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Abstract

We present some theoretic bounds and algorithms concerning the
statistics of different reduction types in the family of Fermat curves
Y p = Xs(1−X), where p is prime and s = 1, . . . , p− 2.

1 Introduction

For a prime p, we define Sp = {1, . . . , p − 2}, and consider the family of
curves

Fs : Y
p = Xs(1−X), s ∈ Sp,

over the algebraic closure of Q.
It has been shown by McCallum [16] (see also [15, 17, 18]) that there

is a direct link between the properties of the reduction of Fs modulo p (in
particular to tame, wild split and wild non-split reductions) and the Fermat
quotients.
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We recall that for a prime p and an integer u with gcd(u, p) = 1 the
Fermat quotient qp(u) is defined by the conditions:

qp(u) ≡
up−1 − 1

p
(mod p) and 0 ≤ qp(u) < p.

We define the sequence of Legendre symbols:

ϑp,s =

(

2s(s+ 1)qp (s
s/(s+ 1)s+1)

p

)

, s ∈ Sp.

By a result of McCallum [16] (see also [15, 17, 18]), the curve Fs is tame, wild
split or wild non-split depending on whether ϑp,s = 0, 1 or −1, respectively.

For ϑ = 0,±1, we define Nϑ(p) as the number of integers s ∈ Sp with
ϑp,s = ϑ. A natural conjecture is that 2s(s + 1)qp (s

s/(s+ 1)s+1) behaves
uniformly randomly modulo p, and that the values for the various s are
independent. Therefore one expects ϑp,s = ±1 both occur about half the
time, and ϑp,s = 0 occurs for about 1/p values of s on average. In other
words, one expects that N0(p) behaves like a Poisson random variable with
mean 1, and that N±1(p) behave like normal random variables with mean
p/2 and variance p/2, as p→ ∞.

We show that these heuristics are not quite correct: there are relations
among the ϑp,s, so that the independence hypothesis must be modified. After
adjusting our heuristics to take into account these relations, we find excellent
numerical agreement with a table of values of N0,±1(p) for p < 107.

We also prove that N0(p) = O(p2/3). This confirms that ϑp,s = 0 occurs
relatively rarely. Unfortunately this bound is much weaker than the bounds
suggested by our numerical experiments.

Clearly the question about the distribution of the values of N±1(p) is
essentially a question about bounding a certain sum of Legendre symbols
with Fermat quotients. Recently there has been some progress in the area of
estimating multiplicative character sums with Fermat quotients qp(u), see [3,
24, 25, 26]. However, the results and methods of these papers do not seem
to apply to sums corresponding to ϑp,s.
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2 Preparations

Our bound of N0(p) is based on the following bound of Heath-Brown [11,
Lemma 2] (see also [19]). Let

f(u) =

p−1
∑

j=1

uj

j
.

Lemma 1. For any integer r the congruence

f(u) ≡ r (mod p), 2 ≤ u ≤ p− 1,

has O(p2/3) solutions.

We also recall some notions and the results from the uniform distribution
theory, see [6]. As usual, we define the discrepancy ∆(Γ) of a sequence
Γ = (γm)

M
m=1 of M (not necessarily distinct) points in the unit interval [0, 1]

by

∆(Γ) = sup
0≤γ≤1

∣

∣

∣

∣

IΓ(γ)

M
− γ

∣

∣

∣

∣

,

where IΓ(γ) is the number of points γm of Γ with γm ≤ γ.
We trivially have:

Lemma 2. Let Φ = (ϕm)
M
m=1 and Ψ = (ψm)

M
m=1 be two sequences ofM points

in the unit interval [0, 1] with |ϕm − ψm| ≤ δ, m = 1, . . . ,M . Then for their
discrepancies we have ∆(Φ) = ∆(Ψ ) +O(δ).

The following result about the distribution of modular inverses is well-
known, see [27, Section 3] for a survey of several similar estimates. It has
appeared in many works, and follows instantly from the Weil bound for
Kloosterman sums, see [12, Theorem 11.11].

