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AN ALGORITHM FOR COMPUTING THE MULTIGRADED HILBERT
DEPTH OF A MODULE

BOGDAN ICHIM AND ANDREI ZAROJANU

ABSTRACT. A method for computing the multigraded Hilbert depth of adule was

presented in[16]. In this paper we improve the method andnreduce an effective
algorithm for performing the computations. In a particudase, the algorithm may also
be easily adapted for computing the Stanley depth of the teodéve further present
interesting examples which were found with the help of areexpental implementation
of the algorithm[[1F]. Thus, we completely solve severalropeoblems proposed by

Herzog in[12].

1. INTRODUCTION

In this paper we introduce an algorithm for computing thebklit depth of a finitely
generated multigraded modulM over the standard multigraded polynomial riRg=
K[Xq,...,Xn]. The algorithm is based on the method presented_in [16] antk sxtra
improvements. It may also be adapted for computing the 8yatdpth oM if dimk M <
1 for all a € Z". Further, we provide an experimental implementation ofatymrithm
[17] in CoCoA [11] and we use it to find interesting exampless @consequence, we
give complete answers to the following open problems pregdy Herzog in[[12]:

Problem 1. [12, Problem 1.66Find an algorithm to compute the Stanley depth for finitely
generated multigraded R-modules M witimk M, < 1 for all a € Z".

Problem 2. [12, Problem 1.67[.et M and N be finitely generated multigraded R-modules.
Then

sdepthiM & N) > Min{sdepttiM ), sdeptkiN)}.
Do we have equality?

Problem 3. [12, Text following Problem 1.67In the particular case that £ R is a
monomial ideal, doesdeptliR® 1) = sdepth hold?

The examples are contained in Secfibn 6. One may read anH tfero directly (it is
enough to see that each square—free monomial of the givenlesi present one and
only one time in the given decomposition). The reader irsteick only in the answers to
Problem$ P and3 may skip the rest of the paper and jump direc8ectior b.

In recent yearsStanley decompositionsf multigraded modules oveR have been
discussed intensively. These decompositions, introdbgeStanley in[[24], break the
moduleM into a direct sum ofStanley spaceseach being of typenSwherem is a
homogeneous element M, S= K[X;,,...,X,] is a polynomial subalgebra & and
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SNAnnm = 0. One says thatl hasStanley depth,ssdepttM = s, if one can find a
Stanley decomposition in whiah> sfor each polynomial subalgebra involved, but none
with sreplaced bys+ 1.

The computation of the Stanley depth is not an easy task, duelyrto its combina-
torial nature. A first step was done by Herzog, Vladoiu andrighia [15], where they
introduced a method for computing the Stanley depth of afagt a monomial ideal
which was later developed into an effective algorithm bydRio in [22]. Some remark-
able results in the study of the Stanley depth in the mulligdecase were also presented

by Apel (seel[l],[[2]), Herzog et al. (sée [13], [14]) and Pspeet al. (seé [3], [21]).

Hilbert series are the most important numerical invariafténitely generated graded
and multigraded modules ovRand they form the bridge from commutative algebra to its
combinatorial applications (we refer here to classicallts®f Hilbert, Serre, Ehrhart and
Stanley, sed [4]). A new type of decompositions for multitgeh moduledvl depending
only on the Hilbert series dfl was introduced by Bruns, Uliczka and Krattenthaler in
[8] and calledHilbert decompositions They are a weaker type of decompositions not
requiring the summands to be submoduled/ofbut only vector subspaces isomorphic
to polynomial subrings. The notion d¢filbert depthhdeptiM is defined accordingly.
Several results concerning both the graded and multigredsels were presented in [9],
[19] and [25]. All of them are based on both combinatorial atgebraic techniques.
Algorithms for computing the graded Hilbert depth of a madwlere introduced first in
[20], then in a more complex setup in [10], while a method famputing the multigraded
Hilbert depth of a module was presented.in/ [16].

The paper is organized as follows. In Sectidn 2 we recall sogsalts concerning
Hilbert depth that will be used in this paper.

