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Abstract

The irreducible representations of complex semisimple algebraic groups
with finitely many orbits are parametrized by graded simple Lie algebras.
For the exceptional Lie algebras, Kraśkiewicz and Weyman exhibit the
Hilbert polynomials and the expected minimal free resolutions of the nor-
malization of the orbit closures. We present an interactive method to con-
struct explicitly these and related resolutions in Macaulay2. The method
is then used in the cases of the Lie algebras of type E6, F4, and G2 to
confirm the shape of the expected resolutions as well as some geometric
properties of the orbit closures.
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1 Introduction

In [10], Kac classified the irreducible representations of semisimple groups whose
nullcone contains finitely many orbits, the so-called visible representations.
Among these representations are those which themselves contain finitely many
orbits (when the representation coincides with its nullcone); these are referred
to as representations of type I.

The representations of type I are parametrized by pairs pXn, xq, where Xn

is a Dynkin diagram and x is a “distinguished” node of Xn. The nodes of the
Dynkin diagrams are numbered according to the conventions of Bourbaki [1].
The choice of a distinguished node induces a grading on the root system Xn

and the corresponding simple Lie algebra g

g “
à

iPZ
gi

satisfying the following:

• the Cartan subalgebra h is contained in g0;

• the root space gβ is contained in gi, where i is the coefficient of the sim-
ple root α, corresponding the node x, in the expression of β as a linear
combination of simple roots;

• the grading is compatible with the Lie bracket of g.

The representation for the pair pXn, xq is given by the vector space g1 with the
action of the group G0ˆCˆ, where G0 is the adjoint group of the Lie subalgebra
g0 of g; the second factor is the copy of Cˆ that occurs in the maximal torus of
the adjoint group of g but not in the maximal torus of G0.

The orbit closures of the representations of type I were classified by Vin-
berg. In [18], he showed that the orbits are the irreducible components of the
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intersections of the nilpotent orbits in g with the graded component g1. Later,
in [19], Vinberg gave a combinatorial description of the orbits in terms of some
graded subalgebras of g.

The study of the minimal free resolutions of these orbit closures goes back
to Lascoux and his paper on determinantal varieties [14]. Józefiak, Pragacz and
Weyman developed the case of determinantal ideals of symmetric and antisym-
metric matrices [9]. The more general case of rank varieties for the classical
types was studied by Lovett [15]. For the exceptional types, Kraśkiewicz and
Weyman [12] calculate the Hilbert functions of the normalization of the orbit
closures. They also describe the terms of the expected resolutions of the nor-
malizations as representations of the group acting.

The goal of this work is to introduce a framework for constructing the com-
plexes of Kraśkiewicz and Weyman explicitly. This involves computational
methods, carried out in the software system Macaulay2 [4], and techniques from
representation theory, commutative algebra and algebraic geometry. As a re-
sult, we can verify the shape of the free resolutions conjectured by Kraśkiewicz
and Weyman in many cases, whenever our computations are feasible; moreover,
we obtain the minimal free resolutions of the coordinate rings of the orbit clo-
sures and confirm results about Cohen-Macaulay and Gorenstein orbit closures.
Finally, we establish containment and singularity of the orbit closures. In par-
ticular, we examine the exceptional Lie algebras of type E6, F4 and G2, and
provide a detailed analysis of each orbit closure for those cases.

In the next section, we provide an overview of the geometric technique used
in the work of Kraśkiewicz and Weyman to extract information about the orbit
closures. In section 3, we describe the computations ran in Macaulay2; in par-
ticular, we introduce the interactive method for syzygies and the cone procedure
for non normal orbit closures. In section 4, we discuss the equivariant exactness
criterion, a simple method to establish exactness of our complexes. In section
5, we explain how to obtain the defining equations for the orbit closures and
verify they generate a radical ideal. Finally, the last sections are devoted to
a detailed analysis of the orbit closures for the representations associated with
gradings on the Lie algebras of type E6, F4 and G2. The appendix contains a
brief description of the equivariant maps used to construct the differentials in
our complexes.

This work is accompanied by a collection of Macaulay2 files containing the
defining ideals for the orbit closures as well as presentations of related mod-
ules. All files are available online at http://www.mast.queensu.ca/~galetto/
orbits.

2 Geometric technique

The work of Kraśkiewicz and Weyman relies on the use of the geometric tech-
nique of calculating syzygies. We provide here a brief overview of the technique
applied to the context of our work. For more details, the reader can consult
[20].
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Let us fix a representation with finitely many orbits; using the notation of
the introduction, we have an action G0 ýg1. Consider g1 as an affine space
ANC ; every orbit closure O in g1 is an affine variety in ANC . Moreover, every orbit
closureO admits a desingularization Z which is the total space of a homogeneous
vector bundle S on some homogeneous space G0{P , for some parabolic subgroup
P of G0. The space ANC ˆ G0{P can be viewed as the total space of a trivial
vector bundle E of rank N over G0{P and S is a subbundle of E . Altogether we
have the following picture:

Z AN ˆG0{P

O AN
q1 q

where q is the projection on AN and q1 is its restriction to Z.
Let A “ CrANC s; this is the polynomial ring over which we will carry out all

computations. Also, introduce the vector bundle ξ “ pE{Sq˚ on G0{P . We can
now state the basic theorem [20, Thm. 5.1.2].

Theorem 2.1. Define the graded free A-modules:

Fi :“
à

jě0

Hj
´

G0{P,
Źi`j

ξ
¯

bC Ap´i´ jq.

There exist minimal G0-equivariant differentials

di : Fi ÝÑ Fi´1

of degree 0 such that F‚ is a complex of graded free A-modules with

H´ipF‚q “ Riq˚OZ .

In particular, F‚ is exact in positive degrees.

Recall that Z is a desingularization of O; in particular, the map q1 : Z Ñ O
is a birational isomorphism. The next theorem [20, Thm. 5.1.3] gives a criterion
for the complex F‚ to be a free resolution of the coordinate ring of O.

Theorem 2.2. The following properties hold.

1. The module q1˚OZ is the normalization of CrOs.

2. If Riq˚OZ “ 0 for i ą 0, then F‚ is a finite free resolution of the normal-
ization of CrOs as an A-module.

3. If Riq˚OZ “ 0 for i ą 0 and F0 “ A, then O is normal and has rational
singularities.
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The modules Fi are defined in terms of cohomology groups of the bundles
Źi`j

ξ on the flag variety G0{P . These cohomology groups can be computed
directly using Bott’s algorithm when ξ is semisimple [20, Thm. 4.1.4]. When ξ
is not semisimple, its structure becomes complicated so working with it directly
is more difficult. However it is still possible to calculate the equivariant Euler
characteristic of the bundles

Źi`j
ξ. This was done by Kraśkiewicz and Weyman

in [12]; their work provides the Hilbert functions of the normalization of the orbit
closures together with an estimate for the shape of the minimal free resolution
of their coordinate rings in terms of G0-modules and equivariant maps.

3 Computations

The expected resolution F‚ of the coordinate ring of O is constructed using the
information provided by the equivariant Euler characteristic. As such it may
be missing those syzygies the Euler characteristic was unable to detect due to
cancellation; namely all those corresponding to an irreducible representation
occurring in neighboring homological degrees and in the same homogeneous
degree of the resolution. By constructing F‚ explicitly in Macaulay2 (M2) [4],
we can ensure it is the actual resolution for O.

In this section we describe the type of computations that were carried out.
All computations were run in M2. Although M2 can compute minimal free
resolutions directly, this is generally impractical for many of the examples we
consider, given the amount of computational resources and time needed for the
algorithms to produce any result. Still, for some of the smaller examples, we
were able to obtain resolutions directly or using the options DegreeLimit and
LengthLimit to aid the computation.

3.1 The interactive method for syzygies

Let F‚ be the expected resolution for O and suppose that some differential
di : Fi Ñ Fi´1 can be written explicitly as a matrix with entries in the polyno-
mial ring A. Using M2 and the command syz, one can find the first syzygies of
di. Since we expect these to coincide with the differential di`1, we use the ex-
pected degree of di`1 as a degree bound with the option DegreeLimit to speed
up the computation. This procedure can be iterated to recover the tail of the
expected resolution:

coker di Fi´1 Fi T‚
di

Similarly, transposing di and calculating syzygies gives the complex

H‚ F˚i´1 F˚i coker d˚i
d˚i

which can be dualized to obtain the head of the expected resolution. Splicing
these two complexes together, we obtain the expected resolution in the form:
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H˚‚ Fi´1 Fi T‚
di

Clearly, taking syzygies with degree bounds and dualizing may cause the re-
sulting complex not to be exact; we prove exactness with the methods described
in section 4. We refer to this method of constructing the expected resolution as
the interactive method for calculating syzygies.

Remark 3.1. In most cases, given the decomposition into irreducible repre-
sentations of the modules Fi, the differentials di are uniquely determined by
Schur’s lemma, up to a choice of scalars. However writing them explicitly is
in general quite complicated. When the defining equations, i.e. the differential
d1, are not known, our choice of differential di to write explicitly falls on those
matrices that are easier to describe (e.g. matrices with linear entries).

3.2 The cone procedure

When the orbit closure O is not normal, the geometric technique returns the
expected resolution of the coordinate ring of the normalization N pOq, as an
A-module. We have an exact sequence of A-modules:

0 CrOs CrN pOqs C 0

Using the interactive method, we recover the expected resolution F‚ for
N pOq; in particular, d1 : F1 Ñ F0 is a minimal presentation of CrN pOqs. As a
G0-representation, the module C is always obtained from CrN pOqs by removing
some irreducible representations. This implies that, in the appropriate bases for
F0 and F1, a presentation of C is given by a map of free modules d11 : F 11 Ñ F 10
whose matrix is obtained from that of d1 by dropping some rows and columns.
This presentation can be used in M2 to construct a resolution F 1‚ for C (using the
interactive method, if necessary). Moreover, the projection π0 : F0 Ñ F 10 lifts to
a map of complexes π̃ : F‚ Ñ F 1‚; this can be achieved explicitly in M2 with the
command extend or via a step by step factorization with the command //. It
is well known that the cone of π̃ is a (non necessarily minimal) free resolution of
CrOs; in M2, this is recovered with cone. Given the shift in homological degree
introduced by the cone, CrOs is the degree one homology of the cone of π̃. Now
CrOs can be minimized and resolved directly or using the interactive method.
We call this the cone procedure.

Remark 3.2. A more efficient version of this technique comes from the real-
ization that, because the homology of the cone of π̃ is concentrated in degree
one, it is not necessary to construct the whole cone in M2. In fact it is enough
to know the resolutions of CrN pOqs and C up to homological degree two and
use them to construct the part of the cone needed to recover the homology in
degree one. We will refer to this as the truncated cone procedure.
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4 Exactness

Once the expected resolution has been constructed in M2, we turn to the issue
of proving it is exact.

4.1 The equivariant exactness criterion

Recall the exactness criterion of Buchsbaum and Eisenbud [2, Thm. 20.9]:

Theorem 4.1. Let A be a ring and

F‚ : F0 F1 . . . Fn´1 Fn
d1 dn

a complex of free A-modules. F‚ is exact if and only if @k “ 1, . . . , n:

1. rankpFkq “ rankpdkq ` rankpdk`1q;

2. depthpIpdkqq ě k where Ipdkq is the ideal of A generated by maximal non
vanishing minors of dk.

The map dn`1 is understood to be the zero map.
When A is our polynomial ring and F‚ is the expected resolution of an orbit

closure O, we have a more efficient way of proving exactness relying on the fact
that F‚ is G0-equivariant. Recall that G0 acts on ANC , identified with g1, with
finitely many orbits O0, . . . ,Ot; it follows immediately that the action has a
dense orbit, also referred to as the generic orbit. Let pj be a representative of
the orbit Oj and let p be a representative of the generic orbit.

