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AN ALGORITHM FOR COMPUTING THE MULTIGRADED HILBERT
DEPTH OF A MODULE

BOGDAN ICHIM AND ANDREI ZAROJANU

ABSTRACT. A method for computing the multigraded Hilbert depth of a module was
presented in [16]. In this paper we improve the method and we introduce an effective
algorithm for performing the computations. In a particularcase, the algorithm may also
be easily adapted for computing the Stanley depth of the module. We further present
interesting examples which were found with the help of an experimental implementation
of the algorithm [17]. Thus, we completely solve several open problems proposed by
Herzog in [12].

1. INTRODUCTION

In this paper we introduce an algorithm for computing the Hilbert depth of a finitely
generated multigraded moduleM over the standard multigraded polynomial ringR=
K[X1, . . . ,Xn]. The algorithm is based on the method presented in [16] and some extra
improvements. It may also be adapted for computing the Stanley depth ofM if dimK Ma≤
1 for all a ∈ Z

n. Further, we provide an experimental implementation of thealgorithm
[17] in CoCoA [11] and we use it to find interesting examples. As a consequence, we
give complete answers to the following open problems proposed by Herzog in [12]:

Problem 1. [12, Problem 1.66]Find an algorithm to compute the Stanley depth for finitely
generated multigraded R-modules M withdimK Ma ≤ 1 for all a ∈ Z

n.

Problem 2. [12, Problem 1.67]Let M and N be finitely generated multigraded R-modules.
Then

sdepth(M⊕N) ≥ Min{sdepth(M),sdepth(N)}.

Do we have equality?

Problem 3. [12, Text following Problem 1.67]In the particular case that I⊂ R is a
monomial ideal, doessdepth(R⊕ I) = sdepthI hold?

The examples are contained in Section 6. One may read and check them directly (it is
enough to see that each square–free monomial of the given modules is present one and
only one time in the given decomposition). The reader interested only in the answers to
Problems 2 and 3 may skip the rest of the paper and jump directly to Section 6.

In recent years,Stanley decompositionsof multigraded modules overR have been
discussed intensively. These decompositions, introducedby Stanley in [24], break the
moduleM into a direct sum ofStanley spaces, each being of typemS wherem is a
homogeneous element ofM, S= K[Xi1, . . . ,Xid] is a polynomial subalgebra ofR and

2010Mathematics Subject Classification.Primary: 05E40; Secondary: 68R05.
Key words and phrases.Hilbert depth; Stanley depth; Computational experiments.

1

http://arxiv.org/abs/1304.7215v3


2 BOGDAN ICHIM AND ANDREI ZAROJANU

S
⋂

Annm= 0. One says thatM hasStanley depth s, sdepthM = s, if one can find a
Stanley decomposition in whichd ≥ s for each polynomial subalgebra involved, but none
with s replaced bys+1.

The computation of the Stanley depth is not an easy task, due mainly to its combina-
torial nature. A first step was done by Herzog, Vladoiu and Zheng in [15], where they
introduced a method for computing the Stanley depth of a factor of a monomial ideal
which was later developed into an effective algorithm by Rinaldo in [22]. Some remark-
able results in the study of the Stanley depth in the multigraded case were also presented
by Apel (see [1], [2]), Herzog et al. (see [13], [14]) and Popescu et al. (see [3], [21]).

Hilbert series are the most important numerical invariantsof finitely generated graded
and multigraded modules overRand they form the bridge from commutative algebra to its
combinatorial applications (we refer here to classical results of Hilbert, Serre, Ehrhart and
Stanley, see [4]). A new type of decompositions for multigraded modulesM depending
only on the Hilbert series ofM was introduced by Bruns, Uliczka and Krattenthaler in
[8] and calledHilbert decompositions. They are a weaker type of decompositions not
requiring the summands to be submodules ofM, but only vector subspaces isomorphic
to polynomial subrings. The notion ofHilbert depthhdepthM is defined accordingly.
Several results concerning both the graded and multigradedcases were presented in [9],
[19] and [25]. All of them are based on both combinatorial andalgebraic techniques.
Algorithms for computing the graded Hilbert depth of a module were introduced first in
[20], then in a more complex setup in [10], while a method for computing the multigraded
Hilbert depth of a module was presented in [16].

The paper is organized as follows. In Section 2 we recall someresults concerning
Hilbert depth that will be used in this paper.

