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SELF-INTERSECTION NUMBERS OF LENGTH-EQUIVALENT CURVES

ON SURFACES

MOIRA CHAS

Abstract. Two free homotopy classes of closed curves in an orientable surface with nega-
tive Euler characteristic are said to be length equivalent if for any hyperbolic structure on
the surface, the length of the geodesic in one class is equal to the length of the geodesic
in the other class. We show that there are elements in the free group of two generators
that are length equivalent and have different self-intersection numbers as elements in the
fundamental group of the punctured torus and as elements in the pair of pants. This result
answers open questions about length equivalence classes and raises new ones.

Consider an orientable surface S (with or without boundary)with negative Euler charac-
teristic. A free homotopy class of curves on a S corresponds to a conjugacy class in the
fundamental group of S. If S is endowed with a complete hyperbolic metric m with geodesic
boundary, each free homotopy class x gets assigned a positive real number m(x), the length
of the unique geodesic representative in x (with respect to m). A free homotopy class has a
self-intersection number, that is, the smallest number of crossings of representatives in gen-
eral position (here, general position means that all intersection points are transversal double
points).

Two free homotopy classes x and y are length equivalent if for every hyperbolic metric on S,
the length of the geodesic representative in x equals the length of the geodesic representative
in y.

Two elements X and Y in π1(S) are trace equivalent if for any representation of π1(S)
into SL(2,C), the images of X and Y have the same trace squared.

Leininger [8, Proposition 3.2] showed that length-equivalence and trace-equivalence define
the same relations.

This note addresses the relation between self-intersection and length equivalence, by ver-
ifying following result.

Theorem There exist elements in the free group on two generators (see Table 1) which
are length equivalent (that is, they have the same trace squared for any representation of the
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group into SL(2,C)) and have different self-intersection numbers as closed curves on the
punctured torus and and as closed curves on the pair of pants.

Cyclically reduced Self-intersection Number Self-intersection Number
word Pair of Pants Punctured Torus

aaabaaBAbAABabaB 15 34
aaabaBaabaBAAbAB 19 32

Table 1. Length equivalent elements with different self-intersection numbers
(capital letters are used to represent inverses)

Horowitz [5], answering a question of Magnus, proved that in any free group of rank at
least two, there exist arbitrarily large subsets of elements which are not conjugate and yet,
have the same trace for every representation of the group in SL(2,C). Using Horowitz’s
results, Randol [9] showed that for each positive integer n, there are length equivalence
classes containing at least 2n elements.

Randol’s result is surprising. The mystery is a bit resolved when one studies one of the
several algorithms to find length equivalence classes (see [1] for a survey on this topic). These
algorithms use basic facts about traces in SL(2,C) to construct such elements, namely for
each pair of matrices A,B ∈ SL(2,C)

tr(AB) + tr(AB−1) = tr(A)tr(B)

tr(BAB−1) = tr(A)

tr(Id) = 2.

Fricke [6] and Vogt [10] (see also [5]) proved that for any element w in a free group of
finite rank, there exists a polynomial in several variables such that the trace of w under any
representation of the group into SL(2,C) is equal to that polynomial evaluated at traces of
certain products of the images of the generators.

These trace equivalence classes(i.e., length equivalence classes) are still not completely
understood [8]. There is no known characterization from a geometric point of view. Note
that the definition of trace equivalence is completely algebraic and does not distinguish
different surfaces with boundary with the same Euler characteristic.

Hamenstädt asked at the Workshop on Kleinian Groups and Hyperbolic 3-Manifolds, held
at the University of Warwick in September 2001, whether there a connection between the
size of the length equivalence classes and the self-intersection numbers of the elements [1].

Humphries conjectured [7, Conjecture 1.5.a] that if two elements in a free group are trace-
equivalent, then they have the same self-intersection number. Note that our results is a
counterexample to this conjecture.

Horowitz gave an algorithm that in step n yields 2n non-conjugate, length-equivalent
elements in the free group on two generators [5, Example 8.2] . We tested the self-intersection
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numbers of the elements constructed by the Horowitz algorithm for n ∈ {1, 2, 3, 4, 5, 6}. We
computed that all the length equivalent elements constructed by Horowitz have the same
self-intersection number for n ∈ {1, 2, 3, 4, 5, 6} (see Table 2)

Buser [3, Section 3.7] gave another algorithm for finding non-conjugate, length equivalent
elements in the free group on two generators. All the length equivalent elements constructed
by Buser have the same self-intersection number for n ∈ {1, 2, 3, 4, 5, 6, 7} (see Table 3.)

Computations with Horowitz’s and Buser’s algorithms lead us to the conjecture below,
which is the focus of ongoing work with Daniel Levine and Shalin Parekh.

Conjecture The 2n trace-equivalent elements of step n in Horowitz’ algorithm have the same
self-intersection number. The 2n trace-equivalent elements of step n in Buser’ algorithm have
the same self-intersection number.

But, because of the example in Table 1 there must be other methods besides these for
generating length equivalence classes.

Problem: Find algorithms to generate complete length equivalence classes.