Sectior B is devoted to improve the method presentéd in L& &tricting as much as
possible the search for a suited Hilbert decomposition.oféra[12 shows the existence
of upper—discrete Hilbert partitions of degreéor hdeptiM > s. We conclude that for
the effective computation of the Hilbert depth it is bettercbnsider only this kind of
partitions. The result generalize both[[22, Lemma 3.4] &8] Lemma 3.3] (notice that,
in the particular case of a factor of a monomial ideal, thdvéfil partitions coincide with
the poset partitions considered by Rinaldo and Shen).

In Sectiorl 4 we introduce @cursivealgorithm for computing the multigraded Hilbert
depth of a module (see Algorithnh 1). The algorithm is relatasy to implement because
of its recursive form and may also be used directly for conmguthe Stanley depth in the
case of a factor of a monomial ideal. Mon-recursivealgorithm for computing Stanley
depth in the case of a factor of a monomial ideal was introdurc§22, Algorithm 1]. For
computing the Stanley depth in the case of a factor of a moalddeal the computation
times of the two algorithms are similar (comparing our inmpémtation with the original
implementation of([22], see Sectibh 6).

Hilbert decompositions are intimately related to Stanlegaimpositions: All Stanley
decompositions are Hilbert decompositions; moreover]atier are prerequisites to the
existence of Stanley decompositions. In Seckibn 5 we asshatalim M, < 1 for all
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a € Z" and we show that Algorithril 1 may be easily modified for compuitstanley
depth in this case (see Algoritirh 2). This solves complefedblenil.

In Sectior .6 we present the result of several computations edth the algorithm in-
troduced in Sectionl4. We have experimented with an impléatiem of the algorithm in
CoCoA and we have found an example in dimension 4 which shbatsthe answer to
Probleni2 ifNo, then an example in dimension 6 which shows that even theartswthe
more particular case considered in Problém 8asA nice theorem of J. Uliczka [25] ar-
ranged in a quick algorithm by A. Popesculini[20] for compgtime graded Hilbert depth
and several computations from [20] has been the basis ofetlrels for these examples
(remark that, in general, the graded Hilbert depth is biglyan the multigraded Hilbert
depth, so we were lucky to find these examples in relativelydonension).

We end this section with a vague remark. In the particulae adsa normal affine
monoid, suited Hilbert decompositions have already beed wgth success in order to
design arguable the fastest available algorithms for caimguilbert series (seé [5]. [6]
and [7]). Itis an interesting open problem if it is possildaise suited Hilbert decompo-
sitions in order to design efficient algorithms for compgthiilbert series in other cases.

2. PREREQUISITES

Let R=K[Xy,..., Xy, with K a field, and letM be a finitely generated"-gradedR-
module. In[16] the authors presented a method for compukiagnultigraded Hilbert
depth ofM by considering Hilbert partitions of its Hilbert series. Véder the reader also
to [8] and [15] on which[[16] is based. In this section we réttaé method of([16].

A natural partial order o" is defined as follows: Givea,b € Z", we say thaa < b
if and only if g < bj fori = 1,...,n. Note thatZ" with this partial order is a distributive
lattice with meeta A b and joinaV b being the componentwise minimum and maximum,
respectively. We set the interval betweseandb to be

[a,b]={ceZ" |a=<c=Db}.

We first recall a definition and a result of Ezra Miller (see])X&at will be useful in
the sequel. Leg € N". The moduleM is said to beN"-graded ifMy = O for a ¢ N"
andM is said to bepositively g-determinei it is N"-graded and the multiplication map
-Xi : Ma — Ma4¢ is an isomorphism whenevey > gi. A characterization of positively
g-determined modules is given by the following.

Proposition 4. [18, Proposition 2.5The module M is positively g-determined if and only
if the multigraded Betti numbers of M satigly, = 12 =0unles0 <a=g.

Let
P R(-a)Pra — P R(—a)foa — M — 0,
aczn aczn
be a minimal multigraded free presentationvfand assume for simplicity, and without
loss of generality, that af§p , = 0 (anda fortiori all 31, = 0) if a ¢ N".

Letg e N" be such that the multigraded Betti number#/b$atisfy the equalitiefo a =
B1a =0 unless 0< a < g. Then, according to Propositidih 4, the modMeés positively
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g-determined. Let
Hu(X)= Y H(M,a)Xx?
acN"
be theHilbert seriesof M and consider the polynomial

Hm (X) =g := z H(M,a)X?2

0=axg
Fora,b € Z" such thata < b, we set
Qabl(X):= y X

a=c=b
and call it thepolynomial induced by the intervid, b).