Section 3 is devoted to improve the method presented in [16] by restricting as much as
possible the search for a suited Hilbert decomposition. Theorem 12 shows the existence
of upper–discrete Hilbert partitions of degrees for hdepthM ≥ s. We conclude that for
the effective computation of the Hilbert depth it is better to consider only this kind of
partitions. The result generalize both [22, Lemma 3.4] and [23, Lemma 3.3] (notice that,
in the particular case of a factor of a monomial ideal, the Hilbert partitions coincide with
the poset partitions considered by Rinaldo and Shen).

In Section 4 we introduce arecursivealgorithm for computing the multigraded Hilbert
depth of a module (see Algorithm 1). The algorithm is relative easy to implement because
of its recursive form and may also be used directly for computing the Stanley depth in the
case of a factor of a monomial ideal. Anon-recursivealgorithm for computing Stanley
depth in the case of a factor of a monomial ideal was introduced in [22, Algorithm 1]. For
computing the Stanley depth in the case of a factor of a monomial ideal the computation
times of the two algorithms are similar (comparing our implementation with the original
implementation of [22], see Section 6).

Hilbert decompositions are intimately related to Stanley decompositions: All Stanley
decompositions are Hilbert decompositions; moreover, thelatter are prerequisites to the
existence of Stanley decompositions. In Section 5 we assumethat dimK Ma ≤ 1 for all
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a ∈ Z
n and we show that Algorithm 1 may be easily modified for computing Stanley

depth in this case (see Algorithm 2). This solves completelyProblem 1.
In Section 6 we present the result of several computations done with the algorithm in-

troduced in Section 4. We have experimented with an implementation of the algorithm in
CoCoA and we have found an example in dimension 4 which shows that the answer to
Problem 2 isNo, then an example in dimension 6 which shows that even the answer to the
more particular case considered in Problem 3 isNo. A nice theorem of J. Uliczka [25] ar-
ranged in a quick algorithm by A. Popescu in [20] for computing the graded Hilbert depth
and several computations from [20] has been the basis of the search for these examples
(remark that, in general, the graded Hilbert depth is biggerthan the multigraded Hilbert
depth, so we were lucky to find these examples in relatively low dimension).

We end this section with a vague remark. In the particular case of a normal affine
monoid, suited Hilbert decompositions have already been used with success in order to
design arguable the fastest available algorithms for computing Hilbert series (see [5], [6]
and [7]). It is an interesting open problem if it is possible to use suited Hilbert decompo-
sitions in order to design efficient algorithms for computing Hilbert series in other cases.

2. PREREQUISITES

Let R= K[X1, ...,Xn], with K a field, and letM be a finitely generatedZn-gradedR-
module. In [16] the authors presented a method for computingthe multigraded Hilbert
depth ofM by considering Hilbert partitions of its Hilbert series. Werefer the reader also
to [8] and [15] on which [16] is based. In this section we recall the method of [16].

A natural partial order onZn is defined as follows: Givena,b∈ Z
n, we say thata� b

if and only if ai ≤ bi for i = 1, . . . ,n. Note thatZn with this partial order is a distributive
lattice with meeta∧b and joina∨b being the componentwise minimum and maximum,
respectively. We set the interval betweena andb to be

[a,b] = {c∈ Z
n | a� c� b}.

We first recall a definition and a result of Ezra Miller (see [18]) that will be useful in
the sequel. Letg ∈ N

n. The moduleM is said to beNn-graded ifMa = 0 for a /∈ N
n

andM is said to bepositively g-determinedif it is N
n-graded and the multiplication map

·Xi : Ma −→ Ma+ei is an isomorphism wheneverai ≥ gi. A characterization of positively
g-determined modules is given by the following.

Proposition 4. [18, Proposition 2.5]The module M is positively g-determined if and only
if the multigraded Betti numbers of M satisfyβ0,a = β1,a = 0 unless0� a� g.

Let ⊕

a∈Zn

R(−a)β1,a −→
⊕

a∈Zn

R(−a)β0,a −→ M −→ 0,

be a minimal multigraded free presentation ofM and assume for simplicity, and without
loss of generality, that allβ0,a = 0 (anda fortiori all β1,a = 0) if a /∈ N

n.

Let g∈N
n be such that the multigraded Betti numbers ofM satisfy the equalitiesβ0,a =

β1,a = 0 unless 0� a� g. Then, according to Proposition 4, the moduleM is positively
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g-determined. Let
HM(X) = ∑

a∈Nn

H(M,a)Xa

be theHilbert seriesof M and consider the polynomial

HM(X)�g := ∑
0�a�g

H(M,a)Xa.

