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FOURIER ANALYSIS ON FINITE GROUPS AND

THE LOVÁSZ THETA-NUMBER OF CAYLEY GRAPHS

EVAN DECORTE, DAVID DE LAAT, AND FRANK VALLENTIN

Abstract. We apply Fourier analysis on finite groups to obtain simplified
formulations for the Lovász ϑ-number of a Cayley graph. We put these for-
mulations to use by checking a few cases of a conjecture of Ellis, Friedgut, and
Pilpel made in a recent article proving a version of the Erdős-Ko-Rado theo-
rem for k-intersecting families of permutations. We also introduce a q-analog
of the notion of k-intersecting families of permutations, and we verify a few
cases of the corresponding Erdős-Ko-Rado assertion by computer.

1. Introduction

One approach to some problems in extremal combinatorics involves estimating
the independence number of a Cayley graph. A classic example is upper bounding
sizes of error-correcting codes in Abelian groups. A recent, exciting example is
provided by a version of the Erdős-Ko-Rado theorem for permutations proven by
Ellis, Friedgut, and Pilpel [4]: If k is a positive integer, n is sufficiently large
depending on k, and A is a largest set of permutations on n letters such that any
two agree on at least k letters, then |A| = (n − k)!. This resolved a conjecture of
Frankl and Deza from [6] stated in 1977.

The Lovász ϑ-number, introduced in [9], provides an upper bound on the size
of an independent set in a general graph. It can be computed by solving a semi-
definite program involving n× n-matrices, where n is the cardinality of the vertex
set. We specialize the ϑ-number to Cayley graphs and show how the semidefinite
program block-diagonalizes to a simpler one involving smaller matrices associated
to the irreducible representations of the group. The resulting semidefinite program
can be thought of as a “frequency domain” formulation of the ϑ-number. Further-
more, under a sufficient condition on the graph, our semidefinite program collapses
to a linear program which can be formulated using only knowledge of the group
characters. This condition applies, in particular, for the two examples given above.
In fact, one can interpret the arguments in [4] as constructing feasible solutions to
the linear program computing the ϑ-number for a particular Cayley graph on the
symmetric group.

In [4], the problem of quantifying the dependence of n on k is left open, but they
conjecture that the conclusion of their theorem holds when n ≥ 2k+1. By explicit
computations we verify their conjecture for some small values of n and k, and we
identify some values for which the ϑ-number does not give a tight enough bound
to verify the conjecture, suggesting that other methods will be required to resolve
these cases.
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The outline of the paper is as follows: In Section 2 we fix notation and defi-
nitions, and recall some basic facts from finite Fourier analysis. In Section 3 we
find several reformulations of the Lovász ϑ-function for Cayley graphs by using the
group structure on the vertex set. In Section 4 we apply these results in the context
of the Ellis-Friedgut-Pilpel conjecture made in [4], and in Section 5 we introduce a
q-analog of their result as a conjecture, and perform the analogous computations.
In Section 6, we show how the machinery developed in Section 3 could also be
applied to vertex-transitive graphs.

2. Definitions, notation, and background in Fourier analysis

All graphs will be simple and undirected. For any graph G = (V,E), the in-

dependence number is the maximum number of pairwise nonadjacent vertices; this
maximum will be denoted α(G).

Suppose Γ is a finite group. A subset X ⊆ Γ will be called a connection set

if the unit element e of Γ does not belong to X , and if X is inverse-closed; that
is x−1 ∈ X whenever x ∈ X . For any connection set X ⊆ Γ, the Cayley graph

Cay(Γ, X) is the graph with vertex set Γ, where two vertices x and y are adjacent
if and only if y−1x ∈ X . The defining conditions of a connection set imply that
Cay(Γ, X) is an undirected graph without self-loops. Notice that we do not require
X to generate Γ; therefore Cay(Γ, X) need not be connected.

