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INTEGRAL EULER CHARACTERISTIC OF Out F11

SHIGEYUKI MORITA, TAKUYA SAKASAI, AND MASAAKI SUZUKI

ABSTRACT. We show that the integral Euler characteristic of the outer automorphism

group of the free group of rank 11 is −1202.

1. INTRODUCTION

This paper is a continuation of the previous paper [13], where we computed some

parts of the Euler characteristics of three types of symplectic derivation Lie algebras.

Let hg,1 be the symplectic derivation Lie algebra of the free Lie algebra L(H) gener-

ated by the fundamental representation H over Q of the symplectic group Sp(2g,Q).

We may regard H as a representation of the corresponding Lie algebra sp(2g,Q). Topo-

logically, the vector space H is the first rational homology group of a compact con-

nected oriented surface of genus g with one boundary component. The Lie algebra

h∞,1 obtained from hg,1 by taking the direct limit with respect to g is one of the three

infinite dimensional Lie algebras considered by Kontsevich in [10, 11]. In these papers,

he proved that, for h∞,1 named the Lie case, the homology group of h∞,1 is isomorphic

to the free graded commutative algebra generated by the stable homology group of

sp(2g,Q) together with the totality of the cohomology groups of the outer automor-

phism groups OutFn of free groups Fn of rank n ≥ 2. This is done by a deep consider-

ation on the relationship between the cell structure of the outer space given by Culler

and Vogtmann [4] and the chain complex which computes the graph homology associ-

ated with the Lie cyclic operad. The remaining two cases are named the associative case

and the commutative case. Their homology groups are also related to other interesting

geometrical objects such as cohomology groups of moduli spaces of Riemann surfaces

and invariants of three dimensional manifolds etc.

Finding non-trivial rational (co)homology classes of OutFn has been a difficult prob-

lem. A striking result by Galatius [5] shows that there are no rational stable reduced

(co)homology classes. At present, only the three unstable classes, which are the first

three of a series of classes introduced by the first author in [12], are shown to be non-

trivial (see Conant and Vogtmann [3] and Gray [7]). Here we would like to mention

that in a recent paper by Conant, Kassabov and Vogtmann [1], they constructed new

homology classes of OutFn which are related to the theory of elliptic modular forms,

although their non-triviality is unknown. The situation being like this, it had been an

important problem to prove the existence of non-trivial classes. In this context, our

work in [13] of determining some parts of the integral Euler characteristics showed
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that there exist at least one hundred new non-trivial classes and it also suggested that

further computations should reveal the existence of many more classes.

More specifically, the Lie algebra hg,1 has a grading induced from that of the free

Lie algebra L(H) = ⊕∞

i=1Li(H), so that we have a direct sum decomposition hg,1 =

⊕∞

k=0hg,1(k). Here hg,1(k) is the degree k homogeneous part and [hg,1(k1), hg,1(k2)] ⊂

hg,1(k1 + k2) holds for any k1 and k2. The explicit description of hg,1(k) is given by

hg,1(k) = Ker
(

H ⊗ Lk+1(H)
[·,·]
−→ Lk+2(H)

)

.

Since the bracket operation [·, ·] on L(H) is equivariant with respect to the natural ac-

tion of Sp(2g,Q), the space hg,1(k) becomes an Sp(2g,Q)-module. It is known that the

homology of the graded Lie algebra hg,1 has another grading. That is, we have a direct

sum decomposition

H∗(hg,1) =

∞
⊕

w=0

H∗(hg,1)w

with H∗(hg,1)w obtained as the homology of the subcomplex generated by the chains in

∧∗hg,1 of total degree w and called the weight w part hereafter (see [13, Section 2]).

Our main concern is the computation of H∗(h∞,1)w after taking the direct limit with

respect to g. At first glance, it may look too huge to handle. However, the following

observation shows that it is not necessarily so. Let h+g,1 = ⊕∞

k=1hg,1(k) be the ideal of the

positive degree part. The spaces H∗(hg,1)w and H∗(h
+
g,1)w are also Sp(2g,Q)-modules. As

stated by Kontsevich [10] and proved in detail by Conant and Vogtmann [2, Proposi-

tion 8] (see also [13, Section 2]), we have

H∗(hg,1)w = H∗(h
+
g,1)

Sp
w

for any w ≥ 1. Here, for an Sp(2g,Q)-module V , we denote by V Sp the invariant part

for the Sp(2g,Q)-action. The general theory of Sp(2g,Q)-representations says that the

invariant part H∗(h
+
g,1)

Sp
w as well as that of the corresponding chain complex stabilizes

when g becomes large. In particular, they are finite dimensional. Then Kontsevich’s

theorem says that the isomorphism

PHk(h∞,1)2n ∼= H2n−k(Out Fn+1;Q)

holds for n ≥ 1 and k ≥ 1, where PHk(h∞,1)2n is the primitive part in Hk(h∞,1)2n with

respect to the commutative and co-commutative Hopf algebra structure (see [2, Section

2]).