Fora,b∈ Z
n such thata� b, we set

Q[a,b](X) := ∑
a�c�b

Xc

and call it thepolynomial induced by the interval[a,b].

Definition 5. We define aHilbert partition of the polynomialHM(X)�g to be an expres-
sion

P : HM(X)�g = ∑
i∈I

Q[ai,bi ](X)

as a finite sum of polynomials induced by the intervals[ai ,bi].

Further, we need the following notations. Fora� g we setZa = {Xj | a j = g j}. More-
over, we denote byK[Za] the subalgebra generated by the subset of the indeterminatesZa.
We also define the map

ρ : {0� a� g} −→ N, ρ(a) := |Za|,

and for 0� a� b� g we set

G [a,b] = {c∈ [a,b] | c j = a j for all j ∈ N with Xj ∈ Zb}.

The main result of [16] (which generalizes the main result of[15]) is:

Theorem 6. [16, Theorem 3.3]The following statements hold:

(1) LetP : HM(X)�g = ∑r
i=1Q[ai,bi ](X) be a Hilbert partition of HM(X)�g. Then

D(P) : M ∼=
r⊕

i=1

( ⊕

c∈G [ai ,bi ]

K[Zbi ](−c)
)

[⋆]

is a Hilbert decomposition of M. Moreover,

hdepthD(P) = min{ρ(bi) : i = 1, . . . , r}.

(2) LetD be a Hilbert decomposition of M. Then there exists a Hilbert partition P of
HM(X)�g such that

hdepthD(P)≥ hdepthD.

In particular,hdepthM can be computed as the maximum of the numbershdepthD(P),
whereP runs over the finitely many Hilbert partitions of HM(X)�g.

We see that, in order to effectively compute the Hilbert depth of M, we may use the
following corollary.
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Corollary 7. [16, Corollary 3.4]There exists a Hilbert partition

P : HM(X)�g =
r

∑
i=1

Q[ai,bi ](X)

of HM(X)�g such thathdepthM = min{ρ(bi) : i = 1, . . . , r}.

3. RESTRICTING THE SEARCH FOR A GOOD PARTITION

As seen in the previous section, the Hilbert depth ofM can be computed by considering
all Hilbert partitions ofHM(X)�g. In practice, the number of possible partitions can
easily become huge. For many practical purposes (for example, for implementation of the
method in a computer program), one needs to restrict (as muchas possible) the search for
a partition which will finally provide the right Hilbert depth. In this section, we show that
an improvement is indeed possible. Our results are extending some of the ideas presented
by Giancarlo Rinaldo in [22] and Shen in [23] for computations of Stanley depth in the
case of a factor of a monomial ideal to the general case of a finitely generated module.

Since many results in this section depend on a numberg∈ N
n such thatM is positively

g-determined, we shall assume thatg is fixed and known from previous computations (for
example by using Proposition 4).

Definition 8. Let B be a subset ofNn and 0≤ s≤ n. We define two subsets ofB,

B<s := {a∈ B : ρ(a)< s} and B≥s := {a∈ B : ρ(a)≥ s},

whereρ is the function defined in Section 2.

Our purpose is to test whetherM has a partitionP whose hdepth is equal tos. To reach
this goal setB= {a : Xa is a monomial of the polynomialHM(X)�g} and considerB as
a disjoint union of the two sets defined above

B= B<s∪B≥s.

It is easy to observe that ifP is a Hilbert partition ofHM(X)�g, then we may write
P= A+A′, so that

A= ∑
i∈I

Q[ai,bi](X), A′ = ∑
j∈I ′

Q[a j ,b j ](X)

whereai ∈ B<s anda j ∈ B≥s for all i ∈ I and j ∈ I ′. ThenP can further be refined to a
new partitionP′ = A+A′′ with

A′′ = ∑
j∈I ′′

Q[a j ,a j ](X)

wherea j ∈ B≥s for all j ∈ I ′′.
Therefore, if a partitionP with hdepth= s exists, then the partA of P is composed of

polynomials induced by intervalsQ[a,b](X), wherea∈ B<s andb∈ B≥s. At first glance,
in order to findA, we have to consider for each elementa∈ B<s all possible candidates
b∈ B≥s with a� b. In the following, we show that the list of candidates can be reduced
considerably.
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Proposition 9. Let P= Q[a,b](X) be a polynomial such that b� g andρ(a)< s≤ ρ(b).
Then for each

b0 ∈ Min{x : a� x� b, ρ(x)≥ s}

there exists a disjoint decomposition of P

P= P0+
r

∑
i=1

Pi , (∗)

such that P0 is the polynomial induced by the interval[a,b0], Pi is the polynomial induced
by the interval[ai,bi], br = b andρ(bi)≥ s for all i = 1, . . . , r.

