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ESSENTIALLY UNIQUE REPRESENTATIONS BY CERTAIN TERNARY

QUADRATIC FORMS

ALEXANDER BERKOVICH AND FRANK PATANE

Abstract. In this paper we generalize the idea of “essentially unique” representations by ternary
quadratic forms. We employ the Siegel formula, along with the complete classification of imaginary
quadratic fields of class number less than or equal to 8, to deduce the set of integers which are
represented in essentially one way by a given form which is alone in its genus. We consider a variety
of forms which illustrate how this method applies to any of the 794 ternary quadratic forms which
are alone in their genus. As a consequence, we resolve some conjectures of Kaplansky regarding
unique representation by the forms x

2 + y
2 + 3z2, x2 + 3y2 + 3z2, and x

2 + 2y2 + 3z2 [18].

1. Introduction

The concept of connecting the number of representations of a ternary quadratic form to the class
number for binary quadratic forms dates back to Gauss [11]. Gauss was the first to introduce many
fundamental concepts such as discriminant, positive definite form, and equivalence of forms. After
introducing these fundamental notions, he related the number of representations of an integer by
x2 + y2 + z2 to what is essentially the class number for binary quadratic forms.

Representation of integers by x2 + y2 + z2, has been studied by many mathematicians since the
time of Gauss. Building on the work of Hardy, Bateman [3] derived and proved the formula for the
number of representations of a positive integer as the sum of three squares. We point out that this
representation formula is a special case of the more general Siegel formula which can be found in [21].
We mention this since our treatment often relies on the Siegel formula, which we will describe in the
next section.

Rather than discussing the total number of representations by a quadratic form, one can identify
solutions according to a given relation. In the case of the form x2 + y2 + z2, identifying solutions
which are the same up to order and sign is equivalent to partitioning a number into three squares. In
1948, Lehmer considered partitions of an integer into k squares [19]. We refer the reader to [15] for a
recent (2004) discussion of this topic.

In 1984, Bateman and Grosswald essentially classified all integers which have one representation up
to order and sign by x2+y2+z2 [4]. Their proof assumed they had the complete list of discriminants of
binary quadratic forms with class number less than or equal to 4. In 1992, Arno completely classified
all discriminants of binary quadratic forms with class number less than or equal to 4 [1]. Bateman
and Grosswald’s assumption was proven correct.

In 1997, Kaplansky considered the forms x2 + y2 + 2z2, x2 + 2y2 + 2z2, and x2 + 2y2 + 4z2 [18].
He identified solutions which are the same up to “order and sign”, and deduced which numbers are
represented in essentially one way by the aforementioned forms. He utilized the completed list of dis-
criminants of binary quadratic forms with class number less than or equal to 4 to deduce the integers
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with essentially unique representation by the forms he considered. Kaplansky then conjectured about
the numbers which are represented in essentially one way by the forms x2 +2y2+3z2, x2 +3y2+3z2,
and x2 + y2 + 3z2.

In this paper we employ the results of Watkins [23] to resolve Kaplansky’s conjectures. Further-
more, we extend the idea of essentially unique representation beyond diagonal forms, where we must
consider more than “order and sign”. Our treatment will apply to any of the 794 ternary quadratic
forms which are alone in their genus. The determination of these forms was first explored by Watson
[24], with the final touch delivered by Jagy, Kaplansky, and Schiemann [17]. (See also [20].) For
the remainder of this paper, we call a form idoneal when it is alone in its genus. We point out that
x2 + y2 + z2, along with all the ternary forms discussed in [18], are idoneal.

In Section 2, we will give the necessary definitions and notation as well as discuss automorphs and
“essentially unique” representations. We then outline the general approach of how to use the Siegel
formula along with class number bounds to derive integers which are represented in essentially one
way by an idoneal ternary form. The largest class number bound we utilize in this paper is 8. We
have compiled tables in the Appendix which list all discriminants of binary quadratic forms with class
number less than or equal to 8 according to class group type.

In Section 3, we will consider the non-diagonal forms x2 + y2 + z2 + yz + xz + xy, 3x2 + 3y2 +
3z2 − 2yz + 2xz + 2xy, and x2 + 3y2 + 3z2 + 2yz. These forms are selected and grouped together in
Section 3 because we treat these forms by relating them to x2+y2+z2. This generalizes the approach
of Kaplansky [18] to non-diagonal forms, and we comment that the three selected forms are among
many which can be handled in a similar fashion. In particular, if f is an idoneal form of discriminant
∆ = 2k, then one can find the integers which are uniquely represented by f by reducing f to x2+y2+z2.

In Section 4, we will examine the non-diagonal forms 5x2 + 13y2 + 20z2 − 12yz + 4xz + 2xy and
7x2 + 15y2 +23z2 + 10yz+ 2xz + 6xy. Both of these forms can be treated by the methods of Section
3, however we chose to use the Siegel formula along with local density considerations to derive the
integers which they represent in essentially one way.

In Section 5, we resolve the aforementioned conjectures of Kaplansky. Explicitly, we find the inte-
gers which are represented in essentially one way by x2+ y2+3z2, x2 +3y2+3z2, and x2 +2y2+3z2,
by applying the method outlined in Section 2.

Section 6, also called the Outlook, contains our concluding remarks. In the Outlook we consider
the form x2 + 3y2 + 3z2 + yz + xy which is not idoneal. We sketch the proof that we have found
all integers which are represented in essentially one way by this form. We conclude this paper with
prospects for future work.

2. Notation and Preliminaries

We use the notation (a, b, c, d, e, f) to represent the positive ternary quadratic form ax2 + by2 +
cz2 + dyz + exz + fxy. We remark that this paper only considers positive ternary quadratic forms.
We use (a, b, c, d, e, f ;n) to denote the total number of representations of n by (a, b, c, d, e, f). We take
(a, b, c, d, e, f ;n) = 0 when n 6∈ N. The associated theta series to the form (a, b, c, d, e, f) is

(2.1) ϑ(a, b, c, d, e, f, q) :=
∑

x,y,z

qax
2+by2+cz2+dyz+exz+fxy =

∑

n≥0

(a, b, c, d, e, f ;n)qn.

The discriminant ∆ of (a, b, c, d, e, f) is defined as

∆ :=
1

2
det





2a f e
f 2b d
e d 2c



 = 4abc+ def − ad2 − be2 − cf2.
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We note that the discriminant ∆ > 0 for a positive ternary quadratic form. Two ternary quadratic
forms of discriminant ∆ are in the same genus if they are equivalent over Q via a transformation
matrix in SL(3,Q) whose entries have denominators coprime to 2∆.

Let A be a 3 by 3 matrix of determinant ±1. A is an automorph for the form (a, b, c, d, e, f) if the
action of A on (a, b, c, d, e, f) leaves (a, b, c, d, e, f) unchanged. We denote the set of automorphs of
(a, b, c, d, e, f) by Aut(a, b, c, d, e, f). A discussion of automorphs for ternary quadratic forms is given
in [9]. We use Sage 5.1 to explicitly compute the automorphs for the forms considered in this paper.
We now give a brief example by considering the 8 automorphs of the form (1, 3, 4, 3, 1, 0). We have

Aut(1, 3, 4, 3, 1, 0) =

{





1 0 0
0 1 0
0 0 1



 ,





-1 0 0
0 -1 0
0 0 -1



 ,





1 0 1
0 -1 0
0 0 -1



 ,





-1 0 -1
0 1 0
0 0 1



 ,





1 0 0
0 -1 -1
0 0 1



 ,





-1 0 0
0 1 1
0 0 -1



 ,





1 0 1
0 1 1
0 0 -1



 ,





-1 0 -1
0 -1 -1
0 0 1





}

.

To give a further illustration, we note that (1, 3, 4, 3, 1, 0; 19) = 12. Under the action of
Aut(1, 3, 4, 3, 1, 0), the solutions form two orbits:

O1 : = {(−4,−1, 0), (−4, 1, 0), (4,−1, 0), (4, 1, 0)},
O2 : = {(−3,−2, 2), (−3, 0, 2), (−1, 0,−2), (−1, 2,−2), (1,−2, 2), (1, 0, 2), (3, 0,−2), (3, 2,−2)}.

The solutions in O1 are easily identified as the solution (4, 1, 0) up to sign. However the solutions in
O2 are not so readily identified as being equivalent under the action of automorphs.