In the following we recall some basic facts from representation theory of finite
groups. For a good reference, see for instance Terras [10]. A (finite-dimensional)
unitary representation of Γ is a group homomorphism π : Γ → U(dπ) where U(dπ) is
the group of unitary dπ×dπ matrices. The number dπ is called the degree of π. The
character of π is defined as χπ(γ) = Tr(π(γ)), where Tr denotes trace. A subspace
M of Cdπ is π-invariant if π(γ)m ∈ M for all γ ∈ Γ and m ∈ M . The unitary
representation π is said to be irreducible if {0} and Cdπ are the only π-invariant
subspaces of Cdπ . Two unitary representations π and π′ are (unitarily) equivalent
if there is a unitary matrix T such that Tπ(γ) = π′(γ)T for all γ ∈ Γ.

Given two inequivalent irreducible unitary representations π and π′, the Schur

orthogonality relations give us the following two facts:

(1)
∑

γ∈Γ πij(γ)π′
lk(γ) = 0, where πij(γ) is the ij-entry of the matrix π(γ), and

π′
lk(γ) is defined analogously;

(2)
∑

γ∈Γ πij(γ)πlk(γ) =
|Γ|
dπ

δilδjk, where δ is the Kronecker delta.

These relations are implied by Schur’s lemma, which says that if π and π′ are
irreducible unitary representations, and if T is a matrix for which Tπ(γ) = π′(γ)T
for all γ ∈ Γ, then T is either invertible or zero; if π = π′, then T is a scalar multiple
of the identity matrix.

We fix a set of mutually inequivalent irreducible unitary representations of Γ, so
that each unitary equivalence class has a representative; call this set Γ̂. This allows
us to define the Fourier transform of a function f : Γ → C:

f̂(π) =
∑

γ∈Γ

f(γ)π(γ),

where f̂(π) is a complex dπ × dπ matrix. The Fourier inversion formula says we
can recover f from its Fourier transform:

f(γ) =
1

|Γ|

∑

π∈Γ̂

dπ〈f̂(π), π(γ)〉.
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The inner product used here is the trace inner product, defined as 〈A,B〉 = Tr(B∗A)
for square complex matrices A and B of the same dimension, where B∗ denotes the
conjugate-transpose of B.

The convolution of two functions f : Γ → C and g : Γ → C is defined by

f ∗ g(γ) =
∑

β∈Γ

f(β)g(β−1γ),

and the involution of f is defined as f∗(γ) = f(γ−1). It is a fact that f̂ ∗ g(π) =

f̂(π)ĝ(π), and that f̂∗(π) = f̂(π)∗.
A function f : Γ → C is of positive type if

∑

γ∈Γ

g ∗ g∗(γ)f(γ) ≥ 0

for all functions g : Γ → C; that is, the sum is a nonnegative real number. We
denote by P(Γ) the set of functions on Γ of positive type. Notice that f ∈ P(Γ) if
and only if f̄ ∈ P(Γ), where f̄ is the pointwise complex-conjugate of f . One fact

that will be needed later is that f(γ−1) = f(γ) for all γ ∈ Γ when f is of positive
type. For a proof of this fact and more information on functions of positive type,
see Folland [5, Chapter 3.3].

For vectors u, v ∈ Cn, we use 〈u, v〉 to denote the usual inner product of u and
v. An n × n matrix A with entries from C will be called positive semidefinite if
〈Av, v〉 is a nonnegative real number for all v ∈ Cn. Using the polarization identity,
it is possible to prove that every positive semidefinite matrix is Hermitian. For
each finite set V , the set of positive semidefinite matrices with rows and columns
indexed on V will be denoted SV

�0. When V = {1, . . . , n}, we will use the notation

Sn
�0 instead. It is a fact that A ∈ Sn

�0 if and only if 〈A,B〉 ≥ 0 for all B ∈ Sn
�0;

this fact is known as the self-duality of Sn
�0.

The following theorem is an application of self-duality, as well as Parseval’s

identity, which says that

∑

γ∈Γ

f(γ)g(γ) =
1

|Γ|

∑

π∈Γ̂

dπ〈f̂(π), ĝ(π)〉

for all functions f and g on Γ:

Theorem 1 (Bochner’s theorem for finite groups). Suppose Γ is a finite group and

let f : Γ → C. Then f is of positive type if and only if f̂(π) is positive semidefinite

for each π ∈ Γ̂.