In our previous paper [13], we determined the dimensions of the chain complex

Ci(h
+
∞,1)

Sp which computes the Sp-invariant homology of the Lie algebra h+
∞,1 up to

weight 18. From this, we obtained the value of the Euler characteristic

χ(H∗(h
+
∞,1)

Sp
w ) =

w
∑

i=1

(−1)i dim
(

Ci(h
+
∞,1)

Sp
w

)

of each weight w ≤ 18 summand. The result is given as follows:

Theorem 1.1 ([13]). The Euler characteristics χ(H∗(h
+
∞,1)

Sp
w ) of the Sp-invariant homology

groups of the Lie algebra h+
∞,1 up to weight w ≤ 18 are given by the following table:
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w 2 4 6 8 10 12 14 16 18

χ(H∗(h
+
∞,1)

Sp
w ) 1 2 4 6 10 16 23 13 −96

Note that Ci(h
+
∞,1)

Sp
w is trivial if w is odd. By combining Theorem 1.1 with the descrip-

tion of the generators of the stable cohomologies due to Kontsevich, we obtain the

following result:

Theorem 1.2 ([13]). The integral Euler characteristics

e(OutFn) =

2n−3
∑

i=0

(−1)i dim
(

H i(OutFn;Q)
)

of OutFn up to n ≤ 10 are given as follows:

n 2 3 4 5 6 7 8 9 10

e(OutFn) 1 1 2 1 2 1 1 −21 −124

By Theorem 1.2, the existence of non-trivial odd dimensional rational cohomology classes

of OutFn was shown for the first time.

The purpose of the present paper is to extend our results to the next step, weight 20,

by which we determine the integral Euler characteristic of OutF11. The details of our

explicit computation will be given in Section 2. We will also compare our results with

the result of Smillie and Vogtmann [15] on the rational (or orbifold) Euler characteris-

tics of OutFn.

For the computations of this paper, we basically used the same methods as in [13,

Section 4], namely we made intensive use of well known software LiE and Mathemat-

ica. Since our computations heavily depend on computers, the checking process for the

accuracy is as important as the actual computational process. Our checking methods

were also discussed in [13, Section 4].

Finally, we comment about related works on the other two cases of Kontsevich’s the-

orem. As for the commutative case, Willwacher and Živković [17] recently obtained

the generating function of the (total) Euler characteristic and computed the explicit

values up to weight 60. Our former results in [13] are consistent with theirs. For the

associative case, we can apply Gorsky’s formula [6] for the equivariant Euler character-

istics of moduli spaces of Riemann surfaces with marked points. The formula enables

the authors to compute the Euler characteristics up to weight 250 [14], which coincide

with our former computation up to weight 16 in [13]. These facts would support the

accuracy of our computations in this paper since many parts of the data on various

symplectic modules we used are in common with those for the commutative and as-

sociative cases. On the other hand, no result is known about the generating function

for the Lie case which is similar to Gorsky’s formula for the associative case. There

seem to exist difficulties peculiar to this case, which add an additional meaning to our

computational results.

Acknowledgement Some parts of the calculations of this paper were carried out on the

TSUBAME 2.5 supercomputer in the Tokyo Institute of Technology. The authors are

grateful to Professor Sadayoshi Kojima and Professor Mitsuhiko Takasawa who were

very helpful for our computations in TSUBAME 2.5.



4 SHIGEYUKI MORITA, TAKUYA SAKASAI, AND MASAAKI SUZUKI

The authors were partially supported by KAKENHI (No. 24740040 and No. 24740035),

Japan Society for the Promotion of Science, Japan.