Identifying solutions which are equivalent under the action of automorphs is the way to generalize
previous authors’ ([4], [18], [19]) notion of solutions being equivalent up to “order and sign”.
When the solutions form exactly k orbits under the action of automorphs, we say the form represents
the integer in essentially k ways. We say an integer has an essentially unique representation when the
solutions form 1 orbit under the action of automorphs. We also note that if f is any ternary quadratic
form then f(x, y, z) = n implies f(−x,−y,−z) = n. Thus if f represents a positive integer n, then f
represents n in at least two ways. Hence there is little ambiguity if we say that f uniquely represents
an integer when the solutions form 1 orbit under the action of automorphs.

The focus of this paper is concerned with finding integers which have an essentially unique rep-
resentation by a given idoneal form. In particular, we give a method which enables one to find all
integers which are represented in essentially one way, by an idoneal ternary quadratic form. We now
introduce an essential tool to our method, the celebrated Siegel theorem for positive ternary quadratic
forms.

Theorem 2.1. Let G be a genus of positive ternary quadratic forms of discriminant ∆. Then

(2.2)
∑

t∈G

Rt(n)

|Aut(t)| = 4πM(G)

√

n

∆

∏

p

dG,p(n),

where Rt(n) denotes the total number of representations of n by t, and it is understood that the sum
on the left is over representatives of each equivalence class in the genus G. The product on the right
is over all primes p, and the mass of G is defined as

M(G) :=
∑

t∈G

1

|Aut(t)| .

Let t := ax2 + by2 + cz2 + dyz+ exz+ fxy be any form in G. Then the p-adic local density dG,p (also
called dt,p) is

(2.3) dt,p(n) := lim
k→∞

p−2k|{(x, y, z) ∈ Z3 : ax2 + by2 + cz2 + dyz + exz + fxy ≡ n (mod pk)}|.
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We remark that the limit in (2.3) can be removed as long as we take k large.

Theorem 2.1 is a special case of the general Siegel theorem given in [21]. When the form f is
idoneal, Theorem 2.1 gives an explicit formula for Rf (n).

Corollary 2.2. Let f be an idoneal ternary quadratic form of discriminant ∆. Then

Rf (n) = 4π

√

n

∆

∏

p

df,p(n),

with all notation as previous.

In [21] Siegel shows that when (2∆, p) = 1 we have

(2.4) dt,p(n) =















1 + 1
p
+ 1

pk+1

((

−m∆
p

)

− 1
)

n = mp2k, p ∤ m,

(

1
p
+ 1

)(

1− 1
pk+1

)

n = mp2k+1, p ∤ m,

where
(

r
p

)

is the Legendre symbol. When we use Corollary 2.2 along with equation (2.4), we obtain

a very explicit formula for the total number of representations of an integer by an idoneal form.
Employing (2.4) it can be shown that

(2.5)
∏

p∤2∆

df,p(n) =
8

π2
L(1, χ(∆n))P (n,∆)

∏

2<p|∆

1

1− 1
p2

,

where L(1, χ(n)) is given by

(2.6) L(1, χ(n)) :=
∞
∑

m=1

(

−4n
m

)

m
=

∏

p>2

1

1−
(

−n
p

)

p

,

and χ(n) :=
(

−4n
•

)

. Lastly P (n,∆) is given by the finite product

(2.7) P (n,∆) :=
∏

(p2)b||n,
p∤2∆



1 +
1

p
+

1

p2
+ · · ·+ 1

pb−1
+

1

pb(1−
(

−∆np−2b

p

)

p−1)



 ,

where the product is over all primes p ∤ 2∆ such that p2 | n, and b is the largest integer such that
p2b | n. We note that the only property of P (n,∆) that we use is P (n,∆) is a finite product with
1 ≤ P (n,∆). Lastly, P (n, 4k) = P (n, 4) = P (n, 1) and so we define the abbreviated P (n) := P (n, 1).

Combining Corollary 2.2 with (2.5) yields

(2.8) Rf (n) =
32

√
n

π
√
∆

L(1, χ(∆n)) · P (n,∆) ·
∏

p|2∆

df,p(n)
∏

2<p|∆

1

1− 1
p2

,

where f is an idoneal ternary quadratic form of discriminant ∆.

If we factor n as n = 4a ·m · d2 with 2 ∤ d and m squarefree, then

L(1, χ(n)) = L(1, χ(m))
∏

p|d

1−

(

−m
p

)

p
.(2.9)

Dirichlet gives a wonderful connection between L(1, χ(m)) and h(D), the number of reduced primi-
tive binary quadratic forms of discriminant D = −m or D = −4m [10]. We call h(D) the class number
of discriminant D. The relationship between L(1, χ(m)) and h(D) is given in the following theorem.
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Theorem 2.3. For m squarefree and χ(m) :=
(

−4m
•

)

, we have

(2.10) L(1, χ(m)) =



































































π

4
m = 1,

π

2
√
3

m = 3,

3π

2
√
m
h(−m) 3 < m ≡ 3 (mod 8),

π

2
√
m
h(−m) m ≡ 7 (mod 8),

π

2
√
m
h(−4m) 1 < m ≡ 1, 2 (mod 4).

See [6] for details.

Let f be an idoneal ternary quadratic form. A necessary but not sufficient condition for f to
uniquely represent n up to the action of automorphs, is

(2.11) 0 < Rf (n) ≤ |Aut(f)|.
We employ (2.8) along with Theorem 2.3 to give an explicit lower bound for Rf (n) in terms of the
class number. We then classify the n which satisfy (2.11), and call this set the prelist of f , denoted
by Prelist(f). We need only check which elements of Prelist(f) have the property that their solutions
form one orbit under Aut(f). There are only a finite number of elements of Prelist(f) we need to
check, and we employ Maple V.15 to compute the number of orbits of the solutions. Of course, solving
for the elements of Prelist(f) requires one to have information on the bounds of the class number.
Hence we now discuss class number considerations.

Attempting to solve h(d) = k dates back to Gauss [11, Section V, Article 303], where Gauss conjec-
tured the list of imaginary quadratic fields of small class number. The case h(d) = 1 was essentially
first completed by Heegner in 1951 [16]. In 1967, Baker and Stark gave independent proofs for the
h(d) = 1 case as well. Many mathematicians have done extensive work towards solving h(d) = k for
k ≤ 8. (See [1], [2], [12], and [13].)

The latest developments are given by Watkins [23]. According to Watkins, the largest (in magni-
tude) fundamental discriminant d with class number less than or equal to 8, is d = −6307. We can
enumerate those with non-fundamental discriminant by employing the formula

(2.12) h(D) = h(d) · f · wD

wd

∏

p|f

1−

(

d
p

)

p
,

where D = d · f2, f is the conductor of D, and wD is given by

wD :=







6 D = −3,
4 D = −4,
2 D < −4.

Equation (2.12) is Lemma 2.13 in [22]. An application of (2.12) is h(d · f2) ≤ 8 and d = −3, d = −4,
|d| > 4, implies f ≤ 90, 60, 30, respectively.

Another important use of (2.12), is we can combine (2.9) with (2.12) to remove the restriction of
m being squarefree in Theorem 2.3.

In the Appendix, we include tables of the 527 discriminants (fundamental and non-fundamental)
with class number ≤ 8 organized by isomorphism class of the class group. We generated this complete
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set by utilizing the bounds found in [23] along with (2.12). We then used PARI/GP V.2.7.0 to identify
the isomorphism class of each class group, and compile the tables.

We now move on to Section 3, where we consider the form (1, 1, 1, 0, 0, 0) and derive the corre-
sponding prelist. We then use this prelist to find the integers which are uniquely represented by the
forms (1, 1, 1, 1, 1, 1), (3, 3, 3,−2, 2, 2), and (1, 3, 3, 2, 0, 0).

3. Some ternary forms of discriminant 2, 4, 32, 64 and their relation to x2 + y2 + z2

In [3], Bateman shows

(3.1) (1, 1, 1, 0, 0, 0;n) =
16

√
n

π
ds,2(n)L(1, χ(n))P (n),

where s := x2 + y2+ z2, and all other notation is given in Section 2. We comment that equation (3.1)
follows from (2.8) as well.