Proof. For any two complex-valued functions f and g on Γ, we have

(1)
∑

γ∈Γ

g ∗ g∗(γ)f(γ) =
1

|Γ|

∑

π∈Γ̂

dπ〈ĝ ∗ g∗(π), f̂(π)〉 =
1

|Γ|

∑

π∈Γ̂

dπ〈ĝ(π)ĝ(π)
∗, f̂(π)〉.

The matrices ĝ(π)ĝ(π)∗ are always positive semidefinite, so (1) is nonnegative if all

the matrices f̂(π) are positive semidefinite. This gives one direction.

For the other direction, suppose f : Γ → C is of positive type, and fix π ∈ Γ̂.
Now let A ∈ Sdπ

�0 be arbitrary, and let A = BB∗ be the Cholesky decomposition.

Define g : Γ → C by g(γ) = dπ/|Γ|〈B, π(γ)〉. By the Schur orthogonality relations
(or uniqueness of Fourier coefficients), we have ĝ(π) = B and ĝ(π′) = 0 when π′

and π are inequivalent, whence

ĝ(π)ĝ(π)∗ = BB∗ = A and ĝ(π′)ĝ(π′)∗ = 0.
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Now (1), which is nonnegative by hypotheses, is equal to dπ/|Γ|〈A, f̂(π)〉. Since

π and A were arbitrary, we conclude that 〈A, f̂(π)〉 ≥ 0 for every π and every

A ∈ Sdπ

�0. Self-duality of Sdπ

�0 now implies f̂(π) ∈ Sdπ

�0 for each π ∈ Γ̂. �

3. The ϑ-number of a Cayley graph

Let G = (V,E) be a finite graph. In [9], the Lovász ϑ-number ϑ(G) of G is
defined and a number of equivalent formulations are given. The formulation of
ϑ(G) which will be most important for us is:

ϑ(G) = max
{ ∑

u,v∈V

A(u, v) : A ∈ SV
�0 real-valued,(A)

Tr(A) = 1, A(u, v) = 0 for {u, v} ∈ E
}
.

When G is the Cayley graph Cay(Γ, X), the optimization over matrices in (A) can
be replaced with optimization over functions on Γ, as we proceed to show.

Theorem 2. Suppose G = Cay(Γ, X). Then

ϑ(G) = max
{∑

γ∈Γ

f(γ) : f ∈ P(Γ) real-valued,(B)

f(e) = 1, f(x) = 0 for x ∈ X
}
.

Before we prove Theorem 2, we require a lemma:

Lemma 3. Suppose A : Γ × Γ → C is a Hermitian matrix satisfying A(γ, e) =
A(γβ, β) for all γ, β ∈ Γ. Define f : Γ → C by f(γ) = A(γ, e). Then for any

function g : Γ → C we have
∑

γ∈Γ

g ∗ g∗(γ)f(γ) =
∑

γ,γ′∈Γ

g(γ)g(γ′)A(γ, γ′).

Proof. This follows from a straightforward computation. �

Proof of Theorem 2. For one direction, let A be a feasible solution for (A). Define
Ā : Γ× Γ → R entrywise by

Ā(γ, γ′) =
1

|Γ|

∑

β∈Γ

A(γβ, γ′β).

Being the average of matrices similar to A (via permutation matrices), the matrix Ā
is positive semidefinite, and one now easily checks that Ā is again a feasible solution
for (A) having the same objective value as A. Moreover, we have Ā(γ, e) = Ā(γβ, β)
for all γ, β ∈ Γ.