Lemma 4.2. Let d : F Ñ F 1 be a non zero, G0-equivariant, minimal map of
graded free A-modules of finite rank.

depthpIpdqq “ mintcodimpOjq | rankpd|pj q ă rankpd|pqu.

Notice that the minimum on the right hand side is taken over a non empty
set, since the rank of d at the origin is zero.

Proof. Denote VpIpdqq the zero set in ANC of the ideal Ipdq of A. We have

depthpIpdqq “ depthp
a

Ipdqq “ codimpVpIpdqqq

where the first equality holds because radicals preserve depth and the second
equality follows from the fact the that the polynomial ring A is Cohen-Macaulay.
By assumption, d is G0-equivariant, hence Ipdq is G0-equivariant and so is its
zero set. Therefore we can write

VpIpdqq “
ď

rankpd|pj qărankpd|pq

Oj

which is a finite union of G0-orbits. Finally

codimpVpIpdqqq “ mintcodimpOjq | rankpd|pj q ă rankpd|pqu.

8



Proposition 4.3 (Equivariant exactness criterion). Let F‚ be a G0-equivariant
minimal complex of graded freeA-modules and assume the differentials di : Fi Ñ
Fi´1 are non zero. Then F‚ is exact if and only if @k “ 1, . . . , n:

1. rankpFkq “ rankpdk|pq ` rankpdk`1|pq;

2. mintcodimpOjq | rankpdk|pj q ă rankpdk|pqu ě k.

Proof. Condition 1 is equivalent to the first condition in the criterion of Buchs-
baum and Eisenbud. This is because p is a representative of the generic orbit
and therefore rankpdk|pq “ rankpdkq.

As for condition 2, this is equivalent to the second condition in the criterion
of Buchsbaum and Eisenbud, because, by lemma 4.2, we have

depthpIpdkqq “ mintcodimpOjq | rankpdk|pj q ă rankpdk|pqu ě k.

4.2 Dual complexes and Cohen-Macaulay orbits

A useful feature of the equivariant exactness criterion is that it easily allows to
check if the dual complex F˚‚ is exact, providing us with the following.

Corollary 4.4. Under the hypotheses of proposition 4.3, suppose Dj0 P t0, . . . , tu
such that whenever rankpdk|pj q ă rankpdk|pq, for some k and j, we have:

• rankpdk|pj0 q ă rankpdk|pq;

• codimpOj0q ď codimpOjq.
Then F‚ is exact if and only if F˚‚ is exact.

Remark 4.5. The conditions in the corollary can be simply restated by saying
that the ranks of the differentials dk drop simultaneously at the same orbit Oj0 .

Proof. First observe that rankpd˚k |pj q “ rankpdk|pj q. Now apply the equivariant
exactness criterion. Condition 1 is trivially satisfied. Condition 2 together with
the hypothesis implies

codimpOj0q “ mintcodimpOjq | rankpdk|pj q ă rankpdk|pqu ě k

for all k. Since the left hand side is independent of k, condition 2 must be
satisfied for F‚ and F˚‚ at the same time.

The above corollary implies that when F‚ is exact and the ranks of the
differentials dk drop simultaneously at the same orbit, F‚ resolves a perfect
module. In particular, if F‚ resolves the coordinate ring of some orbit closure
O, then O is Cohen-Macaulay.

Remark 4.6. As detailed in the discussion of the interactive method 3.1, the
head H‚ of the expected resolution is obtained by transposing the matrix of a
differential di, resolving its cokernel and then dualizing back. It was noted then
that taking duals could affect exactness. However, it follows immediately from
our previous corollary, that if O is Cohen-Macaulay both H‚ and H˚‚ are exact.
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5 Equations of the orbit closures

Once we establish that the expected resolution F‚ for an orbit closure O is exact,
the entries of the first differential d1 : F1 Ñ F0 generate an ideal I of A whose
zero set VpIq is precisely O. In this section we address the issue of determining
if I is a radical ideal. We also describe a simple criterion to establish inclusion
and singularity of the orbit closures.

5.1 The coordinate ring of an orbit closure

The generators of the ideal I provide equations for the variety O. There is
no guarantee however that I is radical; equivalently, A{I need not be reduced,
hence it may not be the coordinate ring of O.

We outline here the method used to show that the ring R “ A{I is indeed
reduced. The proof relies on the following characterization of reduced rings [2,
Ex. 11.10] which is an analogue of Serre’s criterion for normality.

Proposition 5.1. A Noetherian ring R is reduced if and only if it satisfies:

pR0q: the localization of R at each prime of height 0 is regular;

pS1q: all primes associated to zero have height 0.

We address the condition pS1q first. In our case, O is always irreducible
since it is an orbit closure for an irreducible group G0. This implies that the
ideal I has a unique minimal prime, namely

?
I. Therefore the condition pS1q

is equivalent to
?
I being the only associated prime of I. In particular, I will

have no embedded primes.
To prove that

?
I is the only associated prime of I, we adapt a result from

[2, Cor. 20.14].

Lemma 5.2. Let

F‚ : F0 F1 . . . Fn´1 Fn 0
d1 dn

be a free resolution of R “ A{I as an A-module and suppose depthApIq “
c. We have depthAp

ppApq “ c for all associated primes p of I if and only if
depthpIpdkqq ą k for all k ą c, where Ipdkq is the ideal of A generated by the
maximal non vanishing minors of dk.

The following result provides a simple test for the condition pS1q in all cases
we consider.

Proposition 5.3. Let I be an ideal in the polynomial ring A such that the
zero locus VpIq of I is irreducible of codimension c. Let

F‚ : F0 F1 . . . Fn´1 Fn 0
d1 dn

10



be a free resolution of R “ A{I as an A-module. If depthpIpdkqq ą k for all
k ą c, then

?
I is the only associated prime of I and R satisfies pS1q.

Proof. First observe that

c “ codimpVpIqq “ depthAp
?
Iq “ depthApIq,

because the ring A is Cohen-Macaulay and taking radicals preserve depth.
Now let p be an associated prime of I. By lemma 5.2, we have depthAp

ppApq “

c. Since
?
I is the unique minimal prime of I, the inclusion

?
I Ď p holds. We

deduce that

c “ depthAp
?
Iq ď depthAppq ď depthAp

ppApq “ c,

where the last inequality holds because passing to the localization preserves
regular sequences. Since A is Cohen-Macaulay, it follows that

heightppq “ depthAppq “ c.

But
?
I Ď p and both ideals are primes of height c. Therefore p “

?
I.

Remark 5.4. The test given in 5.3 is quite easy to apply in practice. The
(co)dimension of each orbit closure is known a priori. Moreover, as observed in
the proof of proposition 4.3,

depthpIpdkqq “ mintcodimpOjq | rankpdk|pj q ă rankpdk|pqu,

where pj is a representative of the orbit Oj and p is a representative of the dense
orbit.

We now turn to the condition pR0q in 5.1.

Proposition 5.5. Let I be an ideal in the polynomial ring A with zero locus
VpIq of codimension c. Assume also that VpIq is irreducible and that

?
I is the

only associated prime of I. Denote J the Jacobian matrix for a set of generators
of I. If there exists a point x P VpIq such that rankpJ |xq “ c, then the ring
R “ A{I satisfies the condition pR0q and is therefore reduced.

Proof. Let m be the maximal ideal of A corresponding to the point x P VpIq
and let p “

?
I. We denote m and p respectively, the images of m and p under

the canonical projection A Ñ A{I “ R. Clearly R satisfies pS1q, given the
hypothesis on the associated primes of I. To prove R satisfies pR0q we must
show that the local ring Rp is regular, since p is the only height 0 prime in R.

First we observe that the ring Rm is regular by the Jacobian criterion [2,
Th. 16.19]. By the transitivity of localization

Rp – pRmqpRm
.

The localization of a regular local ring at a prime ideal is regular. Hence Rp is
regular.

11



Remark 5.6. In practice, for an orbit closure O “ VpIq, we will check that the
rank of the Jacobian matrix of I is equal to codimpOq at a representative x of
O. Indeed the point x is smooth in O. This is because the singular locus of O
is equivariant; therefore it must be an orbit closure of codimension at least one
in O and cannot contain x.

Remark 5.7. A Cohen-Macaulay ring R is generically reduced (i.e. its local-
ization at each minimal prime is reduced) if and only if it is reduced [2, Ex.
18.9]. Notice how generically reduced is precisely the condition pR0q. In fact,
if our ring R “ A{I is Cohen-Macaulay, then it automatically satisfies pS1q.
Therefore it is enough to check pR0q as outlined above.

5.2 Inclusions and singular loci of orbit closures

One problem that can be answered easily once we have equations for the orbit
closures is to determine how they sit one inside the other. To be more precise,
we introduce the degeneration partial order by setting Oi ď Oj if and only
if Oi Ď Oj . Because we have finitely many orbits, the entire picture can be
described by checking if the equations of Oj vanish at the representative pi of
Oi. This can be achieved conveniently in M2.

Next we can use the equations of an orbit closure to construct a Jacobian
matrix and apply the Jacobian criterion to determine the singular locus of the
orbit closure [5, p. 31]. Once again, it is enough to evaluate the rank of the
Jacobian matrix at finitely many points, the points being representatives of the
orbits.

The information on containment and singularity of the orbit closures is pre-
sented in a table with rows labeled by the orbits and columns labeled by their
closures. The cell corresponding to a row Oi and a column Oj can be empty,
meaning the points of the orbit Oi are not contained in the orbit closure Oj , or
it can contain the letters ‘ns’ (respectively ‘s’) to indicate that the points of Oi
are non singular (respectively singular) in the orbit closure Oj .

5.3 The degenerate orbits

Let pXn, xq be a Dynkin diagram with a distinguished node. The Lie algebra g
of type Xn has a grading

g “
à

iPZ
gi

induced by the choice of the distinguished node x, as described in the intro-
duction. Let O be an orbit for the action G0 ˆ Cˆ ýg1. Suppose there is
a node y ‰ x in Xn such that O X g11 ‰ 0, where g1 is the graded subalgebra
of g corresponding to the subdiagram pXnztxu, yq. Then we say the orbit O
is degenerate. This means that O comes from an orbit O1 that occurs in the
case of a smaller Dynkin diagram. The paper of Kraśkiewicz and Weyman [12]
describes a method to obtain the free resolution for the coordinate ring of O by
reducing to the case of O1.
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In practice, many of the orbit closures of degenerate orbits that we encoun-
tered are well known varieties. When possible, we describe the defining equa-
tions directly. For some cases, we can obtain the defining ideal by polarizing
the equations for the closure of the smaller orbit with respect to the inclusion
g11 ãÑ g1, and adding (if they are not already contained in the ideal) the equa-
tions of the so-called generic degenerate orbit. The latter is an orbit closure
in g1 arising from an orbit closure in g11 whose closure is all of g11; it will be
indicated on a case by case basis, when needed.

6 Representations of type E6

In this section, we will analyze the cases corresponding to gradings on the simple
Lie algebra of type E6. Each case corresponds to the choice of a distinguished
node on the Dynkin diagram for E6. The nodes are numbered according to the
conventions in Bourbaki [1].

α1

α2

α3 α4 α5 α6

Given the symmetry in the diagram, it is enough to consider the cases with
α1, α2, α3, α4 as the distinguished nodes. The case pE6, α5q is equivalent to
pE6, α3q, while pE6, α6q is equivalent to pE6, α1q.