Since |Aut(s)| = 48, the prelist of s consists of all n with 0 < (1, 1, 1, 0, 0, 0;n) ≤ 48. By congruence
considerations it is easy to see that (1, 1, 1, 0, 0, 0;n) = (1, 1, 1, 0, 0, 0; 4n), and so we restrict to 4 ∤ n.

We refer to [5, Equation (1.5)], for the function ds,2(n). We have

(3.2) ds,2(n) =







3/2 n ≡ 1, 2 (mod 4),
1 n ≡ 3 (mod 8),
0 n ≡ 7 (mod 8),

for n 6≡ 0 (mod 4). We need not consider n ≡ 7 (mod 8) since (3.2) and (3.1) imply
(1, 1, 1, 0, 0, 0;n) = 0 for such n.

Both n = 1, 3 satisfy 0 < (1, 1, 1, 0, 0, 0;n) ≤ 48. Employing (2.10), (3.1), and (3.2), we find

(3.3) (1, 1, 1, 0, 0, 0;n) ≥
{

24h(−n) 3 < n ≡ 3 (mod 8),
12h(−4n) 1 < n ≡ 1, 2 (mod 4).

Our goal is to solve for n which satisfy

(3.4) 48 ≥
{

24h(−n) 3 < n ≡ 3 (mod 8),
12h(−4n) 1 < n ≡ 1, 2 (mod 4).

We point out that to solve (3.4) we need information regarding discriminants with class number 4.
Employing the tables in the Appendix, we solve (3.4) and find there are a total of 53 integers n with
4 ∤ n, and 0 < (1, 1, 1, 0, 0, 0;n) ≤ 48. We remark that three spurious solutions, n = 49, 75, 99, satisfy
(3.4) yet (1, 1, 1, 0, 0, 0;n) > 48. Prelist(1, 1, 1, 0, 0, 0) consists of the integers 4k · v, k ≥ 0, and
v ∈ {1, 2, 3, 5, 6, 9, 10, 11, 13, 14, 17, 18, 19, 21, 22, 25, 27, 30, 33, 34, 35, 37, 42, 43, 46, 51, 57, 58,
67, 70, 73, 78, 82, 85, 91, 93, 97, 102, 115, 123, 130, 133, 142, 163, 177, 187, 190, 193, 235, 253, 267,
403, 427}.

In Table 1 we tabulate the integers 4 ∤ n with 0 < (1, 1, 1, 0, 0, 0;n) ≤ k for select values of k.
We now check which integers in Prelist(1, 1, 1, 0, 0, 0) are represented in an essentially unique way,

and arrive at the following theorem.

Theorem 3.1. The form (1, 1, 1, 0, 0, 0) uniquely represents n (up to action of automorphs) if and
only if n = 4k · v, k ≥ 0, and
v ∈ {1, 2, 3, 5, 6, 10, 11, 13, 14, 19, 21, 22, 30, 35, 37, 42, 43, 46, 58, 67, 70, 78, 91, 93, 115, 133,
142, 163, 190, 235, 253, 403, 427}.

Theorem 3.1 was previously established in [4]. However we additionally derived Table 1 in the
process of proving Theorem 3.1, and we employ Table 1 to find the integers which are uniquely rep-
resented by certain forms that are considered in subsequent sections.
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Table 1

(1, 1, 1, 0, 0, 0;n) 4 ∤ n
0 < (1, 1, 1, 0, 0, 0;n) < 6 n ∈ {}
(1, 1, 1, 0, 0, 0;n) = 6 n ∈ {1}
6 < (1, 1, 1, 0, 0, 0;n) ≤ 8 n ∈ {3}
8 < (1, 1, 1, 0, 0, 0;n) ≤ 12 n ∈ {2}
12 < (1, 1, 1, 0, 0, 0;n) < 24 n ∈ {}
(1, 1, 1, 0, 0, 0;n) = 24 n ∈ {5, 6, 10, 11, 13, 19, 22, 37, 43, 58, 67, 163}
24 < (1, 1, 1, 0, 0, 0;n) < 48 n ∈ {9, 18, 25, 27}
(1, 1, 1, 0, 0, 0;n) = 48 n ∈ {14, 17, 21, 30, 33, 34, 35, 42, 46,

51, 57, 70, 73, 78, 82, 85, 91, 93, 97, 102, 115, 123,
130, 133, 142, 177, 187, 190, 193, 235, 253, 267, 403, 427}

.

The idea of relating a form to x2 + y2 + z2 to count the number of representations is not new.
Indeed, this idea was developed by Dickson [8], and is the main technique of Kaplansky [18] where he
determined the integers which are represented in an essentially unique way by the forms x2+y2+2z2,
x2 + 2y2 + 2z2, and x2 + 2y2 + 4z2. We mention that although all the Theorems listed in [18] are
correct, some of the main Lemmas (Lemma 3.1–3.3) can easily be misinterpreted. We chose to restate
and augment these important Lemmas of Kaplansky.

Lemma 3.2 (Kaplansky). Let n be a nonnegative integer. We have

(3.5) (1, 1, 2, 0, 0, 0; 2n) = (1, 1, 1, 0, 0, 0;n),

(3.6) 3(1, 1, 2, 0, 0, 0; 2n+ 1) = (1, 1, 1, 0, 0, 0; 4n+ 2).

Lemma 3.3 (Kaplansky). Let n be a nonnegative integer. We have

(3.7) (1, 2, 2, 0, 0, 0; 4n) = (1, 1, 1, 0, 0, 0;n),

(3.8) 3(1, 2, 2, 0, 0, 0; 4n+ 1) = (1, 1, 1, 0, 0, 0; 4n+ 1),

(3.9) 3(1, 2, 2, 0, 0, 0; 4n+ 2) = (1, 1, 1, 0, 0, 0; 4n+ 2),

(3.10) (1, 2, 2, 0, 0, 0; 4n+ 3) = (1, 1, 1, 0, 0, 0; 4n+ 3).

Lemma 3.4 (Kaplansky). Let n be a nonnegative integer. We have

(3.11) (1, 2, 4, 0, 0, 0; 8n) = (1, 1, 1, 0, 0, 0;n),

(3.12) 3(1, 2, 4, 0, 0, 0; 8n+ 2) = (1, 1, 1, 0, 0, 0; 4n+ 1),

(3.13) 3(1, 2, 4, 0, 0, 0; 8n+ 4) = (1, 1, 1, 0, 0, 0; 4n+ 2),

(3.14) (1, 2, 4, 0, 0, 0; 8n+ 6) = (1, 1, 1, 0, 0, 0; 4n+ 3),

(3.15) 6(1, 2, 4, 0, 0, 0; 2n+ 1) = (1, 1, 1, 0, 0, 0; 4n+ 2).

We now go beyond Kaplansky’s forms and relate the non-diagonal forms (1, 1, 1, 1, 1, 1),
(3, 3, 3,−2, 2, 2), and (1, 3, 3, 2, 0, 0) to x2 + y2 + z2 to find the integers which they uniquely represent.

The form (1, 1, 1, 1, 1, 1) has discriminant 2 and 48 automorphs. We write f(x, y, z) := x2 + y2 +
z2 + yz + xz + xy. It is easy to check that

f(x, y, z) ≡ 0 (mod 2),
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if and only if x ≡ y ≡ z (mod 2).

For any x, y, z we must have x ≡ y ≡ z (mod 2) or we have one of the following: x ≡ y 6≡ z
(mod 2), x ≡ z 6≡ y (mod 2), or y ≡ z 6≡ x (mod 2). We note that

(3.16)
∑

x≡y 6≡z (mod 2)

qf(x,y,z) =
∑

x≡z 6≡y (mod 2)

qf(x,y,z) =
∑

y≡z 6≡x (mod 2)

qf(x,y,z),

and thus we have

(3.17)
∑

x,y,z

qf(x,y,z) =
∑

x≡y≡z (mod 2)

qf(x,y,z) + 3
∑

x≡y 6≡z (mod 2)

qf(x,y,z).

The substitution x 7→ (−x+ y+ z), y 7→ (x− y+ z), and z 7→ (x+ y− z), guarantees the condition
x ≡ y ≡ z (mod 2), hence

(3.18)
∑

x≡y≡z (mod 2)

qf(x,y,z) =
∑

x,y,z

qf(−x+y+z,x−y+z,x+y−z) =
∑

x,y,z

q2(x
2+y2+z2).