Lemma 3. For any prime ℓ and integers 0 < K < K+R < ℓ the discrepancy
of the sequence r/ℓ, r ∈ [K,K +R] is O

(

R−1ℓ1/2(log ℓ)2
)

, where r is defined
by the congruence

rr ≡ 1 (mod ℓ), 1 ≤ r ≤ ℓ− 1.

Let, as usual, π(X) denote the number of primes ℓ ≤ X . Then we have
the following lower bound, due to Baker, Harman and Pintz [1] for primes in
short intervals, see also [12, Section 10.5] for several related results.
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Lemma 4. There in an absolute constant c > 0 such that for Y ≥ X0.525 we
have π(X + Y )− π(X) ≥ cY/ log Y .

Finally we need some algorithmic results. We measure the complexity
of our algorithms in the so-called RAM model of computation, see [10] for a
background.

Since we are mostly interested in theoretic estimates, we always assume
that fast arithmetic of long integers is used and in particular any arithmetic
operation on n-bit integers can be performed in time n1+o(1) as n → ∞,
see [10, Theorem 8.23].

Besides we recall that for any prime p and integers a, b and k, all at most
n-bits long, we can

• compute the residue ak (mod p) in time n2+o(1), see [10, Section 4.3].

• compute the Legendre symbol (a/p) in time n1+o(1), see [2];

• find an integer solution (u, v) of the linear equation au−bv = 1 in time
n1+o(1), see [20].

We use these estimates throughout Sections 4 and 5.

3 Bounding N0(p)

The upper bound for N0(p) is immediate from Lemma 1.

Theorem 5. We have
N0(p) = O(p2/3).

Proof. It is easy to verify that

qp(uv) ≡ qp(u) + qp(v) (mod p) (1)

for any integers u and v with gcd(uv, p) = 1, see, for example, [7, Equa-
tion (3)].

Therefore

qp
(

ss/(s+ 1)s+1
)

≡ sqp(s)− (s+ 1)qp(s+ 1)

≡ sp − (s+ 1)p + 1

p
(mod p).

(2)
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It is shown by Heath-Brown [11, Section 1] that for 1 ≤ s ≤ p− 2

sp − (s+ 1)p + 1

p
≡ f(s+ 1) (mod p),

where f(u) is as in Section 2. Applying Lemma 1 we conclude the proof.

Therefore the curve Y p = Xs(1−X) is tame for at most O(p2/3) positive
integers s ≤ p− 1.

It has been shown in the proof of [18, Lemma 6.1] that for p ≡ 1 (mod 3)
we have ϑp,s = 0 for both roots s of the congruence s2+s+1 ≡ 0 (mod p). So
N0(p) ≥ 2 for p ≡ 1 (mod 3). We are not aware of any other lower bounds.

4 Computing Nϑ(p)

We start with an observation that the known algorithmic results presented
in in Section 2 imply that the values of N0,±1(p) can be computed directly
from the definition in time and space

T = p(log p)2+o(1) and S = O(log p),

respectively. Indeed, this follows instantly from the congruence

qp
(

ss/(s+ 1)s+1
)

≡ sqp(s)− (s+ 1)qp(s+ 1) (mod p)

that is based on (1) and which we have used in the proof of Theorem 5.
If memory is not of concern, we can simply compute the table of the

values of qp(s), s = 1, . . . , p− 2, in O(1) arithmetic operations modulo p per
value, see [21, Theorem 7]. After this, using fast arithmetic for the Legendre
symbol, we can compute N0,±1(p), in time and space

T = p(log p)1+o(1) and S = O(p log p),

respectively.
Furthermore, using [21, Algorithm 8] one can have some trade-off between

the space complexity and running time of computing Nϑ(p). Indeed, for any
parameter Z ≥ 2, we can evaluate in time pZ−1(log p)1+o(1) a certain table
(of size O (pZ−1 log p)) such that after this for each s = 1, . . . , p− 2 we can
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compute ϑp,s in time (log p)1+o(1) logZ, see [21, Theorem 9]. Thus for any
Z ≥ 2, we can compute N0,±1(p) in time and space

T = p(log p)1+o(1) logZ and S = O
(

pZ−1 log p
)

,

respectively. Clearly Z = p corresponds to the above trivial algorithm. How-
ever, taking Z = exp

(√
log p

)

we see that we can compute N0,±1(p) in time

p(log p)3/2+o(1) and space p exp
(

−(1 + o(1))
√
log p

)

.