Proof. We see that

P= (Xa1
1 + ...+Xb1

1 ) · · ·(Xan
n + ...+Xbn

n )

= Xa(1+ ...+Xb1−a1
1 ) · · ·(1+ ...+Xbn−an

n ),

so we may assume for simplicity and without loss of generality thata = (0, ...,0) ∈ N
n.

Then we have

P= (1+X1+ ...+Xb1
1 ) · · ·(1+Xn+ ...+Xbn

n )

= P0+
r

∑
i=1

Pi,

where we set
P0 = (1+ ...+X

b0
1

1 ) · · ·(1+ ...+Xb0
n

n )

and

Pi = (1+ ...+X
b0

1
1 ) · · ·(1+ ...+X

b0
i−1

i−1 )(X
b0

i +1
i + ...+Xbi

i )(1+ ...+Xbi+1
i+1 ) · · ·(1+ ...+Xbn

n )

for all i = 1, . . . , r (in caseb0
i = bi , the termPi is simply 0). ThusPi is the polynomial

induced by the interval[ai ,bi], whereai = (0, . . . ,0,b0
i +1,0, . . . ,0) andbi is given by

bi
j =

{
b0

j , if j < i,
b j , otherwise.

Sinceb0 � bi � b� g, we get thatρ(bi)≥ ρ(b0)≥ s, as needed.
We claim that(∗) is a partition of[0,b]. To prove this, it is enough to show Mon(Pi)∩

Mon(Pj) 6= /0 if and only if i = j and that the equalityP= P0+
r
∑

i=1
Pi holds.

For the equality, we will show that Mon(P) = Mon(P0)∪
r⋃

i=1
Mon(Pi). We have only to

show that Mon(P)⊂ Mon(P0)∪
r⋃

i=1
Mon(Pi) because the other equality is obvious.

Let u∈Mon(P), u=Xc. If c1> b0
1, thenu∈Mon(P1), otherwise for sureu /∈Mon(P1).

If c1 ≤ b0
1, we check whetherc2 > b0

2. If so, thenu∈ Mon(P2), otherwiseu /∈ Mon(P1)∪

Mon(P2). So, after checking all the variables, we find that either (a): if c j ≤ b0
j for all

j = 1, . . . , i −1 andci > b0
i , thenu∈ Mon(Pi); or (b): if ci ≤ b0

i for all i = 1, . . . ,n, then
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u∈ Mon(P0). It is also clear from this description that Mon(Pi)∩Mon(Pj) 6= /0 if and only
if i = j . �

Remark 10. In fact, in Proposition 9, we have thatρ(b0) = s. Indeed, we may again
assume thata = (0, ...,0) ∈ N

n. Then, if ρ(b0) = t > s, we may suppose thatb0
i = gi

for all i = 1, . . . , t. We havea < b′ = (b0
1, ...,b

0
s,0, ...,0) < b0, ρ(b′) = s and we get a

contradiction with the minimality ofb0.

Definition 11. Let a∈ B<s. We define the set

B=s(a) := {x∈ B≥s : a� x, ρ(x) = s}.

Theorem 12. AssumehdepthM ≥ s. Then there exists a Hilbert partition

P : HM(X)�g =
r

∑
i=1

Q[ai,bi ](X)

such that ifρ(ai)< s, then bi ∈ B=s(a).

Proof. Since hdepthM ≥ s, we have a partition onHM(X)�g,

P : HM(X)�g =
r

∑
i=1

Q[ai,bi ](X),

with ρ(bi) ≥ s. If there existsa j such thatρ(a j) < s andb j is not minimal, we apply
Proposition 9 to the polynomial induced by the interval[a j ,b j ] and use Remark 10 to
complete the proof. �

Example 13. Let R= K[X1,X2] with deg(X1) = (1,0) and deg(X2) = (0,1). Let M =
R⊕ (X1,X2)R. Then we may chooseg= (1,1) and

HM(X1,X2)�(1,1) = 1+2X1+2X2+2X1X2.