6.1 The case pE6, α1q

The representation is V pω4, D5q, the half spinor representation for the group
Spinp10q. It has dimension 16 and weight vectors of the form pλ1, . . . , λ5q,
where λi “ ˘

1
2 , with an even number of negative coordinates. Each weight is

labeled by rIs, where

I “
 

i P t1, 2, 3, 4, 5u
ˇ

ˇλi “ ´
1
2

(

.

The corresponding polynomial ring is

A “ Crx∅, xab, xijkl|1 ď a ă b ď 5, 1 ď i ă j ă k ă l ď 5s.

In characteristic zero, the representation has the following orbits, listed along
with the dimension of the closure and a representative:

orbit dimension representative
O0 0 0
O1 11 x∅ “ 1
O2 16 x∅ “ x1234 “ 1

13



All the orbit closures are normal, Cohen-Macaulay and have rational singulari-
ties. Here is the containment and singularity table:

O0 O1 O2

O0 ns s ns
O1 ns ns
O2 ns

6.1.1 The orbit O1

The variety O1 is the closure of the highest weight vector orbit and it is known
as the variety of pure spinors. The defining equations were described by Manivel
in [16] and can be resolved directly in M2. The Betti table for the resolution is

0 1 2 3 4 5
total: 1 10 16 16 10 1

0: 1 . . . . .
1: . 10 16 . . .
2: . . . 16 10 .
3: . . . . . 1

This orbit closure is Gorenstein.

6.2 The case pE6, α2q

The representation is
Ź3

F , where F “ C6; the group acting is GLpF q. The

weights of
Ź3

F are of the form εi ` εj ` εk for 1 ď i ă j ă k ď 6. We
label the corresponding weight vector by rijks where 1 ď i ă j ă k ď 6. The
corresponding polynomial ring is

A “ Crxijk|1 ď i ă j ă k ď 6s “ Sym
´

Ź3
F˚

¯

.

In characteristic zero, the representation has the following orbits, listed along
with the dimension of the closure and a representative:

orbit dimension representative
O0 0 0
O1 10 x123 “ 1
O2 15 x123 “ x145 “ 1
O3 19 x123 “ x145 “ x246 “ 1
O4 20 x123 “ x456 “ 1

All the orbit closures are normal, Cohen-Macaulay, Gorenstein and have rational
singularities. Here is the containment and singularity table:
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O0 O1 O2 O3 O4

O0 ns s s s ns
O1 ns s s ns
O2 ns s ns
O3 ns ns
O4 ns

When describing the resolutions over A we write simply λ for the Schur
module Sλ F˚ bAp´|λ|{3q.

6.2.1 The orbit O3

The orbit closure O3 is a hypersurface defined by an invariant of degree 4 which
can be obtained as follows:

Ź6
F˚ b

Ź6
F˚

Ź3
F˚ b

Ź2
F˚ b F˚ b F˚ b

Ź2
F˚ b

Ź3
F˚

Ź3
F˚ b

Ź3
F˚ b

Ź3
F˚ b

Ź3
F˚

A4

∆b∆

m2,4 bm3,5

An explicit formula for this invariant can be found in [11, Remark 4.2].

6.2.2 The orbit O2

The expected resolution for the coordinate ring CrO2s is

p06q ÐÝ p23, 13q ÐÝ p3, 24, 1q ÐÝ p4, 34, 2q ÐÝ p43, 33q ÐÝ p56q ÐÝ 0

The differential d2 was written explicitly as the map

F b F˚ F b F˚ b
Ź2

F b
Ź2

F˚
Ź3

F bA1
trp2q m13 bm24

restricted to the space of 6 ˆ 6 traceless matrices kerpF b F˚ Ñ Cq identified
with Sp2,14q F

˚. The Betti table for the resolution is

0 1 2 3 4 5
total: 1 20 35 35 20 1

0: 1 . . . . .
1: . . . . . .
2: . 20 35 . . .
3: . . . 35 20 .
4: . . . . . .
5: . . . . . 1
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6.2.3 The orbit O1

The variety O1 is the closure of the highest weight vector orbit. Geometrically,
it is the cone over the Grassmannian Grp3,C6q. The defining ideal is generated
by Plücker relations and can be obtained in M2 using Grassmannian(2, 5,

CoefficientRing => QQ). The Betti table of the minimal free resolution is

0 1 2 3 4 5 6 7 8 9 10
total: 1 35 140 301 735 1080 735 301 140 35 1

0: 1 . . . . . . . . . .
1: . 35 140 189 . . . . . . .
2: . . . 112 735 1080 735 112 . . .
3: . . . . . . . 189 140 35 .
4: . . . . . . . . . . 1

This resolution was first determined by Pragacz and Weyman in [17].

6.3 The case pE6, α3q

The representation is Eb
Ź2

F , where E “ C2 and F “ C5; the group acting is
SLpEqˆSLpF qˆCˆ. We denote the tensor eabfi^fj by ra; ijs where a “ 1, 2
and 1 ď i ă j ď 5. The corresponding polynomial ring is

A “ Crxa;ij |a “ 1, 2; 1 ď i ă j ď 5s “ Sym
´

E˚ b
Ź2

F˚
¯

.

In characteristic zero, the representation has the following orbits, listed along
with the dimension of the closure and a representative:

orbit dimension representative
O0 0 0
O1 8 x1;12 “ 1
O2 11 x1;12 “ x1;34 “ 1
O3 12 x1;12 “ x2;13 “ 1
O4 15 x1;12 “ x1;34 “ x2;13 “ 1
O5 16 x1;12 “ x2;34 “ 1
O6 18 x1;12 “ x2;34 “ x1;35 “ 1
O7 20 x1;12 “ x2;34 “ x1;35 “ x2;15 “ 1

All the orbit closures, except for O6, are normal, Cohen-Macaulay and have
rational singularities. Here is the containment and singularity table:

O0 O1 O2 O3 O4 O5 O6 O7

O0 ns s s s s s s ns
O1 ns ns s s s s ns
O2 ns s ns s ns
O3 ns s s s ns
O4 ns ns s ns
O5 ns s ns
O6 ns ns
O7 ns
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We denote the free A-module Spa,bqE˚ b Spc,d,e,f,gq F˚ b Ap´a ´ bq by
pa, b; c, d, e, f, gq.

6.3.1 The orbit O6

The orbit closure O6 is not normal. The expected resolution for the coordinate
ring of the normalization of O6 is

A‘ p1, 1; 1, 1, 1, 1, 0q Ð p2, 1; 2, 1, 1, 1, 1q Ð p4, 1; 2, 2, 2, 2, 2q Ð 0

The differential d2 : p4, 1; 2, 2, 2, 2, 2q Ñ p2, 1; 2, 1, 1, 1, 1q was written explicitly
as the map

S3E
˚ S2E

˚ b E˚ S2E
˚ b E˚ b

Ź4
F b

Ź4
F˚

∆ trp4q

then S2E
˚ b

Ź4
F˚ is embedded in A2 via the map:

S2E
˚ b

Ź4
F˚

S2E
˚ b

Ź2
F˚ b

Ź2
F˚

S2E
˚ b S2p

Ź2
F˚q

A2

∆

m2,3

to get a map S3E
˚ Ñ E˚ b

Ź4
F bA2. The Betti table for the normalization

is
0 1 2

total: 6 10 4
0: 1 . .
1: . . .
2: 5 10 .
3: . . 4

Dropping the row of degree 3 in the first differential we get the map

p2, 1; 2, 1, 1, 1, 1q Ñ p1, 1; 1, 1, 1, 1, 0q

This is a presentation for the cokernel Cp6q of the inclusion CrO6s ãÑ CrN pO6qs,
whose Betti table is

0 1 2 3 4
total: 5 10 14 10 1

2: 5 10 . . .
3: . . 4 . .
4: . . 10 10 .
5: . . . . .
6: . . . . 1
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By the cone procedure, we recover the resolution of CrO6s which has the fol-
lowing Betti table

0 1 2 3
total: 1 10 10 1

0: 1 . . .
1: . . . .
2: . . . .
3: . . . .
4: . . . .
5: . 10 10 .
6: . . . .
7: . . . 1

We observe that O6 is not Cohen-Macaulay because it has codimension 2 but
its coordinate ring has projective dimension 3.

6.3.2 The orbit O5

The orbit closure O5 is degenerate. The expected resolution for the coordinate
ring CrO5s is

AÐ p2, 1; 2, 1, 1, 1, 1q Ð p4, 1; 2, 2, 2, 2, 2q ‘ p2, 2; 2, 2, 2, 1, 1q Ð

Ð p4, 3; 3, 3, 3, 3, 2q Ð p4, 4; 4, 3, 3, 3, 3q Ð 0

We construct explicitly the differential d4 as follows

F˚

F˚ b E b E˚ b F b F˚

E b E˚ b F b
Ź2

F˚

E b F bA1

trp1q b trp1q

m1,5

m2,4

The Betti table for the resolution is

0 1 2 3 4
total: 1 10 14 10 5

0: 1 . . . .
1: . . . . .
2: . 10 10 . .
3: . . 4 . .
4: . . . 10 5

18



6.3.3 The orbit O4

The orbit closure O4 is degenerate and comes from a smaller orbit which is a
hypersurface of degree 4 in E b

Ź2
pC4q ãÑ E b

Ź2
F . This hypersurface is

defined by the discriminant of the Pfaffian of a 4 ˆ 4 skew-symmetric matrix
of generic linear forms in two variables. The equations of O4 in E b

Ź2
F are

obtained by taking polarizations of this discriminant with respect to the inclu-
sion E b

Ź2 C4 ãÑ E b
Ź2

F (corresponding to the representation Sp2,2qE˚ b
Sp2,2,2,2q F˚) together with the defining equations of the “generic degenerate

orbit” O5. The Betti table for the resolution is

0 1 2 3 4 5
total: 1 25 62 55 20 3

0: 1 . . . . .
1: . . . . . .
2: . 10 10 . . .
3: . 15 52 45 . .
4: . . . 10 20 .
5: . . . . . 3

6.3.4 The orbit O3

The orbit closure O3 is degenerate. The equations can be obtained directly
through the map

S2E
˚ b

Ź4
F˚ A2

which is the embedding described in 6.3.1. The Betti table for the resolution is

0 1 2 3 4 5 6 7 8
total: 1 15 75 187 265 245 121 20 5

0: 1 . . . . . . . .
1: . 15 20 . . . . . .
2: . . 55 152 105 . . . .
3: . . . 35 160 245 120 . .
4: . . . . . . 1 20 5

6.3.5 The orbit O2

The orbit closure O2 is degenerate. The equations can be obtained directly
through the map

Ź2
E˚ b

Ź2
´

Ź2
F˚

¯

A2
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which gives the 2ˆ2 minors of the generic matrix of a linear map E˚ Ñ
Ź2

F˚.
The ideal is resolved by the Eagon-Northcott complex with Betti table

0 1 2 3 4 5 6 7 8 9
total: 1 45 240 630 1008 1050 720 315 80 9

0: 1 . . . . . . . . .
1: . 45 240 630 1008 1050 720 315 80 9

6.3.6 The orbit O1

The orbit closure O1 is degenerate. The equations are simply those of the orbit
closures O2 and O3 taken together. The Betti table of the resolution is

0 1 2 3 4 5 6 7 8 9 10 11 12
total: 1 60 360 1011 1958 3750 5490 5235 3257 1329 375 60 4

0: 1 . . . . . . . . . . . .
1: . 60 360 1005 1458 1050 720 315 80 9 . . .
2: . . . 6 500 2700 4770 4920 3177 1200 285 30 .
3: . . . . . . . . . 120 90 30 4

