse knot Tn,1 with self-linking
number 4n+ 1. �

Proposition 5. The family of knots Kn in Proposition 4 can be chosen to
be prime.

Outline of proof. It is straightforward to check from Figure 4 that Tn,2 is
topologically the closure of the braid

(σ1σ2 · · · σn+2)σn+2σ
−3
n+1σn · · · σ2σ1(σ1σ2 · · · σn+2)σn · · · σ2σ1(σ1σ2 · · · σn+2) ∈ Bn+3;

the diagram for Tn,2 is essentially braided clockwise around the middle of
the grid. We claim that topological type Kn of Tn,2 is prime. The braid
above is related by an operation discovered by Matsuda called an “H-flype”,
which preserves topological knot type of the braid closure, to the braid

(σ1σ2)σ2(σ1σ2)σ
−3
2 ((σ1σ2)(σ2σ1))

n(σ1σ2) = σ−2
2 σ1(σ

2
2σ

2
1)

n+1σ2 ∈ B3.

To show that the closure of a 3-braid is prime, it suffices to check that it is
not a (2, k) torus knot or the connected sum of two such torus knots. In this
case, this can be shown by calculating the Alexander and Jones polynomials
of the closure of σ−2

2 σ1(σ
2
2σ

2
1)

n+1σ2 and comparing to the Alexander and
Jones polynomials of (2, k) torus knots. �

3.3. Non-maximal, non-destabilizable Legendrian knots. Each of the
examples from the preceding section (non-destabilizable transverse knots
with non-maximal self-linking number) produces an analogous phenome-
non for Legendrian knots: a non-destabilizable Legendrian knot with non-
maximal Thurston–Bennequin number.

Proposition 6. In each of the knot types m(10145), m(10161), and 12n591,
there are Legendrian knots L1, L2, L3 for which tb(L1) = tb(L2) + 1 =
tb(L3) + 2 but neither L2 nor L3 is not the stabilization of any Legendrian
knot.
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Proof. We prove the result for m(10145); the proof for the other two knots
is nearly identical. Let L1, L2, L3 be the Legendrian m(10145) knots in the
atlas with (tb, r) = (3, 0), (2, 1), (1, 0), respectively; note that L2 is isotopic
to the leftmost diagram in Figure 3. Since the positive transverse pushoff of
L2 is non-destabilizable by Proposition 3, L2 is not the negative stabilization
of any Legendrian knot. On the other hand, the HOMFLY-PT polynomial
bound of Morton and Franks–Williams states for all Legendrian m(10145)
knots L that tb(L) + |r(L)| ≤ 3. In particular, there is no L with (tb, r) =
(3, 2), and thus L2 is not the positive stabilization of any Legendrian knot.

The computer program of [25] shows that L3 and −L3 both have nonzero

θ̂ invariant; in the language of [25, 28], both λ+(L3) and λ−(L3) are nonzero
in homology. Thus neither L3 nor −L3 is negatively destabilizable, and it
follows that L3 is neither positively nor negatively destabilizable. �

Shonkwiler and Vela-Vick [30] have provided an alternate proof that the
knot L2 form(10161) in Proposition 6 is non-destabilizable, using Legendrian
contact homology and the characteristic algebra.

One can extend the argument of Proposition 4 to prove the existence for
any n ≥ 1 of a prime knot Kn with Legendrian representatives Ln,1, Ln,2 for
which tb(Ln,2) = tb(Ln,1)−2n but Ln,2 is not destabilizable. We remark that
B. Tosun has obtained a similar result by studying cables of torus knots.

We can use the preceding discussion to examine the Legendrian mountain
range form(10145), with similar analysis form(10161) and 12n591. The shape
of the mountain range shown in the atlas is determined by Proposition 3,
along with the following result.

Proposition 7. There are at least four distinct m(10145) knots with (tb, r) =
(1, 0). (Note that tb(m(10145)) = 3.)

Proof. Let L1, L2, L3 be the Legendrian m(10145) knots from (the proof of)
Proposition 6. We claim that S+S−(L1), S−(L2), S+(−L2), and L3 are
pairwise distinct.