Definition 5. We define eHilbert partition of the polynomiaHy (X)<g to be an expres-
sion

P HW(X)<g = ZQ[a‘, b'](X)

as a finite sum of polynomials induced by the interyalgh'].

Further, we need the following notations. For g we setZ, = {X| | a; = gj}. More-
over, we denote bi{[Z,] the subalgebra generated by the subset of the indetermifate
We also define the map

p:{0=xa=g; —N, p(a):=|zl,
and for 0<a=<b=<gwe set
“la,b] ={ce[ab]|cj=a,forall j e Nwith Xj € Z,}.
The main result of [16] (which generalizes the main resu[i8l) is:

Theorem 6. [16, Theorem 3.3 he following statements hold:
(1) LetP : Hu(X)<g = 51_; Q[@,b'](X) be a Hilbert partition of Hy(X)<4. Then

o M= @ Kzl-o) 8

i=1 ce¥[d,b]
is a Hilbert decomposition of M. Moreover,
hdeptt® () = min{p(b) : i=1,....r}.

(2) Let® be a Hilbert decomposition of M. Then there exists a Hilbartition 3 of
Hwm (X)<g such that

hdeptho () > hdeptHD.

In particular, hdepthM can be computed as the maximum of the numteeptho (3),
where3 runs over the finitely many Hilbert partitions ohHX)<g.

We see that, in order to effectively compute the Hilbert HegitM, we may use the
following corollary.
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Corollary 7. [16, Corollary 3.4]There exists a Hilbert partition
r

FiHu(X)<g = 3 QRLbIX)

of Hu (X)<g such thahdepttM = min{p(b') : i=1,...,r}.

3. RESTRICTING THE SEARCH FOR A GOOD PARTITION

As seen in the previous section, the Hilbert deptMafan be computed by considering
all Hilbert partitions ofHy (X)<g. In practice, the number of possible partitions can
easily become huge. For many practical purposes (for exargrlimplementation of the
method in a computer program), one needs to restrict (as amipbssible) the search for
a partition which will finally provide the right Hilbert dejpt In this section, we show that
an improvement is indeed possible. Our results are extgradime of the ideas presented
by Giancarlo Rinaldo in'[22] and Shen in|23] for computataf Stanley depth in the
case of a factor of a monomial ideal to the general case oftalfiragenerated module.

Since many results in this section depend on a numkel" such thatM is positively
g-determined, we shall assume tigas fixed and known from previous computations (for
example by using Propositignh 4).

Definition 8. Let B be a subset dfi" and 0< s < n. We define two subsets &
Bos:={aeB:p(a)<s} and Bss:={acB:p(a) >s},
wherep is the function defined in Sectidn 2.
Our purpose is to test whethlgrhas a partitior]d whose hdepth is equal 8 To reach

this goal seB = {a: X?is a monomial of the polynomiddy (X)<g} and consideB as
a disjoint union of the two sets defined above

B — B<5U BZS

It is easy to observe that if is a Hilbert partition ofHw (X)<g, then we may write
B =A+A, so that

A ZQ[ai,bi](X), A=Y Qlal,blj(x)

jel’

wherea € B_gandal € Bssforalli €1 andj € I’. Then®3 can further be refined to a
new partitiond’ = A+ A” with

A=Y Qal,al](X)

jer

whereal € B>sforall j €17,

Therefore, if a partitiof)3 with hdepth= s exists, then the paA of ¢ is composed of
polynomials induced by intervaf3[a, b](X), wherea € B_s andb € B-s. At first glance,
in order to findA, we have to consider for each elemerd B_s all possible candidates
b € B>s with a < b. In the following, we show that the list of candidates can dxauced
considerably.
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Proposition 9. Let P= Q[a, b](X) be a polynomial such thatf g andp(a) < s< p(b).
Then for each

b e Min{x : a<x=h, p(x) > s}
there exists a disjoint decomposition of P

r
P= Po+i;P|, ()
such that Ris the polynomial induced by the interal bY, R is the polynomial induced
by the intervala,b'], b =bandp(b') >sforalli=1,...,r.
Proof. We see that
P= (X34 4+ X)) (XE ...+ XD
= XL o A XA (L X080,

so we may assume for simplicity and without loss of gengrdfiata = (0, ...,0) € N".
Then we have

