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Abstract

We give a new algorithm of slow continued fraction expansion related to any
real cubic number field as a 2-dimensional version of the Farey map. Using our
algorithm, we can find the generators of dual substitutions (so-called tiling substi-
tutions) for any stepped surface for any cubic direction.

1 Introduction

The main topics of this paper are

(i) to find a good algorithm of slow continued fraction expansion of dimension 2 by
which the expansion of ᾱ = (α1, α2) is always expected to be periodic for any Q-basis
¯̄α = (1, α1, α2) of an arbitrarily given real cubic number field K such that the unimodular
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matrix Per coming from a period of the expansion has the minimal polynomial of a Pisot
number as its characteristic polynomial,

and

(ii) to find a set of generators of dual substitutions for the stepped surface S ( ¯̄α) of

dimension 2 for any Q-basis ¯̄α of K and to give a finite description (or an effective con-
struction) in terms of six dual substitutions coming from the continued fraction expansion

obtained by our algorithms, see Section 3, 5 for notation.

Notice that by the symmetry of the lattice Zs, we may assume that α0, α1, α2 > 0
with α0 + α1 + α2 = 1.

The stepped surface S (¯̄α), ( ¯̄α = (α0, α1, . . . , αs)) was introduced as a s-dimensional
version of the sturmian word, cf. [Ito and Ohtsuki 93, Ito and Ohtsuki 94, Arnoux and Ito 01].

The stepped surface of dimension s = 2 is of special interest, since it is not only a geo-
metrical object related to an aperiodic tiling, but also it has a connection with number

theoretical problems related to simultaneous Diophantine approximations which are best
possible up to constant, cf.[Ito et al. 03]. If ¯̄α ∈ Ks+1 is a Q-basis of certain real al-

gebraic number field K of degree s + 1, there is a beautiful connection between the
stepped surface S (¯̄α) and the continued fraction expansion of ᾱ = (α1, α2, . . . , αs) ∈
Ks provided that the continued fraction is periodic related to the Jacobi-Perron al-
gorithm or the Brun algorithm (including the so-called modified Jacobi-Perron algo-

rithm as its 2-dimensional case). There appeared many papers concerning the construc-

tion of the stepped surface S ( ¯̄α) for ᾱ having a periodic continued fraction expan-
sion, cf. [Ito and Ohtsuki 93, Ito and Ohtsuki 94, Fujita et al. 00, Arnoux and Ito 01,

Arnoux et al. 02, Fernique 05, Berthé and Fernique 11].

On the other hand, it has been a difficult problem to construct even a part of

the stepped surface S ( ¯̄α) for some Q-basis ¯̄α of some real algebraic number field K,
since there have not been a good deterministic algorithm to get a periodic continued

fraction of ᾱ for s ≥ 2. In a series of papers ([Tamura 04, Tamura and Yasutomi 09,
Tamura and Yasutomi 10, Tamura and Yasutomi 12, Tamura and Yasutomi 11],

[Tamura and Yasutomi 12]) we made some good candidates of continued fraction algo-
rithms for 1 ≤ s ≤ 4, equipped with a value function v (see Section 2) by which the

algorithms become deterministic.

The properties/conditions of the matrix Per mentioned in (i), i.e., the unimodularity,

the Pisot property and the irreducibility are essential; in fact, under these conditions,

the stepped surface becomes finitely descriptive, cf. Theorem 5 in [Fernique 05] due to
T. Fernique.

Concerning our algorithm of continued fraction expansion of dimension s = 2, which
is expected to have the properties mentioned in (i) above, let us consider the case where
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s = 1 for a while. The algorithm ([0, 1] , T, ε) and its modified version are considered by
many authors (for example see [Ito 89, Ito and Yasutomi 90]), where the transformation

T on the interval [0, 1] is defined by

T (x) :=























x

1− x
if x ∈ I0 :=

[

0,
1

2

]

,

2x− 1

x
if x ∈ I1 :=

(

1

2
, 1

]

,

ε : [0, 1] → {0, 1} with x ∈ Iε(x). Let x = [0; k1, k2, . . .] be the simple continued fraction
expansion, and let F be the transformation on (0, 1] defined by F (x) = 1

x
−⌊ 1

x
⌋. Then, one

can see that T k1+k2 = F 2 (x) holds. In this sense, ([0, 1] , T, ε) can be considered as a kind

of slow continued fraction algorithm. ([0, 1] , T, ε) also has a connection with the Farey
partition. The famous Lagrange’s theorem says that, if we consider the restriction TK of

T on [0, 1] ∩K for a real quadratic number field K, then every element α ∈ [0, 1] ∩ K
becomes a periodic point of TK , i.e., there exists m 6= n ∈ Z≥0 such that Tm

K (α) =

T n
K (α). The expansion obtained by the slow continued fraction algorithm ([0, 1] , T, ε)

can be considered as an infinite word ε (x) ε (T (x)) ε (T 2 (x)) · · · over an alphabet {0, 1}.
Consequently, the generators of the dual substitutions on the stepped surface of dimension
1 (the sturmian word of dimension 1) consist of # {0, 1} = 2 primitive substitutions. We

can extend the algorithm ([0, 1] , T, ε) to certain multidimensional algorithms.

In Section 2, we define a new deterministic algorithms of slow (additive) continued

fraction of dimension 2 equipped with a value function v = vr (α, β, i, j). The resulting
expansion by our algorithm can be considered as an infinite word over an alphabet Ind

given by
Ind := {(i, j) | i, j ∈ {0, 1, 2} , i 6= j } ,

consequently the generators of the dual substitutions on the stepped surface of dimension

2 consist of #Ind = 6 primitive substitutions.

Theorem 2.2 says the additivity of our algorithms. Theorems 2.5, 2.6, 2.7 give some

admissibility conditions of the expansion obtained by our algorithms. Proposition 2.8
says the convergence of the continued fractions.

Theorem 2.9 gives infinitely many examples of periodic expansions obtained by one
of the algorithms.

In Section 3, we translate the expansion obtained by our algorithms into canonical
representations of continued fractions of dimension 2, cf. Theorem 3.2. We also give

reduction rules by which we can make acceleration of our continued fractions.

In Section 4, we made the periodicity test for one of our algorithms (r = 5/2), cf.

Table 4. We also gave an experiment, by using PC for pure cubic extensions K =
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Q

(

3
√
d
)

, 2 ≤ d ≤ 10000,
3
√
d /∈ Q, which supports Conjecture 7.1, that is a cubic

version of Lagrange’s theorem. We also checked that 18797 continued fraction expansions

obtained by our algorithm with r = 5/2 coming from the set N15 are periodic, and the
matrix Per always has the minimal polynomial of a Pisot number as its characteristic

polynomial. Such a Pisot property was supported by another independent experiment
for around 10000 continued fractions obtained by random generation of totally real cubic

number fields.

In Section 5, we give some experiments which describe the generating process of the

whole part of some stepped surfaces in terms of dual substitutions (or tiling substitutions)
related to some real cubic number field K (including both totally real fields and fields

having complex embeddings).

In Section 7, we give two conjectures. Under these two conjectures together with

Fernique’s result (Theorem 5 in [Fernique 05] mentioned above) we shall see that the
stepped surface S ( ¯̄α) becomes finitely descriptive by using only six dual substitutions

for any Q-basis ¯̄α of any given real cubic number field, see Conclusion 7.5.

2 A new algorithm

In what follows, K denotes arbitrarily chosen fixed real cubic number field unless other-
wise mentioned. We put

∆K :=

{

(α, β) ∈ K2

∣

∣

∣

∣

1, α, β are linearly independent over Q,
0 < α, β and α+ β < 1

}

.

We need a following lemma.

Lemma 2.1. Let p, q ∈ Z+, (p, q) = 1 and p 6≡ 0 (mod 3). Then,

|N(α)|
αp/q

=
|N(β)|
βp/q

implies α = β,

for all α, β > 0 such that α, β ∈ K\Q.

Proof. We suppose that
|N(α)|
αp/q

=
|N(β)|
βp/q

holds for α, β ∈ K with α, β /∈ Q and α, β > 0.

Let ζ = α/β. Then, we have ζp = |N(ζ)|q. Therefore, we see that N(ζ)p = |N(ζ)|3q.
Since N(ζ) is a rational number and p is not divisible by 3, we see |N(ζ)| = 1. Thus, we

have ζp = 1, which implies ζ = ±1. Since α, β > 0, ζ = 1.

We put

Ind := {(i, j)| i, j ∈ {0, 1, 2}, i 6= j}.
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We denote domains ∆ and △(i, j) for (i, j) ∈ Ind by

∆ := {(x, y) ∈ R2 | x, y ≥ 0, x+ y ≤ 1},
△(1, 2) := {(x, y) ∈ ∆ | x ≥ y},
△(2, 1) := {(x, y) ∈ ∆ | x ≤ y},
△(0, 1) := {(x, y) ∈ ∆ | 2x+ y − 1 ≤ 0},
△(1, 0) := {(x, y) ∈ ∆ | 2x+ y − 1 ≥ 0},
△(0, 2) := {(x, y) ∈ ∆ | x+ 2y − 1 ≤ 0},
△(2, 0) := {(x, y) ∈ ∆ | x+ 2y − 1 ≥ 0}

(see Figure 1).

Figure 1: The domains △ (i, j), (i, j) ∈ Ind.

For each (i, j) ∈ Ind, let us introduce the maps T(i,j) : △ (i, j) → ∆ as follows:

T(1,2)(x, y) :=

(

x− y

1 − y
,

y

1− y

)

,

T(2,1)(x, y) :=

(

x

1− x
,
y − x

1− x

)

,

T(0,1)(x, y) :=

(

x

1− x
,

y

1− x

)

,

T(1,0)(x, y) :=

(

2x+ y − 1

x+ y
,

y

x+ y

)

,

T(0,2)(x, y) :=

(

x

1− y
,

y

1− y

)

,

T(2,0)(x, y) :=

(

x

x+ y
,
x+ 2y − 1

x+ y

)

.

We define the value vr(α, β, i, j) for r ∈ R+, (α, β) ∈ ∆K and i, j ∈ {0, 1, 2} with
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i 6= j as follows:

vr(α, β, i, j) :=



































|αrβr|
|N(α)N(β)| if {i, j} = {1, 2},

|αr(1− α− β)r|
|N(α)N(1− α− β)| if {i, j} = {0, 1},

|βr(1− α− β)r|
|N(β)N(1− α− β)| , if {i, j} = {0, 2}.

In what follows, we suppose that r = p/q with p, q ∈ Z+, (p, q) = 1 and p 6≡ 0 mod 3 in

this paper.

It follows from Lemma 2.1 that the element (i0, j0) ∈ Ind is uniquely determined by

vr(α, β, i0, j0) = max{vr(α, β, i, j)}. We define ε(α, β) = εK(α, β) for (α, β) ∈ ∆K by

ε(α, β) :=







































(1, 2) if {i0, j0} = {1, 2} and (α, β) ∈ △(1, 2),

(2, 1) if {i0, j0} = {1, 2} and (α, β) ∈ △(2, 1),

(0, 1) if {i0, j0} = {0, 1} and (α, β) ∈ △(0, 1),

(1, 0) if {i0, j0} = {0, 1} and (α, β) ∈ △(1, 0),

(0, 2) if {i0, j0} = {0, 2} and (α, β) ∈ △(0, 2),

(2, 0) if {i0, j0} = {0, 2} and (α, β) ∈ △(2, 0).

