
REGULAR TESSELLATION LINK COMPLEMENTS
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Abstract. By a regular tessellation, we mean any hyperbolic 3-manifold tessellated by
ideal Platonic solids such that the symmetry group acts transitively on oriented flags. A
regular tessellation has an invariant we call the cusp modulus. For small cusp modulus, we
classify all regular tessellations. For large cusp modulus, we prove that a regular tessellations
has to be infinite volume if its fundamental group is generated by peripheral curves only.
This shows that there are at least 19 and at most 21 link complements that are regular
tessellations (computer experiments suggest that at least one of the two remaining cases
likely fails to be a link complement, but so far, we have no proof). In particular, we
complete the classification of all principal congruence link complements given in Baker and
Reid for the cases of discriminant D = −3 and D = −4. We only describe the manifolds
arising as complements of links here, with a future publication “Regular Tessellation Links”
giving explicit pictures of these links.
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1. Introduction

According to [AR92], tessellations by Platonic solids “have played a significant role in
the exploration and exposition of 3-dimensional geometries and topology,” and we refer the
reader to Aitchison and Rubinstein’s excellent introduction for examples. Existing literature
has investigated the tessellations by ideal (and thus hyperbolic) Platonic solids that can occur
as knot and link complements. Following [Cox56, Cox73], we know that there is an ideal
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2 MATTHIAS GÖRNER

tessellation of hyperbolic 3-space H3 by the regular ideal tetrahedron, octahedron, cube, and
dodecahedron, but not the icosahedron. It is known that each of the first four Platonic solids
also tessellates some knot or link complement. An example for the tetrahedron is the figure-
eight knot, and for the octahedron the Borromean rings [Thu97]. Aitchison and Rubinstein
completed this work by constructing cubical links and dodecahedral knots [AR92]. Note
that for some solids, the literature gives knots, but for others, only links. In fact, the figure-
eight knot and the two dodecahedral knots are the only three knots whose complements
are tessellated by an ideal Platonic solid. This follows from Reid’s result that the figure-
eight knot is the unique arithmetic knot [Rei91] and Hoffman’s analysis of the nonarithmetic
dodecahedral case [Hof14].

However, there are infinitely many link complements tessellated by ideal Platonic solids.
To see this, pick some link that has an unknotted component and whose complement is
tessellated by an ideal Platonic solid, for example, the Borromean rings. Then, construct
an arbitrarily large cyclic cover of the link branched over the chosen unknotted component.
If we require as natural symmetry condition that the link complement be a regular ideal
tessellation, then the number becomes finite again, and it is a natural question and the goal
of this paper to classify them. Note that all manifolds considered here are orientable but
that we allow chiral regular tessellations of a manifold, so a tessellation is defined to be
regular if each flag consisting of a solid, an adjacent face and an edge adjacent to the face
can be taken to any other flag through an isometry. When we say “regular tessellation”
we mean any hyperbolic manifold together with a tessellation fulfilling this condition. This
generalizes the traditional use of that term that assumed that the underlying manifold is
S3, E3, or H3. For the tetrahedron, a tessellation is a regular if and only if the underlying
hyperbolic manifold is “maximally symmetric” in the sense that no other manifold has more
orientation-preserving symmetries per volume (this follows from [Mey86] where the minimum
volume orbifold was determined).

1.1. Examples of Known Regular Tessellations. Ideal regular tessellations by Platonic
solids arise in various contexts. If we allow orbifolds for a moment, there is a particularly
easy example: the boundary of a 4-simplex is a regular tessellation by 5 regular ideal hy-
perbolic tetrahedra, as shown on the left in Figure 1. To obtain a regular tessellation of
a cusped hyperbolic manifold, take the unique manifold double-cover of the orbifold. The
result is the complement of the minimally twisted 5-component chain link L10n113, which
conjecturally has the smallest volume among the 5-cusped orientable hyperbolic manifolds.
Its Dehn fillings have been extensively studied: the exceptional ones were recently classi-
fied in [MPR14], and the remaining Dehn fillings yield almost every manifold of the cusped
Callahan-Hildebrand-Weeks census [CHW99] and thus also of the closed Hodgson-Weeks
census [HW94], a remarkable property also featured in the experiments of [DT03] on the
virtual Haken conjecture.