The substitution x 7→ (−x + y + z), y 7→ (x − y + z), and z 7→ (x + y − z + 1), gives x ≡ y 6≡ z
(mod 2), and we have

(3.19)
∑

x≡y 6≡z (mod 2)

qf(x,y,z) =
∑

x,y,z

qf(−x+y+z,x−y+z,x+y−z+1) = q
∑

x,y,z

q2(x
2+y2+z2)+2(y+z).

We have now proven the following lemma.

Lemma 3.5.

(3.20)
∑

x,y,z

qx
2+y2+z2+yz+xz+xy =

∑

x,y,z

q2(x
2+y2+z2) + 3q

∑

x,y,z

q2(x
2+y2+z2)+2(y+z).

Lemma 3.5 implies

(3.21) (1, 1, 1, 1, 1, 1; 2n+ 1) = (1, 1, 1, 0, 0, 0; 4n+ 2),

and

(3.22) (1, 1, 1, 1, 1, 1; 2n) = (1, 1, 1, 0, 0, 0;n),

for any nonnegative integer n.
Equations (3.21) and (3.22) relate (1, 1, 1, 1, 1, 1;n) to (1, 1, 1, 0, 0, 0;n) for any nonnegative integer.
We can use Table 1 to determine the solutions to

(3.23) 0 < (1, 1, 1, 1, 1, 1; 2n+ 1) = (1, 1, 1, 0, 0, 0; 4n+ 2) ≤ 48,

and

(3.24) 0 < (1, 1, 1, 1, 1, 1; 2n) = (1, 1, 1, 0, 0, 0;n) ≤ 48.

We find the solutions to 0 < (1, 1, 1, 1, 1, 1; 2n)≤ 48 to be 2n = 4k · v, k ≥ 0, and v is in the set {2,
4, 6, 10, 12, 18, 20, 22, 26, 28, 34, 36, 38, 42, 44, 50, 54, 60, 66, 68, 70, 74, 84, 86, 92, 102, 114, 116,
134, 140, 146, 156, 164, 170, 182, 186, 194, 204, 230, 246, 260, 266, 284, 326, 354, 374, 380, 386, 470,
506, 534, 806, 854}.

We find the solutions to 0 < (1, 1, 1, 1, 1, 1; 2n+ 1) ≤ 48 to be

(3.25) 2n+ 1 = 1, 3, 5, 7, 9, 11, 15, 17, 21, 23, 29, 35, 39, 41, 51, 65, 71, 95.

We use Maple V.15 to check the above candidates for unique representation, and arrive at the following
theorem.

Theorem 3.6. The form (1, 1, 1, 1, 1, 1) uniquely represents the integer n (up to action of automorphs)
if and only if n = 4k · v, k ≥ 0, and
v ∈ {1, 2, 3, 5, 6, 7, 10, 11, 15, 21, 22, 23, 26, 29, 35, 38, 39, 42, 70, 71, 74, 86, 95, 134, 182, 186,
230, 266, 326, 470, 506, 806, 854}.
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We now consider the form g := (3, 3, 3,−2, 2, 2) of discriminant ∆ = 64 and |Aut(g)|=48. We see
that g(x, y, z) := 3x2 +3y2 +3z2 − 2yz+2xz+2xy is even if and only if x+ y+ z ≡ 0 (mod 2). The
substitution x 7→ (y + z), y 7→ (x− z), and z 7→ (x− y), ensures x+ y + z ≡ 0 (mod 2), and we have

(3.26)
∑

x+y+z≡0 (mod 2)

qg(x,y,z) =
∑

x,y,z

qg(y+z,x−z,x−y) =
∑

x,y,z

q4(x
2+y2+z2).

The substitution x 7→ (y+z+1), y 7→ (x−z), and z 7→ (x−y), guarantees the condition x+y+z ≡ 1
(mod 2), and we have

(3.27)
∑

x+y+z≡1 (mod 2)

qg(x,y,z) =
∑

x,y,z

qg(y+z+1,x−z,x−y) =
∑

x,y,z

q(2x+1)2+(2y+1)2+(2z+1)2 .

Combining (3.26) and (3.27) yields the following lemma.

Lemma 3.7.

(3.28)
∑

x,y,z

q3x
2+3y2+3z2−2yz+2xz+2xy =

∑

x,y,z

q4(x
2+y2+z2) +

∑

x,y,z

q(2x+1)2+(2y+1)2+(2z+1)2 .

Lemma 3.7 implies

(3.29) (3, 3, 3,−2, 2, 2; 4n) = (1, 1, 1, 0, 0, 0;n),

(3.30) (3, 3, 3,−2, 2, 2; 8n+ 3) = (1, 1, 1, 0, 0, 0; 8n+ 3),

and (3, 3, 3,−2, 2, 2;n) = 0 for any n 6≡ 0, 3, 4 (mod 8).
A necessary condition that the integer n is uniquely represented by (3, 3, 3,−2, 2, 2) is

0 < (3, 3, 3,−2, 2, 2;n)≤ |Aut((3, 3, 3,−2, 2, 2))| = 48.

We use Prelist(1, 1, 1, 0, 0, 0) to determine the solutions to

(3.31) 0 < (3, 3, 3,−2, 2, 2; 4n) = (1, 1, 1, 0, 0, 0;n) ≤ 48,

and

(3.32) 0 < (3, 3, 3,−2, 2, 2; 8n+ 3) = (1, 1, 1, 0, 0, 0; 8n+ 3) ≤ 48.

The integers n which satisfy (3.31) is exactly Prelist(1, 1, 1, 0, 0, 0), which we derived earlier in the
section. The integers which satisfy (3.32) is the finite subset of integers which are congruent to 3
modulo 8 and are in Prelist(1, 1, 1, 0, 0, 0).

Using Maple V.15 we check these solutions for unique representation, and find the following theorem.

Theorem 3.8. The form (3, 3, 3,−2, 2, 2) uniquely represents the integer n (up to action of auto-
morphs) if and only if n = 4k · v, k ≥ 0, 4 ∤ v, and
v ∈ {3, 4, 8, 11, 19, 20, 24, 35, 40, 43, 52, 56, 67, 84, 88, 91, 115, 120, 148, 163, 168, 184, 232, 235,
280, 312, 372, 403, 427, 532, 568, 760, 1012}.

The three forms considered so far, (1, 1, 1, 0, 0, 0), (1, 1, 1, 1, 1, 1), and (3, 3, 3,−2, 2, 2), all have the
maximum number of automorphs: 48. Let us briefly consider the form (1, 3, 3, 2, 0, 0) which has 8
automorphs.

The form h = (1, 3, 3, 2, 0, 0) is of discriminant ∆ = 32 and |Aut(h)|=8. To connect
(1, 3, 3, 2, 0, 0;n) to (1, 1, 1, 0, 0, 0;n) we note that x2+3y2+3z2+2yz = x2+(y− z)2+2(y+ z)2, and
we can use Lemma 3.2 to reduce (1, 1, 2, 0, 0, 0) to (1, 1, 1, 0, 0, 0). Let h(x, y, z) = x2+3y2+3z2+2yz.
We have
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(3.33)

∑

x,y,z

qh(x,y,z) =
∑

x,
y≡z (mod 2)

qx
2+y2+2z2

=
∑

x,y,z

qx
2+2y2+8z2

+
∑

x,
y≡z≡1 (mod 2)

qx
2+y2+2z2

=
∑

x≡1 (mod 2),
y,z

qx
2+2y2+4z2

+
∑

x,y,z

q4(x
2+y2+2z2) +

∑

x≡y≡z≡1 (mod 2)

qx
2+y2+2z2

=
∑

x≡1 (mod 2),
y,z

qx
2+2y2+4z2

+
∑

x,y,z

q8(x
2+y2+z2) +

3

2

∑

x≡y≡z≡1 (mod 2)

qx
2+y2+2z2

,

where we employed the identity

4
∑

x≡1 (mod 2),
y,z

q4(x
2+2y2+4z2) =

∑

x≡y≡z≡1 (mod 2)

qx
2+y2+2z2

.

Making use of (3.15) and observing that
∑

x≡y≡z≡1 (mod 2)

qx
2+y2+2z2

= 2
∑

x≡y≡1 (mod 2)
z≡0 (mod 2)

q2(x
2+y2+z2),

we find

(3.34) (1, 3, 3, 2, 0, 0; 8n) = (1, 1, 1, 0, 0, 0;n),

(3.35) (1, 3, 3, 2, 0, 0; 8n+ 4) = (1, 1, 1, 0, 0, 0; 4n+ 2),

(3.36) (1, 3, 3, 2, 0, 0; 4n+ 2) = 0,

(3.37) 6(1, 3, 3, 2, 0, 0; 2n+ 1) = (1, 1, 1, 0, 0, 0; 4n+ 2).