Notice that ε(α, β) is well-defined since 1, α, β is linearly independent over Q. We define

the transformation T = TK = TK,r on ∆K by

T (α, β) := T(i0,j0)(α, β) if ε(α, β) = (i0, j0).

Thus, we have seen that an algorithm (∆K , T, ε) can be defined. We put

A(1,2) :=





1 0 1
0 1 1
0 0 1



 , A(2,1) :=





1 1 0
0 1 0
0 1 1



 , (1)

A(0,1) :=





1 1 0
0 1 0
0 0 1



 , A(1,0) :=





2 −1 −1
1 0 −1
0 0 1



 , (2)

A(0,2) :=





1 0 1
0 1 0
0 0 1



 , A(2,0) :=





2 −1 −1
0 1 0
1 −1 0



 . (3)

For n ∈ Z≥0 we define (αn, βn) = T n(α, β). For n ∈ Z>0 we define

Mn(α, β) =





p′′n(α, β) p′n(α, β) pn(α, β)
q′′n(α, β) q′n(α, β) qn(α, β)
r′′n(α, β) r′n(α, β) rn(α, β)



 := Aε(α0,β0) · · ·Aε(αn−1,βn−1)S, (4)
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where

S :=





1 1 1
0 1 0
0 0 1



 .

Then, we have following Theorem 2.2.

Theorem 2.2. For (α, β) ∈ ∆K and n ∈ Z≥0

ε(αn, βn) = (1, 2) ⇒











(pn+1, qn+1, rn+1) = (pn, qn, rn) + (p′n, q
′
n, r

′
n),

(p′n+1, q
′
n+1, r

′
n+1) = (p′n, q

′
n, r

′
n),

(p′′n+1, q
′′
n+1, r

′′
n+1) = (p′′n, q

′′
n, r

′′
n),

(5)

ε(αn, βn) = (2, 1) ⇒











(pn+1, qn+1, rn+1) = (pn, qn, rn),

(p′n+1, q
′
n+1, r

′
n+1) = (p′n, q

′
n, r

′
n) + (pn, qn, rn),

(p′′n+1, q
′′
n+1, r

′′
n+1) = (p′′n, q

′′
n, r

′′
n),

(6)

ε(αn, βn) = (0, 1) ⇒











(pn+1, qn+1, rn+1) = (pn, qn, rn),

(p′n+1, q
′
n+1, r

′
n+1) = (p′n, q

′
n, r

′
n) + (p′′n, q

′′
n, r

′′
n),

(p′′n+1, q
′′
n+1, r

′′
n+1) = (p′′n, q

′′
n, r

′′
n),

(7)

ε(αn, βn) = (1, 0) ⇒











(pn+1, qn+1, rn+1) = (pn, qn, rn),

(p′n+1, q
′
n+1, r

′
n+1) = (p′n, q

′
n, r

′
n),

(p′′n+1, q
′′
n+1, r

′′
n+1) = (p′′n, q

′′
n, r

′′
n) + (p′n, q

′
n, r

′
n),

(8)

ε(αn, βn) = (0, 2) ⇒











(pn+1, qn+1, rn+1) = (pn, qn, rn) + (p′′n, q
′′
n, r

′′
n),

(p′n+1, q
′
n+1, r

′
n+1) = (p′n, q

′
n, r

′
n),

(p′′n+1, q
′′
n+1, r

′′
n+1) = (p′′n, q

′′
n, r

′′
n),

(9)

ε(αn, βn) = (2, 0) ⇒











(pn+1, qn+1, rn+1) = (pn, qn, rn),

(p′n+1, q
′
n+1, r

′
n+1) = (p′n, q

′
n, r

′
n),

(p′′n+1, q
′′
n+1, r

′′
n+1) = (p′′n, q

′′
n, r

′′
n) + (pn, qn, rn).

(10)

Proof. Let ε(αn, βn) = (1, 2). Then, we get




p′′n+1(α, β) p′n+1(α, β) pn+1(α, β)
q′′n+1(α, β) q′n+1(α, β) qn+1(α, β)
r′′n+1(α, β) r′n+1(α, β) rn+1(α, β)





= Aε(α0,β0) . . . Aε(αn,βn)S = Aε(α0,β0) . . . Aε(αn−1,βn−1)





1 1 2
0 1 1
0 0 1





=





p′′n(α, β) p′n(α, β) pn(α, β) + p′n(α, β)
q′′n(α, β) q′n(α, β) qn(α, β) + q′n(α, β)
r′′n(α, β) r′n(α, β) rn(α, β) + r′n(α, β)



 .
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Thus, we have (5). We have (6)-(9) in the similar manner.

We shall give some theorems concerning matrices A(i,j). We need some definitions.
Let P2 (R) be the projective space of dimension 2 over R, i.e.,

P2 (R) =
(

R3 \
{¯̄0
})

/ ∼,

where ∼ is an equivalence relation defined by

¯̄x ∼ ¯̄y
(

¯̄x, ¯̄y ∈ R3 \
{¯̄0
})

⇔ 0 6= ∃c ∈ R such that ¯̄x = c¯̄y.

We mean by f : X− → Y a ”map” from a set X to a set Y with some exceptional

elements x ∈ X for which the value f(x) is not defined. For a matrix A ∈ M3 (R) (which
denotes the set of 3× 3 matrices of real components), a map

Aproj : P2 (R)− → P2 (R)

can be defined by

Aproj (κ (¯̄x)) := κA (¯̄x) ,

where κ (¯̄x) := {c¯̄x | 0 6= c ∈ R} ∈ P2 (R). Notice that the map Aproj is well-defined
and

(AB)proj = AprojBproj (11)

holds for A,B ∈ M3 (R). We define two maps π : P2 (R)− → R2 and ι : R2 → R3 by

π (κ (¯̄x)) :=
1

x(0)

(

x(1)

x(2)

)

for ¯̄x = t
(

x(0), x(1), x(2)
)

∈ R3,

ι (x̄) := t(1, x(1), x(2)) for x̄ = (x(1), x(2)) ∈ R2.

Then, the linear fractional map Afrac : R2− → R2 (A ∈ M3 (R)) can be defined by

Afrac (x̄) := πAprojκι (x̄) .

Notice that this map is also well-defined and the diagram (see Figure 2) commutes.

π

π

κι

κι

P2 (R)

P2 (R)

R2

R2

Aproj Afrac

Figure 2: The commutative diagram with respect to Aproj and Afrac.

Hence, in view of (11), we get the following.
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Lemma 2.3.

(AB)frac = AfracBfrac (A,B ∈ M3 (R)) .

We easily see following Theorem 2.4.

Theorem 2.4. For each (i, j) ∈ Ind, A
frac
(i,j) ◦ T(i,j) (resp. T(i,j) ◦ A

frac
(i,j) ) is an identity

map on △(i, j) (resp., ∆).

For each (α, β) ∈ ∆K and n ∈ Z≥0 we define δn(α, β) by the set of all inner points in

a triangle with the edge points (qn/pn, rn/pn), (q
′
n/p

′
n, r

′
n/p

′
n) and (q′′n/p

′′
n, r

′′
n/p

′′
n). From

Lemma 2.3 and Theorem 2.4 we have following:

Theorem 2.5. Let (α, β) ∈ ∆K. For each n ∈ Z≥0, (α, β) ∈ δn(α, β) holds.

The following theorem describes an admissibility of the sequence {ε(αn, βn)}n=0,1,...

obtained by the algorithm (∆K , T, ε).

Theorem 2.6. Let (α, β) = (α0, β0) and n ∈ Z≥0. Then, both

ε(αn+1, βn+1) 6= (i′, θ(ε(αn, βn)))

and

ε(αn+1, βn+1) 6= (θ(ε(αn, βn)), i
′)

hold, where ε(αn, βn) = (i′, j′) and θ(i, j) := k ∈ {0, 1, 2} with k 6= i and k 6= j, so that

there are 12 forbidden words ε(αn, βn)ε(αn+1, βn+1) (see Table 1).

Table 1: The forbidden words of length 2.

ε(αn, βn) ε(αn+1, βn+1)
(1, 2) (0, 1), (1, 0)
(2, 1) (0, 2), (2, 0)
(0, 1) (0, 2), (2, 0)
(1, 0) (1, 2), (2, 1)
(0, 2) (0, 1), (1, 0)
(2, 0) (1, 2), (2, 1)

Proof. First, we suppose that ε(αn, βn) = (2, 1). Let γn = 1−αn−βn. From the definition
of the value function, we have

|αr
nβ

r
n|

|N (αn)N (βn)|
>

|αr
nγ

r
n|

|N (αn)N (γn)|
,

|αr
nβ

r
n|

|N (αn)N (βn) |
>

|βr
nγ

r
n|

|N (βn)N (γn) |
. (12)
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(12) is equivalent to

|βn|r
|N (βn)|

>
|γn|r

|N (γn)|
,

|αn|r
|N (αn)|

>
|γn|r

|N (γn)|
. (13)

Moreover, let (αn+1, βn+1) and γn+1 be

(αn+1, βn+1) := T (αn, βn) =

(

αn

1− αn
,
βn − αn

1− αn

)

,

γn+1 := 1− αn+1 − βn+1 =
γn

1− αn
.

We suppose that ε(αn+1, βn+1) = (2, θ(ε(αn, βn))) or ε(αn+1, βn+1) =

(θ(ε(αn, βn)), 2), i.e., ε(αn+1, βn+1) ∈ {(2, 0), (0, 2)}. Then, from the analogous above
discussion, we get

∣

∣βr
n+1γ

r
n+1

∣

∣

|N (βn+1)N (γn+1)|
>

∣

∣αr
n+1β

r
n+1

∣

∣

|N (αn+1)N (βn+1)|
,

∣

∣βr
n+1γ

r
n+1

∣

∣

|N (βn+1)N (γn+1)|
>

∣

∣αr
n+1γ

r
n+1

∣

∣

|N (αn+1)N (γn+1)|
,

i.e.,
∣

∣γr
n+1

∣

∣

|N (γn+1)|
>

∣

∣αr
n+1

∣

∣

|N (αn+1)|
,

∣

∣βr
n+1

∣

∣

|N (βn+1)|
>

∣

∣αr
n+1

∣

∣

|N (αn+1)|
. (14)

From N (αβ) = N (α)N (β), (14) is written by

∣

∣

∣

∣

γn
1− αn

∣

∣

∣

∣

r

∣

∣

∣

∣

N

(

γn
1− αn

)∣

∣

∣

∣

>

∣

∣

∣

∣

αn

1− αn

∣

∣

∣

∣

r

∣

∣

∣

∣

N

(

αn

1− αn

)∣

∣

∣

∣

,

∣

∣

∣

∣

βn − αn

1− αn

∣

∣

∣

∣

r

∣

∣

∣

∣

N

(

βn − αn

1− αn

)∣

∣

∣

∣

>

∣

∣

∣

∣

αn

1− αn

∣

∣

∣

∣

r

∣

∣

∣

∣

N

(

αn

1− αn

)∣

∣

∣

∣

,

i.e.,
|γn|r

|N (γn)|
>

|αn|r
|N (αn)|

,
|βn − αn|r

|N (βn − αn)|
>

|αn|r
|N (αn)|

. (15)

But, (15) contradicts (13). Therefore,

ε(αn+1, βn+1) 6= (2, θ(ε(αn, βn))), (θ(ε(αn, βn)), 2)

holds. The other cases can be proved analogously.