6.4 The case pE6, α4q

The representation is E b F bH, where E “ C2 and F “ H “ C3; the group
acting is SLpEq ˆ SLpF q ˆ SLpHq ˆ Cˆ. We denote the tensor ei b fj b hk by
[i;j;k], where i “ 1, 2 and j, k “ 1, 2, 3. The corresponding polynomial ring is

A “ Crxijk|i “ 1, 2; j, k “ 1, 2, 3s “ Sym pE˚ b F˚ bH˚q

In characteristic zero, the representation has the following orbits, listed along
with the dimension of the closure and a representative.
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orbit dimension representative
O0 0 0
O1 6 x111 “ 1
O2 8 x111 “ x221 “ 1
O3 8 x111 “ x212 “ 1
O4 9 x111 “ x122 “ 1
O5 11 x111 “ x122 “ x212 “ 1
O6 10 x111 “ x122 “ x133 “ 1
O7 12 x111 “ x222 “ 1
O8 13 x111 “ x222 “ x132 “ 1
O9 13 x111 “ x222 “ x123 “ 1
O10 14 x111 “ x222 “ x132 “ x231 “ 1
O11 14 x111 “ x222 “ x123 “ x213 “ 1
O12 14 x111 “ x222 “ x123 “ x132 “ 1
O13 14 x111 “ x222 “ x123 “ x231 “ 1
O14 15 x111 “ x222 “ x133 “ 1
O15 16 x111 “ x222 “ x123 “ x231 “ x132 “ 1
O16 17 x111 “ x222 “ x133 “ x213 “ 1
O17 18 x111 “ x211 “ x122 “ x133 “ 1, x222 “ ´1

The containment and singularity table can be found below.
We denote the free A-module Spa,bqE˚bSpc,d,eq F˚bSpf,g,hq F˚bAp´a´ bq

by pa, b; c, d, e; f, g, hq.
Certain pairs of orbit closures are isomorphic under the involution exchang-

ing F and H. This involution produces an automorphism of A exchanging xijk
with xikj ; this, in turn, induces isomorphisms of the coordinate rings and free
resolutions. Because of this, it is enough to discuss only one case in each pair.

6.4.1 The orbit O16

The orbit closure O16 is a hypersurface defined by the discriminant of the de-
terminant of a generic 3ˆ 3 matrix of linear forms in two variables, which is a
homogeneous polynomial of degree 12. Explicitly:

δ “ det

¨

˝

ux111 ` vx211 ux112 ` vx212 ux113 ` vx213

ux121 ` vx221 ux122 ` vx222 ux123 ` vx223

ux131 ` vx231 ux132 ` vx232 ux133 ` vx233

˛

‚“

“ a3,0u
3 ` a2,1u

2v ` a1,2uv
2 ` a0,3v

3,

and

discpδq “ 27a2
3,0a

2
1,2 ` 4a3,0a

3
1,2 ` 4a3

2,1a0,3 ´ a
2
2,1a

2
1,2 ´ 18a3,0a2,1a1,2a0,3.

The orbit closure O16 is not normal. The expected resolution for the coordinate
ring of the normalization N pO16q is

A‘ p2, 1; 1, 1, 1; 1, 1, 1q Ð p4, 2; 2, 2, 2; 2, 2, 2q Ð 0
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so there is only one differential d1 with two blocks. The block p4, 2; 2, 2, 2; 2, 2, 2q Ñ
p2, 1; 1, 1, 1; 1, 1, 1q is the map

S2E
˚ b

Ź3
F˚ b

Ź3
H˚

E b E˚ b S2E
˚ b

Ź3
F˚ b

Ź3
H˚

E b S3E
˚ b

Ź3
F˚ b

Ź3
H˚

E bA3

trp1q

m2,3

where the embedding S3E
˚ b

Ź3
F˚ b

Ź3
H˚ ãÑ A3 at the end is given by

pe˚1 q
ipe˚2 q

j ÞÝÑ
i!j!

3!
ai,j ,

the ai,j being the coefficients of δ as above. Notice that this block also pro-
vides a minimal presentation of the cokernel Cp16q of the inclusion CrO16s ãÑ

CrN pO16qs. The block p4, 2; 2, 2, 2; 2, 2, 2q Ñ A can be obtained as follows. First
construct the following map for the E˚ factor:

S2E
˚ b

Ź2
E˚ b

Ź2
E˚

E˚ b E˚ b E˚ b E˚ b E˚ b E˚

S3E
˚ b S3E

˚

∆b∆b∆

m1,3,5 bm2,4,6

Then embed into A via the map

S3E
˚ b

Ź3
F˚ b

Ź3
H˚ b S3E

˚ b
Ź3

F˚ b
Ź3

H˚

A3 bA3

A6

where the first step uses the embedding described earlier twice and the second
step is symmetric multiplication.

23



The Betti table for the resolution of the normalization is

0 1
total: 3 3

0: 1 .
1: . .
2: . .
3: 2 .
4: . .
5: . 3

and the Betti table for the resolution of the cokernel Cp16q is

0 1 2
total: 2 3 1

3: 2 . .
4: . . .
5: . 3 .
6: . . .
7: . . .
8: . . .
9: . . .
10: . . 1

6.4.2 The orbit O15

The orbit closure O15 is normal with rational singularities. The expected reso-
lution for the coordinate ring CrO15s is

AÐÝ p4, 2; 2, 2, 2; 2, 2, 2q ÐÝ p5, 4; 3, 3, 3; 3, 3, 3q ÐÝ 0

The differential d2 was written explicitly by taking the map

Ź2
E˚ b

Ź2
E˚ b E˚

E˚ b E˚ b E˚ b E˚ b E˚

S2E
˚ b S2E

˚ b E˚

S3E
˚ b S2E

˚

∆b∆

m1,3 bm2,4

m1,3
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on the E˚ factor and then embedding S3E
˚ b

Ź3
F˚ b

Ź3
H˚ into A3 as

described in 6.4.1. The Betti table for the resolution is

0 1 2
total: 1 3 2

0: 1 . .
1: . . .
2: . . .
3: . . .
4: . . .
5: . 3 .
6: . . .
7: . . 2

We conclude that O15 is Cohen-Macaulay.

6.4.3 The orbit O14

The orbit closure O14 is not normal. The expected resolution for the coordinate
ring of the normalization N pO14q is

A‘ p1, 1; 1, 1, 0; 1, 1, 0q Ð p2, 1; 1, 1, 1; 2, 1, 0q ‘ p2, 1; 2, 1, 0; 1, 1, 1q Ð

Ð p3, 1; 2, 1, 1; 2, 1, 1q Ð p5, 1; 2, 2, 2; 2, 2, 2q Ð 0

The differential d3 : p5, 1; 2, 2, 2; 2, 2, 2q Ñ p3, 1; 2, 1, 1; 2, 1, 1q was written explic-
itly as the map

S4E
˚

S2E
˚ b S2E

˚ b
Ź2

F b
Ź2

F˚ b
Ź2

H b
Ź2

H˚

S2E
˚ b

Ź2
F b

Ź2
H bA2

∆b trp2q b trp2q

The embedding S2E
˚ b

Ź2
F˚ b

Ź2
H˚ ãÑ A2 works by sending the basis

vector
pe˚1 q

ipe˚2 q
j b fa ^ fb b hc ^ hd

to the coefficient of uivj in the expansion of

i!j!

2!
det

ˆ

ux1ac ` vx2ac ux1ad ` vx2ad

ux1bc ` vx2bc ux1bd ` vx2bd

˙
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Notice that the minor above is the one corresponding to rows a, b and columns
c, d in the matrix δ defined in 6.4.1. The Betti table for the normalization is

0 1 2 3
total: 10 32 27 5

0: 1 . . .
1: . . . .
2: 9 32 27 .
3: . . . 5

Dropping the row of degree 3 in the first differential we get the map

p2, 1; 1, 1, 1; 2, 1, 0q ‘ p2, 1; 2, 1, 0; 1, 1, 1q Ñ p1, 1; 1, 1, 0; 1, 1, 0q

This is a presentation for the cokernel Cp14q of the inclusion CrO14s ãÑ CrN pO14qs;
the Betti table for Cp14q is

0 1 2 3 4 5 6 7 8
total: 9 32 131 347 477 372 181 54 7

2: 9 32 27 . . . . . .
3: . . . 5 . . . . .
4: . . 104 342 477 372 180 54 7
5: . . . . . . . . .
6: . . . . . . 1 . .

By the truncated cone procedure, we recover the resolution of CrO14s which has
the following Betti table

0 1 2 3 4 5 6 7
total: 1 104 342 477 372 181 54 7

0: 1 . . . . . . .
1: . . . . . . . .
2: . . . . . . . .
3: . . . . . . . .
4: . . . . . . . .
5: . 104 342 477 372 180 54 7
6: . . . . . . . .
7: . . . . . 1 . .

We observe that O14 is not Cohen-Macaulay because it has codimension 3 but
its coordinate ring has projective dimension 7.
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6.4.4 The orbit O13

The orbit closure O13 is not normal. The expected resolution for the coordinate
ring of the normalization N pO13q is

A‘ p1, 1; 1, 1, 0; 1, 1, 0q Ð p2, 1; 1, 1, 1; 1, 1, 1q‘

‘p2, 1; 1, 1, 1; 2, 1, 0q ‘ p2, 1; 2, 1, 0; 1, 1, 1q ‘ p3, 0; 1, 1, 1; 1, 1, 1q Ð

Ð p2, 2; 2, 1, 1; 2, 1, 1q ‘ p3, 1; 2, 1, 1; 2, 1, 1q ‘ p3, 2; 2, 2, 2; 2, 2, 2q Ð

Ð p4, 3; 3, 2, 2; 3, 2, 2q Ð p4, 4; 3, 3, 2; 3, 3, 2q Ð 0

The differential d4 : p4, 4; 3, 3, 2; 3, 3, 2q Ñ p4, 3; 3, 2, 2; 3, 2, 2q was written explic-
itly as the map

Ź2
F˚ b

Ź2
H˚

E b E˚ b F˚ b F˚ bH˚ bH˚

E b F˚ bH˚ bA1

trp1q b∆b∆

m2,4,6

The Betti table for the normalization is

0 1 2 3 4
total: 10 38 37 18 9

0: 1 . . . .
1: . . . . .
2: 9 38 36 . .
3: . . . . .
4: . . 1 18 9

Dropping the row of degree 3 in the first differential we get the map

p2, 1; 1, 1, 1; 1, 1, 1q‘p2, 1; 1, 1, 1; 2, 1, 0q‘p2, 1; 2, 1, 0; 1, 1, 1q Ñ p1, 1; 1, 1, 0; 1, 1, 0q

Notice how the representation p3, 0; 1, 1, 1; 1, 1, 1q was also dropped from the
domain since it does not map to p1, 1; 1, 1, 0; 1, 1, 0q. This is a presentation for
the cokernel Cp13q of the inclusion CrO13s ãÑ CrN pO13qs, whose Betti table is

0 1 2 3 4 5 6
total: 9 34 56 95 99 36 1

2: 9 34 36 . . . .
3: . . . 5 . . .
4: . . 20 90 99 36 .
5: . . . . . . .
6: . . . . . . 1
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By the truncated cone procedure, we recover the resolution of CrO13s which has
the following Betti table

0 1 2 3 4 5
total: 1 24 78 90 36 1

0: 1 . . . . .
1: . . . . . .
2: . 4 . . . .
3: . . . . . .
4: . . 6 . . .
5: . 20 72 90 36 .
6: . . . . . .
7: . . . . . 1

We observe that O13 is not Cohen-Macaulay because it has codimension 4 but
its coordinate ring has projective dimension 5.