Since L3 is non-destabilizable by the proof of Proposition 6, it is distinct
from S+S−(L1), S−(L2), and S+(−L2). Since L2 and S+(L1) have noniso-
topic positive transverse pushoffs, S−(L2) and S−S+(L1) = S+S−(L1) are
distinct, as are S+(−L2) = −S−(L2) and S+S−(L1) = −S+S−(L1).

It remains to show that S−(L2) and S+(−L2) are distinct. One can verify
by computer that S2

−
(L1) = S−(−L2), and so S+S−(−L2) = S+S

2
−
(L1).

On the other hand, since L2 and S+(L1) have distinct positive transverse
pushoffs, S2

−
(L2) 6= S+S

2
−
(L1) = S+S−(−L2). Thus S−(L2) 6= S+(−L2), as

desired. �

It is interesting to compare the mountain ranges of m(10145), m(10161),
and 12n591 with the mountain range of the (2, 3) cable of the (2, 3) torus
knot from [11], which exhibits similar behavior but is slightly different.
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b b

b b b b b

b b b b b b

b b b b b b b

Figure 5. A local move on Legendrian knots, preserving
topological type and changing (tb, r) by (+1,−3). On the
right, the move in the context of the mountain range for
m(10139), 10161, or m(12n242).

Besides m(10145), m(10161), and 12n591, the atlas produces three other
candidates for knots with non-maximal non-destabilizable Legendrian repre-
sentatives: m(10139), 10161, and m(12n242). For these knots, it appears that
a new behavior emerges: the mountain ranges seem to have non-maximal
peaks.

Conjecture 8. For each of m(10139), 10161, and m(12n242), there exists
a Legendrian knot L with tb(L) strictly less than the maximal possible tb,
for which there is no other Legendrian representative with (tb, r) = (tb(L) +
1, r(L) + 1) or (tb(L) + 1, r(L)− 1).

It may be worth remarking that the transverse techniques from the pre-
vious sections are not applicable to Conjecture 8; it appears that there is a
unique non-destabilizable transverse knot in each of the knot types. In ad-
dition, contact homology fails to provide an obstruction to destabilizability:
the non-maximal, conjecturally non-destabilizable Legendrian knots of type
m(10139), 10161, and m(12n242) in the atlas all have vanishing Legendrian
contact homology.

As a side note, each of the three knots in Conjecture 8 has a “local
move” relating a non-maximal peak to a maximal peak, shown in Figure 5.
Presumably this move can be used to construct many more examples of
knots with non-maximal peaks in their mountain ranges.

3.4. Multiple linearized contact homologies. Melvin and Shrestha [19]
discovered the phenomenon of Legendrian knots that have more than one
possible linearized contact homology (corresponding to different augmen-
tations of the Chekanov–Eliashberg differential graded algebra). Their ex-
amples included the knots listed in our atlas as m(821) and (the second
representative of) m(945).

Our atlas provides more examples of Legendrian knots with multiple lin-
earized contact homologies, of topological type 11n95 and 11n118. In addi-
tion, the atlas finds another m(945) example with multiple linearized contact
homologies, distinct from the Melvin–Shrestha example.

3.5. Discussion of other particular knots. In the atlas, there are many
instances of Legendrian knots with the same classical invariants (topological
type, Thurston–Bennequin number, and rotation number) that are provably
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or conjecturally non-isotopic. Often these can be distinguished from each
other by (0-)graded ruling invariant or linearized contact homology, both
included in the atlas. The computations for ruling invariant and linearized
contact homology were performed using [18].

Transverse nonsimplicity, as discussed in Sections 3.1 and 3.2, distin-
guishes other Legendrian knots. For transversely nonsimple knots, there
is a diagonal of nonisotopic Legendrian knots with the same classical in-
variants that travels down and to the left (following negative Legendrian
stabilization), and another diagonal down and to the right (following posi-
tive stabilization).

Here we document the remaining cases of Legendrian knots in the atlas
that we can provably distinguish by other means. We use the convention that
in a particular knot type, the grid diagrams depicted in the atlas represent
Legendrian knots labeled L1, L2, L3, . . . from top to bottom.

• 62: The fact that the listed knot with (tb, r) = (−7, 0) is not Leg-
endrian isotopic to its mirror is proven in [20], with a reproof in
[21].

• 63: The two Legendrian 63 knots in the table have previously been
considered in [21, section 4.3], where they are called K4 and K3,
respectively, and are proven to be distinct via the characteristic al-
gebra.