Theorem 2.6 says that there are some forbidden words (i, j) in the sequences {ε(αn, βn)}∞n=0

obtained by the algorithm (∆K , T, ε). On the other hand, there exists (α, β) ∈ ∆K such

that the other words of length 2 except for the forbidden words eventually appear in the
sequences {ε(αn, βn)}∞n=0 for any real cubic field K:
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Theorem 2.7. For (i, j), (k, l) ∈ Ind, if (k, l) 6= (i, θ(i, j)) and (k, l) 6= (θ(i, j), i), then
there exists (α, β) ∈ ∆K such that εK(α, β) = (i, j) and εK (TK(α, β)) = (k, l).

Proof. Let λ be the root of x3 − 5x+ 1 with λ > 1. Let K1 = Q(λ). We note that K1 is
a totally real cubic field. By the direct calculation one can check Table 2 given below:

Table 2: (totally real case) The words of length 2 which are not forbidden by Table 1
eventually occur.

(ζ, η) εK1(ζ, η) TK1(ζ, η) εK1(TK1(ζ, η))
(5/39 + 7λ/39− 2λ2/39, (2,1) (6/37 + 6λ/37− λ2/37, (2,1)
2/39− 5λ/39 + 7λ2/39) −5/37− 5λ/37 + 7λ2/37)
(6/37 + 6λ/37− λ2/37, (2,1) (1/5 + λ/5, (1,0)
−5/37− 5λ/37 + 7λ2/37) −2/5− λ/5 + λ2/5)
(−16/15 + λ/15 + 4λ2/15, (2,1) (−9/17 + λ/17 + 3λ2/17, (0,1)

4/5 + λ/5− λ2/5) 15/17 + 4λ/17− 5λ2/17)
(4/5 + λ/5− λ2/5, (2,1) (5− λ2, (1,2)

−4/15 + 4λ/15 + λ2/15) −19/3 + λ/3 + 4λ2/3)

We suppose that K is a totally real cubic field. Let 1ρK , 2ρK be distinct embeddings
from K to R over Q different from the non trivial embedding. We define a mapping ρK
from ∆K to ∆× R4 as follows. For (α, β) ∈ ∆K ,

ρK(α, β) := (α, β, 1ρK(α), 1ρK(β), 2ρK(α), 2ρK(β)).

Then, it is not difficult to see that ρK(∆K) is dense in ∆ × R4 by virtue of algebraic

number theory (for example see Chapter 1 in [Neukirch 99]). We put (α′, β ′) = (5/39 +
7λ/39 − 2λ2/39, 2/39 − 5λ/39 + 7λ2/39) which is in Table 2. Then, by the analogous

discussion in Theorem 2.6, one can show

|β ′|r
|N (β ′)| >

|γ′|r
|N (γ′)| ,

|α′|r
|N (α′)| >

|γ′|r
|N (γ′)| (16)

and

β ′ > 2α′,
|β ′ − α′|r

|N (β ′ − α′)| >
|γ′|r

|N (γ′)| , (17)

where γ′ = 1−α′−β ′. We see that there exists δ > 0 such that |x−α′| < δ, |y−β ′| < δ,
|x′ − 1ρK1(α

′)| < δ, |y′ − 1ρK1(β
′)| < δ,

|x′′ − 2ρK1(α
′)| < δ and |y′′ − 2ρK1(β

′)| < δ implies

|y|r
|yy′y′′| >

|z|r
|zz′z′′| ,

|x|r
|xx′x′′| >

|z|r
|zz′z′′| (18)
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and

y > 2x,
|y − x|r

|(y − x)(y′ − x′)(y′′ − x′′)| >
|z|r

|zz′z′′| , (19)

where z = 1− x− y, z′ = 1− x′ − y′ and z′′ = 1− x′′ − y′′ for every (x, y, x′, y′, x′′, y′′) ∈
∆×R4. Since ρK(∆K) is dense in ∆×R4, there exists an element (α, β) ∈ ∆K such that

|β|r
|N (β)| >

|γ|r
|N (γ)| ,

|α|r
|N (α)| >

|γ|r
|N (γ)| (20)

and

β > 2α,
|β − α|r

|N (β − α)| >
|γ|r

|N (γ)| , (21)

where γ = 1−α−β. From (20) and (21), it follows εK(α, β) = (2, 1) and εK(TK(α, β)) =
(2, 1). By the analogous above discussion, we see that for each (i, j) ∈ {(1, 2), (1, 0), (0, 1)}
there exists (α′′, β ′′) ∈ ∆K such that εK(α

′′, β ′′) = (2, 1) and εK(TK(α
′′, β ′′)) = (i, j). By

applying permutations of the coordinates of (γ, α, β) we get Theorem 2.7 for the totally
real cubic field K. We consider the case where K has complex embeddings. Let µ be the

real root of x3 − 5. Put K2 = Q(µ). The direct calculation implies Table 3.

Table 3: (not totally real case) The words of length 2 which are not forbidden by Table
1 eventually occur.

(ζ, η) εK2(ζ, η) TK2(ζ, η) εK2(TK2(ζ, η))
(1/4 + µ/4− 3µ2/20, (2,1) (−2/17 + 6µ/17− µ2/17, (2,1)

µ2/5) 8/17− 7µ/17 + 4µ2/17)
(−2/17 + 6µ/17− µ2/17, (2,1) (−3/26 + 7µ/26 + µ2/26, (1,0)
8/17− 7µ/17 + 4µ2/17) 10/13− 6µ/13 + µ2/13)
(−1/6 + µ/6 + µ2/30, (2,1) (−1/11 + 3µ/22 + µ2/22, (0,1)

11/12− 5µ/12 + 7µ2/60) 10/11− 4µ/11 + µ2/22)
(1− µ2/5, (2,1) (−1 + µ, (1,2)

1/2 + µ/2− 3µ2/10) −1/2− µ/2 + µ2/2)

Using Table 3, we can show Theorem 2.7 for the case where K is not a totally real

cubic field.

For the periodic continued fraction obtained by this algorithm, we have the following
Proposition 2.8, which can be shown by using Theorem 3.7 in a way similar to Perron

[Perron 07]. We denote by ∆Per
K = ∆Per

K,r the set of the periodic points of the transforma-
tion T = TK,r, i.e.,

∆Per
K = ∆Per

K,r :=







(α, β) ∈ ∆K

∣

∣

∣

∣

∣

∣

there exist m,n ∈ Z>0

such that m 6= n and
Tm
K,r (α, β) = T n

K,r (α, β)







. (22)
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Proposition 2.8. Let (α, β) ∈ ∆Per
K . Then, there exists a constant c(α, β) > 0 and

η(α, β) > 0 such that η(α, β) ≤ 3
2
and

∣

∣

∣

∣

α− qn
pn

∣

∣

∣

∣

≤ c(α, β)

p
η(α,β)
n

,

∣

∣

∣

∣

β − rn
pn

∣

∣

∣

∣

≤ c(α, β)

p
η(α,β)
n

,
∣

∣

∣

∣

α− q′n
p′n

∣

∣

∣

∣

≤ c(α, β)

(p′n)
η(α,β)

,

∣

∣

∣

∣

β − r′n
p′n

∣

∣

∣

∣

≤ c(α, β)

(p′n)
η(α,β)

,
∣

∣

∣

∣

α− q′′n
p′′n

∣

∣

∣

∣

≤ c(α, β)

(p′′n)
η(α,β)

,

∣

∣

∣

∣

β − r′′n
p′′n

∣

∣

∣

∣

≤ c(α, β)

(p′′n)
η(α,β)

hold. Furthermore, η(α, β) = 3
2
holds if and only if K is not a totally real cubic field.

We can also give some examples of periodic expansions in the similar manner as in

[Tamura and Yasutomi 09].

Theorem 2.9. Let m ∈ Z>0. Let λ be the real root of x3 − mx2 − 1. Let K = Q(λ).

Then,
(

1

1 + λ+ λ2
,

λ

1 + λ+ λ2

)

∈ Per
5/2
K .

Proof. For n ∈ Z≥0 let (αn, βn) = T n
K,5/2(

1
1+λ+λ2 ,

λ
1+λ+λ2 ). Then, we will prove for 0 ≤

k ≤ m− 1

αk =
λ

(m− k + 1)λ2 + λ+ 1
, βk =

λ2

(m− k + 1)λ2 + λ+ 1

ε (αk, βk) = (0, 2),

αm+k =
λ2

(m− k + 1)λ2 + λ+ 1
, βm+k =

(m− k)λ2 + 1

(m− k + 1)λ2 + λ+ 1

ε (αm+k, βm+k) = (2, 1),

α2m+k =
(m− k)λ2 + 1

(m− k + 1)λ2 + λ+ 1
, β2m+k =

λ

(m− k + 1)λ2 + λ+ 1

ε (α2m+k, β2m+k) = (1, 0).

In what follows, we suppose that k ∈ Z. First, let ζk, ηk and ξk be

ζk =
λ

(m− k + 1)λ2 + λ+ 1
, ηk =

λ2

(m− k + 1)λ2 + λ+ 1
,

ξk =
(m− k)λ2 + 1

(m− k + 1)λ2 + λ+ 1
.

Simple calculations show the following:
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(1) ζk + ηk + ξk = 1,

(2) ζ0 = α0 and η0 = β0,

(3) (ζk, ηk) ∈ ∆K holds,

(4) T(0,2) (ζk, ηk) = (ζk+1, ηk+1) holds,

(5) (ζm, ηm) = (η0, ξ0) holds.

We prove that ε(ζk, ηk) = (0, 2) for 0 ≤ k < m. It is easy to see that

N(ζk) =
1

m2 + (k2 − 3k)m− k3 + 3k2
,

N(ηk) =
1

m2 + (k2 − 3k)m− k3 + 3k2
,

N(ξk) =
k2m− k3 + 1

m2 + (k2 − 3k)m− k3 + 3k2
.

Therefore, we have

ζ
5/2
k

N(ζk)
=

λ5/2(m2 + (k2 − 3k)m− k3 + 3k2)

((m− k + 1)λ2 + λ+ 1)5/2
,

η
5/2
k

N(ηk)
=

λ5(m2 + (k2 − 3k)m− k3 + 3k2)

((m− k + 1)λ2 + λ+ 1)5/2
,

ξ
5/2
k

N(ξk)
=

((m− k)λ2 + 1)5/2(m2 + (k2 − 3k)m− k3 + 3k2)

(k2m− k3 + 1)((m− k + 1)λ2 + λ+ 1)5/2
.

Since λ > 1, we have
ζ
5/2
k

N(ζk)
<

η
5/2
k

N(ηk)
. We easily see that m2(m−k)2 ≥ k2m−k3+1. Since

m < λ < m+ 1, we see that

(

(m− k)λ+
1

λ

)5/2

> m2(m− k)2 ≥ k2m− k3 + 1,

which implies

ζ
5/2
k

N(ζk)
<

ξ
5/2
k

N(ξk)
.

Thus, we have ε(ζk, ηk) = (0, 2). We can easily prove that (αk, βk) = (ζk, ηk) for 0 ≤ k ≤
m− 1, (αm+k, βm+k) = (ηk, ξk) and (α2m+k, β2m+k) = (ξk, ζk) on induction of k.
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3 Continued Fraction Expansion and Acceleration of

Continued Fraction

As we have already seen that for any given (x, y) ∈ ∆K for any given real cubic field K,
we can consider a sequence {ε (αn, βn)}∞n=0 defined by

ε (αn, βn) := ε (T n(α, β)) ∈ Ind := {(i, j) | i, j ∈ {0, 1, 2} , i 6= j }

obtained by the algorithm given in Section 2.