P = (14 Xa+ oo+ XPY) e (14 X oo+ XE)

r
=R+ ZF’u,
i=

bO bO
Po=(14...+X") - (14...+X")

where we set

and
0 0 0 ' '
R= (1+...+Xf1)-~-(1+...+Xib_'*11)(Xib' +1+...+><ib')(1+...+>qb+'+11)~-~(1+...+x,5’n)
foralli=1,....r (in ca_seb? = bj, the termP is simply 0). Thush is the polynomial
induced by the intervdh!, b'], wherea' = (0,...,0,b°+1,0,...,0) andb' is given by
b — b?, if j<i,
17| bj, otherwise

Sinceb® < b' < b =< g, we get thap(b') > p(b°) > s, as needed.
We claim that(x) is a partition of[0, b]. To prove this, it is enough to show M) N

r
Mon(P;j) # 0 if and only ifi = j and that the equalit = Py+ 5 R holds.
i=1
r
For the equality, we will show that M@R) = Mon(Py) U U Mon(R,). We have only to
i=1

r
show that MoifP) C Mon(Py) U |J Mon(R) because the other equality is obvious.
i—1

Letuc Mon(P), u=XC. If ¢c; > b, thenu € Mon(Py), otherwise for sure ¢ Mon(Py).
If ¢; < b, we check whether, > bJ. If so, thenu € Mon(P,), otherwiseu ¢ Mon(Py) U
Mon(P,). So, after checking all the variables, we find that either fag; < b(jJ for all

j=1,...,i—1andc > bio, thenu € Mon(R); or (b): if ¢ < bi0 foralli=1,...,n, then
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ue Mon(Ry). Itis also clear from this description that Mdh) N"Mon(P;) # 0 if and only
ifi=j. O
Remark 10. In fact, in Propositioi 19, we have thaib®) = s. Indeed, we may again
assume thaa = (0,...,0) € N". Then, ifp(b°) =t > s, we may suppose th:htJ = g
foralli=1,...,t. We havea< b’ = (b?,...,b%,0,...,0) < b° p(b') = sand we get a
contradiction with the minimality ob®.
Definition 11. Leta € B_s. We define the set

B_s(a) :={xeB>s:a=Xx, p(x) =s}.

Theorem 12. AssumédndeptiM > s. Then there exists a Hilbert partition
r . .
P Hw(X)<g = .ZQ[al’bl](X>
1=

such that ifo(a') < s, then be B_g(a).

Proof. Since hdeptM > s, we have a partition oHly (X)=<g,
r . .
(‘]3 : HM(X)jg = _ZQ[al7bl](X)7
1=

with p(b') > s. If there existsal such thatp(al) < sandb! is not minimal, we apply
Propositior P to the polynomial induced by the interfall b'] and use Remark10 to
complete the proof. O

Example 13. Let R = K[Xg, Xp] with degX;) = (1,0) and degXy) = (0,1). LetM =
R® (X1,X2)R. Then we may choosg= (1,1) and

Hm (X]_, XZ)j(Ll) = 14 2X1 + 2X5 + 2X1 X5.

In order to use Corollarly]7 to get that hdepth> 1 (for details se€ [16, Example 3.5]),
one has to compute a full Hilbert partition, for example tbkoiving

P (14 X1+ KXo+ X1 X2) + (X1 + X1 X2) + Xo.

In this cases = 1, so we have thaB_; = {(0,0)} and B_1((0,0)) = {(1,0),(0,1)}.
By TheorenTIR we only have to covéd,0) with an interval ending in an element of
B_1((0,0)). The computation is simply reduced at obtaining one of thieong two
possible covers:

€1 (1+X), €:(1+X2).