6.4.5 The orbit O12

The orbit closure O12 is not normal. The expected resolution for the coordinate
ring of the normalization N pO12q is

A‘ p1, 1; 1, 1, 0; 1, 1, 0q Ð

Ð p2, 1; 1, 1, 1; 1, 1, 1q ‘ p2, 1; 1, 1, 1; 2, 1, 0q ‘ p2, 1; 2, 1, 0; 1, 1, 1q Ð

Ð p3, 1; 2, 1, 1; 2, 1, 1q ‘ p3, 3; 2, 2, 2; 3, 2, 1q ‘ p3, 3; 3, 2, 1; 2, 2, 2q Ð

Ð p4, 3; 3, 2, 2; 3, 2, 2q ‘ p5, 1; 2, 2, 2; 2, 2, 2q Ð p6, 3; 3, 3, 3; 3, 3, 3q Ð 0

The differential d4 : p6, 3; 3, 3, 3; 3, 3, 3q Ñ p4, 3; 3, 2, 2; 3, 2, 2q‘p5, 1; 2, 2, 2; 2, 2, 2q
was written explicitly. The block p6, 3; 3, 3, 3; 3, 3, 3q Ñ p4, 3; 3, 2, 2; 3, 2, 2q was
constructed as the map

S3E
˚ b

Ź3
F˚ b

Ź3
H˚

E˚ b S2E
˚ b F˚ b

Ź2
F˚ bH˚ b

Ź2
H˚

E˚ b F˚ bH˚ bA2

∆b∆b∆

m2,4,6

where the embedding S2E
˚ b

Ź2
F˚ b

Ź2
H˚ ãÑ A2 is the one described

in 6.4.3. The second block corresponding to the map p6, 3; 3, 3, 3; 3, 3, 3q Ñ
p5, 1; 2, 2, 2; 2, 2, 2q was constructed as the map
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Ź2
E˚ b

Ź2
E˚ b S3E

˚

E˚ b E˚ b E˚ b E˚ b S2E
˚ b E˚

S4E
˚ b S3E

˚

∆b∆b∆

m1,3,5 bm2,4,6

on the E˚ factor and then embedding S3E
˚ b

Ź3
F˚ b

Ź3
H˚ into A3 as

described in 6.4.1. The Betti table for the normalization is

0 1 2 3 4
total: 10 34 43 23 4

0: 1 . . . .
1: . . . . .
2: 9 34 27 . .
3: . . . 5 .
4: . . 16 18 .
5: . . . . 4

Dropping the row of degree 3 in the first differential we get the map

p2, 1; 1, 1, 1; 1, 1, 1q‘p2, 1; 1, 1, 1; 2, 1, 0q‘p2, 1; 2, 1, 0; 1, 1, 1q Ñ p1, 1; 1, 1, 0; 1, 1, 0q

which is a presentation for the cokernel Cp12q of the inclusion CrO12s ãÑ

CrN pO12qs. Notice that this is the same as the presentation of Cp13q whose
Betti table is described in 6.4.4. By the truncated cone procedure, we recover
the resolution of CrO12s which has the following Betti table

0 1 2 3 4 5
total: 1 29 88 99 40 1

0: 1 . . . . .
1: . . . . . .
2: . . . . . .
3: . 9 . . . .
4: . . 16 . . .
5: . 20 72 99 40 .
6: . . . . . .
7: . . . . . 1

We observe that O12 is not Cohen-Macaulay because it has codimension 4 but
its coordinate ring has projective dimension 5.

6.4.6 The orbits O11 and O10

We discuss the case of the orbit O11 since O10 is isomorphic under the involution
exchanging F and H. The orbit closureO11 is normal with rational singularities.
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It is F -degenerate and its equations are the 3ˆ 3 minors of

¨

˚

˚

˚

˚

˚

˚

˝

x111 x121 x131

x112 x122 x132

x113 x123 x133

x211 x221 x231

x212 x222 x232

x213 x223 x233

˛

‹

‹

‹

‹

‹

‹

‚

the generic matrix of a linear map F Ñ E˚bH˚. As suchO11 is a determinantal
variety and its resolution is given by the Eagon-Northcott complex with the
following Betti table

0 1 2 3 4
total: 1 20 45 36 10

0: 1 . . . .
1: . . . . .
2: . 20 45 36 10

It follows that O11 is Cohen-Macaulay.

6.4.7 The orbits O9 and O8

We discuss the case of the orbit O8 since O9 is isomorphic under the involution
exchanging F and H. The orbit closure O8 is normal with rational singularities.
It is degenerate and comes from a smaller orbit which is a hypersurface of degree
6 in the representation

Sp3,3qE˚ b Sp2,2,2q F˚ b Sp3,3qpC2q˚ ãÑ Sp3,3qE˚ b Sp2,2,2q F˚ b Sp3,3qH˚.

The hypersurface is defined by the invariant of degree 6 in C2bC3bC2 which is
the hyperdeterminant of the boundary format 2ˆ 3ˆ 2 (see [3]). The equations
of O8 are obtained by taking polarizations of such invariant with respect to the
inclusion above together with the equations of the “generic degenerate orbit”
O10. The Betti table for the resolution is

0 1 2 3 4 5
total: 1 30 81 81 30 1

0: 1 . . . . .
1: . . . . . .
2: . 20 45 36 10 .
3: . . . . . .
4: . . . . . .
5: . 10 36 45 20 .
6: . . . . . .
7: . . . . . 1

It follows that O8 is Gorenstein.
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6.4.8 The orbit O7

The orbit closure O7 is normal with rational singularities. It is F -H-degenerate
with equations given by the 3ˆ 3 minors of the generic matrix of a linear map
F Ñ E˚ bH˚ together with the 3ˆ 3 minors of the generic matrix of a linear
map H Ñ E˚ b F˚; in other words, these are the equations of O11 and O10

taken together. The Betti table for the resolution is

0 1 2 3 4 5 6
total: 1 36 99 95 56 34 9

0: 1 . . . . . .
1: . . . . . . .
2: . 36 99 90 20 . .
3: . . . 5 . . .
4: . . . . 36 34 9

It follows that O7 is Cohen-Macaulay.

6.4.9 The orbit O6

The orbit closure O6 is normal with rational singularities. It is E-degenerate
and its equations are the 2ˆ 2 minors of

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

x111 x211

x112 x212

x113 x213

x121 x221

x122 x222

x123 x223

x131 x231

x132 x232

x133 x233

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

the generic matrix of a linear map E Ñ F˚ bH˚. Therefore O6 is a determi-
nantal variety and its resolution is given by the Eagon-Northcott complex with
the following Betti table

0 1 2 3 4 5 6 7 8
total: 1 36 168 378 504 420 216 63 8

0: 1 . . . . . . . .
1: . 36 168 378 504 420 216 63 8

It follows that O6 is Cohen-Macaulay.

6.4.10 The orbit O5

The orbit closure O5 is normal with rational singularities. It is degenerate
and comes from a smaller orbit which is a hypersurface of degree 4 in the
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representation

Sp2,2qE˚ b Sp2,2qpC2q˚ b Sp2,2qpC2q˚ ãÑ Sp2,2qE˚ b Sp2,2q F˚ b Sp2,2qH˚.

The hypersurface is defined by the invariant of degree 4 in C2 bC2 bC2 which
can be written as the discriminant of the determinant of a generic 2ˆ 2 matrix
of linear forms in two variables. Explicitly take:

det

ˆ

ux111 ` vx211 ux112 ` vx212

ux121 ` vx221 ux122 ` vx222

˙

“ a2,0u
2 ` a1,1uv ` a0,2v

2

and the discriminant is 4a2,0a0,2 ´ a2
1,1. The equations of O5 are obtained

by taking polarizations of such invariant with respect to the inclusion above
together with the equations of the “generic degenerate orbit” O7. The Betti
table for the resolution is

0 1 2 3 4 5 6 7
total: 1 72 297 530 488 223 42 3

0: 1 . . . . . . .
1: . . . . . . . .
2: . 36 99 90 20 . . .
3: . 36 198 440 468 189 6 .
4: . . . . . 34 36 .
5: . . . . . . . 3

It follows that O5 is Cohen-Macaulay.

6.4.11 The orbit O4

The orbit closureO4 is normal with rational singularities. It is both E-degenerate
and F -H-degenerate with equations given by the 2 ˆ 2 minors of the generic
matrix of a linear map E Ñ F˚ b H˚ together with the coefficients of the
determinant of a generic 3 ˆ 3 matrix of linear forms in two variables. More
explicitly, the former are the equations of O6 while the latter are the coeffi-
cients a3,0, a2,1, a1,2, a0,3 of detpδq as introduced in 6.4.1. The Betti table for
the resolution is

0 1 2 3 4 5 6 7 8 9
total: 1 40 195 450 588 546 384 171 44 5

0: 1 . . . . . . . . .
1: . 36 168 378 504 420 216 63 8 .
2: . 4 27 72 84 . . . . .
3: . . . . . 126 168 108 36 5

It follows that O4 is Cohen-Macaulay.
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6.4.12 The orbits O3 and O2

We discuss the case of the orbit O3 since O2 is isomorphic under the involution
exchanging F and H. The orbit closure O3 is normal with rational singularities.
It is F -degenerate and its equations are the 2ˆ 2 minors of the generic matrix
of a linear map F Ñ E˚bH˚ (see 6.4.6). As such O3 is a determinantal variety
and the coordinate ring is resolved by Lascoux’s resolution [20]. Here is the
Betti table for the resolution

0 1 2 3 4 5 6 7 8 9 10
total: 1 45 230 540 823 1015 1035 760 351 90 10

0: 1 . . . . . . . . . .
1: . 45 230 540 648 385 90 . . . .
2: . . . . 175 630 945 760 351 90 10

It follows that O3 is Cohen-Macaulay.

6.4.13 The orbit O1

The orbit closureO1 is normal with rational singularities. It is both E-degenerate
and F -H-degenerate with equations given by the 2 ˆ 2 minors of the generic
matrix of a linear map E Ñ F˚bH˚ together with the coefficients of the 2ˆ 2
minors of a generic 3ˆ3 matrix of linear forms in two variables. More explicitly,
the former are the equations of O6 while the latter are the coefficients of the
2ˆ 2 minors of δ as introduced in 6.4.1. The Betti table for the resolution is

0 1 2 3 4 5 6 7 8 9 10 11 12
total: 1 63 394 1179 2087 2692 3726 4383 3275 1530 407 45 2

0: 1 . . . . . . . . . . . .
1: . 63 394 1179 1980 1702 396 63 8 . . . .
2: . . . . 107 990 3330 4320 3267 1530 407 36 .
3: . . . . . . . . . . . 9 2

It follows that O1 is Cohen-Macaulay.

7 Representations of type F4

In this section, we will analyze the cases corresponding to gradings on the simple
Lie algebra of type F4. Each case corresponds to the choice of a distinguished
node on the Dynkin diagram for F4. The nodes are numbered according to the
conventions in Bourbaki [1].

α1 α2 α3 α4
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7.1 The case pF4, α1q

The representation is V “ V pω3, C3q, the third fundamental representation
of the group Spp6,Cq; the group acting is Cˆ ˆ Spp6,Cq. The corresponding
polynomial ring is

A “ Crx1342, x1242, x1232, x1231, x1222, x1221, x1122,

x1220, x1121, x1120, x1111, x1110, x1100, x1000s “ SympV ˚q.