In this section, we shall describe the continued fraction expansion of 1
1−α−β

(α, β)

according to the ”expansion” {ε (αn, βn)}∞n=0 of (α, β). In what follows of this section,
we use column vectors instead of row vectors. We denote by ¯̄x = t(x(0), x(1), x(2)) ∈ R3

(resp., x̄ = t(x(1), x(2)) ∈ R2) an vector of dimension 3 (resp., of dimension 2), where t
indicates the transpose.

We need some definitions. For n ∈ Z>0 and a set S we denote by M(n, S) n × n
matrices with entries in S. We put

C (ā) :=

(

t0̄ 1
E2 ā

)

, ā ∈ Z2
≥0, (23)

Pn = (¯̄pn−2 ¯̄pn−1 ¯̄pn) := C (ā0)C (ā1) · · ·C (ān) , ān ∈ Z2
≥0,

(

n ≥ −1, P−1 := E3, ¯̄pn = t
(

p(0)n , p(1)n , p(2)n

))

,

where Em is the unit matrix of size m×m.

We write

1
(

x
y

) :=

(

1/y

x/y

)

(x, y ∈ R, y 6= 0) ,

[ā0; ā1, . . . , ān] := ā0 +
1

ā1 +
1

. . .
+

1

ān

,

and

[ā0; ā1, ā2, . . .] := lim
n→∞

[ā0; ā1, ā2, . . . , ān]

as far as the limit exists.

Using Lemma 2.3 and

C (ā)frac
(

x

y

)

= πκ





y
1 + ay
x+ by



 =

(

a

b

)

+
1
(

x
y

) ,
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where ā =

(

a
b

)

, we get the following formula, see for example, [Nikishin and Sorokin 91,

Tamura 95].

Formula 3.1. (1) [ā0; ā1, . . . , ān, x̄] = P
frac
n (x̄) ;

(2) [ā0; ā1, . . . , ān] =
1

p
(0)
n

(

p
(1)
n

p
(2)
n

)

holds provided p
(0)
n 6= 0.

It is convenient to write two dimensional continued fraction [ā0; ā1, . . . , ān] (resp.,
[ā0; ā1, ā2, . . .]) as a finite word (resp., an infinite word) over Z2

≥0:

(CF) ā0ā1 . . . ān := [ā0; ā1, . . . , ān] ,
(CF) ā0ā1ā2 . . . := [ā0; ā1, ā2, . . .] .

For x̄ = t (x, y) ∈ △, we denote by x̄∗ = t (x∗, y∗) a vector defined by

x̄∗ =

(

x∗

y∗

)

=
1

1− x− y

(

x

y

)

.

Notice that t (x∗, y∗) ∈ R2
>0 always holds for any x̄ = t (x, y) ∈ △.

Now we can state our theorem.

Theorem 3.2. Let {εn}∞n=0={ε (αn, βn)}∞n=0 be the expansion of (α, β) ∈ ∆K . Then

(

α∗

β∗

)

= (CF) Wε0Wε1 . . .Wεn−1 . . . (24)

where

W(1,2) =

(

0

0

)(

0

0

)(

0

1

)

, W(0,1) =

(

0

0

)(

0

1

)(

0

0

)

, W(0,2) =

(

0

0

)(

0

0

)(

1

0

)

,

W(2,1) =

(

0

0

)(

1

0

)(

0

0

)

, W(1,0) =

(

1

0

)(

0

0

)(

0

0

)

, W(2,0) =

(

0

1

)(

0

0

)(

0

0

)

.

One can check the following lemmas by direct calculation.

Lemma 3.3. Let A∗
(i,j) = S−1A(i,j)S ((i, j) ∈ Ind), where A(i,j) and S are matrices as

in Section 2. Then,

A∗
(i,j) = M(i,j) (∀ (i, j) ∈ Ind) ,

where M(i,j) = (mkℓ)0≤k≤2,0≤ℓ≤2 ∈ GL3 (Z) defined by

mkℓ :=

{

1 k = ℓ or (k, ℓ) = (i, j)
0 otherwise

.
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Lemma 3.4. Let R, U , V be matrices defined by

R = C (0̄) , U = C (ū) , V = C (v̄) ,

where 0̄ = t (0, 0), ū = t (1, 0), v̄ = t (0, 1), and C (ā) ( ā ∈ Z2
≥0) is the matrix (23).

Then,

M(1,2) = RRV, M(0,1) = RV R, M(0,2) = RRU,

M(2,1) = RUR, M(1,0) = URR, M(2,0) = V RR.

Proof of Theorem 3.2. One can see that ε0 = (i, j) ∈ Ind implies

A−1
(i,j)





1
α
β



 ∼





1
α1

β1



 .

Hence, by induction, we have





1
α
β



 ∼ Aε0Aε1 · · ·Aεn−1





1
αn

βn



 , (εk = ε (αk, βk)),

so that

S−1





1
α
β



 ∼ S−1Aε0SS
−1Aε1S · · ·S−1Aεn−1SS

−1





1
α0

β0



 = A∗
ε0
A∗

ε1
· · ·A∗

εn−1
S−1





1
αn

βn



 ,

which implies
(

α∗

β∗

)

= A∗frac
ε0

A∗frac
ε1

· · ·A∗frac
εn−1

(

α∗
n

β∗
n

)

,

(

α∗

β∗

)

:=
1

1− α− β

(

α

β

)

,

(

α∗
n

β∗
n

)

:=
1

1− αn − βn

(

αn

βn

)

which together with Lemma 3.3 and Lemma 3.4, we get Theorem 3.2.

We can make reduction of the continued fraction of the form (24) in Theorem 3.2 by
applying the following reduction rule:

(CF) · · ·
(

a

b

)(

0

0

)(

0

0

)(

c

d

)

· · · = (CF) · · ·
(

a + c

b+ d

)

· · · ,

in particular

(CF) · · ·
(

a

b

)(

0

0

)(

0

0

)(

0

0

)(

c

d

)

· · · = (CF) · · ·
(

a

b

)(

c

d

)

· · · .
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We give an example. Let λ be the real root of x3−mx2−1, (m ∈ Z>0) as in Theorem
2.9. Then, Theorem 2.9 says that

1

1− ξ − η

(

ξ

η

)

= (CF)Wm
(0,2)W

m
(2,1)W

m
(1,0)W

m
(0,2)W

m
(2,1)W

m
(1,0) · · · , (25)

ξ =
1

1 + λ+ λ2
, η =

λ

1 + λ+ λ2
.

Hence, applying the reduction rule repeatedly, we get periodic continued fractions:

1

1− ξ − η

(

ξ

η

)

= (CF)

∗
(

0

0

)(

0

0

)(

m

0

)(

0

0

)(

m

0

)(

0

0

)(

m

0

)(

0

0

)

∗
(

0

0

)

= (CF)

(

0

0

)

∗
(

0

0

)(

m

0

)(

0

0

)(

m

0

)(

0

0

)

∗
(

m

0

)

= (CF)

(

0

0

)

∗
(

0

0

)

∗
(

m

0

)

, (26)

which is an accelerated continued fraction of (25). In other words, if we say (26) is

a canonical continued fraction, then the expression (24) given in Theorem 3.2 can be
considered as a (slow or additive) continued fraction expansion of a canonical continued

fraction. For n ∈ Z>0 M ∈ M(n,Z≥0) is called primitive, if there exists an positive

integer m such that Mm ∈ M(n,Z>0).

Lemma 3.5. Let {εn}∞n=0= {ε (αn, βn)}∞n=0 be the expansion of (α, β) ∈ ∆K . We suppose

that {εn}∞n=0 is purely periodic and the length of the period is l. Then, every eigenvalue
of the matrix Mε0 · · ·Mεl−1

is in K \Q.

Proof. We suppose that an eigenvalue λ of the matrix Mε0 · · ·Mεl−1
denoted by C = (ci,j)

associated with the eigenvector t(1− α− β, α, β) is a rational number. Then, we have

C





1− α− β
α
β



 = λ





1− α− β
α
β



 . (27)

Since 1 − α − β, α, β are linearly independent over Q, C = λE, where E is the unit

matrix. Let (i′, j′) = ε0. Then, C = Mε0 · · ·Mεl−1
implies that ci′,j′ ≥ 1, which leads to

the contradiction that C = λE.

Remark 3.6. The irreducibility of the matrix Mε0 · · ·Mεl−1
follows from Lemma 3.5 as

far as we are concentrated with cubic field K.

Theorem 3.7. Let {εn}∞n=0 = {ε (αn, βn)}∞n=0 be the expansion of (α, β) ∈ ∆K . We

suppose that {εn}∞n=0 is purely periodic and the length of the period is l. Then, the matrix
Mε0 · · ·Mεl−1

is primitive.
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Proof. For each n ∈ Z≥0 we put Cn by

Cn = ( nci,j) = Mε0 · · ·Mεn.

We see easily that nci,j ≤ n+1ci,j for each n ∈ Z≥0 and i, j with 0 ≤ i, j ≤ 2. We suppose
that there exists i0, j0 with 0 ≤ i0, j0 ≤ 2 such that limn→∞ nci0,j0 = 0, which is equivalent

to that for every n ∈ Z≥0 nci0,j0 = 0. Since we see 0ci,i = 1 for every i with 0 ≤ i ≤ 2,
we have i0 6= j0. For simplicity, we consider the case where (i0, j0) = (0, 2). First, we

suppose that limn→∞ nc0,1 = 0, which is equivalent to that for every n ∈ Z≥0 nc0,1 = 0.
Since |Cn|=1 for every n ∈ Z≥0, it follows that nc0,0 = 1 for every n ∈ Z≥0. Then, we

have

tCl−1





1
0
0



 =





1
0
0



 ,

which implies that 1 is an eigenvalue ofMε0 · · ·Mεl−1
, which contradicts Lemma 3.5. Next,

we suppose that limn→∞ nc0,1 > 0, which is equivalent to that there exists n0 ∈ Z≥0 such
that n0c0,1 > 0. We see that if n > n0, then εn /∈ {(0, 2), (1, 2)}. Therefore, by the pure

periodicity of {εn}≥0 we get εn /∈ {(0, 2), (1, 2)} for all n ∈ Z≥0. Hence, we can write

Cl−1 =





∗ ∗ 0
∗ ∗ 0
∗ ∗ 1



 ,

so that

Cl−1





0
0
1



 =





0
0
1



 ,

which contradicts Lemma 3.5. Thus, we have proved the theorem for the case where

(i0, j0) = (0, 2). We can do the same for the other cases.