• m(72): The fact that there are five distinct Legendrian representa-
tives with (tb, r) = (1, 0), including a pair of nonisotopic mirrors, is
proven in [13] and essentially follows from the work on transverse
twist knots in [27].

• 74: Linearized contact homology distinguishes L4 from the other
three. The knots L2, L3 were considered in [21, section 4.2], where
they were called K1,K2, respectively. As noted in [21], these two
knots can be distinguished by their characteristic algebras. A minor
extension of the argument from [21] also shows that L3 = K2 is not
Legendrian isotopic to its Legendrian mirror: in the characteristic
algebra forK2, there are elements a13 and a12 with degrees −2 and 2,
respectively, for which a13a12 = 1, but no elements x, y with degrees
2 and −2, respectively, for which xy = 1. See also [21, section 4.1].
Since the computer program shows that L1 and L2 are each isotopic
to their mirrors, neither is isotopic to L3. It is an interesting open
problem to distinguish L1 and L2.

• m(76): Linearized contact homology distinguishes L3 and −L3 from
L1 and L2. The computer program shows that L1,−L3 have the
same negative stabilization, as do L2,−L2, L3; see Table 2. On
the other hand, from [24], L1 and L2 represent distinct transverse
knots. Thus L1,−L3 are distinct from L2,−L2, L3 as Legendrian
knots. Since L1 = −L1 by the computer program, orientation rever-
sal implies that L1, L3 are distinct from L2,−L2,−L3. As a result,
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L1, L3,−L3 are pairwise distinct, and all are distinct from L2,−L2.
We do not currently know if L2 and −L2 are isotopic.

• 948, m(10132), 10136, m(10140): The Legendrian knots of these types
are distinguished using the data from Table 2, in a manner similar
to m(76) above.

4. The Legendrian Knot Atlas

The table on the following pages depicts conjectural classifications of Leg-
endrian knots in all prime knot types of arc index up to 9. For each knot, we
present a conjecturally complete list of non-destabilizable Legendrian rep-
resentatives, modulo the symmetries of orientation reversal L 7→ −L and
Legendrian mirroring L 7→ µ(L). As usual, rotate 45◦ counterclockwise to
translate from grid diagrams to fronts.

Each knot also comes with its conjectural Legendrian mountain range
(extending infinitely downwards), comprised of black and red dots, plot-
ted according to their Thurston–Bennequin number (vertical) and rotation
number (horizontal). Arrows represent positive and negative Legendrian
stabilization. The values of (tb, r) are not labeled but can be deduced from
the values given for the non-destabilizable representatives. Boxes surround
values of (tb, r) that have, or appear to have, more than one Legendrian rep-
resentative, and mountain ranges without boxes represent knot types that
are conjecturally Legendrian simple. The dots represent conjecturally dis-
tinct Legendrian isotopy classes; black dots are provably distinct classes,
while red dots are conjecturally but not provably distinct from the black
dots and each other. Thus the black dots represent a lower bound for the
Legendrian mountain range, and the totality of dots represent our current
best guess for the precise mountain range (which however could theoretically
be larger or smaller than what is depicted).

Legendrian knots have been classified for several knot types, including
torus knots and 41 [10] and twist knots [13]. These comprise the knots
31, 41, 51, 52, 61, 71, 72 in the table, along with their mirrors; for these knots,
the mountain ranges depicted in the atlas agree with the classification re-
sults. In the table, we indicate torus knots by T (p, q) and twist knots by
Kn (for the knot with n half-twists, with the convention of [13]).

Using symmetries, we can produce from any Legendrian knot L up to
four possibly distinct Legendrian knots: L, −L, µ(L), and −µ(L). The table
depicts one representative from each of these orbits of up to four knots, along
with information about which of the four knots in the orbit are isotopic, if
any. For knots with nonzero rotation number, we choose a representative L
with positive rotation number, and L is trivially distinct from −L and µ(L)
(this fact depicted by hyphens in the table).