In order to use Corollary 7 to get that hdepthM ≥ 1 (for details see [16, Example 3.5]),
one has to compute a full Hilbert partition, for example the following

P1 :(1+X1+X2+X1X2)+(X1+X1X2)+X2.

In this cases= 1, so we have thatB<1 = {(0,0)} and B=1((0,0)) = {(1,0),(0,1)}.
By Theorem 12 we only have to cover(0,0) with an interval ending in an element of
B=1((0,0)). The computation is simply reduced at obtaining one of the following two
possible covers:

C1 : (1+X1), C2 : (1+X2).

4. AN ALGORITHM FOR COMPUTING THE MULTIGRADED HILBERT DEPTH OF A

MODULE

In this section we describe a recursive algorithm for computing the multigraded Hilbert
depth of a module. The algorithm is presented in the form of a function that will be called
recursively, thus realizing a backtracking search for a Hilbert partition of a given hdepth.
The algorithm may also be used directly for computing Stanley depth in the case of a
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factor of monomial ideal. See also [22, Algorithm 1], for a non-recursive algorithm for
computing Stanley depth in the case of a factor of a monomial ideal.

Data: g∈ N
n, s∈ N and a polynomialP(X) = HM(X)�g ∈ N[X1, ...,Xn]

Result: true if hdepthM ≥ s
Boolean CheckHilbertDepth(g,s,P);
begin

1 if P /∈ N[X1, ...,Xn] then return false;
2 Container E =FindElementsToCover(g,s,P);
3 if size(E)= 0 then return true;
4 else
5 for i=begin(E) to i=end(E) do
6 Container C[i]:=FindPossibleCovers(g,s,P,E[i]);
7 if size(C[i])= 0 then return false;
8 for j=begin(C[i]) to j=end(C[i]) do
9 Polynomial P̃(X) = P(X)−Q[E[i],C[i][ j]](X);

10 if CheckHilbertDepth (g,s,̃P)=true then return true;
end

end
11 return false;

end
end

Algorithm 1: Function that checks if hdepth≥ s recursively
At each call, the functionCheckHilbertDepth checks one interval of type[a,b] to

see if the polynomial induced by it may be part of a suited Hilbert partition. All possible
intervals are checked in a backtracking search. A node of thesearching tree is represented
by a polynomialP. Below we describe the key steps.

• line 1. If the polynomialP does not have natural numbers as coefficients (positive
coefficients), then it is not a sum of polynomials induced by intervals and is not a
node in the searching tree.

• line 2. In this stepB<s is computed and stored in a container. The container should
provide some basic access functions (for example, we want toquery its size).

• line 3. If B<s is empty, then we are done. We have reached a good leaf of the
searching tree.

• line 4,5,8. We generate and investigate all the children of the nodeP.
• line 5,6. In this loop, for eacha∈ B<s, we compute the setB=s(a) (here we use

Theorem 12).
• line 7. If B=s(a) is empty, we are in a bad node, and we should go back to the

previous node.
• line 9,10. The child̃P is generated in line 9 and investigated in the recursive call

at line 10.
• line 11. If we have reached this point, then our search in thisnode has failed, and

we should go back to the previous node. If we are at the root, then hdepth< s.
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We conclude this section with a remark on the functionsFindElementsToCoverand
FindPossibleCovers. At each node, they should compute the setsB<s andB=s(a) for all
a∈ B<s. For a practical implementation of the algorithm, it is quite inefficient to compute
them at each node. It is likely better to adjust them for the newly generated child̃P and
pass them down as input data for main recursive functionCheckHilbertDepth.

5. AN ALGORITHM FOR COMPUTING THESTANLEY DEPTH IN A SPECIAL CASE

In this section, we further assume that dimK Ma ≤ 1 for all a∈Z
n, and we modify Algo-

rithm 1 for computing the Stanley depth in this case. The algorithm checks supplementary
whether the Hilbert partition computed by Algorithm 1 induces a Stanley decomposition.