4 Numerical experiments

We put

dh

(

p

q

)

:= max{⌊log10 |p|+ 1⌋, ⌊log10 |q|+ 1⌋}, dh(0) := 0

for p
q
(p, q ∈ Z are coprime). The function dh can be extended to Q[x]:

dh(g) := max
0≤i≤n

{dh(ai)},
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for g(x) =
n
∑

i=0

aix
i ∈ Q[x]. We define dh , dhF and rdhF by

dh(α) := max
i∈{1,2}

{dh(φαi
)},

dhF(n;α) := dh(T n
K(α)),

rdhF(n;α) :=
dh(T n

K(α))

dh(α)
,

dhF(α) := max
n∈Z≥0

{dhF(n;α)},

rdhF(α) := max
n∈Z≥0

{rdhF(n;α)},

for α = (α1, α2) ∈ ∆K and n ∈ Z≥0, where φαi
∈ Q[x] (i ∈ {1, 2}) is the monic minimal

polynomial of αi. The function dhF(n;α) (resp., rdhF(n;α)) is referred to as the nth
decimal height of α (resp., the nth relative decimal height of α) . We computed the

length of the periods of
(

〈 3
√
m〉/2, 〈 3

√
m2〉/2

)

for TK,r with K = Q( 3
√
m), r = 5/2 for

all m ∈ Z with 2 ≤ m ≤ 10000 ( 3
√
m /∈ Q) and these decimal heights, cf. Table 4

given below, where 〈x〉 is the fractional part of x. For the calculation of the tables, we

used a computer equipped with GiNaC [GiNaC 13] on GNU C++1. We confirmed that
(

〈 3
√
m〉/2, 〈 3

√
m2〉/2

)

∈ ∆Per
K,5/2 for all m with 2 ≤ m ≤ 10000 ( 3

√
m /∈ Q).

Table 4: The result of periodicity test for
(

〈 3
√
m〉/2, 〈 3

√
m2〉/2

)

for all noncubic positive inte-

gers 2 ≤ m ≤ 10000 with r = 5/2.

Range of m (m1 ≤ m ≤ m2) LA(m1, m2) HA(m1, m2) RA(m1, m2)
2 ≤ m ≤ 200 4494 7 3
201 ≤ m ≤ 400 13641 8 7/3
401 ≤ m ≤ 600 13578 8 2
601 ≤ m ≤ 800 30447 8 2
801 ≤ m ≤ 1000 36963 8 2
1001 ≤ m ≤ 1200 31119 9 9/4
1201 ≤ m ≤ 1400 68529 9 9/5
1401 ≤ m ≤ 1600 65310 9 9/5
1601 ≤ m ≤ 1800 62598 9 9/5
1801 ≤ m ≤ 2000 52551 9 9/5
2001 ≤ m ≤ 2200 74931 10 2

Continued on next page

1The routine that was written for this purpose can be downloaded from the web site
http://www.lab2.toho-u.ac.jp/sci/c/math/yasutomi/mfarey.html

http://www.lab2.toho-u.ac.jp/sci/c/math/yasutomi/mfarey.html
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Table 4 – continued from previous page
Range of m (m1 ≤ m ≤ m2) LA(m1, m2) HA(m1, m2) RA(m1, m2)

2201 ≤ m ≤ 2400 177570 9 9/5
2401 ≤ m ≤ 2600 97446 9 9/5
2601 ≤ m ≤ 2800 79923 9 9/5
2801 ≤ m ≤ 3000 121134 10 9/5
3001 ≤ m ≤ 3200 107577 9 9/5
3201 ≤ m ≤ 3400 107919 10 2
3401 ≤ m ≤ 3600 95388 10 9/5
3601 ≤ m ≤ 3800 150393 10 9/5
3801 ≤ m ≤ 4000 133650 10 9/5
4001 ≤ m ≤ 4200 137787 10 2
4201 ≤ m ≤ 4400 242391 10 2
4401 ≤ m ≤ 4600 322374 10 2
4601 ≤ m ≤ 4800 180246 10 2
4801 ≤ m ≤ 5000 124335 10 2
5001 ≤ m ≤ 5200 282870 10 2
5201 ≤ m ≤ 5400 169845 10 2
5401 ≤ m ≤ 5600 134589 10 2
5601 ≤ m ≤ 5800 236004 10 2
5801 ≤ m ≤ 6000 298266 10 2
6001 ≤ m ≤ 6200 439470 10 2
6201 ≤ m ≤ 6400 249141 10 2
6401 ≤ m ≤ 6600 188673 10 2
6601 ≤ m ≤ 6800 176733 10 2
6801 ≤ m ≤ 7000 462093 11 2
7001 ≤ m ≤ 7200 160650 10 5/3
7201 ≤ m ≤ 7400 619809 10 5/3
7401 ≤ m ≤ 7600 241893 10 5/3
7601 ≤ m ≤ 7800 254790 10 5/3
7801 ≤ m ≤ 8000 232170 10 5/3
8001 ≤ m ≤ 8200 398433 11 11/6
8201 ≤ m ≤ 8400 211460 11 11/6
8401 ≤ m ≤ 8600 264786 10 5/3
8601 ≤ m ≤ 8800 293934 11 11/6
8801 ≤ m ≤ 9000 785715 10 5/3
9001 ≤ m ≤ 9200 265377 11 11/6
9201 ≤ m ≤ 9400 377157 11 11/6
9401 ≤ m ≤ 9600 258939 10 5/3
9601 ≤ m ≤ 9800 269877 10 5/3
9801 ≤ m ≤ 10000 276768 10 5/3
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In Table 4, LA(m1, m2), HA(m1, m2) and RA(m1, m2) are numbers defined by

LA(m1, m2) := the maximum value of the length of the shortest period of

the expansion of (〈 3
√
m〉/2, 〈 3

√
m2〉/2) for m1 ≤ m ≤ m2 with 3

√
m /∈ Q,

HA(m1, m2) := max
m1≤m≤m2, 3

√
m/∈Q

dhF(〈 3
√
m〉/2, 〈 3

√
m2〉/2),

RA(m1, m2) := max
m1≤m≤m2, 3

√
m/∈Q,

rdhF(〈 3
√
m〉/2, 〈 3

√
m2〉/2),

which are well-defined by the periodicity. This Table 4 together with following numerical
experiments by PCs for some totally real cubic fields etc. support Conjecture 7.1 given at

the end of our paper, which says that ∆K = ∆Per
K,r holds, cf. (22). On the other hand, the

explosion phenomenon takes place if we apply classical algorithms (the Jacobi-Perron

algorithm, the modified Jacobi-Perron algorithm etc.), cf. [Tamura and Yasutomi 09,

Tamura and Yasutomi 11, Tamura and Yasutomi 10].

Let K be a real cubic field and let α(0), α(1), α(2) be its positive Q-basis with

α =
α(1)

α(0) + α(1) + α(2)
, β =

α(2)

α(0) + α(1) + α(2)
.

Let {εn}∞n=0 be the expansion of the (α, β). Suppose that εk, . . . , εk+l−1 is the period
of the expansion. Then (1 − αk − βk, αk, βk) becomes an eigenvector with respect to

an eigenvlaue of Mεk · · ·Mεk+l−1
which will be denoted by λ (α, β). The eigenvalue is

important for the Diophantine approximation to (α, β). We denote by Nt a set

{(

1

1 + α+ α2
,

α

1 + α + α2

)∣

∣

∣

∣

α is the positive maximal root of
some irreducible p ∈ Pt

}

,

Pt := {x3 + a2x
2 + a1x+ a0 |ai ∈ Z, |ai| ≤ t for i = 0, 1, 2} (t > 0) .

We put nt, pt, ct, rt, st, rht as follows:

nt = ♯Nt,

pt = ♯ {(α, β) ∈ Nt | (α, β) is periodic by our algorithm} ,
ct = ♯ {(α, β) ∈ Nt | Q (α, β) has a complex embedding}
rt = ♯ {(α, β) ∈ Nt | Q (α, β) is a totally real cubic field} ,
st = ♯ {(α, β) ∈ Nt | λ (α, β) is the Pisot number}

rht = max {rdhF (α, β) | (α, β) ∈ Nt} .

Then, we get n15 = 18797, p15 = 18797, c15 = 7689, r15 = 11108, s15 = 18797 and
rh15 = 7/3, i.e., every (α, β) ∈ N15 is periodic by this algorithm, and λ(α, β) becomes
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Pisot number for all the element (α, β) ∈ N15 without any exceptions (cf. Conjecture
7.2 given in Section 7 ). For this calculation, we used a computer equipped with GiNaC

[GiNaC 13] on GNU C++ 2. We note that the maximal eigenvalue of
∏

λ∈Λ,Mλ∈BM Mλ

(Λ < ∞) is not always a Pisot number, where BM := {M(i,j) | 0 ≤ i, j ≤ 2, i 6= j }. For

example, M(1,0)M(0,1)M(2,0)M(0,2) has a non-Pisot maximal eigenvalue.

5 Stepped surfaces and Substitutions

We shortly prepare the geometric tools. Let us denote by ¯̄ei (i = 0, 1, 2) the canonical
basis of R3, i.e.,

¯̄e0 :=
t (1, 0, 0) , ¯̄e1 :=

t (0, 1, 0) , ¯̄e2 :=
t (0, 0, 1) .

For ¯̄x ∈ Z3, i = 0, 1, 2, we mean by (¯̄x, i∗) a unit square defined by

(¯̄x, i∗) := {¯̄x+ t¯̄ej + u¯̄ek | t, u ∈ [0, 1] , {i, j, k} = {0, 1, 2}}

(see Figure 3).

e

e

e1

2

0

0*

(¯̄0, 0∗
)

1*

e

e

e1

2

0

(¯̄0, 1∗
)

2*
e

e

e1

2

0

(¯̄0, 2∗
)

01

2*

* *

e

ee0
1

2

∑2
i=0

(¯̄0, i∗
)

Figure 3:
(¯̄0, i∗

)

and
∑2

i=0

(¯̄0, i∗
)

.

Let ¯̄α = t
(

α(0), α(1), α(2)
)

∈ R3
>0 and α(0), α(1), α(2) be linearly independent over Q.

Notice that without loss of generality, we may assume α(0)+α(1)+α(2) = 1 . We consider

the sets P (¯̄α) , P> (¯̄α) , and P≥ ( ¯̄α) :

P ( ¯̄α) :=
{

¯̄x ∈ R3 | 〈¯̄x, ¯̄α〉 = 0
}

,

P> ( ¯̄α) :=
{

¯̄x ∈ R3 | 〈¯̄x, ¯̄α〉 > 0
}

,

P≥ ( ¯̄α) :=
{

¯̄x ∈ R3 | 〈¯̄x, ¯̄α〉 ≥ 0
}

.

2The routine that was written for this purpose can be downloaded from the web site
http://www.lab2.toho-u.ac.jp/sci/c/math/yasutomi/mfarey.html

http://www.lab2.toho-u.ac.jp/sci/c/math/yasutomi/mfarey.html
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where 〈·, ·〉 means the inner product. We put

S (¯̄α) := {(¯̄x, i∗) | i = 0, 1, 2, 〈¯̄x, ¯̄α〉 > 0, 〈¯̄x− ¯̄ei, ¯̄α〉 ≤ 0} ,
S

′ (¯̄α) := {(¯̄x, i∗) | i = 0, 1, 2, 〈¯̄x, ¯̄α〉 ≥ 0, 〈¯̄x− ¯̄ei, ¯̄α〉 < 0} ,

which are subsets of Z3 × {0∗, 1∗, 2∗}. By the definition of S ( ¯̄α) (and S
′ ( ¯̄α)), we see

that S ( ¯̄α) (and S ′ ( ¯̄α)) consists of the nearest unit squares clinging to the plane P (¯̄α) .

S ( ¯̄α) (and S
′ (¯̄α)) will be referred to as the stepped surface with respect to the direction

¯̄α. We also says that S ( ¯̄α) (and S ′ ( ¯̄α)) is the stepped surface of the plane P ( ¯̄α).