The variables in A are indexed by the roots in g1 “ V . The variables are weight
vectors in V ˚, with the following weights:

x1342 Ø ε1 ` ε2 ` ε3 x1242 Ø ε1 ` ε2 ´ ε3
x1232 Ø ε1 x1231 Ø ε2
x1222 Ø ε1 ´ ε2 ` ε3 x1221 Ø ε3
x1122 Ø ε1 ´ ε2 ´ ε3 x1220 Ø ´ε1 ` ε2 ` ε3
x1121 Ø ´ε3 x1120 Ø ´ε1 ` ε2 ´ ε3
x1111 Ø ´ε2 x1110 Ø ´ε1
x1100 Ø ´ε1 ´ ε2 ` ε3 x1000 Ø ´ε1 ´ ε2 ´ ε3

Here ε1, ε2, ε3 are the vectors in the coordinate basis of R3 (see [6, §12.1] for
more information).

In characteristic zero, the representation has the following orbits, listed along
with the dimension of the closure and a representative:

orbit dimension representative
O0 0 0
O1 7 x1000 “ 1
O2 10 x1111 “ 1
O3 13 x1000 “ x1231 “ 1
O4 14 x1000 “ x1342 “ 1

The orbit closures, in particular their defining equations, have been discussed
in [8]. The treatment we give here follows a similar approach as the one used in
the previous sections. All the orbit closures are normal, Cohen-Macaulay, and
have rational singularities. Here is the containment and singularity table:

O0 O1 O2 O3 O4

O0 ns s s s ns
O1 ns s s ns
O2 ns s ns
O3 ns ns
O4 ns

We will denote by Vω the highest weight module with highest weight ω. The
weights will be expressed as linear combinations of ω1, ω2, ω3, the fundamental
weights of the root system C3.
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Let F “ Vω1 “ C6 be the standard representation of Spp6,Cq. Since
Ź3

F –

F ‘ V , there is a projection φ :
Ź3

F Ñ V of Spp6,Cq-modules. Take ψ : V Ñ
Ź3

F , to be a section of φ, so φ ˝ ψ “ id. Also, let δ : F Ñ F˚ be the duality
given by the symplectic form on F .

Next we observe that A2 “ S2 V
˚ – S2 F

˚ ‘ V ˚2ω2
. Therefore there exists a

non zero map ρ : S2 F
˚ Ñ A2 of Spp6,Cq-modules. We explain here one possible

way to write such a map explicitly, in terms of well understood equivariant maps:

S2 F
˚

F˚ b F˚

F b F˚

Ź5
F˚ b F˚

Ź3
F˚ b

Ź2
F˚ b F˚

Ź3
F˚ b

Ź3
F˚

V ˚ b V ˚

S2 V
˚

∆

δ´1

˚

∆

m2,3

ψ˚ b ψ˚

m1,2

This map will be used in the description of the orbit closures for the case pF4, α1q.

7.1.1 The orbit O3

The orbit closure O3 is a hypersurface defined by an invariant of degree 4 which
can be obtained as follows:
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C

S2 F b S2 F
˚

S2 F
˚ b S2 F

˚

A2 bA2

A4

trp2q

S2pδq

ρb ρ

where the last map is symmetric multiplication. Another description of this
invariant was given by Landsberg and Manivel [13].

7.1.2 The orbit O2

The expected resolution for the coordinate ring CrO2s is

AÐ Vω3 bAp´3q Ð V2ω1 bAp´4q Ð

Ð Vω2 bAp´6q Ð Vω1 bAp´7q Ð 0

The differential d2 : V2ω1
b Ap´4q Ñ Vω3

b Ap´3q was written explicitly, as
follows:

S2 F
˚

F˚ b F˚

F b F˚

Ź5
F˚ b F˚

Ź3
F˚ b

Ź2
F˚ b F˚

Ź3
F˚ b

Ź3
F˚

V ˚ bA1

∆

δ´1

˚

∆

m2,3

ψ˚ b ψ˚

36



The Betti table for the resolution is

0 1 2 3 4
total: 1 14 21 14 6

0: 1 . . . .
1: . . . . .
2: . 14 21 . .
3: . . . 14 6

7.1.3 The orbit O1

The expected resolution for the coordinate ring CrO2s is

AÐ V2ω1
bAp´2q Ð Vω1`ω2

bAp´3q Ð Vω1`ω3
bAp´4q Ð

Ð Vω1`ω3
bAp´6q Ð Vω1`ω2

bAp´7q Ð V2ω1
bAp´8q Ð Ap´10q Ð 0

The first differential is precisely the map ρ described in the introduction to this
case. The Betti table for the resolution is

0 1 2 3 4 5 6 7
total: 1 21 64 70 70 64 21 1

0: 1 . . . . . . .
1: . 21 64 70 . . . .
2: . . . . 70 64 21 .
3: . . . . . . . 1

It follows that the orbit closure O1 is Gorenstein.

7.2 The case pF4, α2q

The representation is E b S2 F , where E “ C2 and F “ C3; the group acting is
SLpEq ˆ SLpF q ˆ Cˆ. The corresponding polynomial ring is

A “ Crxi;jk|i “ 1, 2; 1 ď j ď k ď 3s “ Sym pE˚ b S2 F
˚q .

In characteristic zero, the representation has the following orbits, listed along
with the dimension of the closure and a representative:

orbit dimension representative
O0 0 0
O1 4 x1;11 “ 1
O2 6 x1;12 “ 1
O3 7 x1;11 “ x1;23 “ 1
O4 8 x1;11 “ x2;22 “ 1
O5 8 x1;23 “ x2;13 “ 1
O6 9 x1;11 “ x2;22 “ x123 “ 1
O7 10 x1;11 “ x2;23 “ 1
O8 10 x2;13 “ x1;23 “ x1;11 “ 1
O9 11 xx1;11, x1;12, x2;13, x1;22, x2;23y

O10 12 x1;11 “ x2;11 “ x1;22 “ x1;33 “ 1, x2;22 “ ´1
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To obtain a representative for the orbit O9 it is enough to assign random rational
values to the variables listed, and to set all other variables to 0 (this amounts to
taking a generic element in the span of the tensors corresponding to the listed
variables).

Here is the containment and singularity table:

O0 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10

O0 ns s s s s s s s s s ns
O1 ns s ns s s s s s s ns
O2 ns ns ns s s s s s ns
O3 ns s s s s ns
O4 ns s s s s ns
O5 ns s s ns
O6 ns ns s s ns
O7 ns s ns
O8 ns s ns
O9 ns ns
O10 ns

We denote the free A-module Spa,bqE˚bSpc,d,eq F˚bAp´a´ bq by pa, b; c, d, eq.

7.2.1 The orbit O9

The orbit closure O9 is not normal. The expected resolution for the coordinate
ring of the normalization of O9 is

A‘ p1, 1; 2, 1, 1q ‘ p2, 1; 2, 2, 2q Ð p2, 2; 4, 2, 2q Ð 0

This orbit closure is a hypersurface, so there is only one differential d1. The
defining equation of O9 is the determinant of d1. Alternatively this equation can
be obtained as the discriminant of the determinant of a generic 3ˆ3 symmetric
matrix of linear forms in two variables, which is a homogeneous polynomial of
degree 12. Explicitly:

δ “ det

¨

˝

ux111 ` vx211 ux112 ` vx212 ux113 ` vx213

ux112 ` vx212 ux122 ` vx222 ux123 ` vx223

ux113 ` vx213 ux123 ` vx223 ux133 ` vx233

˛

‚“

“ a3,0u
3 ` a2,1u

2v ` a1,2uv
2 ` a0,3v

3,

and

discpδq “ 27a2
3,0a

2
1,2 ` 4a3,0a

3
1,2 ` 4a3

2,1a0,3 ´ a
2
2,1a

2
1,2 ´ 18a3,0a2,1a1,2a0,3.

The block p2, 2; 4, 2, 2q Ñ p2, 1; 2, 2, 2q of d1 was constructed as the map

S2 F
˚ E b E˚ b S2 F

˚ E bA1
trp1q
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The block p2, 2; 4, 2, 2q Ñ p1, 1; 2, 1, 1q was constructed by taking the map

Ź3
F˚ b S2 F

˚

F˚ b F˚ b F˚ b F˚ b F˚

F˚ b S2 F
˚ b S2 F

˚

F˚ b
Ź2

pS2 F
˚q

∆b∆

m2,4 bm3,5

m2,3

on the F˚ factor and then applying the embedding
Ź2

E˚ b
Ź2

pS2 F
˚q ãÑ A2

given by

e˚1 ^ e
˚
2 b f

˚
i f

˚
j ^ f

˚
k f

˚
l ÞÝÑ det

ˆ

x1ij x1kl

x2ij x2kl

˙

.

The last block p2, 2; 4, 2, 2q Ñ A can be obtained as follows. First construct the
map

Ź3
F˚ b

Ź3
F˚ b S2 F

˚

F˚ b F˚ b F˚ b F˚ b F˚ b F˚ b F˚ b F˚

S2 F
˚ b S2 F

˚ b S2 F
˚ b S2 F

˚

Ź2
pS2 F

˚q b
Ź2

pS2 F
˚q

∆b∆b∆

m1,7 bm2,4 bm3,5 bm6,8

m1,2 bm3,4

on the F˚ factor. Then embed into A via the map

Ź2
E˚ b

Ź2
pS2 F

˚q b
Ź2

E˚ b
Ź2

pS2 F
˚q

A2 bA2

A4

where the first step uses the embedding described earlier twice and the second
step is symmetric multiplication.
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The Betti table for the resolution of the normalization is

0 1
total: 6 6

0: 1 .
1: . .
2: 3 .
3: 2 6

and the Betti table for the resolution of the cokernel Cp9q of the inclusion
CrO9s ãÑ CrN pO9qs is

0 1 2
total: 5 6 1

2: 3 . .
3: 2 6 .
4: . . .
5: . . .
6: . . .
7: . . .
8: . . .
9: . . .
10: . . 1

7.2.2 The orbit O8

The orbit closure O8 is not normal. The expected resolution for the coordinate
ring of the normalization N pO8q is

A‘ p1, 1; 2, 1, 1q Ð p3, 2; 4, 3, 3q ‘ p2, 2; 4, 2, 2q Ð p3, 3; 5, 4, 3q Ð 0

We construct explicitly the differential d2 as follows. The first block p3, 3; 5, 4, 3q Ñ
p3, 2; 4, 3, 3q is defined on the F˚ factor as

F˚ b F F˚ b F b F˚ b F S2 F
˚ b

Ź2
F

trp1q m1,3 bm2,4

restricted to the subspace of traceless tensors Sp2,1q F˚. On the E˚ factor, it is
simply the trace map CÑ E˚ b E, and putting the factors together we have

Sp2,1q F˚ E˚ b E b S2 F
˚ b

Ź2
F E b

Ź2
F bA1

The second block p3, 3; 5, 4, 3q Ñ p2, 2; 4, 2, 2q is defined on the F˚ factor as
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F˚ b F

F˚ b F b F˚ b F b F˚ b F b F˚ b F

S2 F
˚ b

Ź2
F b

Ź2
F b S2 F

˚

Ź2
pS2 F

˚q b F˚ b F˚

Ź2
pS2 F

˚q b S2 F
˚

trp1q b trp1q b trp1q

m1,3 bm2,8 bm4,6 bm5,7

m1,4 b
˚
b
˚

m2,3

restricted to the subspace of traceless tensors Sp2,1q F˚. On the E˚ factor, we

only have
Ź2

E˚, so taking the factors together we get the map

Sp2,1q F˚
Ź2

E˚ b
Ź2

pS2 F
˚q b S2 F

˚ S2 F
˚ bA2

where the embedding into A2 is the one described in 7.2.1. The Betti table for
the normalization is