Data: g∈ N
n, s∈ N and a polynomialP(X) = HM(X)�g ∈ N[X1, ...,Xn]

Result: true if sdepthM ≥ s
Boolean CheckStanleyDepth(g,s,P);
begin

1 if P /∈ N[X1, ...,Xn] then return false;
Container E =FindElementsToCover(g,s,P);
if size(E)= 0 then return true;
else

for i=begin(E) to i=end(E) do
Container C[i]:=FindPossibleCovers(g,s,P,E[i]);
if size(C[i])= 0 then return false;
for j=begin(C[i]) to j=end(C[i]) do

2 while a∈ G [E(i),C[i][ j]] do
3 if K[ZC[i][ j ]]∩AnnMa 6= 0 then return false;

end
Polynomial P̃(X) = P(X)−Q[E[i],C[i][ j]](X);
if CheckStanleyDepth(g,s,̃P)=true then return true;

end
end
return false;

end
end

Algorithm 2: Function that checks if sdepth≥ s recursively

The only difference from Algorithm 1 appears at lines 2, 3. Here we check whether
the Hilbert decomposition that we found is a Stanley decomposition. For this we use [16,
Proposition 4.4]. The only thing to prove is that the conditions at lines 1, 3 ensure thatP
is inducing a Stanley decomposition. Assume that for alla∈ G [E(i),C[i][ j]] we have that
K[ZC[i][ j ]]∩AnnMa = 0. Let 0 6= ma ∈ Ma. Since dimK Ma = 1 we have that Annma =
AnnMa, soK[ZC[i][ j ]]∩Annma = 0. ThenmaK[ZC[i][ j ]] is a Stanley space. Finally, since
all the coefficients ofP are≤ 1, the condition at line 1 assures that they do not overlap.

We end with a vague remark. It is easy to see that for two intervals

[ai,bi ]∩ [a j ,b j ] 6= /0⇐⇒ ai ∨a j < bi ∧b j .
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Since in this particular case the intervals do not overlap, for a practical implementation
of the algorithm one may take advantage of this fact by savingthe intervals and replacing
the test needed at line 1.

6. COMPUTATIONAL RESULTS

In this section, we present the results of our experiments with an implementation of
the Algorithm 1 in the computer algebra system CoCoA [11]. This implementation (as
well as some test examples) is available online, see [17]. The experiments were run on an
Apple Mac Pro with a processor running at 3 Ghz.

Encouraged by the results obtained in [20], we have focused on obtaining a complete
answer to Problems 2 and 3.

The following example in dimension 4 shows that the answer toProblem 2 isNo.

Example 14. Let n = 4, M = R2 andN = m, wherem⊂ R is the maximal ideal. It is
known that Min{sdepth(M),sdepth(N)} = 2. The Hilbert partitionP1 presented below
shows that hdepth(M⊕N) = 3.

P1 :(1+X1+X2+X3+X1X2+X1X3+X2X3+X1X2X3)+

(1+X1+X2+X4+X1X2+X1X4+X2X4+X1X2X4)+

(X1+X1X3+X1X4+X1X3X4)+(X2+X1X2+X2X3+X1X2X3)+

(X3+X1X3+X3X4+X1X3X4)+(X3+X2X3+X3X4+X2X3X4)+

(X4+X1X4+X2X4+X1X2X4)+(X4+X2X4+X3X4+X2X3X4)+

monomials of degree≥ 3.

The Hilbert partitionP1 induces a Hilbert decomposition, which in turn induces the
Stanley decomposition

D(P1) :(1,0,0)K[X1,X2,X3]⊕ (0,1,0)K[X1,X2,X4]⊕

(0,0,X1)K[X1,X3,X4]⊕ (0,0,X2)K[X1,X2,X3]⊕

(0,X3,X3)K[X1,X3,X4]⊕ (0,X3,0)K[X2,X3,X4]⊕

(X4,0,X4)K[X1,X2,X4]⊕ (X4,0,0)K[X2,X3,X4]⊕

(0,X1X2X3,0)K[X1,X2,X3]⊕ (X1X3X4,0,0)K[X1,X3,X4]⊕

(0,0,X1X2X4)K[X1,X2,X4]⊕ (0,0,X2X3X4)K[X2,X3,X4]⊕

(X1X2X3X4,0,0)K[X1,X2,X3,X4]⊕ (0,X1X2X3X4,0)K[X1,X2,X3,X4]⊕

(0,0,X1X2X3X4)K[X1,X2,X3,X4].

It is clear that the multigraded Hilbert series ofM ⊕N coincide with the one ofD(P1).
ThatD(P1) is indeed a Stanley decomposition follows once we have checked that the
sums

(0,0,X1)K[X1,X3,X4]+(0,0,X2)K[X1,X2,X3]+

(0,X3,X3)K[X1,X3,X4]+(0,X3,0)K[X2,X3,X4]
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and

(0,0,X1)K[X1,X3,X4]+(X4,0,X4)K[X1,X2,X4]+

(X4,0,0)K[X2,X3,X4]+(0,0,X1X2X4)K[X1,X2,X4]

are direct. It is easy to see that sdepth(M⊕N) ≤ 3, since it is not a free module, or by
using the results of [20]. We conclude that

3= sdepth(M⊕N) = hdepth(M⊕N)> Min{sdepth(M),sdepth(N)}= 2.