5 Approximating Nϑ(p)

We now design Quasi-Monte Carlo type algorithms that evaluate ϑp,s on
a sequence of s that is asymptotically uniformly distributed in the interval
[1, p−2] and have much more modest space requirements that the algorithms
of Section 4.

Let
U =

⌈

p1/2
⌉

and ∆ =
⌈

p3/8 log p
⌉

.

We now precompute and store the table Q of values qp(w), 1 ≤ w ≤ U , which
can be done in in time and space

T = p1/2(log p)2+o(1) and S = O(p1/2 log p), (3)

respectively. This is the cost of preprocessing.
Let L be the set of primes ℓ ∈ [U −∆, U ] and let R be the set of integers

r ∈ [U − 3∆, U − 2∆]. We now recall the complexity bounds of Section 2
and proceed as follows:

Algorithm 6 (Using Linear Equations).

Step 1: Select at random a prime ℓ ∈ L and an integer r ∈ R.

Step 2: Find positive integers u < r and v < ℓ with rv − ℓu = 1 in time
(log p)1+o(1).

Step 3: Set s = ℓu.

Step 4: Using the precomputed table Q and applying (1), we compute

qp
(

ss/(s+ 1)s+1
)

≡ sqp(ℓ)qp(u)− (s+ 1)qp(r)qp(v) (mod p),

and then ϑp,s, in time (log p)1+o(1).
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Thus after the preprocessing with the cost given by (3) we compute ϑp,s
for every s ∈ S in essentially linear time, where S is the set of s generated
at Step 2 of the above algorithm. That is,

S = {s = ℓu : rv − ℓu = 1, ℓ ∈ L, r ∈ R, 0 < u < r}.
We now show that indeed the above algorithm samples s in a reasonably
uniform fashion.

Theorem 7. The discrepancy of the sequence (s/p)s∈S is O
(

p−1/8 log p
)

.

Proof. First of all we note that Lemma 4 applies to the set L so it is not
empty and contains at least c0∆/ log p primes, for some absolute constant
c0 > 0. Furthermore, distinct pairs (ℓ, r) ∈ L × R lead to distinct products
s = ℓu.

Clearly for ℓ ∈ L and r ∈ R we have

ℓr = U2 +O(U∆) = p+O(U∆).

Therefore,

s

p
=
ℓu

p
=
rv

p
− 1

p
=

rv

ℓr +O(U∆)
− 1

p
=
v

ℓ
+O

(

U∆

p

)

.

Using Lemmas 2 and 3, we see that the discrepancy of the sequence of
fractions s/p with s ∈ S corresponding to a given value of ℓ is

O
(

∆−1U1/2(logU)2 + U∆p−1
)

= O
(

p−1/8 log p
)

.

Obviously the discrepancy of the entire sequence (s/p)s∈S also satisfies the
same bound.

Unfortunately the proof of Theorem 7 takes no advantage of averaging
over ℓ. So, this certainly can be a way to obtain a further improvement.
In particular, it is possible that the switching over argument of Fouvry [8]
maybe of help here.

The above approach is based on constructing suitable values of s from
solutions of linear equations with the coefficients ℓ and r running indepen-
dently through some prescribed sets. There are various possible modifica-
tions that may lead to algorithmic advantages, and there are a variety of
results [4, 5, 9, 22, 23] that can be used to prove the analogues of Theorem 7
about the uniformity of distribution of the corresponding values of s.

Clearly Algorithm 6 makes sense only if one intends to compute ϑp,s for
at least p1/2 log p values of s.
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6 Relations between ϑp,s

Define permutations F,G : Sp → Sp by

F (s) ≡ −1 − s (mod p), G(s) ≡ 1/s (mod p).