2. MAIN RESULTS

We compute the dimension of the chain complex Ci = Ci(h
+
∞,1)

Sp
20 for Hi(h

+
∞,1)

Sp
20 ex-

plicitly. More precisely, we determine the dimension of the finite dimensional complex:

Ci =
⊕

i1+···+i20=i
i1+2i2+···+20i20=20

(

∧i1(h+
∞,1(1))⊗ ∧i2(h+

∞,1(2))⊗ · · · ⊗ ∧i20(h+
∞,1(20))

)Sp

where h+
∞,1(k) is the degree k part of h+

∞,1. The result is shown in Table 1.

TABLE 1. The dimension of Ci

dimension

C1 29729988

C2 410769138

C3 2864009351

C4 13262053269

C5 45353489325

C6 120900142805

C7 259222260499

C8 455821729958

C9 665350325867

C10 811759271904

C11 830129318093

C12 711071098888

C13 508080341074

C14 300343387403

C15 144874973588

C16 55809757570

C17 16607403485

C18 3615255878

C19 519201462

C20 37584620

total 4946062104165

χ −1299

Proposition 2.1 ([13, Proposition 6.2]). The weight generating function, denoted by h(t), for

the Sp-invariant stable homology group H∗(h
+
∞,1)

Sp is given by

h(t) =

∞
∏

n=2

(1− t2n−2)−e(OutFn)

where e(OutFn) denotes the integral Euler characteristic of OutFn.
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Theorem 2.2.

e(OutF11) = −1202.

Proof. By Theorem 1.1 and Table 1, the weight generating function

h(t) =
∞
∑

w=0

χ(H∗(h
+
∞,1)

Sp
w )tw

is written as

h(t) = 1 + t2 + 2t4 + 4t6 + 6t8 + 10t10 + 16t12 + 23t14 + 13t16 − 96t18 − 1299t20 + · · · .

By using the same method in [13], we can determine the Euler characteristics of the

primitive parts, namely e(OutF11). To be precise, the Euler characteristic of lower

terms in the weight 20 is −97. Then the Euler characteristics of the primitive parts

is −1299− (−97) = −1202. In other words, if we consider

h̄(t) = (1− t2)−1(1− t4)−1(1− t6)−2(1− t8)−1(1− t10)−2

(1− t12)−1(1− t14)−1(1− t16)21(1− t18)124(1− t20)1202,

then h̄(t) is congruent to h(t) modulo t21. By Proposition 2.1, we conclude that

e(OutF11) = −1202.

�

The fourth row of Table 2 is the Euler characteristic of the primitive part which gives

us the Euler characteristic of Out Fn.

TABLE 2. Numbers of new generators for H∗(h
+
∞,1)

Sp
w

w 2 4 6 8 10 12 14 16 18 20

χ 1 2 4 6 10 16 23 13 −96 −1299

χ of lower terms 0 1 2 5 8 15 22 34 28 −97

χ of primitive part 1 1 2 1 2 1 1 −21 −124 −1202

As a remarkable corollary, we see that there exist at least 1203 odd dimensional non-

trivial rational cohomology classes of OutF11.

By using this result, we can extend our former table in [13] to Table 3, which com-

pares the rational and the integral Euler characteristics of OutFn. The second row of

Table 3 is the rational Euler characteristics χ(OutFn) of OutFn given by Smillie and

Vogtmann [15], written up to the second decimal places here. The third row is the

integral Euler characteristics e(OutFn) of OutFn given by Theorems 1.2 and 2.2.

Here we would like to mention the following two important open problems, which

show a considerable difference between the Lie case and the other two cases. One

is the asymptotic behavior of the rational Euler characteristics of OutFn. Smillie and

Vogtmann [15, Section 6] conjectured that the rational Euler characteristics of OutFn

are negative for all n, which holds for n ≤ 100 as mentioned in Vogtmann [16], and

their absolute values grow exponentially with n. However, this conjecture is not settled

yet. The other is the problem of determining whether the ratio of the rational Euler
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characteristics and the integral one tends to 1 or not. In the case of the moduli spaces of

Riemann surfaces, Harer and Zagier [8] proved that the ratio tends to 1 asymptotically.

TABLE 3. χ versus e for OutFn

n 2 3 4 5 6 7 8 9 10 11

χ −0.04 −0.02 −0.02 −0.06 −0.20 −0.87 −4.58 −28.52 −205.83 −1690.70

e 1 1 2 1 2 1 1 −21 −124 −1202
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