Grid diagrams labeled with matching letters (see e.g. 62) mark Legendrian
knots that we believe but cannot yet prove to be distinct. Question marks
indicate knots where we believe but cannot prove that L is distinct from
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−L, µ(L), or −µ(L). All check marks have been verified by computer. All
X marks without question marks have been proven, via various techniques.
These techniques include two nonclassical Legendrian invariants, the graded
ruling invariant [29] and the set of (Poincaré polynomials for) linearized
contact homologies [3], which have been computed, where relevant, using the
Mathematica notebook [18]. (Knots with no graded rulings/augmentations
are denoted in these columns by a hyphen, for nonzero rotation number, or
∅, for zero rotation number.) For Legendrian knots that we have succeeded
in distinguishing by means besides these invariants, please see Section 3 for
documentation.

For some knots, the atlas omits a bit of information necessary to deduce a
complete (conjectural) Legendrian classification, namely which Legendrian
knots with the same (tb, r) stabilize to isotopic knots. This information is
presented in Table 2, which follows the atlas. The knots given in Table 2 are
those where there is some ambiguity about isotopy classes after stabiliza-
tion; for all of those knots, the program guesses that the relevant Legendrian
representatives either become isotopic after one (positive or negative) stabi-
lization, or remain nonisotopic after arbitrarily many stabilizations.
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Table 1. Atlas of Legendrian Knots up to arc index 9

Knot Grid
(tb, r) L = −L? L = µ(L)? L = −µ(L)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

31 (−6, 1) - - X - - T (2,−3), K1

b b

b b b

b b b b

m(31) (1, 0) X X X 2 + z2 2 + t T (2, 3), K−2

b

b b

b b b

41 = m(41) (−3, 0) X X X 1 t−1 + 2t K2 = K−3

b

b b

b b b

51
(−10, 1) - - X - -

T (2,−5)

(−10, 3) - - X - -
b b b b

b b b b b

b b b b b b
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Knot Grid
(tb, r) L = −L? L = µ(L)? L = −µ(L)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

m(51) (3, 0) X X X 3 + 4z2 + z4 4 + t T (2, 5)
b

b b

b b b

52 (−8, 1) - - X - - K3

b b

b b b

b b b b †

m(52)
(1, 0) X X X 1 t−2 + t+ t2

K−4

(1, 0) X X X 1 + z2 2 + t
b b

b b

b b b

61 (−5, 0) X X X 1 2t−1 + 3t K4

b

b b

b b b
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Knot Grid
(tb, r) L = −L? L = µ(L)? L = −µ(L)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

m(61)
(−3, 0) X X X 1 t−3 + t+ t3

K−5

(−3, 0) X X X 1 t−1 + 2t
b b

b b

b b b

62

(−7, 0) X ✗ ✗ ∅ ∅

a (−7, 2) - - X - -

a (−7, 2) - - X - -
b b b b b b

b b b b

b b b b b

m(62) (−1, 0) X X X 2 + z2 t−1 + 2 + 2t
b

b b

b b b
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Knot Grid
(tb, r) L = −L? L = µ(L)? L = −µ(L)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

63 = m(63)
(−4, 1) - - X - -

(−4, 1) - - X - -
b b b b

b b b

b b b b

71

(−14, 1) - - X - -
T (2,−7)

(−14, 3) - - X - -

(−14, 5) - - X - -
b b b b b b

b b b b b b b

b b b b b b b b

m(71) (5, 0) X X X 4 + 10z2 + 6z4 + z6 6 + t T (2, 7)
b

b b

b b b
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Knot Grid
(tb, r) L = −L? L = µ(L)? L = −µ(L)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

72 (−10, 1) - - X - - K5

b b

b b b

b b b b

m(72)

(1, 0) X X X 1 t−4 + t+ t4

K−6

(1, 0) X X X 1 + z2 2 + t

(1, 0) ✗ ✗ X 1 t−2 + t+ t2

(1, 0) X X X 1 + z2 2 + t
b b b b b

b b b b

b b b b b

b b b b b b

73
(3, 0) X X X 1 2t−2 + t+ 2t2

(3, 0) X X X 1 + 3z2 + z4 4 + t
b b

b b

b b b
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Knot Grid
(tb, r) L = −L? L = µ(L)? L = −µ(L)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

m(73)
(−12, 1) - - X - -

(−12, 3) - - X - -
b b b b

b b b b b

b b b b b b

74

b (1, 0) X X X ∅ ∅

b (1, 0) X X X ∅ ∅

(1, 0) X ✗ ✗ ∅ ∅

(1, 0) X X X z2 2 + t
b b b b b

b b

b b b

m(74) (−10, 1) - - X - -
b b

b b b

b b b b
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Knot Grid
(tb, r) L = −L? L = µ(L)? L = −µ(L)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