One checks that F 2 = G2 = (FG)3 = idSp
, so the group H generated by F

and G contains at most six distinct permutations, namely 1, F , G, FG, GF ,
and FGF (= GFG). Furthermore, F , G and FGF each have a single fixed
point (respectively −1/2, 1, and −2 modulo p), and the fixed points of FG
and GF are the roots of x2 + x+ 1 = 0 (mod p) (if they exist).

From these facts one can easily determine the number of orbits of Sp

under H , as follows. Assume that p ≥ 11, so that −1/2, 1,−2, and the roots
of x2+x+1 = 0 (mod p), are all distinct modulo p. First suppose that p = 1
(mod 3). Let s0 and s1 be the roots of x2 + x + 1 = 0 (mod p). Note that
F and G interchange s0 and s1. Thus there are precisely (p + 5)/6 orbits,
namely {−1/2, 1,−2}, {s0, s1}, and (p−7)/6 orbits of order 6. Now suppose
that p = 2 (mod 3). Then x2 + x + 1 = 0 (mod p) has no roots, and we
obtain (p + 1)/6 orbits, namely {−1/2, 1,−2} and (p − 5)/6 orbits of order
6.

In all cases, we see that there are p/6 + O(1) orbits. Next we show that
ϑp,s is constant on each orbit.

Theorem 8. We have ϑp,F (s) = ϑp,s and ϑp,G(s) = ϑp,s.

Proof. We will use the fact that for any u, v ∈ Z, with u 6= 0 (mod p),

qp(u+ vp) ≡ (u+ vp)p−1 − 1

p

≡ up−1 + (p− 1)up−2vp− 1

p

≡ qp(u)−
v

u
(mod p),

(4)

see also [7, Equation (2)]. For the first relation,

ϑp,F (s) =

(

2(−s− 1)(−s) ((−s− 1)qp(p− 1− s)− (−s)qp(p− s))

p

)

=

(

2s(s+ 1) (sqp(s− p)− (s + 1)qp(s+ 1− p))

p

)

.
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The result then follows from

qp(s− p) ≡ qp(s)−
1

s
(mod p)

and

qp(s+ 1− p) ≡ qp(s+ 1)− 1

s+ 1
(mod p).

For the second relation,

ϑp,G(s) =

(

2s−1(s−1 + 1)
(

1
s
qp(G(s))− (s−1 + 1)qp(G(s) + 1)

)

p

)

=

(

2s(s+ 1) (qp(G(s))− (s+ 1)qp(G(s) + 1))

p

)

since (s4/p) = 1. Now let sG(s) = 1 + kp for some k ∈ Z. Then

qp(G(s)) = qp(sG(s))− qp(s) = qp(1)− k − qp(s) = −k − qp(s) (mod p)

and

qp(G(s) + 1) ≡ qp(sG(s) + s)− qp(s) = qp(s+ 1)− k

s+ 1
− qp(s) (mod p).

Therefore

qp(G(s))− (s+ 1)qp(G(s) + 1) ≡ sqp(s)− (s+ 1)qp(s+ 1) (mod p),

and ϑp,G(s) = ϑp,s as desired.

A natural question is whether there is some geometric explanation for the
above relations. For example, are there maps between Fs, FF (s) and FG(s)

that force them to have the same reduction type?

7 Numerical Results

We have computed N0,±1(p) for all p < 107 using a C implementation of a
fairly naive algorithm.

Table 1 gives a statistical summary of the distribution of N1(p). The data
for N−1(p) is similar and is not shown. The table has been constructed in

9



Table 1: Moments of normalised N1(p), for 3 ≤ p < 107

k E(Xk) E(Nk)

1 −0.00085 0
2 0.99979 1
3 0.00051 0
4 3.00059 3
5 0.00403 0
6 14.92162 15
7 −0.07897 0
8 102.90932 105

the following way. Following the results of the previous section, N1(p) should
behave like a sum of p/6 independent random variables that take the values
6 and 0 with equal probability. Each such variable has mean 3 and variance
9, so under this assumption we expect N1(p) to have mean 3(p/6) = p/2 and
variance 9(p/6) = 3p/2. We treat each prime p as an ‘observation’ of N1(p),
and define a normalised random variable

X =
N1(p)− p/2
√

3p/2
.