Remark 15. The computation time obtained with the experiment library depends on the
input order of the coefficients ofHM(X)�g, and for each coefficient, on the order of the
elements in the list of possible covers. This is why we provide two implementations using
different orders (see [17]). The computation time for example 14 with the implementation
HdepthLib is 11805.446 seconds and with the implementationHdepthLib2 is 2760.213
seconds. Depending on the order, we also obtain different Hilbert partitions for example
14, an alternative Hilbert partition is the following:

P′
1 :(1+X1+X2+X3+X1X2+X1X3+X2X3+X1X2X3)+

(1+X1+X2+X3+X1X2+X1X3+X2X3+X1X2X3)+

(X1+X1X2+X1X4+X1X2X4)+(X2+X2X3+X2X4+X2X3X4)+

(X3+X1X3+X3X4+X1X3X4)+(X4+X2X4+X3X4+X2X3X4)+

(X4+X1X4+X2X4+X1X2X4)+(X4+X1X4+X3X4+X1X3X4)+

monomials of degree≥ 3.

The following example in dimension 6 shows that the answer toProblem 3 isNo.

Example 16. Considern= 6 andI = m, wherem⊂ R is the maximal ideal. It is known
that sdepth(I) = hdepth(I) = 3 and we show that sdepth(R⊕ I) = hdepth(R⊕ I) = 4.
Remark that, while it is not as easy to see as above, we have

sdepth(R⊕ I)≤ hdepth(R⊕ I)≤ hdepth1(R⊕ I) = 4

by [20] (where hdepth1(R⊕ I) is the standard graded Hilbert depth). The Hilbert partition
P2 presented below shows that hdepth(R⊕ I) = 4.

P2 :(1+X1+X2+X3+X4+X1X2+X1X3+X1X4+X2X3+X2X4+X3X4+X1X2X3+

X1X2X4+X1X3X4+X2X3X4+X1X2X3X4)+

(X1+X1X2+X1X5+X1X6+X1X2X5+X1X2X6+X1X5X6+X1X2X5X6)+

(X2+X2X3+X2X5+X2X6+X2X3X5+X2X3X6+X2X5X6+X2X3X5X6)+

(X3+X1X3+X3X4+X3X5+X1X3X4+X1X3X5+X3X4X5+X1X3X4X5)+

(X4+X1X4+X2X4+X4X6+X1X2X4+X1X4X6+X2X4X6+X1X2X4X6)+

(X5+X1X5+X2X5+X4X5+X1X2X5+X1X4X5+X2X4X5+X1X2X4X5)+

(X5+X3X5+X4X5+X5X6+X3X4X5+X3X5X6+X4X5X6+X3X4X5X6)+

(X6+X1X6+X2X6+X3X6+X1X2X6+X1X3X6+X2X3X6+X1X2X3X6)+
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(X6+X3X6+X4X6+X5X6+X3X4X6+X3X5X6+X4X5X6+X3X4X5X6)+

(X1X2X3+X1X2X3X4)+(X1X3X5+X1X3X4X5)+(X1X3X6+X1X2X3X6)+

(X1X4X6+X1X2X4X6)+(X1X4X5+X1X2X4X5)+(X1X5X6+X1X2X5X6)+

(X2X3X4+X2X3X4X5)+(X2X3X5+X2X3X5X6)+(X2X4X5+X2X4X5X6)+

(X2X4X6+X2X3X4X6)+(X2X5X6+X2X4X5X6)+(X3X4X6+X1X3X4X6)+

monomials of degree≥ 4.