Remark 5.1. The difference between S ( ¯̄α) and S ′ (¯̄α) is that S ( ¯̄α) \S ′ (¯̄α) = {(¯̄ei, i∗)}i=0,1,2 ,

S ′ ( ¯̄α) \S (¯̄α) =
{(¯̄0, i∗

)}

i=0,1,2
.

Moreover, we define S ( ¯̄α):

S ( ¯̄α) := {Λ | #Λ < +∞, Λ ⊂ S ( ¯̄α)} .

We denote by G (¯̄α) the Z-free module generated by all the finite squares:

G (¯̄α) :=







∑

(¯̄x,i∗):m(¯̄x,i∗) 6=0

m(¯̄x,i∗) (¯̄x, i
∗)

∣

∣

∣

∣

∣

∣

¯̄x ∈ Z3, i ∈ {0, 1, 2} ,
m(¯̄x,i∗) ∈ Z, (¯̄x, i∗) ∈ S (¯̄α) ,
#
{

(¯̄x, i∗)
∣

∣ m(¯̄x,i∗) 6= 0
}

< +∞







. (28)

Remark that the sum on the right-hand side of (28) is a formal sum. Hence, we
have G (¯̄α) =

{
∑

λ∈Λ mλλ | Λ ⊂ S ( ¯̄α) , #Λ < +∞, mλ ∈ Z
}

. In what follows, we only

consider the case mλ = 1. When mλ = 1, we call the element
∑

λ∈Λ λ of G ( ¯̄α) a patch
of S ( ¯̄α). In some cases, {λ}λ∈Λ of S ( ¯̄α) is also called as a patch, but an element

of S (¯̄α) and G ( ¯̄α) should be distinguished. It will be convenient to define two maps,

sΨg : S (¯̄α) → G ( ¯̄α) and gΨs : G (¯̄α) → S (¯̄α) as follows: for Λ ∈ S (¯̄α)

sΨg

(

{λ}λ∈Λ
)

:=
∑

λ∈Λ
λ ∈ G ( ¯̄α) (for {λ}λ∈Λ ∈ S ( ¯̄α)),

gΨs

(

∑

λ∈Λ
λ

)

:= {λ}λ∈Λ ∈ S ( ¯̄α) (for
∑

λ∈Λ λ ∈ G (¯̄α)).

For example, for
∑2

i=0 (ei, i
∗) and {(ei, i

∗)}i=0,1,2, gΨs

(
∑2

i=0 (ei, i
∗)
)

=

{(ei, i
∗)}i=0,1,2, sΨg

(

{(ei, i
∗)}i=0,1,2

)

=
∑2

i=0 (ei, i
∗). For γ, δ ∈ G ( ¯̄α), we denote γ ≺ δ

if gΨs (γ) ⊂ gΨs (δ). Taking S ′ ( ¯̄α) instead of S (¯̄α), we can define S ′ ( ¯̄α) and G ′ ( ¯̄α)

similarly. For each (i, j) ∈ Ind, we consider the substitution σ(i,j) as follows:

σ(i,j) :

{

i 7→ ji
k 7→ k (k 6= i)

.
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And the so-called incidence matrix L(i,j) of σ(i,j) is the square matrix of size 3×3 defined
by L(i,j) = (li′j′) where li′j′ is the number of occurrences of a letter i′ appearing in

σ(i,j) (j
′). Notice that L(i,j) = M(j,i) for each (i, j) ∈ Ind where M(j,i) is the matrix given

in Lemma 3.3. For (α, β) ∈ ∆K , we put ¯̄ν (α, β) := t (1− α− β, α, β) . In the sequel we

fix an arbitrary (α, β) ∈ ∆K and an arbitrary n ∈ Z≥0. Then, the dual substitution Θεn

of σεn , which is an endomorphism from G (¯̄ν (αn+1, βn+1)) to G (¯̄ν (αn, βn)) introduced in

[Arnoux and Ito 01], can be defined by

Θεn (¯̄x, i
∗) := L−1

εn
¯̄x+

2
∑

j=0

∑

S :
σεn (j) = PiS

(

L−1
εn (f (S)) , j∗

)

, (29)

Θεn

(

∑

λ∈Λ
(¯̄x, i∗)λ

)

:=
∑

λ∈Λ
(Θεn (¯̄x, i

∗)λ)

for i = 0, 1, 2, where f (w) := t (|w|0 , |w|1 , |w|2) (|w|i is the number of occurrences of

a symbol i appearing in a finite word w ∈ {0, 1, 2}∗), and P (resp., S) means that the
prefix (resp., suffix) of i of σ (j) with σ (j) = PiS and

¯̄y +
∑

λ∈Λ
(¯̄xλ, i

∗
λ) :=

∑

λ∈Λ
(¯̄y + ¯̄xλ, i

∗
λ) .

In particular,

Θ(i,j) :







(¯̄x, j∗) 7→
(

L−1
(i,j) (¯̄x+ ¯̄ei) , i

∗
)

+
(

L−1
(i,j)

¯̄x, j∗
)

,

(¯̄x, k∗) 7→
(

L−1
(i,j)

¯̄x, k∗
)

(k 6= j) .
(30)

(see Figure 4).

Θ(1,2)−→ Θ(2,1)−→

Θ(0,1)−→ Θ(1,0)−→

Θ(0,2)−→ Θ(2,0)−→

Figure 4: Θε (U), U =
∑2

i=0 (ei, i
∗), ε ∈ Ind.

In view of definitions, we have
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Lemma 5.2. There exists a constant cn satisfying

¯̄ν (αn+1, βn+1) = cn
tL−1

εn
¯̄ν (αn, βn)

where

cn :=















1
1−βn

if εn ∈ {(1, 2) , (0, 2)} ,
1

1−αn
if εn ∈ {(2, 1) , (0, 1)} ,

1
αn+βn

if εn ∈ {(1, 0) , (2, 0)} .

Proof. Let εn = (1, 2), then from the fact that

(αn+1, βn+1) = T(1,2) (αn, βn) =

(

αn − βn

1− βn
,

βn

1− βn

)

,

we have

¯̄ν (αn+1, βn+1) =
1

1− βn

t (1− αn − βn, αn − βn, βn)

=
1

1− βn





1 0 0
0 1 −1
0 0 1









1− αn − βn

αn

βn



 = cn
tL−1

(1,2)
¯̄ν (αn, βn) .

The proof for the other cases is analogously done.

We define ϕn : R3 → R3 by

¯̄xn = t (xn, yn, zn) = ϕn (¯̄xn+1) = ϕn
t (xn+1, yn+1, zn+1) := L−1

εn
t (xn+1, yn+1, zn+1) .

Then, we have

Lemma 5.3. Let cn be numbers given in Lemma 5.2. Then,

〈ϕn ¯̄xn+1, ¯̄ν (αn, βn)〉 =
1

cn
〈¯̄xn+1, ¯̄ν (αn+1, βn+1)〉 , ¯̄xn+1 ∈ R3

holds.

Proof. By Lemma 5.2, we get

〈ϕn ¯̄xn+1, ¯̄ν (αn, βn)〉 =
〈

L−1
εn

¯̄xn+1, ¯̄ν (αn, βn)
〉

=
〈

¯̄xn+1,
tL−1

εn
¯̄ν (αn, βn)

〉

=
1

cn
〈¯̄xn+1, ¯̄ν (αn+1, βn+1)〉 .
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From Lemma 5.3, it follows

Corollary 5.4. We have

ϕn (P> (¯̄ν (αn+1, βn+1))) = P> (¯̄ν (αn, βn)) ,

ϕn

(

P≥ (¯̄ν (αn+1, βn+1))
)

= P≥ (¯̄ν (αn, βn)) .

The following theorem is important related to the stepped surface.

Theorem 5.5 (’Bijectivity’ of Θ). Let us assume that (αn, βn) ∈ ∆K , then

Θεn : G (¯̄ν (αn+1, βn+1)) → G (¯̄ν (αn, βn))

satisfies the following:

(1) if (¯̄x, i∗) is a unit square of G (¯̄ν (αn+1, βn+1)), then the image Θεn (¯̄x, i
∗) belongs to

G (¯̄ν (αn, βn));

(2) two distinct unit squares are sent to disjoint images (which are patches of squares)
except for their boundaries;

(3) for any (¯̄z, k∗) ∈ G (¯̄ν (αn, βn)), there exists a square (¯̄x, i∗) ∈
G (¯̄ν (αn+1, βn+1)) such that Θεn (¯̄x, i

∗) ≻ (¯̄z, j∗).

Proof. For instance, we consider the case where εn = (2, 0). We shall show the following
three properties:

(1) if (¯̄x, i∗) ∈ G (¯̄ν (αn+1, βn+1)), then Θ(2,0) (¯̄x, i
∗) ∈ G (¯̄ν (αn, βn));

(2) if (¯̄x, i∗) 6= (¯̄y, j∗) ((¯̄x, i∗), (¯̄y, j∗) ∈ G (¯̄ν (αn+1, βn+1))), then

gΨs

(

Θ(2,0) (¯̄x, i
∗)
)

∩ gΨs

(

Θ(2,0) (¯̄y, j
∗)
)

= ∅;

(3) if for any (¯̄z, k∗) ∈ G (¯̄ν (αn, βn)), then there exists (¯̄x, i∗) ∈
G (¯̄ν (αn+1, βn+1)) such that Θ(2,0) (¯̄x, i

∗) ≻ (¯̄z, k∗).

About (1): If (¯̄x, i∗) ∈ G (¯̄ν (αn+1, βn+1)), i = 0, 1, 2, then

Θ(2,0) (¯̄x, 0
∗) =

(

L−1
(2,0)

¯̄x, 0∗
)

+
(

L−1
(2,0) (¯̄x+ ¯̄e2) , 2

∗
)

,

Θ(2,0) (¯̄x, 1
∗) =

(

L−1
(2,0)

¯̄x, 1∗
)

,

Θ(2,0) (¯̄x, 2
∗) =

(

L−1
(2,0)

¯̄x, 2∗
)

(31)

follow from (30). Hence, it suffices to show
(

L−1
(2,0)

¯̄x, 0∗
)

,
(

L−1
(2,0) (¯̄x+ ¯̄e2) , 2

∗
)

,
(

L−1
(2,0)

¯̄x, 1∗
)

,
(

L−1
(2,0)

¯̄x, 2∗
)

∈ G (¯̄ν (αn, βn)) .
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From the definition of (¯̄x, i∗) ∈ G (¯̄ν (αn+1, βn+1)), we know that

〈¯̄x, ¯̄ν (αn+1, βn+1)〉 > 0, (32)

〈¯̄x− ¯̄ei, ¯̄ν (αn+1, βn+1)〉 ≤ 0, (33)

where the equality of (33) holds only for ¯̄x = ¯̄ei. We suppose that (¯̄x, 0∗) ∈ G (¯̄ν (αn+1, βn+1)).