Table 1 shows the moments of X , compared to the moments of the standard
normal distribution. The closeness of the fit strongly supports the assump-
tions of our model.

Table 2 summarises the behaviour of N0(p). If we assume that ϑp,s takes
the value 0 with probability 1/p on each of the p/6 + O(1) orbits, then we
expect N0(p)/6 to behave like a Poisson random variable with mean 1/6. In
Table 2, the column T2(k) counts the number of primes p = 2 (mod 3) such
that N0(p) = 6k; it closely matches the last column, which shows the value
predicted by the Poisson model. For p = 1 (mod 3) we must modify this
slightly, because we know that automatically ϑp,s = 0 when s is one of the
roots of s2 + s + 1 = 0 (mod p) (see Section 3). This effectively increases
N0(p) by two. In the table, we correspondingly define T1(k) to be the number
of primes p = 1 (mod 3) such thatN0(p) = 6k+2. Again this closely matches
the Poisson model.

10



Table 2: Frequency table for N0(p), for 5 ≤ p < 107, p 6= 1093, 3511

k T1(k) T2(k) Poisson prediction

0 281486 281127 281277
1 46619 47088 46879
2 3860 3923 3906
3 217 231 217.03
4 10 14 9.043

Finally, one computes that

ϑp,1 =

(−2qp(2)

p

)

By definition, the latter is zero modulo p if and only if p is a Wieferich prime.
There are only two known Wieferich primes, namely 1093 and 3511. For these
two primes, ϑp,s is zero on the orbit {1,−1/2,−2}. In fact N0(3511) = 5 and
N0(1093) = 17 .

8 Comments

We remark that in the range of our calculations of N0,±1(p), none of the
asymptotically faster algorithms of Sections 4 and 5 were used. We how-
ever believe that these algorithms are not only of theoretic interest and can
become more practically useful for large values of p.

We note that the definition of ϑp,s makes sense for any integer s with
gcd(s(s + 1), p) = 1 and then it obviously becomes a periodic function of s
with period p2. Furthermore, a more careful analysis shows that it is periodic
with period p. Indeed, using (4), we see that

(u+ p)qp(u+ p) ≡ uqp(u+ p) ≡ uqp(u)− 1.

Now, recalling (2), we derive

qp
(

(s+ p)s+p/(s+ p+ 1)s+p+1
)

≡ (s+ p)qp(s+ p)− (s+ p+ 1)qp(s+ p + 1)

≡ sqp(s)− (s+ 1)qp(s+ 1) ≡ qp
(

ss/(s+ 1)s+1
)

(mod p).
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This explains why it is enough to study the values of ϑp,s only for s ∈ Sp.
This can also be used in numerical tests as one can use any values of s for
which the relevant values of qp are easy to are easy to compute.

For instance, assume that we want to compute N0,±1(p) for many primes
p ≤ X . Then we can try to find a large set S of s ∈ [1, X ] (together with
their factorisations) such that s and s + 1 are Y -smooth (that is, whose
prime factors are all less than Y ). Then, for each p, we compute and store
the values of qp(ℓ) for all primes ℓ ≤ Y . After this ϑp,s, s ∈ S, can be
computed very rapidly. Certainly for this approach to work, we need to
know for what Y there many such integers s and how they are distributed
in [1, X ]. However, we remark that the questions of counting and generating
smooth pairs (s, s+ 1) is apparently very difficult, see [13, Section 6].

We can expand further the set of potentially “friendly” test points by con-
sidering triples (u, v, w) of Y -smooth positive integers u, v, w ≤ X . After this
we compute t ≡ u/w (mod p2) and then compute s ∈ Sp with s ≡ t (mod p).
We now have ϑp,s = ϑp,t, while t is a “friendly” value. Unfortunately counting
and generating such triples (u, v, w) is still a difficult problem, see [13, 14].
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