Employing (3.34) – (3.37) along with Table 1 allows us to solve 0 < (1, 3, 3, 2, 0, 0;n) ≤ 8.

According to Table 1 we have 0 < (1, 1, 1, 0, 0, 0;n) ≤ 8 and 4 ∤ n if and only if n = 1, 3. Hence (3.34)
implies 0 < (1, 3, 3, 2, 0, 0; 8 ·4k) ≤ 8 and 0 < (1, 3, 3, 2, 0, 0; 24 ·4k) ≤ 8. We see (1, 1, 1, 0, 0, 0; 4n+2)≤
48 has the solutions 2n+ 1 = 1, 3, 5, 7, 9, 11, 15, 17, 21, 23, 29, 35, 39, 41, 51, 65, 71, 95.

We now have all solutions to 0 < (1, 3, 3, 2, 0, 0;n) ≤ 8. Using Maple V.15 we directly check these
integers for unique representation to arrive at the following theorem.

Theorem 3.9. The form (1, 3, 3, 2, 0, 0) uniquely represents the integer n (up to action of automorphs)
if and only if n = 1, 3, 5, 7, 11, 15, 21, 23, 29, 35, 39, 71, or 95.

4. Some ternary forms of discriminant 4096 and 8192

The discriminant 4096 is the largest discriminant which is a power of 4 and contains a ternary
idoneal form [17]. Indeed the two forms (5, 13, 20,−12, 4, 2) and (5, 12, 20, 8, 4, 4) are both idoneal and
of discriminant 4096. These forms are alike in the sense that they can be connected to (1, 1, 1, 0, 0, 0)
to find the integers which they uniquely represent. The form (5, 12, 20, 8, 4, 4) has only 2 automorphs,
and can be handled similarly to (5, 13, 20,−12, 4, 2). We now deduce the integers uniquely represented
by (5, 13, 20,−12, 4, 2).

As mentioned, we can relate (5, 13, 20,−12, 4, 2;n) to (1, 1, 1, 0, 0, 0;n) as given in the following
theorem.
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Theorem 4.1. Let n be a nonnegative integer. We have

(4.1) (5, 13, 20,−12, 4, 2; 64n) = (1, 1, 1, 0, 0, 0;n),

(4.2) 3(5, 13, 20,−12, 4, 2; 32(2n+ 1)) = (1, 1, 1, 0, 0, 0; 32(2n+ 1)),

(4.3) 3(5, 13, 20,−12, 4, 2; 16(4n+ 1)) = (1, 1, 1, 0, 0, 0; 16(4n+ 1)),

(4.4) (5, 13, 20,−12, 4, 2; 16(4n+ 3)) = (1, 1, 1, 0, 0, 0; 16(4n+ 3)),

(4.5) 3(5, 13, 20,−12, 4, 2; 4(8n+ 5)) = (1, 1, 1, 0, 0, 0; 8n+ 5),

(4.6) 12(5, 13, 20,−12, 4, 2; 8n+ 5) = (1, 1, 1, 0, 0, 0; 8n+ 5),

and (5, 13, 20,−12, 4, 2; k) = 0 for any k not covered by (4.1) – (4.6).

Proof of the above theorem is elementary, but contains many details. Employing Theorem 4.1 in
conjunction with Table 1 gives all integers n such that

(5, 13, 20,−12, 4, 2;n)≤ |Aut(5, 13, 20,−12, 4, 2)|= 4,

and so we can check which integers are uniquely represented by (5, 13, 20,−12, 4, 2). In particular we
point out that Table 1 implies there is no integer n ≡ 0 (mod 64) with (1, 1, 1, 0, 0, 0, n

64 ) ≤ 4, and
employing (4.1) implies (5, 13, 20,−12, 4, 2) does not uniquely represent infinitely many integers.
Instead of using Theorem 4.1 to deduce the integers which are uniquely represented by
(5, 13, 20,−12, 4, 2), we employ the Siegel formula along with the method described in Section 2.

Using (2.8) with f := (5, 13, 20,−12, 4, 2) we find

(4.7) (5, 13, 20,−12, 4, 2;n) =

√
n

2π
· df,2(n) · L(1, χ(n)) · P (n).

Letting n = 4av, with 4 ∤ v, we see (4.7) implies the bound

(4.8) (5, 13, 20,−12, 4, 2;n)≥ 2a−1√v

π
· df,2(n) · L(1, χ(v)).

The local 2-adic density of f is given by

(4.9) df,2(n) =







3
2a−4 a ≥ 3, v ≡ 1, 2 (mod 4),
1

2a−5 a ≥ 3, v ≡ 3 (mod 8),
0 v ≡ 7 (mod 8).

The values of df,2(n) not covered in (4.9), are listed in Table 2.

Table 2

a = 0 a = 1 a = 2
v ≡ 1 (mod 8) 0 0 4
v ≡ 3 (mod 8) 0 0 8
v ≡ 5 (mod 8) 4 8 4
v ≡ 2 (mod 4) 0 0 4 .

.

We used Sage 5.1 in computing the above densities. We refer the reader to [5] and [14] for more
details on computing local densities.

We can use (4.8) along with (4.9), (2.10), and Table 2, to find all n that satisfy
0 < (5, 13, 20,−12, 4, 2;n) ≤ 4. We write n = 4av with 4 ∤ v and split our analysis according to the
cases a = 0, 1; a = 2; or a ≥ 3.
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Case 1: a = 0, 1.

Since a = 0, 1 we see (5, 13, 20,−12, 4, 2;n) = 0 unless v ≡ 5 (mod 8). Hence we only consider
n = v or n = 4v with v ≡ 5 (mod 8). In the case n ≡ 5 (mod 8), we employ (2.10), (4.8), (4.9), and
Table 2, to find

(4.10) (5, 13, 20,−12, 4, 2;n)≥ h(−4n).

We find n = 5, 13, 21, 37, 45, 85, 93, 133, 253 are the solutions to n ≡ 5 (mod 8) and h(−4n) ≤ 4.
Noting that (5, 13, 20,−12, 4, 2; 45)> 4, we see n = 45 is the only spurious solution.

In the case n = 4v with v ≡ 5 (mod 8), we employ (2.10), (4.8), (4.9), and Table 2, to find

(4.11) (5, 13, 20,−12, 4, 2; 4v)≥ 4h(−4v).

There are no solutions to h(−4v) = 1, and thus no solutions to 0 < (5, 13, 20,−12, 4, 2; 4v) ≤ 4 with
v ≡ 5 (mod 8).

Case 2: a = 2.

Since a = 2, we must consider n = 16v with 4 ∤ v. Particularly, when v = 1, we have n = 16, and
(5, 13, 20,−12, 4, 2; 16) = 2, so n = 16 is a candidate for unique representation by f . However, v = 3
implies n = 48, and (5, 13, 20,−12, 4, 2; 48) > 4, so we need not consider v = 3. Using (2.10), (4.8),
(4.9), and Table 2, we have

(4.12) (5, 13, 20,−12, 4, 2; 16v)≥
{

24 · h(−v) 3 < v ≡ 3 (mod 8),
4 · h(−4v) 1 < v ≡ 1, 2 (mod 4).

Inequality (4.12) shows that we need only consider v ≡ 1, 2 (mod 4) when solving
0 < (5, 13, 20,−12, 4, 2; 16v)≤ 4. We are left to solve h(−4v) = 1 with 1 < v ≡ 1, 2 (mod 4), and we
find the only solution is v = 2. Therefore, we see that n = 32 is a candidate for unique representation.

Case 3: a ≥ 3.

We directly consider n = 4av with 4 ∤ v and a ≥ 3. Using (2.10), (4.8), (4.9), and Table 2, we have

(4.13) (5, 13, 20,−12, 4, 2; 4av) ≥















6 v = 1,
8 v = 3,
24h(−v) 3 < v ≡ 3 (mod 8),
12h(−4v) 1 < v ≡ 1, 2 (mod 4).