75

c (−12, 1) - - X - -

c (−12, 1) - - X - -

c (−12, 1) - - X - -

(−12, 3) - - X - -
b b b b b b b b

b b b b b

b b b b b b

m(75)
(3, 0) X X X 2 + z2 t−2 + 2 + t+ t2

(3, 0) X X X 2 + 3z2 + z4 4 + t
b b

b b

b b b
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Knot Grid
(tb, r) L = −L? L = µ(L)? L = −µ(L)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

76

d (−8, 1) - - X - -

d (−8, 1) - - X - -

d (−8, 1) - - ✗? - -
b b b b b b b b

b b b

b b b b

m(76)
(−1, 0) X X X 1 + z2 t−1 + 2 + 2t

(−1, 0) ✗? ✗? X 1 + z2 t−1 + 2 + 2t

(−1, 0) ✗ ✗ X 1 t−2 + t−1 + 2t+ t2

b b b b b

b b b b

b b b b b

b b b b b b
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Knot Grid
(tb, r) L = −L? L = µ(L)? L = −µ(L)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

77

e (−4, 1) - - ✗? - -

e (−4, 1) - - X - -

e (−4, 1) - - X - -
b b b b b b b b

b b b

b b b b

m(77)
f (−5, 0) X X X 1 2t−1 + 3t

f (−5, 0) X X X 1 2t−1 + 3t
b b

b b

b b b

819 (5, 0) X X X 5 + 10z2 + 6z4 + z6 6 + t T (3, 4)
b

b b

b b b
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Knot Grid
(tb, r) L = −L? L = µ(L)? L = −µ(L)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

m(819) (−12, 1) - - X - - T (3,−4)
b b

b b b

b b b b

820 (−6, 1) - - X - -
b b

b b b

b b b b

m(820) (−2, 1) - - X - -
b b

b b b

b b b b

821

g (−9, 0) X X X ∅ ∅

g (−9, 0) X ✗? ✗? ∅ ∅

(−9, 2) - - X - -
b b b b b

b b b b

b b b b b
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Knot Grid
(tb, r) L = −L? L = µ(L)? L = −µ(L)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

m(821) (1, 0) X X X 3 + 2z2 2 + t, t−1 + 4 + 2t
b

b b

b b b

942 (−3, 0) X ✗? ✗? 2 + z2 2t−1 + 2 + 3t
b b

b b

b b b

m(942) (−5, 0) ✗? ✗? X ∅ ∅
b b

b b

b b b

943 (1, 0) ✗? ✗? X 3 + 4z2 + z4 t−1 + 4 + 2t
b b

b b

b b b

m(943) (−10, 1) - - ✗? - -
b b b b

b b b

b b b b
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Knot Grid
(tb, r) L = −L? L = µ(L)? L = −µ(L)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

944

(−6, 1) - - ✗? - -

h (−6, 1) - - ✗? - -

h (−6, 1) - - ✗? - -
b b b
b b b

b b b
b b b

b b b b b b b

b b b b b b b b

m(944) (−3, 0) ✗? X ✗? 1 t−1 + 2t
b b

b b

b b b

945

i (−10, 1) - - ✗? - -

i (−10, 1) - - X - -

i (−10, 1) - - ✗? - -
b b
b b b

b b
b b b

b b b

b b b b
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Knot Grid
(tb, r) L = −L? L = µ(L)? L = −µ(L)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

m(945)
(1, 0) ✗? ✗? ✗? 2 + 2z2 2 + t, t−1 + 4 + 2t

(1, 0) X ✗? ✗? 2 + z2 2 + t, t−2 + t−1 + 2 + 2t+ t2

b b b b b b

b b b b

b b b b b

b b b b b b

946 (−7, 0) X X X 1 3t−1 + 4t
b

b b

b b b

m(946) (−1, 0) X X X 2 t
b

b b

b b b

947 (−2, 1) - - X - -
b b

b b b

b b b b



A
N

A
T
L
A
S

O
F

L
E
G
E
N
D
R
IA

N
K
N
O
T
S

3
1

Knot Grid
(tb, r) L = −L? L = µ(L)? L = −µ(L)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