The two classes of Table 1 were found with the help of a computer. First, the pair of
pants was given a generic hyperbolic metric. Then the set of all cyclically reduced words of
a given word length, was divided into subsets that had geometric length close enough for the
chosen metric (since one needs to approximate to perform these computations, and cannot
require the length to be equal but only ”close enough”). Among those subsets, the ones
containing classes with different self-intersections in the torus and in the pair of pants were
chosen. Then those subsets of classes that were close enough in one metric, and have different
self-intersection number, were tested with a different metric, dividing them into subsets of
words with length ”close enough” in both metrics. Next, this subclasses were divided into
sub-subclasses with the same Fricke polynomial. Hence, the examples of Table 1.

The pair of pants is obtained by labeling alternating edges of an octagon by the letters
a, A, b, B (capital letters are used to represent inverses), and identifying edges with the
same letter (without creating Möbius bands). The generator a in the pair of pants has a
representative that crosses the edge labeled a (and ”reenters” the pants through the edge
labeled A). Analogously, the generator b has a representative that crosses the edge labeled
b. There is a bijection between cyclically reduced words on the {a, b, A,B} alphabet and
a conjugacy classes in the fundamental group of the pair pants obtained after identifying
appropriate edges.

Similarly, the torus with one boundary component is obtained by labeling alternating edges
of an octagon by the letters a, b, A,B. The generators of the punctured torus fundamental
group are determined in the same way as those for the pair of pants. There bijection between
cyclic reduced words on the {a, b, A,B} alphabet and a conjugacy classes of the fundamental
group of the torus with one boundary component so obtained.

It is not hard to see that if one labels the octagon yielding the torus with the letters
A, b, a, B instead of a, b, A,B, the self-intersection number of a word will give the same in
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both cases (because switching a and A, or b by B is equivalent to performing a symmetry
on the punctured torus). On the other hand, in the pair of pants, switching a and A

may change self-intersection (for instance, consider the words ab and aB; one has a simple
representative, the other has a representative that is a figure eight). However, in the words
we found, switching a and A or b and B does not alter the self-intersection.

Two free homotopy classes of curves x and y on a surface S are simple-intersection equiv-
alent if for any simple free homotopy class s in S, the intersection of x and s is equal to the
intersection of y and s. Leininger [8, Theorem1.4] proved that length-equivalence implies
simple intersection equivalence. Thus our examples imply the following corollary, (compare
Leininger [8])

Corollary There are free homotopy classes of curves which are simple-intersection equiva-
lent and have different self-intersection number.

Acknowledgements. The classes exhibited in this paper were found using a parameterization
of the pair of pants we learned from Bernie Maskit. We use a Mathematica program of
Goldman to compute Fricke polynomials. Cameron Crowe provided very valuable help in
modifying Goldman’s program to suit the needs of this study. Kaiqiao Li helped us to
program the Horowitz algorithm and Daniel Levine helped to the program Buser’s algorithm.
Dennis Sullivan and Anthony Phillips gave us valuable comments for this manuscript.

Appendix A. Computations

A.1. Intersection numbers. The intersection of the cyclically reduced words below can
be computed with Cohen-Lustig [4] or Arettines [2] algorithms.

n Self-intersection Number in Self-intersection Number in Word length
word Punctured Torus Pair of Pants
1 5 4 7
2 83 47 29
3 1301 725 111
4 20759 11543 433
5 332057 184601 1715
6 5312795 2953499 6837

Table 2. Self-intersection of the length equivalent elements in Horowitz algorithm

A.2. Fricke Polynomial. The Fricke polynomial of both

aaabaaBAbAABabaB and aaabaBaabaBAAbAB

is the following

−x8y2z2 + x7y3z3 + 2x7y3z + 2x7yz3 − x7yz − 3x6y4z2 − x6y4 − 3x6y2z4 + 4x6y2z2 + x6y2



SELF-INTERSECTION NUMBERS OF LENGTH-EQUIVALENT CURVES ON SURFACES 5

n Self-intersection Number in Self-intersection Number in Word length
word Punctured Torus Pair of Pants
1 4 1 5
2 48 10 17
3 476 91 53
4 4432 820 161
5 40356 7381 485
6 364640 66430 1457
7 3286108 597871 4373

Table 3. Self-intersection of the length equivalent elements in Buser algorithm

−x6z4 + x6z2 + 3x5y5z + 5x5y3z3 − 12x5y3z + 3x5yz5 − 12x5yz3 + 5x5yz − x4y6 + 6x4y4+

7x4y2z2−5x4y2−x4z6+6x4z4−5x4z2−3x3y5z−6x3y3z3+10x3y3z−3x3yz5+10x3yz3−3x3yz

+x2y6+3x2y4z2−5x2y4+3x2y2z4−10x2y2z2+3x2y2+x2z6−5x2z4+3x2z2+x2−xyz+y2+z2−2

Appendix B. Representatives of the classes
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Sci. E. N. S. 3eme Série, Tome VI, (1889) Supplement S.3 - S.70.

Department of Mathematics,, Stony Brook University, Stony Brook, NY, 11794

E-mail address : moira@math.sunysb.edu



6 MOIRA CHAS

Figure 1. Representatives of the examples


	Appendix A. Computations
	A.1. Intersection numbers
	A.2. Fricke Polynomial

	Appendix B. Representatives of the classes
	References