4. AN ALGORITHM FOR COMPUTING THE MULTIGRADEDHILBERT DEPTH OF A
MODULE

In this section we describe a recursive algorithm for conmguthe multigraded Hilbert
depth of a module. The algorithm is presented in the form ahation that will be called
recursively, thus realizing a backtracking search for &e&fi partition of a given hdepth.
The algorithm may also be used directly for computing Stanlepth in the case of a
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factor of monomial ideal. See aldo [22, Algorithm 1], for anA@cursive algorithm for
computing Stanley depth in the case of a factor of a monomésli

© 00 N OO o~ W N P

[
o

11

Data: g € N, se N and a polynomiaP(X) = Hu (X)<g € N[Xg, ..., Xy]
Result trueif hdepthM > s

Boolean CheckHilbertDepth (g,s,P);

begin

if P ¢ N[Xy,...,Xn] then return false

Container E =FindElementsToCover(g,s,P;

if size(E) = Othen return true;

else

for i=begin(E) to i=end(E) do

Container C[i]:=FindPossibleCovergg,s,P,Hi]);

if size(CJi])= Othen return false

for j=begin(CJi]) to j=end(CJi]) do
Polynomial P(X) = P(X) — Q[E[i],CIi][j]](X);
if CheckHilbertDepth (g,sP)=true then return true;

end

end

return false

end

end

Algorithm 1: Function that checks if hdepth srecursively

At each call, the functiorCheckHilbertDepth checks one interval of typg,b] to

see if the polynomial induced by it may be part of a suited éfillpartition. All possible
intervals are checked in a backtracking search. A node afgheching tree is represented
by a polynomialP. Below we describe the key steps.

e line 1. If the polynomiaP does not have natural numbers as coefficients (positive
coefficients), then it is not a sum of polynomials inducedrigiivals and is not a
node in the searching tree.

e line 2. In this steB_sis computed and stored in a container. The container should
provide some basic access functions (for example, we wanieoy its size).

e line 3. If B_s is empty, then we are done. We have reached a good leaf of the
searching tree.

e line 4,5,8. We generate and investigate all the childreheftodeP.

e line 5,6. In this loop, for each € B_s, we compute the s&_s(a) (here we use
TheoreniIP).

e line 7. If B_s(a) is empty, we are in a bad node, and we should go back to the
previous node.

e line 9,10. The chilcP is generated in line 9 and investigated in the recursive call
at line 10.

e line 11. If we have reached this point, then our search inrtb@e has failed, and
we should go back to the previous node. If we are at the roen tidepth< s.
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We conclude this section with a remark on the functibimglElementsToCoverand
FindPossibleCovers At each node, they should compute the &tsandB_s(a) for all
a € B_s. For a practical implementation of the algorithm, it is guitefficient to compute
them at each node. It is likely better to adjust them for thelpgenerated child® and
pass them down as input data for main recursive fund@ibaeckHilbertDepth.

5. AN ALGORITHM FOR COMPUTING THESTANLEY DEPTH IN A SPECIAL CASE

In this section, we further assume that gimM, < 1 for alla € Z", and we modify Algo-
rithm[d for computing the Stanley depth in this case. Therilgm checks supplementary
whether the Hilbert partition computed by Algoritfiin 1 inésa Stanley decomposition.

Data: g € N", se N and a polynomiaP(X) = Hu (X)<g € N[X1, ..., Xq]

Result trueif sdeptiM > s

Boolean CheckStanleyDepth(g,s,P;

begin
1 if P ¢ N[Xy,...,Xn] then return false
Container E =FindElementsToCover(g,s,P;
if size(E) = Othen return true;
else
for i=begin(E) to i=end(E) do
Container C[i|:=FindPossibleCovergg,s,P,Hi]);
if size(CJi])= Othen return false
for j=begin(CJi]) to j=end(C][i]) do
2 while ae€ ¢[E(i),C]i][j]] do
3 | if K[Zggiyj] NAnnMj, # 0 then return false
end
Polynomial P(X) = P(X) — Q[E[i],C[i][j]](X);
if CheckStanleyDepth(g,sP) =true then return true;

end
end
return false
end
end

Algorithm 2: Function that checks if sdepthsrecursively

The only difference from Algorithm 1 appears at lines 2, 3.red@e check whether
the Hilbert decomposition that we found is a Stanley decasitjpm. For this we useé [16,
Proposition 4.4]. The only thing to prove is that the cordis at lines 1, 3 ensure that
is inducing a Stanley decomposition. Assume that foa@al/[E(i),Cli][j]] we have that
K[Zcm[jﬂ NANNMg = 0. Let 0# my € Ma. Since ding Mg = 1 we have that Anm, =
AnnMa, soK[Zcjjj)] NAnNMg = 0. ThenmeK [Zcj ;] is a Stanley space. Finally, since
all the coefficients oP are< 1, the condition at line 1 assures that they do not overlap.