m(947) (−7, 0) ✗? ✗? X 1 3t−1 + 4t
b b

b b

b b b

948

(−1, 0) X X X z2 t−1 + 2 + 2t

(−1, 0) ✗? ✗? X z2 t−1 + 2 + 2t

(−1, 0) ✗ ✗ X ∅ ∅

(−1, 0) X ✗? ✗? ∅ ∅
b b b b b b b

b b b b

b b b b b

b b b b b b

m(948) (−8, 1) - - X - -
b b

b b b

b b b b
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Knot Grid
(tb, r) L = −L? L = µ(L)? L = −µ(L)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

949
(3, 0) X ✗? ✗? ∅ ∅

(3, 0) X X X 2z2 + z4 4 + t
b b b

b b

b b b

m(949) (−12, 1) - - X - -
b b

b b b

b b b b

10124 (7, 0) X X X 7 + 21z2 + 21z4 + 8z6 + z8 8 + t T (3, 5)
b

b b

b b b

m(10124) (−15, 2) - - X - - T (3,−5)
b b

b b b b

b b b b b
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Knot Grid
(tb, r) L = −L? L = µ(L)? L = −µ(L)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

10128
(5, 0) X ✗? ✗? 2 + z2 2t−2 + 2 + t+ 2t2

(5, 0) ✗? X ✗? 2 + 6z2 + 5z4 + z6 6 + t
b b b b

b b b b

b b b b b

b b b b b b

m(10128) (−14, 1) - - X - -
b b

b b b

b b b b

10132 (−8, 1) - - X - -
b b

b b b

b b b b
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Knot Grid
(tb, r) L = −L? L = µ(L)? L = −µ(L)?

Ruling Linearized
Note

Type Diagram Invariant Contact Homology

m(10132)
(−1, 0) ✗ ✗ X ∅ ∅

(−1, 0) X X X ∅ ∅
b b b

b b b b

b b b b b

b b b b b b

10136

(−3, 0) ✗ ✗ X 1 t−2 + 2t−1 + 3t+ t2

(−3, 0) X X X 1 t−2 + 2t−1 + 3t+ t2

(−3, 0) X ✗? ✗? 1 + z2 2t−1 + 2 + 3t

(−3, 0) X ✗? ✗? 1 + z2 2t−1 + 2 + 3t
b b b b b b b

b b b b

b b b b b

b b b b b b
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Ruling Linearized
Note

Type Diagram Invariant Contact Homology

m(10136) (−6, 1) - - X - -
b b

b b b

b b b b

10139 (7, 0) X X X 6 + 21z2 + 21z4 + 8z6 + z8 8 + t
b

b b

b b b

m(10139)
(−16, 1) - - X - -

(−17, 4) - - X - -
b b

b b b b b

b b b b b b

b b b b b b b

10140 (−8, 1) - - X - -
b b

b b b

b b b b
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Ruling Linearized
Note

Type Diagram Invariant Contact Homology

m(10140)
(−1, 0) ✗ ✗ X 1 t

(−1, 0) X X X 1 t
b b b

b b b b

b b b b b

b b b b b b

10142
(5, 0) X X X 1 3t−2 + t+ 3t2

(5, 0) X X X 1 + 6z2 + 5z4 + z6 6 + t
b b

b b

b b b

m(10142) (−14, 1) - - X - -
b b

b b b

b b b b

10145 (−12, 1) - - X - -
b b

b b b

b b b b
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Ruling Linearized
Note

Type Diagram Invariant Contact Homology

m(10145)
(3, 0) X X X 2 + 4z2 + z4 4 + t

(2, 1) - - X - -

(1, 0) X X X ∅ ∅
b

b b b b

b b b b b b

b b b b b b

b b b b b b b

10160
(1, 0) X ✗? ✗? 1 2t−2 + t−1 + 2t+ 2t2

(1, 0) ✗? ✗? ✗? 1 + 3z2 + z4 t−1 + 4 + 2t
b b b b b b

b b b b

b b b b b

b b b b b b

m(10160) (−10, 1) - - X - -
b b

b b b

b b b b
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Type Diagram Invariant Contact Homology