From (4.13), we see there are no solutions to (5, 13, 20,−12, 4, 2; 4av) ≤ 4 and a ≥ 3.

Combining the above case shows Prelist(5, 13, 20,−12, 4, 2) = {5, 13, 16, 21, 32, 37, 85, 93, 133, 253}.
Employing Maple V.15 we easily check the elements of Prelist(5, 13, 20,−12, 4, 2) for unique represen-
tation by (5, 13, 20,−12, 4, 2) and we find the following theorem.

Theorem 4.2. The form (5, 13, 20,−12, 4, 2) uniquely represents n (up to action of automorphs) if
and only if n = 5, 13, 16, 21, 32, 37, 93, 133, or 253.

We now treat the form g := (7, 15, 23, 10, 2, 6). g has discriminant ∆ = 213 = 8192 and |Aut(g)|=2.
We remark that 8192 is the largest discriminant which is a power of two and contains a ternary idoneal
form [17]. We can relate (7, 15, 23, 10, 2, 6;n) to (1, 1, 1, 0, 0, 0;n) as given in the following theorem.

Theorem 4.3. Let n be a nonnegative integer. We have

(4.14) (7, 15, 23, 10, 2, 6; 128n) = (1, 1, 1, 0, 0, 0;n),

(4.15) 3(7, 15, 23, 10, 2, 6; 64(2n+ 1)) = (1, 1, 1, 0, 0, 0; 4n+ 2),

(4.16) 3(7, 15, 23, 10, 2, 6; 32(4n+ 1)) = (1, 1, 1, 0, 0, 0; 4n+ 1),
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(4.17) (7, 15, 23, 10, 2, 6; 32(4n+ 3)) = (1, 1, 1, 0, 0, 0; 4n+ 3),

(4.18) 6(7, 15, 23, 10, 2, 6; 16(2n+ 1)) = (1, 1, 1, 0, 0, 0; 4n+ 2),

(4.19) 6(7, 15, 23, 10, 2, 6; 4(8n+ 7)) = (1, 1, 1, 0, 0, 0; 2(8n+ 7)),

(4.20) 24(7, 15, 23, 10, 2, 6; 8n+ 7) = (1, 1, 1, 0, 0, 0; 2(8n+ 7)),

and (7, 15, 23, 10, 2, 6; k) = 0 for any k not covered by (4.14) – (4.20).

Employing Table 1 along with Theorem 4.3 implies (7, 15, 23, 10, 2, 6) does not uniquely represent
infinitely many integers. We chose to use the method of Section 2 to treat the form (7, 15, 23, 10, 2, 6).

Using (2.8) we have

(4.21) (7, 15, 23, 10, 2, 6;n) =

√
n

2π
√
2
dg,2(n) · L(1, χ(2n)) · P (n, 2).

Let us write n = 4av, with 4 ∤ v. We find the 2-adic local densitiy of g to be

(4.22) dg,2(n) =















3
2a−5 a ≥ 4, v ≡ 1 (mod 2),
3

2a−4 a ≥ 4, v ≡ 2 (mod 8),
1

2a−5 a ≥ 4, v ≡ 6 (mod 16),
0 v ≡ 14 (mod 16).

The values of dg,2(n) not covered in (4.22) are listed in Table 3.

Table 3

a = 0 a = 1 a = 2 a = 3
v ≡ 1, 3, 5 (mod 8) 0 0 4 4
v ≡ 7 (mod 8) 4 8 4 4
v ≡ 2 (mod 8) 0 0 4 6
v ≡ 6 (mod 16) 0 0 8 4.

.

We now break our analysis into two cases depending on the parity of the order of 2 in n.

Case 1: n = 4a · v with v odd.

Employing (2.10), we have

(4.23) L(1, χ(2n)) = L(1, χ(2v)) =
π

2
√
2v

· h(−8v),

and combining (4.21) with (4.23) yields

(4.24) (7, 15, 23, 10, 2, 6;n)≥ 2a−3dg,2(n) · h(−8v).

The form (7, 15, 23, 10, 2, 6) has 2 automorphs, so 0 < (7, 15, 23, 10, 2, 6;n) ≤ 2 is a necessary
condition that n be uniquely represented up to the action of automorphs.
Solving

(4.25) 2a−3dg,2(n) · h(−8v) ≤ 2

requires class number information up to class number 4. We remark that finding the solutions to
(4.25) is similar to the process we used when we treated (5, 12, 20, 8, 4, 4) earlier in this section. We
find n = 7, 15, 16, 23, 39, 71, 95 are solutions to 0 < (7, 15, 23, 10, 2, 6;n)≤ 2.

Case 2: n = 4a · 2 · v with v odd.
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In this case we see L(1, χ(2n)) = L(1, χ(v)), and (4.21) becomes

(4.26) (7, 15, 23, 10, 2, 6;n)≥
√
n

2
√
2π

dg,2(n) · L(1, χ(v)).

Employing (2.10) and (4.26) yields

(4.27) (7, 15, 23, 10, 2, 6;n)≥























































2a−3 · dg,2(n) v = 1,

2a−2 · dg,2(n) v = 3,

2a−2 · dg,2(n) · h(−4v) 1 < v ≡ 1 (mod 4),

3 · 2a−2 · dg,2(n) · h(−v) 3 < v ≡ 3 (mod 8),

2a−2 · dg,2(n) · h(−v) v ≡ 7 (mod 8).

We employ (4.22), (4.27), Table 3, and the tables in the Appendix to find the only number n = 4a·2·v
with v odd, and 0 < (7, 15, 23, 10, 2, 6;n)≤ 2, is n = 32.

Combining Case 1 and Case 2 yields Prelist(7, 15, 23, 10, 2, 6) = {7, 15, 16, 23, 32, 39, 71, 95}. Em-
ploying Maple V.15 we check the integers 7, 15, 16, 23, 32, 39, 71, 95, for unique representation and
arrive at the following theorem.

Theorem 4.4. The form (7, 15, 23, 10, 2, 6) uniquely represents n (up to action of automorphs) if and
only if n = 7, 15, 16, 23, 32, 39, 71, or 95.

5. Resolving Some Conjectures of Kaplansky

In the concluding remarks of [18], Kaplansky regards x2 + y2 + 3z2 as “the next challenge”. He
computationally found the integers which are uniquely represented by x2 + y2 + 3z2. We now supply
the proof of this conjecture.

In this section we deduce the integers which are uniquely represented by the forms (1, 3, 3, 0, 0, 0)
and (1, 1, 3, 0, 0, 0). These two forms are intertwined with each other since for any nonnegative integer
n, we have (1, 3, 3, 0, 0, 0; 3n) = (1, 1, 3, 0, 0, 0;n) and (1, 3, 3, 0, 0, 0;n) = (1, 1, 3, 0, 0, 0; 3n). Hence we
also have (1, 3, 3, 0, 0, 0;n) = (1, 3, 3, 0, 0, 0; 9n) and (1, 1, 3, 0, 0, 0;n) = (1, 1, 3, 0, 0, 0; 9n).

Let f := (1, 3, 3, 0, 0, 0) which is of discriminant 36 and has |Aut(f)|=16. Equation (2.8) gives

(5.1) (1, 3, 3, 0, 0, 0;n) =
6

π

√
n · df,2(n) · df,3(n) · L(1, χ(9n)) · P (n, 9),

with all notation as defined in Section 2. Since (1, 3, 3, 0, 0, 0;n) = (1, 3, 3, 0, 0, 0; 9n), we only consider
9 ∤ n. We write n = 4av with 4 ∤ v and 9 ∤ v. We refer to [5] and [14] for the following local density
results:

(5.2) df,3(n) =







2 v ≡ 1 (mod 3),
0 v ≡ 2 (mod 3),
4
3 v ≡ 3, 6 (mod 9),

and

(5.3) df,2(n) =















2a+2−3
2a+1 v ≡ 1, 2 (mod 4),

2a+1−1
2a v ≡ 3 (mod 8),

2 v ≡ 7 (mod 8).
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Either by congruence considerations or by employing (5.2), it is clear that (1, 3, 3, 0, 0, 0;n) = 0
when n ≡ 2 (mod 3), so we do not consider such n. Using (2.6) we see

(5.4) L(1, χ(9n)) =

{

4
3L(1, χ(n)) n ≡ 1 (mod 3),

L(1, χ(n)) n ≡ 3, 6 (mod 9).