The Hilbert partitionP2 induces a Hilbert decomposition, which in turn induces the
Stanley decompositionD(P2):

(X5,X5)K[X3,X4,X5,X6]⊕ (X6,X6)K[X1,X2,X3,X6]⊕

(1,0)K[X1,X2,X3,X4]⊕ (0,X1X2X3)K[X1,X2,X3,X4]⊕

(X5,0)K[X1,X2,X4,X5]⊕ (0,X1X4X5)K[X1,X2,X4,X5]⊕

(X6,0)K[X3,X4,X5,X6]⊕ (0,X1X3X6)K[X1,X2,X3,X6]⊕

(X1X5X6,0)K[X1,X2,X5,X6]⊕ (0,X1)K[X1,X2,X5,X6]⊕

(X2X3X5,0)K[X2,X3,X5,X6]⊕ (0,X2)K[X2,X3,X5,X6]⊕

(X1X3X5,0)K[X1,X3,X4,X5]⊕ (0,X3)K[X1,X3,X4,X5]⊕

(X1X4X6,0)K[X1,X2,X4,X6]⊕ (0,X4)K[X1,X2,X4,X6]⊕

(X2X5X6,0)K[X2,X4,X5,X6]⊕ (0,X2X4X5)K[X2,X4,X5,X6]⊕

(X1X3X4X6,0)K[X1,X3,X4,X6]⊕ (0,X3X4X6)K[X1,X3,X4,X6]⊕

(X2X3X4X5,0)K[X2,X3,X4,X5]⊕ (0,X2X3X4)K[X2,X3,X4,X5]⊕

(X2X4X6,0)K[X2,X3,X4,X6]⊕ (0,X2X3X4X6)K[X2,X3,X4,X6]⊕

(X1X2X3X5,0)K[X1,X2,X3,X5]⊕ (0,X1X2X3X5)K[X1,X2,X3,X5]⊕

(X1X3X5X6,0)K[X1,X3,X5,X6]⊕ (0,X1X3X5X6)K[X1,X3,X5,X6]⊕

(X1X4X5X6,0)K[X1,X4,X5,X6]⊕ (0,X1X4X5X6)K[X1,X4,X5,X6]⊕

(X1X2X3X4X5,0)K[X1,X2,X3,X4,X5]⊕ (0,X1X2X3X4X5)K[X1,X2,X3,X4,X5]⊕

(X1X2X3X4X6,0)K[X1,X2,X3,X4,X6]⊕ (0,X1X2X3X4X6)K[X1,X2,X3,X4,X6]⊕

(X1X2X3X5X6,0)K[X1,X2,X3,X5,X6]⊕ (0,X1X2X3X5X6)K[X1,X2,X3,X5,X6]⊕

(X1X2X4X5X6,0)K[X1,X2,X4,X5,X6]⊕ (0,X1X2X4X5X6)K[X1,X2,X4,X5,X6]⊕

(X1X3X4X5X6,0)K[X1,X3,X4,X5,X6]⊕ (0,X1X3X4X5X6)K[X1,X3,X4,X5,X6]⊕

(X2X3X4X5X6,0)K[X2,X3,X4,X5,X6]⊕ (0,X2X3X4X5X6)K[X2,X3,X4,X5,X6]⊕

(X1X2X3X4X5X6,0)K[X1,X2,X3,X4,X5,X6]⊕ (0,X1X2X3X4X5X6)K[X1,X2,X3,X4,X5,X6].

It is clear that the multigraded Hilbert series ofR⊕ I coincide with the one ofD(P2).
ThatD(P2) is indeed a Stanley decomposition follows after checking that the sums

(X5,X5)K[X3,X4,X5,X6]+(X5,0)K[X1,X2,X4,X5]+(0,X3)K[X1,X3,X4,X5]
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and

(X6,X6)K[X1,X2,X3,X6]+(X6,0)K[X3,X4,X5,X6]+(0,X1)K[X1,X2,X5,X6]+

(0,X2)K[X2,X3,X5,X6]+(0,X1X3X6)K[X1,X2,X3,X6]

are direct. We conclude that

4= sdepth(R⊕ I) = hdepth(R⊕ I)> sdepth(I) = hdepth(I) = 3.

Finally, we have compared the CoCoA library for computing the Hilbert depth of a
module [17] with the CoCoA library for computing the Stanleydepth of an ideal or factor
of an ideal implemented by Rinaldo [22]. As test example, we have chosen the maximal
idealm (the same as in [22]). It is known (see for example [8]) that, if dimR= n, then

sdepthm= hdepthm=
⌈n

2

⌉
.

We conclude that, while the library for computing the Hilbert depth is somewhat faster,
the times are of similar magnitude.

dim Stanley depth library timeHilbert depth library time
5 0.044 s 0.033 s

6 0.141 s 0.09 s

7 0.6 s 0.363 s

8 2.1 s 0.835 s

9 10.312 s 5.985 s

10 37.924 s 13.418 s

11 200.552 s 152.772 s

12 758.455 s 307.714 s

TABLE 1. Computation times
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