Now define f : Γ → R by f(γ) = |Γ|Ā(γ, e). Then Ā and f/|Γ| satisfy the
hypotheses of Lemma 3, so

∑

γ∈Γ

g ∗ g∗(γ)f(γ) = |Γ|
∑

γ,γ′∈Γ

g(γ)g(γ′)Ā(γ, γ′),

and since Ā is positive semidefinite, it follows that the function f is of positive
type. It is easily checked that the other constraints of (B) are satisfied by f , and
moreover that the objective values are equal:

∑

γ∈Γ

f(γ) = |Γ|
∑

γ∈Γ

Ā(γ, e) =
∑

γ,γ′∈Γ

Ā(γ, γ′) =
∑

γ,γ′∈Γ

A(γ, γ′).

For the other direction, we begin with a feasible solution f : Γ → R to (B), and
we define A : Γ× Γ → R by A(β, γ) = 1

|Γ|f(βγ
−1). Then A is a feasible solution to

(A) by Lemma 3, and its objective value is
∑

γ∈Γ f(γ). �
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Using Theorem 1, we can also give a (complex) semidefinite programming for-
mulation of (B) using block matrices.

Theorem 4. Suppose G = Cay(Γ, X). Then

ϑ(G) = max
{
A1 : Aπ ∈ Sdπ

�0 for each π ∈ Γ̂,(C)
∑

π∈Γ̂

dπ Tr(Aπ) = |Γ|,
∑

π∈Γ̂

dπ〈Aπ , π(x)〉 = 0 for x ∈ X
}
,

where 1 ∈ Γ̂ denotes the trivial representation.

Proof. If f : Γ → R is any feasible solution to (B), set Aπ = f̂(π) for each π ∈ Γ̂. By
Theorem 1, the matrices Aπ are positive semidefinite. Moreover, one easily checks
using the Fourier inversion formula that the other constraints of (C) are satisfied

by {Aπ : π ∈ Γ̂}, and that the objective values are equal: A1 =
∑

γ∈Γ f(γ).

For the other direction, let {Aπ : π ∈ Γ̂} be a feasible solution for (C) and define
g : Γ → C by

g(γ) =
1

|Γ|

∑

π∈Γ̂

dπ〈Aπ , π(γ)〉 for all γ ∈ Γ.

Then g is of positive type by Theorem 1. Now define f(γ) = 1
2 (g(γ) + g(γ−1)) for

all γ ∈ Γ. Then f is real-valued, and that f satisfies all the other constraints of
(B) is easily checked using the fact that X is inverse-closed. Moreover

∑

γ∈Γ

f(γ) =
1

|Γ|

∑

γ∈Γ

∑

π∈Γ̂

dπ〈Aπ , π(γ)〉 = A1

by the Schur orthogonality relations. �

When Γ is an Abelian group, then all its irreducible representation are one-
dimensional. Therefore, the semidefinite program (C) is just a linear program.
More generally, (C) is equivalent to a linear program whenever the connection set
of the Cayley graph Cay(Γ, X) is closed under conjugation; that is, γxγ−1 ∈ X for
all x ∈ X and γ ∈ Γ. This is the content of the next theorem.

Theorem 5. Let G be the Cayley graph Cay(Γ, X) and suppose that the connection

set X is closed under conjugation. Then

ϑ(G) = max
{
a1 : aπ ≥ 0 for each π ∈ Γ̂,(D)

∑

π∈Γ̂

d2πaπ = |Γ|,
∑

π∈Γ̂

dπaπχπ(x) = 0 for x ∈ X
}
.

Proof. We prove the equivalence of (C) and (D). Let {Aπ : π ∈ Γ̂} be a feasible
solution for (C), and for each π let

Āπ =
1

|Γ|

∑

γ∈Γ

π(γ)Aππ(γ)
∗.

Then {Āπ : π ∈ Γ̂} is again a solution to (C): If x ∈ X , then

∑

π∈Γ̂

dπ〈Āπ , π(x)〉 =
1

|Γ|

∑

π∈Γ̂

dπ
∑

γ∈Γ

〈π(γ)Aππ(γ)
∗, π(x)〉

=
1

|Γ|

∑

π∈Γ̂

dπ
∑

γ∈Γ

〈π(γ)Aπ , π(xγ)〉.
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Since X is closed under conjugation there is a y ∈ X so that xγ = γy holds. Hence,
the sum above equals

1

|Γ|

∑

π∈Γ̂

dπ
∑

γ∈Γ

〈π(γ)Aπ , π(γy)〉 =
1

|Γ|

∑

π∈Γ̂

dπ
∑

γ∈Γ

〈Aπ , π(y)〉 =
∑

π∈Γ̂

dπ〈Aπ , π(y)〉 = 0.