Employing (5.1), (5.2), and (5.4), we find

(5.5) (1, 3, 3, 0, 0, 0;n) ≥
{

16
π

√
n · df,2(n) · L(1, χ(n)) n ≡ 1 (mod 3),

8
π

√
n · df,2(n) · L(1, χ(n)) n ≡ 3, 6 (mod 9).

Let n = 4av with 4 ∤ v, 9 ∤ v. Using (2.10) and (5.3) we have

(5.6) 1
π

√
n · df,2(n) · L(1, χ(n)) =











































2a+2−3
8 v = 1,

2a+1−1
2 v = 3,

3(2a+1−1)
2 · h(−v) 3 < v ≡ 3 (mod 8),

2a · h(−v) v ≡ 7 (mod 8),

2a+2−3
4 · h(−4v) 1 < v ≡ 1, 2 (mod 4).

Combining (5.5) and (5.6), we find our lower bound for (1, 3, 3, 0, 0, 0;n) in terms of the class
number, where n = 4a · v with 4 ∤ v, 9 ∤ v.

(5.7) (1, 3, 3, 0, 0, 0;n) ≥











































































2(2a+2 − 3) v = 1,

4(2a+1 − 1) v = 3,

24(2a+1 − 1) · h(−v) v ≡ 19 (mod 24),

2a+4 · h(−v) v ≡ 7 (mod 24),

4(2a+2 − 3) · h(−4v) 1 < v ≡ 1, 10 (mod 12),

12(2a+1 − 1) · h(−v) 3 < v ≡ 3, 51 (mod 72),

2a+3 · h(−v) v ≡ 15, 39 (mod 72),

2(2a+2 − 3) · h(−4v) v ≡ 6, 21, 30, 33 (mod 36).

The form (1, 3, 3, 0, 0, 0) has 16 automorphs. Employing (5.7) along with the tables given in the
Appendix, gives that there are exactly 53 numbers n with 9 ∤ n and 0 < (1, 3, 3, 0, 0, 0;n)≤ 16. These
53 numbers are the numbers in the set
S ={1, 3, 4, 6, 7, 10, 12, 13, 15, 21, 22, 25, 30, 33, 34, 37, 42, 46, 57, 58, 66, 69, 70, 73, 78, 82, 85, 93,
97, 102, 105, 114, 130, 133, 138, 141, 142, 165, 177, 190, 193, 210, 213, 253, 258, 273, 282, 330, 345,
357, 438, 462, 498}. We comment that we solving 0 < (1, 3, 3, 0, 0, 0;n) ≤ 16 requires class number
information up to class number 8. We can use Maple V.15 to check the elements of S for unique
representation.

Theorem 5.1. The form (1, 3, 3, 0, 0, 0) uniquely represents n (up to action of automorphs) if and
only if n = 9k · v, k ≥ 0, with
v ∈{1, 3, 6, 10, 13, 21, 22, 30, 33, 34, 37, 42, 46, 57, 58, 66, 69, 78, 82, 85, 93, 102, 114, 130, 138,
141, 142, 165, 177, 190, 210, 213, 253, 258, 282, 345, 357, 462, 498}.

From the comments at the beginning of this section, Theorem 5.1 directly implies the following
theorem.

Theorem 5.2. The form (1, 1, 3, 0, 0, 0) uniquely represents n (up to action of automorphs) if and
only if n = 9k · v, k ≥ 0, with
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v ∈{1, 2, 3, 7, 10, 11, 14, 19, 22, 23, 26, 30, 31, 34, 38, 39, 46, 47, 55, 59, 66, 70, 71, 86, 94, 102,
111, 115, 119, 138, 154, 166, 174, 246, 255, 390, 426, 570, 759}.

We have now resolved the conjecture of Kaplansky, concerning the forms (1, 3, 3, 0, 0, 0) and
(1, 1, 3, 0, 0, 0). We comment that an almost identical analysis holds for the other idoneal forms of
discriminant 36. We move on to treat a second conjecture of Kaplansky given in the concluding
remarks of [18].

In the concluding remarks of [18], Kaplansky considers the forms x2 + 2y2 +3z2. His Theorem 7.2
states that the even integers which are uniquely represented by x2 + 2y2 + 3z2 are the odd powers
of 2. He does not show the proof of this theorem, but instead offers it as an exercise to the reader.
Kaplansky computationally found the odd integers which are uniquely represented by x2 +2y2 +3z2,
but admits that the proof was not yet accessible.

We use the method of Section 2 to find the odd integers which are uniquely represented by
x2 + 2y2 + 3z2. For the rest of our consideration of (1, 2, 3, 0, 0, 0;n) we take n to be odd.

Let g = (1, 2, 3, 0, 0, 0) which is of discriminant 24 and has 8 automorphs. Employing (2.8), we find

(5.8) (1, 2, 3, 0, 0, 0;n) =
18

√
n

π
√
6

· dg,2(n) · dg,3(n) · L(1, χ(6n)) · P (n, 6),

with all notation as defined in Section 2.

We find that for n odd, we have dg,2(n) = 1. The 3-adic local density for g is given by the following
Lemma.

Lemma 5.3. Let n = 9bv with 9 ∤ v. We have

dg,3(n) =



















2(3b+1−2)
3b+1 v ≡ 1, 2 (mod 3),

2 v ≡ 3 (mod 9),

2(3b+1−1)
3b+1 v ≡ 6 (mod 9).

Let n = 9b · v with v odd and 9 ∤ v. Employing (2.10) we have

(5.9) L(1, χ(6n)) =
π

2
√
6n

· h(−24n).

Combining (5.3), (5.8), and (5.9) we arrive at

(5.10) (1, 2, 3, 0, 0, 0;n) ≥















(

3− 2
3b

)

h(−24n) v ≡ 1, 2 (mod 3),

3h(−24n) v ≡ 3 (mod 9),
(

3− 1
3b

)

h(−24n) v ≡ 6 (mod 9).

The form (1, 2, 3, 0, 0, 0) has 8 automorphs, and so we solve for all odd n with 0 < (1, 2, 3, 0, 0, 0;n) ≤
8 which requires class number information up to 8. Utilizing (5.10) along with the tables of the
Appendix, we find the only odd n with 0 < (1, 2, 3, 0, 0, 0;n) ≤ 8 to be

n = 1, 3, 5, 7, 11, 13, 17, 19, 23, 35, 43, 47, 55, 73, 77, 83.

Maple V.15 can be used to check these 16 numbers for unique representation.

Theorem 5.4. The form (1, 2, 3, 0, 0, 0) uniquely represents odd n (up to action of automorphs) if
and only if n = 1, 5, 7, 13, 17, 23, 47, or 55.

We have now confirmed and proven the observation of Kaplansky regarding (1, 2, 3, 0, 0, 0) [18].
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6. Outlook

The method of employing the Siegel formula along with class number bounds easily extends to
classifying the integers which are represented in essentially k ways by an idoneal ternary quadratic
form. One can use this paper as a guide to deduce the integers which are represented in an essentially
unique way by any of the 794 idoneal ternary quadratic forms. It would be interesting to find the
class number bounds that are necessary to classify the integers which are represented in an essentially
unique way by any of the 794 idoneal ternary quadratic forms.

The restriction of the form being idoneal is not always necessary to find the integers which are
uniquely represented by that form. To demonstrate this, we consider the form (1, 3, 3, 1, 0, 1) which is
not idoneal, since (1, 1, 11, 1, 1, 1) shares the same genus. It can be shown that

(6.1) ϑ(1, 1, 11, 1, 1, 1, q)− ϑ(1, 3, 3, 1, 0, 1, q) = 4qE(q4)2E(q16),

where

E(q) :=
∞
∏

n=1

(1− qn).