10161
(−14, 1) - - X - -

(−15, 4) - - X - -
b b

b b b b b

b b b b b b

b b b b b b b

m(10161)
(5, 0) X X X 2 + 9z2 + 6z4 + z6 6 + t

(4, 1) - - X - -

(3, 0) X X X ∅ ∅
b

b b b b

b b b b b b

b b b b b b

b b b b b b b

11n19 (−8, 1) - - X - -
b b

b b b

b b b b
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Ruling Linearized
Note

Type Diagram Invariant Contact Homology

m(11n19) (−1, 0) X ✗? ✗? 3 + 4z2 + z4 2t−1 + 4 + 3t
b b

b b

b b b

11n38 (−5, 0) X ✗? ✗? 2 + z2 3t−1 + 2 + 4t
b b

b b

b b b

m(11n38) (−4, 1) - - X - -
b b

b b b b

b b b b

11n95 (3, 0) X ✗? ✗? 3 + 6z2 + 2z4 4 + t, t−1 + 6 + 2t
b b

b b

b b b
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Type Diagram Invariant Contact Homology

m(11n95)
j (−12, 1) - - ✗? - -

j (−12, 1) - - X - -
b b b b b b

b b b

b b b b

11n118 (3, 0) ✗? ✗? X 4 + 7z2 + 2z4 4 + t, t−1 + 6 + 2t
b b

b b

b b b

m(11n118) (−12, 1) - - X - -
b b

b b b

b b b b

12n242 (9, 0) X X X 9 + 39z2 + 57z4 + 36z6 + 10z8 + z10 10 + t
b

b b

b b b
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m(12n242)
(−18, 1) - - X - -

(−19, 4) - - X - -
b b

b b b b b

b b b b b b

b b b b b b b

12n591

(7, 0) X X X 4 + 17z2 + 20z4 + 8z6 + z8 8 + t

(6, 1) X

(5, 0) X X X ∅ ∅
b

b b b b

b b b b b b

b b b b b b

b b b b b b b

m(12n591) (−16, 1) - - X - -
b b

b b b

b b b b
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Type Diagram Invariant Contact Homology

15n41185 (11, 0) X X X 14 + 70z2 + 133z4 + 121z6 12 + t T (4, 5)
+55z8 + 12z10 + z12

b

b b

b b b

m(15n41185) (−20, 1) - - X - - T (4,−5)
b b

b b b

b b b b
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Knot Isotopy classes after S+ Isotopy classes after S−

m(72) L1, L2,−L3 | L3, L4 L1, L2, L3 | − L3, L4

m(76) L1, L3 | L2,−L2,−L3 L1,−L3 | L2,−L2, L3

944 L1,−µ(L1) | L2,−µ(L3) : −µ(L2), L3 −L1, µ(L1) | − L2, µ(L3) : µ(L2),−L3

m(945) L1, µ(L1), µ(L2) : −L1,−µ(L1), L2 L1, µ(L1), L2 : −L1,−µ(L1), µ(L2)
948 L1, L3 | L2,−L2,−L3, L4, µ(L4) L1,−L3 | L2,−L2, L3, L4, µ(L4)
10128 L1,−L2 : µ(L1), L2 L1, L2 : µ(L1),−L2

m(10132) L1 | − L1, L2 L1, L2 | − L1

10136 L1, L4, µ(L4) | − L1, L2, L3, µ(L3) L1, L2, L3, µ(L3) | − L1, L4, µ(L4)
m(10140) L1 | − L1, L2 L1, L2 | − L1

m(10145) S−(L1) | − L2, L3 S+(L1) | L2, L3

10160 L1, L2, µ(L2) : µ(L1),−L2,−µ(L2) L1,−L2,−µ(L2) : µ(L1), L2, µ(L2)
m(10161) S−(L1) | − L2, L3 S+(L1) | L2, L3

12n591 S−(L1) | − L2, L3 S+(L1) | L2, L3

Table 2. Information about isotopy classes of Legendrian
knots after stabilization. For each knot type, L1, L2, . . . de-
note the Legendrian knots depicted in the atlas, ordered from
top to bottom. In this table, knots separated by commas can
be shown to be Legendrian isotopic after one application of
the appropriate stabilization. Vertical bars separate knots
that are provably distinct after any number of the appro-
priate stabilizations; colons separate knots that the program
conjectures are distinct after any number of stabilizations.
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