Moreover, since π(γ)Aππ(γ)
∗ is similar to Aπ for each γ ∈ Γ, the matrix Āπ is

positive semidefinite for each π ∈ Γ̂ and
∑

π∈Γ̂ dπ Tr(Āπ) = |Γ|.

We have constructed Āπ so that Āππ(γ) = π(γ)Āπ for all γ ∈ Γ. Schur’s lemma
then implies that Āπ is equal to aπIdπ

for some scalar aπ and since Āπ is positive
semidefinite this scalar is nonnegative. We have dπaπ = Tr(Āπ) as well as

〈Āπ , π(γ)〉 = aπχπ(γ) for all γ ∈ Γ,

so {aπ : π ∈ Γ̂} is a feasible solution to (D) having objective value a1 = A1.

For the other direction, we take a feasible solution {aπ : π ∈ Γ̂} to (D), and for

each π ∈ Γ̂, we set Aπ = aπIdπ
. This is a feasible solution to (C) with objective

value A1 = a1. �

Denote the constraint
∑

π∈Γ̂ dπaπχπ(x) = 0 by Cx (x ∈ X). For computational
purposes, the following simplifications can be applied to (D): First, only one of
the constraints {Cx, Cx−1} is needed. Second, since the characters χπ are constant
on conjugacy classes, it suffices to keep only the constraints Cx, with one x per
conjugacy class.

4. First application: k-intersecting permutations

In this section we apply Theorem 5 to the problem of k-intersecting permutations
as discussed in the introduction.

Let Sn be the symmetric group on n letters. A family A ⊆ Sn is said to be
k-intersecting if any two permutations in A agree on at least k elements. That is, a
k-intersecting family of Sn is an independent set in the graph Cay(Sn, Xn,k), where

Xn,k = {σ ∈ Sn : σ has strictly less than k fixed points}.

The set Xn,k is closed under conjugation so Theorem 5 applies. One can interpret
the method of Ellis, Friedgut, and Pilpel in [4] as constructing an explicit family of
feasible solutions to the linear programs which turns out to be optimal for given k
and n sufficiently large.

Conjecture 2 of [4] implies that a largest k-intersecting family in Sn has size

max
0≤i≤(n−k)/2

∣∣{σ ∈ Sn : σ has at least k + i fixed points in {1, . . . , k + 2i}}
∣∣,

which in particular means that the maximum size is (n − k)! for n ≥ 2k + 1.
We solved the linear program (D) for small values of n and k with the help of
a computer. In Table 1 the (n, k)-th entry is marked when the ϑ-number gives
the conjectured maximum. To evaluate the characters of the symmetric group we
used gap [7] and to solve the linear programs we used lrs [1]. Since both software
packages only use rational arithmetic our computations are rigorous.
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k
n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 X X X X X X X X X X X X X X X

2 X X X X X X X X X X X X X X

3 X X X X X X X X X X X X

4 X X X X X X X X

5 X X X X X X X

6 X X X X

7 X X X X

8 X X X

9 X X X X

10 X X X

11 X X X

12 X X X

13 X X X

14 X X

15 X

Table 1. Computation of ϑ(Cay(Sn, Xn,k))

5. Second application: k-intersecting invertible matrices

Here we consider a q-analog of the previous application. Let Γ = GL(n,Fq) be
the group of invertible n × n-matrices over the finite field with q elements, where
q is a prime power. We say that two matrices A and B in GL(n,Fq) k-intersect if
there is a k-dimensional subspace H of Fn

q such that Ax = Bx for all x ∈ H . Given
a natural number k, let

Xq,n,k = {A ∈ GL(n,Fq) : rank(A− I) > n− k}

and consider the Cayley graph Gq,n,k = Cay(Γ, Xq,n,k). Independent sets in this
graph correspond to k-intersecting families of invertible matrices.