By Lemma 5.2 and (32),
〈

L−1
(2,0)

¯̄x, ¯̄ν (αn, βn)
〉

=
〈

¯̄x, tL−1
(2,0)

¯̄ν (αn, βn)
〉

=
1

cn
〈¯̄x, ¯̄ν (αn+1, βn+1)〉 > 0,

and by Lemma 5.2 and (33),
〈

L−1
(2,0)

¯̄x− ¯̄e0, ¯̄ν (αn, βn)
〉

=
〈

L−1
(2,0) (¯̄x− ¯̄e0) , ¯̄ν (αn, βn)

〉

=
〈

¯̄x− ¯̄e0,
tL−1

(2,0)
¯̄ν (αn, βn)

〉

=

1

cn
〈¯̄x− ¯̄e0, ¯̄ν (αn+1, βn+1)〉 ≤ 0. Hence, we obtain

(

L−1
(2,0)

¯̄x, 0∗
)

∈ G (¯̄ν (αn, βn)). By

Lemma 5.2 and (32),
〈

L−1
(2,0) (¯̄x+ ¯̄e2) , ¯̄ν (αn, βn)

〉

=
〈

¯̄x+ ¯̄e2,
tL−1

(2,0)
¯̄ν (αn, βn)

〉

=
1

cn
〈¯̄x+ ¯̄e2, ¯̄ν (αn+1, βn+1)〉 > 0 and by Lemma 5.2 and (33),

〈

L−1
(2,0) (¯̄x+ ¯̄e2)− ¯̄e2, ¯̄ν (αn, βn)

〉

=
〈

L−1
(2,0) (¯̄x− ¯̄e0) , ¯̄ν (αn, βn)

〉

=
〈

¯̄x− ¯̄e0,
tL−1

(2,0)
¯̄ν (αn, βn)

〉

=
1

cn
〈¯̄x− ¯̄e0, ¯̄ν (αn+1, βn+1)〉 ≤ 0. Therefore, we get

(

L−1
(2,0) (¯̄x+ ¯̄e2) , 2

∗
)

∈ G (¯̄ν (αn, βn)).

We can show
(

L−1
(2,0)

¯̄x, 1∗
)

,
(

L−1
(2,0)

¯̄x, 2∗
)

∈ G (¯̄ν (αn, βn)) in a similar manner.

About (2): For

(¯̄x, i∗) , (¯̄y, j∗) ∈ G (¯̄ν (αn+1, βn+1)) satisfying (¯̄x, i∗) 6= (¯̄y, j∗) , (34)

we will check whether there exist a common unit square between Θ(2,0) (¯̄x, i
∗) and Θ(2,0) (¯̄y, j

∗).

There are six patterns of the combinations of i∗ and j∗ as

{(0∗, 0∗) , (0∗, 1∗) , (0∗, 2∗) , (1∗, 1∗) , (1∗, 2∗) , (2∗, 2∗)}.

(i) Case of Θ(2,0) (¯̄x, 0
∗) and Θ(2,0) (¯̄y, 0

∗): By (30),

Θ(2,0) (¯̄x, 0
∗) =

(

L−1
(2,0)

¯̄x, 0∗
)

+
(

L−1
(2,0) (¯̄x+ ¯̄e2) , 2

∗
)

Θ(2,0) (¯̄y, 0
∗) =

(

L−1
(2,0)

¯̄y, 0∗
)

+
(

L−1
(2,0) (¯̄y + ¯̄e2) , 2

∗
)

.

Thus, if there exist a common square between Θ(2,0) (¯̄x, 0
∗) and

Θ(2,0) (¯̄y, 0
∗), then

(

L−1
(2,0)

¯̄x, 0∗
)

=
(

L−1
(2,0)

¯̄y, 0∗
)

or
(

L−1
(2,0) (¯̄x+ ¯̄e2) , 2

∗
)

=
(

L−1
(2,0) (¯̄y + ¯̄e2) , 2

∗
)

holds which implies ¯̄x = ¯̄y. This contradicts (34). Therefore, there are no common
unit squares between Θ(2,0) (¯̄x, 0

∗) and Θ(2,0) (¯̄y, 0
∗).
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(ii) Case of Θ(2,0) (¯̄x, 0
∗) and Θ(2,0) (¯̄y, 1

∗): from (30),

Θ(2,0) (¯̄x, 0
∗) =

(

L−1
(2,0)

¯̄x, 0∗
)

+
(

L−1
(2,0) (¯̄x+ ¯̄e2) , 2

∗
)

,

Θ(2,0) (¯̄y, 1
∗) =

(

L−1
(2,0)

¯̄y, 1∗
)

.

It is clear that there does not exist a common square between
Θ(2,0) (¯̄x, 0

∗) and Θ(2,0) (¯̄y, 1
∗).

(iii) Case of Θ(2,0) (¯̄x, 0
∗) and Θ(2,0) (¯̄y, 2

∗): By (30),

Θ(2,0) (¯̄x, 0
∗) =

(

L−1
(2,0)

¯̄x, 0∗
)

+
(

L−1
(2,0) (¯̄x+ ¯̄e2) , 2

∗
)

,

Θ(2,0) (¯̄y, 2
∗) =

(

L−1
(2,0)

¯̄y, 2∗
)

.

Thus, if there exist a common square between Θ(2,0) (¯̄x, 0
∗) and

Θ(2,0) (¯̄y, 2
∗), then

(

L−1
(2,0) (¯̄x+ ¯̄e2) , 2

∗
)

=
(

L−1
(2,0)

¯̄y, 2∗
)

,

i.e.,
¯̄x = ¯̄y − ¯̄e2. (35)

On the other hand, from (¯̄x, 0∗) , (¯̄y, 2∗) ∈ G (¯̄ν (αn+1, βn+1)), we have

〈¯̄x, ¯̄v (αn+1, βn+1)〉 > 0 (36)

〈¯̄y − ¯̄e2, ¯̄v (αn+1, βn+1)〉 ≤ 0. (37)

However, using (35) and (37), we get

〈¯̄x, ¯̄ν (αn+1, βn+1)〉 = 〈 ¯̄y − ¯̄e2, ¯̄ν (αn+1, βn+1)〉 ≤ 0,

which contradicts (36). Therefore, there are no common unit squares between
Θ(2,0) (¯̄x, 0

∗) and Θ(2,0) (¯̄y, 2
∗).

The other cases can be proved analogously.

About (3): For(¯̄z, i∗) ∈ G (¯̄ν (αn, βn)), we have

〈¯̄z, ¯̄v (αn, βn)〉 > 0 (38)

〈¯̄z − ¯̄ei, ¯̄v (αn, βn)〉 ≤ 0. (39)

(i) For (¯̄z, 0∗) ∈ G (¯̄ν (αn, βn)), there exists (¯̄x, 0∗) ∈ G (¯̄ν (αn+1, βn+1)) satisfying

¯̄x = L(2,0) ¯̄z (40)
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such that Θ(2,0) (¯̄x, 0
∗) ≻ (¯̄z, 0∗). In fact, from (30) and (40), it follows

Θ(2,0) (¯̄x, 0
∗) =

(

L−1
(2,0)

¯̄x, 0∗
)

+
(

L−1
(2,0) (¯̄x+ ¯̄e2) , 2

∗
)

= (¯̄z, 0∗) +
(

L−1
(2,0) (¯̄x+ ¯̄e2) , 2

∗
)

≻ (¯̄z, 0∗) .

By (40), Lemma 5.2, and (38), we get

〈¯̄x, ¯̄ν (αn+1, βn+1)〉 =
〈

L(2,0) ¯̄z, ¯̄ν (αn+1, βn+1)
〉

=
〈

¯̄z, tL(2,0) ¯̄ν (αn+1, βn+1)
〉

= cn 〈¯̄z, ¯̄v (αn, βn)〉 > 0.

By (40), Lemma 5.2, and (39), we get

〈¯̄x− ¯̄e0, ¯̄ν (αn+1, βn+1)〉
=

〈

L(2,0) ¯̄z − ¯̄e0, ¯̄ν (αn+1, βn+1)
〉

=
〈

L(2,0) (¯̄z − ¯̄e0) , ¯̄ν (αn+1, βn+1)
〉

=
〈

¯̄z − ¯̄e0,
tL(2,0) ¯̄ν (αn+1, βn+1)

〉

= cn 〈¯̄z − ¯̄e0, ¯̄v (αn, βn)〉 ≤ 0.

(ii) For (¯̄z, 1∗) ∈ G (¯̄ν (αn, βn)), there exists (¯̄x, 1∗) ∈ G (¯̄ν (αn+1, βn+1)) satisfying

¯̄x = L(2,0) ¯̄z (41)

such that Θ(2,0) (¯̄x, 1
∗) ≻ (¯̄z, 1∗). In fact, from (30) and (41), it follows

Θ(2,0) (¯̄x, 1
∗) =

(

L−1
(2,0)

¯̄x, 1∗
)

= (¯̄z, 1∗) ≻ (¯̄z, 1∗) .

By (41), Lemma 5.2, and (38), we get

〈¯̄x, ¯̄ν (αn+1, βn+1)〉
=

〈

L(2,0) ¯̄z, ¯̄ν (αn+1, βn+1)
〉

=
〈

¯̄z, tL(2,0) ¯̄ν (αn+1, βn+1)
〉

= cn 〈¯̄z, ¯̄v (αn, βn)〉 > 0.

By (41), Lemma 5.2, and (39), we get

〈¯̄x− ¯̄e1, ¯̄ν (αn+1, βn+1)〉
=

〈

L(2,0) ¯̄z − ¯̄e1, ¯̄ν (αn+1, βn+1)
〉

=
〈

L(2,0) (¯̄z − ¯̄e1) , ¯̄ν (αn+1, βn+1)
〉

=
〈

¯̄z − ¯̄e1,
tL(2,0) ¯̄ν (αn+1, βn+1)

〉

= cn 〈¯̄z − ¯̄e1, ¯̄v (αn, βn)〉 ≤ 0.

(iii) For (¯̄z, 2∗) ∈ G (¯̄ν (αn, βn)),

(a) if
〈¯̄z − ¯̄e2 + ¯̄e0, ¯̄ν (αn, βn)〉 > 0, (42)

then there exists (¯̄x, 0∗) ∈ G (¯̄ν (αn+1, βn+1)) satisfying

¯̄x = L(2,0) ¯̄z − ¯̄e2 (43)

such that Θ(2,0) (¯̄x, 0
∗) ≻ (¯̄z, 2∗);
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(b) if
〈¯̄z − ¯̄e2 + ¯̄e0, ¯̄ν (αn, βn)〉 ≤ 0, (44)

then there exists (¯̄x, 2∗) ∈ G (¯̄ν (αn+1, βn+1)) satisfying

¯̄x = L(2,0) ¯̄z (45)

such that Θ(2,0) (¯̄x, 2
∗) ≻ (¯̄z, 2∗).

About (a): From (30) together with (43), it follows

Θ(2,0) (¯̄x, 0
∗) =

(

L−1
(2,0)

¯̄x, 0∗
)

+
(

L−1
(2,0) (¯̄x+ ¯̄e2) , 2

∗
)

=
(

L−1
(2,0)

¯̄x, 0∗
)

+ (¯̄z, 2∗) ≻ (¯̄z, 2∗) .

By (43), Lemma 5.2, and (42), we get,

〈¯̄x, ¯̄ν (αn+1, βn+1)〉 =
〈

L(2,0) ¯̄z − ¯̄e2, ¯̄ν (αn+1, βn+1)
〉

=
〈

L(2,0) (¯̄z − ¯̄e2 + ¯̄e0) , ¯̄ν (αn+1, βn+1)
〉

=
〈

¯̄z − ¯̄e2 + ¯̄e0,
tL(2,0) ¯̄ν (αn+1, βn+1)

〉

= cn 〈¯̄z − ¯̄e2 + ¯̄e0, ¯̄v (αn, βn)〉 > 0.