We end with a vague remark. It is easy to see that for two iatsrv

laj,bi] N[aj,bj] #0 <= a Vaj <bAb;j.
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Since in this particular case the intervals do not overlapafpractical implementation
of the algorithm one may take advantage of this fact by satriagntervals and replacing
the test needed at line 1.

6. COMPUTATIONAL RESULTS

In this section, we present the results of our experimentis am implementation of
the Algorithm[1 in the computer algebra system CoCpoA [11]isTimplementation (as
well as some test examples) is available online,[s€e [1@.eKperiments were run on an
Apple Mac Pro with a processor running at 3 Ghz.

Encouraged by the results obtainedlin/[20], we have focuseabtaining a complete
answer to Problenis 2 afd 3.
The following example in dimension 4 shows that the answé@radbleni2 isNo.

Example 14. Letn= 4, M = R? andN = m, wherem C R is the maximal ideal. It is
known that Min{sdeptiiM), sdeptiiN)} = 2. The Hilbert partitiorj3; presented below
shows that hdeptiv & N) = 3.

P (14 Xp 4+ Xo + X3+ X1 X + X1 X3+ Xo X3 + X1 XoX3)+
(14X 4 Xo 4 Xg + X1 X0 + X1 Xg + XoXg + X1 X0 X4) +
(X1 4 X1 X3 + X Xgq + X1 X3Xq) + (X2 + XX + XXz + X1 X2 X3) +
(X3 + X1 X3 + XaXg + X1 X3Xa) + (X3 + XoX3 + X3Xg + XoX3X4) +
(Xa+ X Xq + XoXq + X1 XoXg) + (Xg + XoXg + X3Xg + XoX3Xa) +
monomials of degreg 3.

The Hilbert partition)31 induces a Hilbert decomposition, which in turn induces the
Stanley decomposition

D(P1) :(1,0,0)K[Xg, X2, Xa] @ (0,1, 0)K[Xg, Xo, Xg]

(0,0,X1)K[X1, X3, Xa] @ (0,0, X2) K[X1, X2, X3]®
(0 X3,X3) [Xl,Xg,X4] &b (O, X3,0)K[X2,X3,X4]@
(X4,0,Xq)K[Xg, X2, X4] © (X4, 0,0)K[X2, X3, X4 ®
(0 X1 XoX3, )K[Xl,XZ,Xg] D (X1X3X4, 0, 0)K[X1,X3,X4]@
(0,0, X1 XoXa)K[X1, X2, Xa] & (0,0, XoX3Xa) K [X2, X3, Xa] B
(X1X2X3X4 0 O) [Xl,XZ,X3,X4] ) (O, X1X2X3X4,0)K[X1,X2,X3,X4]@
(0,0, X1 XoX3X4)K[X1, X2, X3, Xa].

It is clear that the multigraded Hilbert serieshf® N coincide with the one oD (%31).

That®(%B;) is indeed a Stanley decomposition follows once we have @tkthat the
sums

(0,0, X1)K[Xg, X3, X4] + (0,0, X2) KXy, X2, X3+
<07 X37 X3) K [X]_, x37 X4] + <07 X37 O) K [x27 X37 X4]
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and
(07 07 Xl) K [Xl7 X37 X4] + (X47 07 X4) K [XJ_, x27 X4] +
(Xa,0,0)K[X2, X3, Xa] 4 (0,0, X1 XoXa) K[X1, X2, Xa]

are direct. It is easy to see that sdéphs N) < 3, since it is not a free module, or by
using the results of [20]. We conclude that

3 = sdepthiM & N) = hdepthfM & N) > Min{sdepttiM), sdeptkiN)} = 2.