The independence number of Gq,n,1 was recently calculated by Guo and Wang
in [8] (not by computing ϑ(Gq,n,1)).

For any q and n, one clearly obtains a lower bound by choosing a nonzero vector
x ∈ Fn

q and considering the set A of all matrices A ∈ GL(n,Fq) such that Ax = x.

One has |A| =
∏n−1

i=1 (q
n − qi) by the orbit-stabilizer theorem, and for small values

of n and q we found numerically that ϑ(Gq,n,1) equals this lower bound. Since
Xq,n,k is closed under conjugation, ϑ(Gq,n,k) can be computed by solving the linear
program (D).

Conjecture 1. One has ϑ(Gq,n,1) = α(Gq,n,1) =
∏n−1

i=1 (q
n − qi) for all values of

n and q.

For k > 1, we can construct independent sets in a similar way as above: Choose
linearly independent vectors x1, . . . , xk ∈ Fn

q and let A be the set of all matrices

A ∈ GL(n,Fq) such that Axi = xi for 1 ≤ i ≤ k. Then |A| =
∏n−1

i=k (q
n − qi). By

computing the ϑ-number for small values of n and q (see Table 2) we have evidence
that a version of the Erdős-Ko-Rado theorem might also be true in this setting.

Conjecture 2. We conjecture that for each q, k ∈ N, there exists n0 = n0(q, k) ∈ N

such that ϑ(Gq,n,k) = α(Gq,n,k) =
∏n−1

i=k (q
n − qi) for all n ≥ n0.

The computations in Table 2 have been performed with magma [3] and lpsolve [2].
As the computation of the characters of GL(n,Fq) involve irrational numbers we
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cannot solve the linear programs with rational arithmetic only. So these computa-
tions cannot be considered as rigorous mathematical proofs. Nevertheless we are
certain that we placed checkmarks where the exact computation of ϑ(Gq,n,k) would
give an upper bound which is equal to the corresponding lower bound.

q = 2 q = 3 q = 4

k
n

1 2 3 4 5 6 1 2 3 4 1 2 3

1 X X X X X X X X X X X X X

2 X X X X X X X X X

3 X X X X X X

4 X X X

5 X X

6 X

Table 2. Computation of ϑ(Cay(Γ, Xq,n,k))

6. Blowing up vertex transitive graphs

The final theorem in this note shows that for the purposes of estimating the
independence number of a graph, the theory presented in the preceding sections
can be applied not just to Cayley graphs, but also to vertex-transitive graphs.

Theorem 6. Let G = (V,E) be a graph and let Γ be a group of automorphisms of

G. Suppose Γ acts transitively on V . Then there exists a connection set X ⊆ Γ
such that

α(G) = |V |
|Γ| α(Cay(Γ, X)).

Proof. Pick a vertex x0 ∈ V and define

X = {γ ∈ Γ : {x0, γ · x0} ∈ E}.

Then for β, γ ∈ Γ, one has an edge {β, γ} in the Cayley graph Cay(Γ, X) if and
only if

γ−1β ∈ X ⇐⇒ {x0, γ
−1β · x0} ∈ E ⇐⇒ {γ · x0, β · x0} ∈ E.

Now notice that by the orbit-stabilizer theorem, one has

|{γ ∈ Γ : γ · x = x}| =
|Γ|

|V |
for all x ∈ V ,

and the theorem follows immediately. �

Going from G to the Cayley graph Cay(Γ, X) is accomplished using the following
procedure: First choose a vertex x0 ∈ V arbitrarily, and let H be the stabilizer
subgroup of x0 in Γ. Each vertex x ∈ V is then replaced with an empty graph on
the left coset of H in Γ consisting of all those γ ∈ Γ such that γ · x0 = x. In other
words, the vertex set V is regarded as a Γ-homogeneous space, and each vertex is
“blown up” to an independent set of size |Γ|/|V | by replacing it with its inverse
image under the projection map.
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