By (41), Lemma 5.2, and (39),

〈¯̄x− ¯̄e0, ¯̄ν (αn+1, βn+1)〉 =
〈

L(2,0) ¯̄z − ¯̄e2 − ¯̄e0, ¯̄ν (αn+1, βn+1)
〉

=
〈

L(2,0) (¯̄z − ¯̄e2) , ¯̄ν (αn+1, βn+1)
〉

=
〈

¯̄z − ¯̄e2,
tL(2,0) ¯̄ν (αn+1, βn+1)

〉

= cn 〈¯̄z − ¯̄e2, ¯̄v (αn, βn)〉 ≤ 0.

About (b): From (30) together with (45), it follows

Θ(2,0) (¯̄x, 2
∗) =

(

L−1
(2,0)

¯̄x, 2∗
)

= (¯̄z, 2∗) ≻ (¯̄z, 2∗) .

By (45), Lemma 5.2, and (38), we get,

〈¯̄x, ¯̄ν (αn+1, βn+1)〉
=

〈

L(2,0) ¯̄z, ¯̄ν (αn+1, βn+1)
〉

=
〈

¯̄z, tL(2,0) ¯̄ν (αn+1, βn+1)
〉

= cn 〈¯̄z, ¯̄v (αn, βn)〉 > 0.

By (45), Lemma 5.2, and (44), we get,

〈¯̄x− ¯̄e2, ¯̄ν (αn+1, βn+1)〉 =
〈

L(2,0) ¯̄z − ¯̄e2, ¯̄ν (αn+1, βn+1)
〉

=
〈

L(2,0) (¯̄z − ¯̄e2 + ¯̄e0) , ¯̄ν (αn+1, βn+1)
〉

=
〈

¯̄z − ¯̄e2 + ¯̄e0,
tL(2,0) ¯̄ν (αn+1, βn+1)

〉

= 〈¯̄z − ¯̄e2 + ¯̄e0, , cn¯̄v (αn, βn)〉 ≤ 0.
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By the arguments (i)–(iii), we obtain the assertion (3).

Other cases can be proved analogously.

Corollary 5.6. Let K be a real cubic field and (α0, β0) ∈ ∆K. Moreover, we assume

that the sequence {(αn, βn, εn)}n=0,1,2,... is periodic with a period of length p, i.e.,

∃m ≥ 0, ∃p ≥ 1 : (αm, βm, εm) = (αm+p, βm+p, εm+p) . (46)

Then, the stepped surface S (¯̄ν (α0, β0)) can be presented by

sΨg (S (¯̄ν (α0, β0))) = Θε0 ◦Θε1 ◦ · · · ◦Θεm−1 (sΨg (S (¯̄ν (αm, βm)))) (47)

and the stepped surface S (¯̄ν (αm, βm)) can be characterized as the fixed point of the tiling
substitution Θ = ΘεmΘεm+1 · · ·Θεm+p−1 by

Θ (sΨg (S (¯̄ν (αm, βm)))) = sΨg (S (¯̄ν (αm, βm))) . (48)

Remark 5.7. Notice that by the bijectivity of Θεn, the right-hand side (resp., left-hand
side) of (47) (resp., (48)) can be defined by extending the finite sum of squares to an

infinite sum. We can do the same for sΨg and gΨs.

Proof. It is clear that (48) is valid by (46). Moreover, by the bijectivity of Θεn, n =

0, 1, . . . , m− 1, we get (47).

Let U and U ′ be fundamental patches

U :=

2
∑

i=0

(¯̄ei, i
∗) , U ′ :=

2
∑

i=0

(¯̄0, i∗
)

.

We put

γn := Θε0 . . .Θεn−2Θεn−1 (U) for U ∈ G (¯̄v (αn, βn)) ,

(resp., γ′
n := Θε0 . . .Θεn−2Θεn−1 (U ′) for U ′ ∈ G ′ (¯̄v (αn, βn)) ),

which is a sequence of patches of S (¯̄ν (α0, β0)) (resp., S ′ (¯̄ν (α0, β0))). Then we have

the following.

Corollary 5.8. (1) The difference of γn and γ′
n is that

gΨs (γn) \gΨs (γ
′
n) = gΨs (U) , gΨs (γ

′
n) \gΨs (γn) = gΨs (U ′)

(2) γn ≺ γn+1 for all n.

(3)
⋃∞

n=0 gΨs (γn) ⊂ S (¯̄ν (α0, β0)).
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6 Examples

We give some examples.

Example 6.1 (K is not totally real). Let δ be the real root of x3 − 2, K = Q(δ) and
α = 2/3 − 2δ/3 + δ2/6, β = 2/3 + δ/3 − δ2/3. Then (α, β) ∈ ∆K and the expansion

{εn}∞n=0 of (α, β) obtained by our continued fraction algorithm is given by

{εn}∞n=0 =
∗

(2, 0), (0, 2), (2, 1), (2, 1), (0, 1), (1, 0), (0, 2), (0, 2), (1, 2), (2, 1),

(1, 0),
∗

(1, 0), . . . ,

and the eigenvalue λ(α, β) > 1 coming from the period of the expansions is a Pisot number
with x3 − 57x2+3x− 1 as its minimal polynomial (see Figure 5). On the other hand, we

can observe the explosion phenomenon (as in the example in [Tamura and Yasutomi 09])
related to the expansions obtained by the Jacobi-Perron and the modified Jacobi-Perron

algorithms; consequently, we can not expect the periodicity of the expansions.

Example 6.2 (K is totally real). (1) Let δ be the root of x3−6x2+7x−1 with δ > 4,
K = Q (δ) and α = −1/3− 4δ/3+ δ2/3, β = −2+5δ− δ2. Then, (α, β) ∈ ∆K and
t (1− α− β, α, β) is an eigenvector of M(1,0)M(0,1)M(2,0)M(0,2)M(0,1) with respect to
its eigenvalue δ. We note that δ is not a Pisot number (see Figure 6).

(2) On the other hand, we have the expansion of (α, β) as follows:

{εn}∞n=0 =(1, 0), (0, 2), (2, 1), (2, 1), (2, 1), (1, 0), (1, 0),
∗

(1, 0), (0, 2), (2, 0), (1, 0), (2, 0), (0, 1), (1, 0),
∗

(2, 0), . . . ,

and λ(α, β) is a Pisot number having its minimal polynomial x3 − 13x2 + 10x − 1

(see Figure 7).

Example 6.3 (K is not totally real). (1) (Completely non-admissible)
Let δ be the real root of x3− 5x2 − 2x− 1, K = Q(δ) and α = 11/5+9δ/5− 2δ2/5,

β = −7/5+7δ/5−δ2/5. Then, (α, β) ∈ ∆K and t(1−α−β, α, β) is an eigenvector
of M(0,1)M(2,0)M(1,2)M(0,1)M(2,0)M(1,2) with respect to its eivenvalue δ. We note that

(0, 1)(2, 0), (2, 0)(1, 2), (1, 2)(0, 1), (2, 0)(1, 2), (1, 2)(0, 1) are forbidden words given
in Table 1 and δ is a Pisot number (see Figure 8).

(2) We have the expansion of (α, β) as follows:

{εn}∞n=0 =
∗

(0, 2), (2, 1), (1, 0), (1, 0), (0, 2), (2, 1), (2, 1), (1, 0),
∗

(0, 2), . . . ,

and λ (α, β) is a Pisot number having x3−29x2−6x−1 as its minimal polynomial
(see Figure 9).
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e1

e2

e3

n = 0

n = 1

n = 2

Figure 5:
(

Θ(2,0)Θ(0,2)Θ(2,1)Θ(2,1)Θ(0,1)Θ(1,0)Θ(0,2)Θ(0,2)Θ(1,2)Θ(2,1)Θ(1,0)Θ(1,0)

)n
(U) in Ex-

ample 6.1 where the point is located at (1, 1, 1).
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e1 e2

e3

n = 0
n = 1

n = 2

Figure 6: (Θ(1,0)Θ(0,1)Θ(2,0)Θ(0,2)Θ(0,1))
n (U) in Example 6.2 (1).
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e1 e2

e3

n = 0

n = 1

n = 2

Figure 7: Θ(1,0)Θ(0,2)Θ(2,1)Θ(2,1)Θ(2,1)Θ(1,0)Θ(1,0)

(

Θ(1,0)Θ(0,2)Θ(2,0)Θ(1,0)Θ(2,0)Θ(0,1)Θ(1,0)Θ(2,0)

)n
(U)

in Example 6.2 (2).
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e1
e2

e3

n = 0

n = 1

n = 2

Figure 8: (Θ(0,1)Θ(2,0)Θ(1,2)Θ(0,1)Θ(2,0)Θ(1,2))
n (U) in Example 6.3 (1).
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e1
e2

e3

n = 0

n = 1

n = 2

Figure 9:
(

Θ(0,2)Θ(2,1)Θ(1,0)Θ(1,0)Θ(0,2)Θ(2,1)Θ(2,1)Θ(1,0)Θ(0,2)

)n
(U) in Example 6.3 (2).
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7 Conjectures

We give following conjectures which are supported by the numerical experiments.

Conjecture 7.1. Let K be a real cubic field and r = 5/2. ∆K = ∆Per
K,r holds for any real

cubic field K.

Conjecture 7.2. Let K be a real cubic field and let α(0), α(1), α(2) be its positive Q-basis
with

α =
α(1)

α(0) + α(1) + α(2)
, β =

α(2)

α(0) + α(1) + α(2)
.

Let {εn}∞n=0 be the expansion of the (α, β). Suppose that εk+1, . . . , εk+l is the period of
the expansion. Then, Mεk+1

. . .Mεk+l
has a Pisot number as its eigenvalue.

The following theorem (Theorem 5 in Fernique [Fernique 05]) together with Conjec-

tures 7.1, 7.2 implies Conjecture 7.5.

Theorem 7.3 (Fernique). Let S (¯̄α) be a stepped surface of such that there exist two

generalized substitutions ΘPrep and ΘPer verifying:

S ( ¯̄α) = ΘPrep (S ) with S = ΘPer (S ) .

If ΘPer is of Pisot type and bijective on S , then there exists a finite patch P of S such

that
S (¯̄α) = ΘPrep

(

lim
n→∞

ΘPer (P )
)

.

Remark 7.4. Theorem 7.3 gives an effective generation of any stepped surface under the
Pisot condition.

Conjecture 7.5. Let ¯̄α = (α0, α1, α2) be any Q-basis of arbitrarily given real cubic

number field. Then the stepped surface S (¯̄α) is finitely descriptive, i.e., there exist a
finite word ε0ε1 · · · εk−1 ∈ Ind∗ =

⋃∞
n=0 Ind

n, and a nonempty word εkεk+1 · · · εk+l−1 ∈
Ind∗ (k ≥ 0, l > 1), and a patch P consisting of finite squares such that

S ( ¯̄α) = gΨs

(

Θε0Θε1 · · ·Θεk−1

(

lim
n→∞

(

ΘεkΘεk+1
· · ·Θεk+l−1

)n
(P )
))

.

Remark 7.6. Conjecture 7.5 says that any stepped surface S ( ¯̄α) for any Q-basis ¯̄α ∈ K3

for any given real cubic number field K is finitely descriptive and generated only by 6
substitutions. For notation of Θε (ε ∈ Ind), see Section 5. Notice that without loss of

generality, we may assume α0, α1, α2 > 0 and α0 + α1 + α2 = 1 by the symmetry of the
lattice Z3.
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