0 1 2
total: 4 12 8

0: 1 . .
1: . . .
2: 3 . .
3: . 6 .
4: . 6 8

Dropping the row with entries of degree 4 and 5 in the differential d1, we obtain
a map

p3, 2; 4, 3, 3q ‘ p2, 2; 4, 2, 2q Ñ p1, 1; 2, 1, 1q

This is a presentation for the cokernel Cp8q of the inclusion CrO8s ãÑ CrN pO8qs;
the Betti table for Cp8q is

0 1 2 3
total: 3 12 11 2

0: 3 . . .
1: . 6 . .
2: . 6 11 .
3: . . . .
4: . . . 2

Remark 7.1. In this particular example, the (truncated) cone procedure in M2
did not produce a result in a reasonable time. However it is easy to determine
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the representations appearing in the resolution of Cp8q, namely:

p1, 1; 2, 1, 1q Ð p3, 2; 4, 3, 3q ‘ p2, 2; 4, 2, 2q Ð

Ð p3, 3; 5, 4, 3q ‘ p4, 2; 4, 4, 4q Ð p5, 4; 6, 6, 6q Ð 0

From this and the resolution of CrN pO8qs, it is possible to construct and mini-
mize the mapping cone by hand. The resulting complex is

p0, 0; 0, 0, 0q Ð p4, 2; 4, 4, 4q Ð p5, 4; 6, 6, 6q Ð 0

The last map in the complex can be built as follows:

E˚ b
Ź2

E˚ b
Ź2

E˚ b
Ź3

F˚ b
Ź3

F˚

E˚ b E˚ b E˚ b E˚ b E˚ b F˚ b F˚ b F˚ b F˚ b F˚ b F˚

S2E
˚ b E˚ b E˚ b E˚ b S2 F

˚ b S2 F
˚ b S2 F

˚

S2E
˚ bA1 bA1 bA1

S2E
˚ bA3

∆b∆b∆b∆

m2,4 bm6,9 bm7,10 bm8,11

m2,5 bm3,6 bm4,7

m2,3

and then resolved as usual to obtain the defining equations of O8.

The Betti for the resolution of CrO8s is

0 1 2
total: 1 3 2

0: 1 . .
1: . . .
2: . . .
3: . . .
4: . . .
5: . 3 .
6: . . .
7: . . 2

It follows that O8 is Cohen-Macaulay.

7.2.3 The orbit O7

The orbit closure O7 is not normal. The expected resolution for the coordinate
ring of the normalization N pO7q is

A‘ p1, 1; 2, 2, 0q Ð p2, 1; 3, 2, 1q Ð p3, 1; 3, 3, 2q Ð 0
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We construct the differential d2 : p3, 1; 3, 3, 2q Ñ p2, 1; 3, 2, 1q explicitly as fol-
lows. On the E˚ factor, take the diagonalization S2E

˚ Ñ E˚bE˚. On the F˚

factor, take the map

Ź2
F˚

F b F˚ b
Ź2

F˚

F b F˚ b F˚ b F˚

F b F˚ b S2 F
˚

trp1q

∆

m2,3

then project the first two factors onto the space of traceless tensors Sp2,1q F˚

via the map F b F˚ Ñ F b F˚{ imptrp1qq. Altogether we have

S2E
˚ b

Ź2
F˚ E˚ b E˚ b Sp2,1q F˚ b S2 F

˚ E˚ b Sp2,1q F˚ bA1

The Betti table for the normalization is

0 1 2
total: 7 16 9

0: 1 . .
1: . . .
2: 6 16 9

Dropping the row of degree 3 in the differential d1, we obtain a map

p2, 1; 3, 2, 1q Ñ p1, 1; 2, 2, 0q

This is a presentation for the cokernel Cp7q of the inclusion CrO7s ãÑ CrN pO7qs;
the Betti table for Cp7q is

0 1 2 3 4 5
total: 6 16 29 36 21 4

0: 6 16 9 . . .
1: . . . . . .
2: . . 20 36 21 4
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By the cone procedure, we recover the resolution of CrO7s which has the fol-
lowing Betti table

0 1 2 3 4
total: 1 20 36 21 4

0: 1 . . . .
1: . . . . .
2: . . . . .
3: . . . . .
4: . . . . .
5: . 20 36 21 4

We observe that O7 is not Cohen-Macaulay because it has codimension 2 but
its coordinate ring has projective dimension 4.

7.2.4 The orbit O6

The orbit closure O6 is not normal. The expected resolution for the coordinate
ring of the normalization N pO6q is

A‘ p1, 1; 2, 2, 0q Ð p2, 1; 3, 2, 1q ‘ p2, 1; 2, 2, 2q Ð

Ð p3, 3; 5, 4, 3q ‘ p3, 1; 3, 3, 2q Ð p4, 3; 5, 5, 4q Ð 0

We construct the differential

d1 : p2, 1; 3, 2, 1q ‘ p2, 1; 2, 2, 2q Ñ p1, 1; 2, 2, 0q ‘A

explicitly. Notice how the domain of d1 is isomorphic to E˚bF bF˚. It is clear
that the representation on the E˚ factor is, up to a power of the determinant,
simply E˚. On the F˚ factor, we have Sp3,2,1q F˚ ‘ Sp2,2,2q F˚, with the first
summand corresponding to the space of traceless tensors in F b F˚ and the
second factor corresponding to the tensor with non zero trace.

For the first block E˚ b F b F˚ Ñ p1, 1; 2, 2, 0q, take the map

E˚ b F b F˚

E˚ b F b F˚ b F b F˚

E˚ b S2 F b S2 F
˚

S2 F bA1

trp1q

m2,4 bm3,5

For the second block E˚ b F b F˚ Ñ A3, take the map
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F b F˚ b
Ź3

F˚

Ź2
F˚ b F˚ b

Ź3
F˚

F˚ b F˚ b F˚ b F˚ b F˚ b F˚

S2 F
˚ b S2 F

˚ b S2 F
˚

Ź2
pS2 F

˚q b S2 F
˚

˚

∆b∆

m1,4 bm2,5 bm3,6

m1,2

on the F˚ factor. On the E˚ factor, simply tensor by a power of the determinant.
Altogether we have

E˚ b
Ź2

E˚ b
Ź2

pS2 F
˚q b S2 F

˚ A1 bA2 A3

where the first step uses the embedding defined in 7.2.1 and the second step is
symmetric multiplication.

The Betti table for the normalization is

0 1 2 3
total: 7 18 17 6

0: 1 . . .
1: . . . .
2: 6 18 9 .
3: . . . .
4: . . 8 6

Dropping the row of degree 3 in the differential d1, we obtain a map

p2, 1; 3, 2, 1q ‘ p2, 1; 2, 2, 2q Ñ p1, 1; 2, 2, 0q

This is a presentation for the cokernel Cp6q of the inclusion CrO6s ãÑ CrN pO6qs;
the Betti table for Cp6q is

0 1 2 3 4
total: 6 18 15 6 3

2: 6 18 15 . .
3: . . . . .
4: . . . 6 3

By the cone procedure, we recover the resolution of CrO6s which has the fol-
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lowing Betti table
0 1 2 3

total: 1 6 8 3
0: 1 . . .
1: . . . .
2: . . . .
3: . 6 . .
4: . . 8 .
5: . . . 3

We observe that O6 is Cohen-Macaulay.

7.2.5 The orbit O5

The orbit closure O5 is not normal. The expected resolution for the coordinate
ring of the normalization N pO5q is

A‘ p1, 0; 1, 1, 0q Ð p3, 0; 2, 2, 2q ‘ p1, 1; 3, 1, 0q ‘ p2, 0; 2, 1, 1q Ð

Ð p3, 1; 4, 2, 2q ‘ p2, 2; 3, 3, 2q ‘ p2, 1; 4, 1, 1q Ð

Ð p3, 2; 5, 3, 2q Ð p3, 3; 5, 5, 2q Ð 0

We construct the differential d4 : p3, 3; 5, 5, 2q Ñ p3, 2; 5, 3, 2q explicitly. Start
with the map

S3 F

E b E˚ b S3 F b F b F
˚ b F b F˚

E b E˚ b S3 F b S2 F b S2 F
˚

E b S3 F b S2 F bA1

trp1q b trp1q b trp1q

m4,6 bm5,7

Then project onto E b Sp3,2q F bA1 modding out S3 F b S2 F by the image of
the map

S4 F b F S3 F b F b F S3 F b S2 F
∆ m2,3

The Betti table for the normalization is

0 1 2 3 4
total: 7 28 41 30 10

0: 1 . . . .
1: 6 24 20 . .
2: . 4 21 30 10
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Dropping the row of degree 2 in the differential d1, we obtain a map

p3, 0; 2, 2, 2q ‘ p1, 1; 3, 1, 0q ‘ p2, 0; 2, 1, 1q Ñ p1, 0; 1, 1, 0q

This is a presentation for the cokernel Cp5q of the inclusion CrO5s ãÑ CrN pO5qs;
the Betti table for Cp5q is

0 1 2 3 4 5 6 7 8
total: 6 24 56 163 298 285 144 33 1

1: 6 24 20 . . . . . .
2: . . 36 42 10 . . . .
3: . . . 121 288 285 144 33 .
4: . . . . . . . . 1

By the cone procedure, we recover the resolution of CrO5s which has the fol-
lowing Betti table

0 1 2 3 4 5 6 7
total: 1 19 133 288 285 144 33 1

0: 1 . . . . . . .
1: . . . . . . . .
2: . 4 . . . . . .
3: . 15 12 . . . . .
4: . . 121 288 285 144 33 .
5: . . . . . . . 1

We observe that O5 is not Cohen-Macaulay because it has codimension 4 but
its coordinate ring has projective dimension 7.

7.2.6 The orbit O4

The orbit closure O4 is normal with rational singularities. The expected reso-
lution for the coordinate ring CrO4s is

AÐ p3, 0; 2, 2, 2q ‘ p2, 1; 3, 2, 1q Ð

Ð p2, 2; 3, 3, 2q ‘ p3, 1; 3, 3, 2q ‘ p3, 1; 4, 2, 2q ‘ p2, 2; 4, 3, 1q Ð

Ð p3, 2; 5, 3, 2q ‘ p3, 2; 4, 3, 3q Ð p3, 3; 6, 3, 3q Ð 0

The differential d4 was written explicitly. For the block, p3, 3; 6, 3, 3q Ñ p3, 2; 4, 3, 3q
take the map

S3 F
˚ E b E˚ b S2 F

˚ b F˚ E b F˚ bA1
trp1q b∆

For the block p3, 3; 6, 3, 3q Ñ p3, 2; 5, 3, 2q construct first the map
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S3 F
˚ b

Ź3
F˚

E b E˚ b S2 F
˚ b F˚ b F˚ b F˚ b F˚

E b E˚ b S3 F
˚ b S2 F

˚ b F˚

E b S3 F
˚ b F˚ bA1

trp1q b∆b∆

m3,5 bm4,6

Finally project onto EbSp3,1q F˚bA1 by modding out S3 F
˚bF˚ by the image

of the map

S4 F
˚ S3 F

˚ b F˚
∆

The Betti table for the resolution is

0 1 2 3 4
total: 1 20 45 36 10

0: 1 . . . .
1: . . . . .
2: . 20 45 36 10

We conclude that O4 is Cohen-Macaulay. The defining equations are the 3ˆ 3
minors of the generic matrix of a linear map E b F Ñ F˚ after symmetrizing
indices on the F˚ side.