Equation (6.1) shows that for n 6≡ 1 (mod 4) we have (1, 3, 3, 1, 0, 1;n) = (1, 1, 11, 1, 1, 1;n). So
when n 6≡ 1 (mod 4) we have

(6.2)
(1, 3, 3, 1, 0, 1;n)

4
+

(1, 1, 11, 1, 1, 1;n)

12
=

(1, 3, 3, 1, 0, 1;n)

3
,

where we have used |Aut(1, 3, 3, 1, 0, 1)| = 4, and |Aut(1, 1, 11, 1, 1, 1)| = 12. Employing the Siegel
formula gives

(6.3) (1, 3, 3, 1, 0, 1; 32n) = (1, 1, 1, 0, 0, 0;n),

(6.4) (1, 3, 3, 1, 0, 1; 16(2n+ 1)) = (1, 1, 1, 0, 0, 0; 2(2n+ 1)),

(6.5) (1, 3, 3, 1, 0, 1; 8(2n+ 1)) = 0,

(6.6) 2(1, 3, 3, 1, 0, 1; 4(2n+ 1)) = (1, 1, 1, 0, 0, 0; 2(2n+ 1)),

(6.7) (1, 3, 3, 1, 0, 1; 2(2n+ 1)) = 0,

(6.8) 4(1, 3, 3, 1, 0, 1; 4n+ 3) = (1, 1, 1, 0, 0, 0; 2(4n+ 3)).

Using |Aut(1, 3, 3, 1, 0, 1)| = 4, Table 1, and (6.3) – (6.8), we see (1, 3, 3, 1, 0, 1) does not uniquely
represent any n 6≡ 1 (mod 4). For n ≡ 1 (mod 4), the Siegel formula gives

3(1, 3, 3, 1, 0, 1;n) + (1, 1, 11, 1, 1, 1;n) = (1, 1, 1, 0, 0, 0; 2n).

Thus we obtain 0 < (1, 3, 3, 1, 0, 1;n) ≤ 1
3 (1, 1, 1, 0, 0, 0; 2n) for n ≡ 1 (mod 4). We are left to solve

(1, 1, 1, 0, 0, 0; 2n) ≤ 12 for n ≡ 1 (mod 4), and we find only n = 1 as a solution. Indeed, n = 1 is
the only integer which is represented uniquely (up to the action of Aut(1, 3, 3, 1, 0, 1)) by the form
(1, 3, 3, 1, 0, 1).

It is of interest to see which ternary quadratic forms uniquely represent (up to the action of
automorphs) only a finite number of integers. The diagonal form (1, 2, 4, 0, 0, 0) considered by Ka-
plansky has this property, as well as the forms (1, 3, 3, 2, 0, 0), (5, 13, 20,−12, 4, 2), (7, 15, 23, 10, 2, 6),
and (1, 3, 3, 1, 0, 1), which were considered in this paper. The authors intend to address this topic in
a subsequent paper.
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8. Appendix

Below we list the negative of the 527 discriminants (fundamental and nonfundamental) of binary
quadratic forms with class number ≤ 8 according to the isomorphism class of the class group. We
denote the class group of discriminant D by H(D), and we denote the cyclic group of order n by
Zn. We remark that we generated the tables below by utilizing the bounds found in [23] along with
equation (2.12). We then used PARI/GP V.2.7.0 to identify the isomorphism class of each class group.

H(D) ∼= Z1

3, 4, 7, 8, 11, 12, 16, 19, 27, 28, 43, 67, 163

H(D) ∼= Z2

15, 20, 24, 32, 35, 36, 40, 48, 51, 52,
60, 64, 72, 75, 88, 91, 99, 100, 112, 115,
123, 147, 148, 187, 232, 235, 267, 403, 427

H(D) ∼= Z3

23, 31, 44, 59, 76, 83, 92, 107, 108, 124,
139, 172, 211, 243, 268, 283, 307, 331, 379, 499,
547, 643, 652, 883, 907

H(D) ∼= Z2 × Z2

84, 96, 120, 132, 160, 168, 180, 192, 195, 228,
240, 280, 288, 312, 315, 340, 352, 372, 408, 435,
448, 483, 520, 532, 555, 595, 627, 708, 715, 760,
795, 928, 1012, 1435
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H(D) ∼= Z4

39, 55, 56, 63, 68, 80, 128, 136, 144, 155, 156, 171, 184, 196,
203, 208, 219, 220, 252, 256, 259, 275, 291, 292, 323, 328, 355, 363,
387, 388, 400, 475, 507, 568, 592, 603, 667, 723, 763, 772, 955, 1003,
1027, 1227, 1243, 1387, 1411, 1467, 1507, 1555

H(D) ∼= Z5

47, 79, 103, 127, 131, 179, 188, 227, 316, 347,
412, 443, 508, 523, 571, 619, 683, 691, 739, 787,
947, 1051, 1123, 1723, 1747, 1867, 2203, 2347, 2683

H(D) ∼= Z6

87, 104, 116, 135, 140, 152, 175, 176, 200, 204, 207, 212, 216,
244, 247, 300, 304, 324, 339, 348, 364, 368, 396, 411, 424, 432,
436, 451, 459, 460, 472, 484, 492, 496, 515, 531, 540, 588, 628,
648, 675, 676, 688, 700, 707, 747, 748, 771, 808, 828, 835, 843,
856, 867, 891, 931, 940, 963, 988, 1048, 1059, 1068, 1072, 1075,
1083, 1099, 1107, 1108, 1147, 1192, 1203, 1219, 1267, 1315, 1323,
1347, 1363, 1432, 1563, 1588, 1603, 1612, 1675, 1708, 1843, 1915,
1963, 2227, 2283, 2403, 2443, 2515, 2563, 2608, 2787, 2923, 3235,
3427, 3523, 3763, 4075

H(D) ∼= Z7

71, 151, 223, 251, 284, 343, 463, 467, 487, 587,
604, 811, 827, 859, 892, 1163, 1171, 1372, 1483, 1523,
1627, 1787, 1852, 1948, 1987, 2011, 2083, 2179, 2251, 2467,
2707, 3019, 3067, 3187, 3907, 4603, 5107, 5923

H(D) ∼= Z8

95, 111, 164, 183, 248, 272, 295, 299, 371, 376, 380, 392, 395,
444, 452, 512, 539, 548, 579, 583, 632, 712, 732, 784, 904, 939,
979, 995, 1024, 1043, 1156, 1168, 1180, 1195, 1252, 1299, 1339, 1348, 1528,
1552, 1587, 1651, 1731, 1795, 1803, 1828, 1864, 1912, 1939, 2059, 2107, 2248,
2307, 2308, 2323, 2332, 2395, 2419, 2587, 2611, 2827, 2947, 2995, 3088, 3283,
3403, 3448, 3595, 3787, 3883, 3963, 4195, 4267, 4387, 4747, 4843, 4867, 5587,
5707, 5947, 7987

H(D) ∼= Z4 × Z2

224, 260, 264, 276, 308, 320, 336, 360, 384, 456, 468, 504, 528,
544, 552, 564, 576, 580, 600, 612, 616, 624, 640, 651, 720, 736,
768, 792, 819, 820, 832, 852, 868, 880, 900, 912, 915, 952, 987,
1008, 1032, 1035, 1060, 1128, 1131, 1152, 1204, 1240, 1275, 1288, 1312, 1332,
1360, 1395, 1408, 1443, 1488, 1600, 1635, 1659, 1672, 1683, 1752, 1768, 1771,
1780, 1792, 1827, 1947, 1992, 2020, 2035, 2067, 2088, 2115, 2128, 2139, 2163,
2212, 2272, 2275, 2368, 2392, 2451, 2475, 2632, 2667, 2715, 2755, 2788, 2832,
2907, 2968, 3172, 3243, 3355, 3507, 3627, 3712, 3843, 4048, 4123, 4323, 5083,
5467, 6307

H(D) ∼= Z2 × Z2 × Z2

420, 480, 660, 672, 840, 960, 1092, 1120, 1155, 1248,
1320, 1380, 1428, 1540, 1632, 1848, 1995, 2080, 3003, 3040,
3315
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[13] B. Gross, D. Zagier, Points de Heegner et dérivées de fonctions L, C.R. Acad. Sci, Paris, 297 (1983), 85–87.
[14] J. Hanke. Local densities and explicit bounds for representability by a quadratic form. Duke Math. J., 124(2)

(2004), 351-388.
[15] M. Hirschhorn, J. Sellers. On a problem of Lehmer on partitions into squares, Ramanujan Journal 8, no. 3 (2004),

279–288
[16] K. Heegner, Diophantische analysis und modulfunktionen. Mathematische Zeitschrift, 56(3) (1952), 227-253
[17] W. C Jagy, I. Kaplansky, and A. Schiemann. There are 913 regular ternary quadratic forms. Mathematika, 44

(1997), 332–341.
[18] I. Kaplansky, Integers uniquely represented by certain ternary quadratic forms. The mathematics of Paul Erdős,
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