Remark 15. The computation time obtained with the experiment libragpehds on the
input order of the coefficients dfiy (X)~g, and for each coefficient, on the order of the
elements in the list of possible covers. This is why we previgo implementations using
different orders (se€[17]). The computation time for exbeiid with the implementation
HdepthLib is 11805.446 seconds and with the implementatidepthLib2 is 2760.213
seconds. Depending on the order, we also obtain differdbeHipartitions for example
[14, an alternative Hilbert partition is the following:

PB'1 1(14 Xg + Xo 4 X3+ X1 Xz + X1 Xz + Xo Xz + X1 XoX3) +
1+ X+ Xo+ Xz + Xg Xo + X1 X3 + XoX3+ X1X2X3> +
X1 4 X1 Xo + X Xq + X1 XoXq) + (X2 + XoXg + XoXg + XoX3Xg) +
X3+ X1 X3 + Xa3Xg + X1 X3Xa) + (X + XoXg + X3Xg + XoX3X4) +

Xa+ X1 Xa 4 XoXa + X1 XoXa) + (Xa + X1 Xa + X3Xa + X1 X3Xa) +
monomials of degree 3.

(
(
(
(

The following example in dimension 6 shows that the answéradbleni B isNo.

Example 16. Considem = 6 andl = m, wherem C R is the maximal ideal. It is known
that sdeptfl) = hdepttil) = 3 and we show that sdegfR& |) = hdeptiR& 1) = 4.
Remark that, while it is not as easy to see as above, we have

sdeptliR& 1) < hdeptfR& 1) < hdepth (Re 1) =4
by [20] (where hdepti{R®1) is the standard graded Hilbert depth). The Hilbert paritio
B2 presented below shows that hdegRke 1) = 4.
P2 :(14 Xq 4 KXo+ Xz + Xa + X1 X2 + X1 X3 + X1.Xa + Xo X3 + XoXa + X3Xa + X1 Xo X3+

X1 XoXg + X1 X3Xg 4 XoXaXg 4 X1 XoXa3Xa )+

(X1 + X1 Xo 4 X1 X5 + X1 Xg + X1 XoXs5 + X1 XoXe + X1 X5 X6 -+ X1 XoX5Xe) +-

(X2 + XXz 4 XoXs + X2 X5 + XoX3Xs + XoXaXe + XoX5Xe -+ XoX3X5Xe) +-

(X3 + X1 X3 + X3Xa + X3X5 + X1 X3Xa + X1 X3 X5 + X3XaXs5 + X1 X3X4Xs5)+
(Xa+ X1 Xa 4 XoXa + XaXg + X1 X2Xa + X1 X4 Xe + XoXaXe + X1X2X4Xs)
( )
( )
( )

_|_

Xg + X1 X5 + XoXg + X4X5 + X1 X0 X5 + X1 Xa X5 + Xo X4 Xg + X1 X X4X5) +
X5+ XaXs5 + X4 X5 + X5 X5 + X3XaX5 + XaX5Xe + XaXsXg + X3XaXs5X5)+
Xe + X1 X6 + XoXe + X3Xg + X1 Xo X6 + X1 X3Xp + XoX3Xe + X1 X2 X3X6 ) +
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(X6 + X3Xp + XaXg + X5Xp + X3Xa X5 + X3X5Xp + XaX5Xp + X3XaX5X5) +
(X1 XoX3 + X1 XoX3Xa) + (X1 X3X5 + X1 X3XaX5) 4 (X1 X3Xe + X1 XoX3X6)+
(X1 XgXp 4 X1 XX Xg) + (X1 Xg X5 + X1 XoX4X5) 4 (X1 X5Xg 4 X1 XoX5X6) +
(XoXa3Xa + XoX3XaXs5) 4 (XoX3Xs5 + XoX3X5Xe) 4 (XoXaX5 + XoXaX5Xe)+
(X2XqXp + XoX3XyXg) + (X2X5Xe + X2 XaXsXp) + (X3XaXp + X1 X3X4X5) +
monomials of degree 4.
The Hilbert partition’3; induces a Hilbert decomposition, which in turn induces the
Stanley decompositio® (B>):
Xs, X5)K [ X3, Xa, X5, Xe| & (X6, X6) K[ X1, X2, X3, X6] D
0)K[X1, X2, X3, Xa] © (0, Xy X2X3) K[ X1, X2, X3, X4| B
Xs, 0)K [X1, X2, Xa, Xs] © (0, X1 XaXs5) K [Xq, X2, X4, X5 D
X6, 0)K[X3, X4 Xs, Xe] @ (0, X1X3Xe) K [X1, X2, X3, X6] D
K[X1, X2, X5, Xe]®
0 X2)K] Xe]
0, X3)K] ]