7.2.7 The orbit O3

The orbit closure O3 is normal with rational singularities. It is degenerate with
equations given by the 2ˆ 2 minors of

¨

˚

˚

˚

˚

˚

˚

˝

x111 x211

x112 x212

x113 x213

x122 x222

x123 x223

x133 x233

˛

‹

‹

‹

‹

‹

‹

‚

the generic matrix of a linear map E Ñ S2 F
˚. The Betti table for the resolution

is
0 1 2 3 4 5

total: 1 15 40 45 24 5
0: 1 . . . . .
1: . 15 40 45 24 5

It follows that O3 is Cohen-Macaulay.
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7.2.8 The orbit O2

The orbit closure O2 is normal with rational singularities. It is degenerate
with equations given by the 2ˆ 2 minors of the generic matrix of a linear map
E Ñ S2 F

˚ together with the coefficients of the determinant of a generic 3ˆ 3
matrix of linear forms in two variables. The former are the equations of O3

while the latter are the coefficients a3,0, a2,1, a1,2, a0,3 of δ as defined in 7.2.1.
The Betti table for the resolution is

0 1 2 3 4 5 6
total: 1 19 58 75 44 11 2

0: 1 . . . . . .
1: . 15 40 45 24 5 .
2: . 4 18 30 20 . .
3: . . . . . 6 2

It follows that O2 is Cohen-Macaulay.

7.2.9 The orbit O1

The orbit closure O1 is normal with rational singularities. It is degenerate
with equations given by the 2ˆ 2 minors of the generic matrix of a linear map
E Ñ S2 F

˚ together with the coefficients of the 2ˆ 2 minors of a generic 3ˆ 3
matrix of linear forms in two variables. The former are the equations of O3

while the latter are the coefficients of the 2ˆ 2 minors of the matrix defined in
7.2.1. The Betti table for the resolution is

0 1 2 3 4 5 6 7 8
total: 1 33 144 294 336 210 69 16 3

0: 1 . . . . . . . .
1: . 33 144 294 336 210 48 . .
2: . . . . . . 21 16 3

It follows that O1 is Cohen-Macaulay.

7.3 The case pF4, α3q

The representation is E b F , where E “ C2 and F “ C3; the group acting is
SLpEq ˆ SLpF q ˆ Cˆ. The orbit closures for this representation are classical
determinantal varieties. For a description of the minimal free resolutions of their
coordinate rings, the reader can consult [20, Ch. 6], for example.

7.4 The case pF4, α4q

The representation is V “ V pω3, B3q, the third fundamental representation of
the group SOp7,Cq; the group acting is Spinp7q. The corresponding polynomial
ring is

A “ Crx1231, x1221, x1121, x0121, x1111, x0111, x0011, x0001s “ SympV ˚q.
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The variables in A are indexed by the roots in g1. The variables are weight
vectors in V ˚, with the following weights:

x1231 Ø
1
2 pε1 ` ε2 ` ε3q x1221 Ø

1
2 pε1 ` ε2 ´ ε3q

x1121 Ø
1
2 pε1 ´ ε2 ` ε3q x0121 Ø

1
2 p´ε1 ` ε2 ` ε3q

x1111 Ø
1
2 pε1 ´ ε2 ´ ε3q x0111 Ø

1
2 p´ε1 ` ε2 ´ ε3q

x0011 Ø
1
2 p´ε1 ´ ε2 ` ε3q x0001 Ø

1
2 p´ε1 ´ ε2 ´ ε3q

In characteristic zero, the representation has the following orbits, listed along
with the dimension of the closure and a representative:

orbit dimension representative
O0 0 0
O1 7 x0001 “ 1
O2 8 x0001 “ x1231 “ 1

All the orbit closures are normal, Cohen-Macaulay, Gorenstein and have rational
singularities. Here is the containment and singularity table:

O0 O1 O2

O0 ns s ns
O1 ns ns
O2 ns

7.4.1 The orbit O1

The variety O1 is the closure of the highest weight vector orbit. It is a hypersur-
face defined by an invariant of degree 2. The invariant was described explicitly
by Igusa [7].

8 Representations of type G2

In this section, we will analyze the cases corresponding to gradings on the simple
Lie algebra of type G2. Each case corresponds to the choice of a distinguished
node on the Dynkin diagram for G2. The nodes are numbered according to the
conventions in Bourbaki [1].

α1 α2

8.1 The case pG2, α1q

The representation is E “ C2 and the group acting is GLpEq. The only orbits
in this case are the origin and the dense orbit.
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8.2 The case pG2, α2q

The representation is S3E, where E “ C2; the group acting is GLpEq. The
corresponding polynomial ring is

A “ Qrxijk | 1 ď i ď j ď 2s “ SympS3E
˚q.

In characteristic zero, the representation has the following orbits, listed along
with the dimension of the closure and a representative:

orbit dimension representative
O0 0 0
O1 2 x111 “ 1
O2 3 x112 “ 1
O3 4 x111 “ x222 “ 1

Here is the containment and singularity table:

O0 O1 O2 O3

O0 ns s s ns
O1 ns s ns
O2 ns ns
O3 ns

We denote the free A-module Spa,bqE˚ bAp´pa` bq{3q by pa, bq.

8.2.1 The orbit O2

The orbit closure O2 is not normal. The expected equivariant resolution for the
coordinate ring of the normalization of O2 is

A‘ p2, 1q Ð p4, 2q Ð 0

The orbit closure is a hypersurface, so there is only one differential d1. The
defining equation of O9 is the determinant of d1. Alternatively this equation
can be obtained using the cone procedure.

The block p4, 2q Ñ p2, 1q of d1 was constructed by taking the map

Ź2
E˚ b S2E

˚ E˚ b E˚ b E˚ b E˚ E˚ bA1
∆b∆ m2,3,4

The block p4, 2q Ñ A can be obtained as follows:
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Ź2
E˚ b

Ź2
E˚ b S2E

˚

E˚ b E˚ b E˚ b E˚ b E˚ b E˚

A1 bA1

A2

∆b∆b∆

m1,3,5 bm2,4,6

where the last step is symmetric multiplication.
The Betti table for the resolution of the normalization is

0 1
total: 3 3

0: 1 .
1: 2 3

and the Betti table for the resolution of the cokernel Cp2q of the inclusion
CrO2s ãÑ CrN pO2qs is

0 1 2
total: 2 3 1

1: 2 3 .
2: . . 1

8.2.2 The orbit O1

The orbit closure O1 is normal with rational singularities. The expected equiv-
ariant resolution for the coordinate ring of CrO1s is

AÐ p4, 2q Ð p5, 4q Ð 0

Notice that the first differential is the second block of the differential described
in 8.2.1. Here we describe how to explicitly construct d2 : p5, 4q Ñ p4, 2q, the
second differential in the resolution. This is obtained by writing the map

Ź2
E˚ b

Ź2
E˚ b E˚

E˚ b E˚ b E˚ b E˚ b E˚

S2E
˚ bA1

∆b∆

m2,3 bm1,4,5
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The Betti table for the resolution is

0 1 2
total: 1 3 2

0: 1 . .
1: . 3 2

It follows that the orbit closure O1 is Cohen-Macaulay.

A Equivariant maps

In this appendix, we give a brief description of the equivariant maps between
representations that are used to construct the differentials in our complexes
(more details can be found in [20, Ch. 1]). The notation introduced here is used
extensively throughout sections 6, 7 and 8. We use the symbol Sλ to denote
the Schur functor associated to the partition λ. In particular, Si “ Spiq “ Symi

denotes the i-th symmetric power. In order to simplify the notation as much as
possible, we omit to write any symbol for the identity and other obvious maps.

Throughout this appendix, E denotes a complex vector space of finite dimen-
sion n with basis te1, . . . , enu; E

˚ denotes the dual of E and we take te˚1 , . . . , e
˚
nu

to be the basis dual to te1, . . . , enu. All the maps we describe are GLpEq-
equivariant.

A.1 Diagonals

Let r, s be natural numbers such that 0 ď r ` s ď n. The exterior diagonal is
the map:

∆ :
r`s
ľ

E ÝÑ
r
ľ

E b
s
ľ

E

with

∆pe1^ . . .^ er`sq “
ÿ

σPSr,s
r`s

p´1qsgnpσqeσp1q^ . . .^ eσprqb eσpr`1q^ . . .^ eσpr`sq.

Here

Sr,s
r`s :“ tσ P Sr`s | σp1q ă . . . ă σprq, σpr ` 1q ă . . . ă σpr ` squ

where Sd denotes the symmetric group on d letters and sgnpσq is the sign of
the permutation σ.

Now let r, s be arbitrary natural numbers. The symmetric diagonal is the
map:

∆ : Sr`sE ÝÑ Sr E b SsE

with
∆pe1 . . . er`sq “

ÿ

σPSr,s
r`s

eσp1q . . . eσprq b eσpr`1q . . . eσpr`sq.
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Both diagonals can be generalized to the case where the codomain is a tensor
product of more than two exterior or symmetric powers of E in the obvious way.
It will be clear from the context whether we are using the exterior or symmetric
diagonal and how many and what factors we are taking in the codomain.

A.2 Multiplications

Let r, s be natural numbers such that 0 ď r`s ď n. The exterior multiplication
is the map:

m :
r
ľ

E b
s
ľ

E ÝÑ
r`s
ľ

E

with

mpu1 ^ . . .^ ur b v1 ^ . . .^ vsq “ u1 ^ . . .^ ur ^ v1 ^ . . .^ vs.

Now let r, s be arbitrary natural numbers. The symmetric multiplication is
the map:

m : Sr E b SsE ÝÑ Sr`sE
with

mpu1 . . . ur b v1 . . . vsq “ u1 . . . urv1 . . . vs.

Both multiplications can be generalized to the case where the domain is
a tensor product of more than two exterior or symmetric powers of E in the
obvious way. It will be clear from the context whether we are using the exterior
or symmetric multiplication and how many and what factors we are taking in
the domain.

When the tensor factors that we wish to multiply are not adjacent, we use
subscripts to clarify which factors we are multiplying. For example, we write
m1,3 : EbEbE Ñ S2EbE to indicate we apply the symmetric multiplication
to the first and third factor, leaving the second one alone.

A.3 Traces

Let r be a natural number such that 0 ď r ď n. The exterior trace is the map:

trprq : C ÝÑ
r
ľ

E b
r
ľ

E˚

with
trprqp1q “

ÿ

1ďi1ă...ăirďn

ei1 ^ . . .^ eir b e
˚
i1 ^ . . .^ e

˚
ir .

Now let r be an arbitrary natural number. The symmetric trace is the map:

trprq : C ÝÑ Sr E b Sr E˚

with
trprqp1q “

ÿ

1ďi1ď...ďirďn

ei1 . . . eir b e
˚
i1 . . . e

˚
ir .

It will be clear from the context whether we are using the exterior or sym-
metric trace.
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A.4 Exterior duality

Let r be a natural number such that 0 ď r ď n. The exterior duality is the
map:

˚ :
r
ľ

E ÝÑ
n´r
ľ

E˚

with
˚pei1 ^ . . .^ eir q “ p´1qsgnpσqe˚j1 ^ . . .^ e

˚
jn´r

,

where 1 ď i1 ă . . . ă ir ď n, 1 ď j1 ă . . . ă jn´r ď n, ti1, . . . , iru Y
tj1, . . . , jn´ru “ t1, . . . , nu and σ is the permutation

ˆ

1 . . . r r ` 1 . . . n
i1 . . . ir j1 . . . jn´r

˙

.

Similarly we can define an exterior duality ˚ :
Źr

E˚ ÝÑ
Źn´r

E.
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Marie-Paule Malliavin, 37ème année (Paris, 1985), volume 1220 of Lecture
Notes in Math., pages 73–92. Springer, Berlin, 1986.

[18] Èrnest B. Vinberg. The Weyl group of a graded Lie algebra. Izv. Akad.
Nauk SSSR Ser. Mat., 40(3):488–526, 709, 1976.
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