KXz, X3, X5, X6|®

~— N N

(

(1,

(

(

(

( [

( K[X1 K{X1, X3, X4, Xs|®

( X1 Xa)K [X1, X2, X4, Xg]| D

( K[Xz,X4 Xs,xe] @ (0, X2XaXs5)K[X2, X4, X5, X6 B
(X1X3X4X6 0)K X1, X3, Xa, Xe] @ (0, XaXaX5) K [X1, X3, X4, Xe|©
(X2X3XgXs, 0)K X2, X3, X4, Xs5] & (0, XoX3Xa) K[ X2, X3, X4, X5] B
( [ )
( 0)

( ,0)

( ,0)

(

(

(

(

(

(

(

x
&
<%<
o

B (
(
@ (0,
(

[
XoXaXs, 0)K [X2, X3, Xa, Xe] ® (0, XoX3XaXe)K [X2, X3, X4, X6 ] D
K[X1, X2, X3, Xs] & (0, X1 XoX3X5)K [ X1, X2, X3, Xs5]®
K[X1, X3, X5, Xg] © (0, X1 X3X5X6) KXy, X3, Xs5, Xg] D
K[X1, X4, Xs5, Xe] © (0, X1 XqXsXe) K[X1, X4, Xs5, X6] D
K[X1, X2, X3, X4, X5] & (0, X1 X2X3XaXs5)K [X1, X2, X3, X4, X5] B
X1, X2, X3, X4, Xg| © (0, X1 X2X3XaXe) K [X1, X2, X3, X4, X6 D
X1, X2, X3, X5, Xg] © (0, X1X2X3X5X5) K [ X1, X2, X3, X5, Xg|©
X1, X2, X4, X5, Xg| © (0, X1X2XaXsXe) K [X1, X2, Xa, X5, X6 D
X1 X3Xq X5 X, 0)K[X1, X3, X4, X5, Xg| @ (0, X1 X3X4X5Xe) K[X1, X3, X4, X5, X6 | D
XoX3XaXsXe, 0)K [ X2, X3, X4, X5, Xg| ® (0, XoX3XaXsXe) K [ X2, X3, X4, X5, X6| D
X1 XoX3X4X5Xs, 0) K [X1, X2, X3, X4, X5, Xe] @ (0, X1 XoX3XaX5X5)K [X1, X2, X3, X4, X5, Xg]-
Itis clear that the multigraded Hilbert seriesRf> | coincide with the one oD (Pa2).
That®(*B>) is indeed a Stanley decomposition follows after checkirag the sums

(X57 X5) K [x37 X47 X57 Xﬁ] + (X57 O) K [x17 x27 X47 XS] + <07 X3) K [X].? X37 X47 X5]

[

[

[

0)

X1 XoX3X4Xs,0)K

X1 X2X3X5Xs,0)K

X1 X2X4X5X5,0)K
)
)

— o — o —
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and

(X6, X6)K[X1, X2, X3, Xg] 4 (X6, 0)K[X3, X4, X5, Xg] + (0, X1)K[X1, X2, X5, Xg]+-

(0, X2)K[X2, X3, X5, Xg] + (0, X1X3Xg) K [X1, X2, X3, Xg]

are direct. We conclude that

4 = sdepttiR® 1) = hdeptiiR@ ) > sdepttil ) = hdepttil ) = 3.

13

Finally, we have compared the CoCoA library for computing thilbert depth of a
module [17] with the CoCoA library for computing the Stantégpth of an ideal or factor
of an ideal implemented by Rinaldo [22]. As test example, aeehchosen the maximal

idealm (the same as in[22]). It is known (see for example [8]) tHadiin R = n, then

sdepthm = hdepthm = {gw .

We conclude that, while the library for computing the Hilbdepth is somewhat faster,
the times are of similar magnitude.

dim | Stanley depth library timeHilbert depth library time
5 0.044 s 0.033s

6 0.141s 0.09s

7 0.6s 0.363 s

8 2.1s 0.835s

9 10.312 5 5.985s
10 37.924 § 13.418 5
11 200.552 s 152.772 5
12 758.455 s 307.714 s

TABLE 1. Computation times
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