Another example of a regular tessellation with an easy combinatorial description comes
from chessboard complexes defined in [Zie94, BLVŽ94]:

Definition 1.1. The m × n chessboard complex is a simplicial complex consisting of a k-
simplex for every non-taking configuration of k rooks (“that is, no two rooks on the same row
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Z/2

Figure 1. The orbifold on the left (“pentangle”) is tessellated by 5 regular
ideal hyperbolic tetrahedra, 3 meeting at an edge (edges show order-2 singular
locus, dots orbifold cusps, and note that the 5 tetrahedra are the faces of the
boundary of a 4-simplex that become ideal when removing the 0-skeleton).
The orbifold is double-covered by a manifold that is the complement of the
minimally twisted 5-component chain link and a regular tessellation by 10 ideal

hyperbolic tetrahedra [DT03]. In the notation introduced later, it is U{3,3,6}2 .

or column”) on the m×n chessboard. A face of a k-simplex is identified with the k−1-simplex
corresponding to the respective subset of k − 1 rooks.

The 4 × 5 chessboard complex happens to yield a regular tessellation by 120 hyperbolic

ideal tetrahedra [Epp] (namely U{3,3,6}2+2ζ ). To see this, look at the 2×3 and the 3×4 chessboard
complex: The 2 × 3 chessboard complex is a 6-cycle. The 6-cycle is the link of a vertex in
the 3 × 4 chessboard complex that is a torus with 24 triangles. This torus is a link of a
vertex in the 4 × 5 chessboard complex. Hence, there are 6 tetrahedra meeting at an edge
and removing the vertices yields a 3-manifold with toroidal cusps.

The last example we give is the Thurston congruence link, an 8-component link whose com-
plement admits a regular tessellation by 28 hyperbolic ideal tetrahedra with a fascinating
connection to the Klein quartic, the complex projective curve defined by x3y+y3z+z3x = 0.
In [Thu98], Thurston noticed that the cusp neighborhoods in the complement of the mini-
mally twisted 7-component chain link appear to be close to a regular pattern and that drilling
a geodesic “crystallizes” the hyperbolic manifold so that it admits a regular tessellation by

28 ideal tetrahedra (namely U{3,3,6}2+ζ ). He gave a picture of the resulting 8-component link
and noticed a fascinating connection with the Klein quartic: they share the same orientation-
preserving symmetry group PSL(2, 7), the unique simple group of order 168. In fact, the
2-skeleton of the above regular tessellation forms an immersed punctured Klein quartic [Ago].

1.2. Arithmetic and Congruence Links. The Thurston congruence link is also an ex-
ample of a congruence link and thus illustrates the connection of the classification result
here to arithmetic and congruence links. Motivated by Thurston’s question 19 in [Thu82]
noting the “special beauty” of these manifolds, Reid and Baker have been classifying small
congruence links, e.g., [BR14]. For a subclass of congruence links, namely the principal
congruence links for discriminant D = −3 and D = −4, the main theorem here allows a
complete classification. Let z ∈ OD where OD is the ring of integers in the imaginary qua-
dratic number field Q(

√
D). Recall that the principal congruence manifold (denoted here

by WD
z , see Section 5) of level z is the quotient of H3 by all matrices in PSL(2,OD) that

are congruent to the identity matrix modulo the ideal 〈z〉. For discriminant D = −3 and
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D = −4, a principal congruence manifold admits a regular tessellation by ideal tetrahedra,
respectively, octahedra. Thus, we can apply the main theorem to list allW−3

z andW−4
z that

are link complements in Corollary 5.3.

1.3. Remarks. It should be remarked that although the Borromean rings and the White-
head link can be tessellated by octahedra and the alternating 4-component chain link 84

1 by
cubes, these tessellations are not regular as the smallest regular tessellation link (smallest in
terms of both volume and number of components) has 5 components. In particular, no knot
complement is a regular tessellation.

Furthermore, note that there is a subtle difference between classifying regular tessellation
link complements and regular tessellation links. Whereas the number of regular tessellation
link complements is finite, the number of regular tessellation links is, a priori, not finite
as a link is in general not determined by its complement (as pointed out in [BR14]). In
fact, twisting along a disc spanned by a component of the link in Figure 1 yields an infinite
family of regular tessellation links with the same complement. Thus, we only classify link
complements here, not links.

2. Main Theorem and Overview

Consider the regular ideal tessellations {p, q, r} of H3 by ideal Platonic solids (see [AR92]):
{3, 3, 6} tessellated by tetrahedra, {3, 4, 4} by octahedra, {4, 3, 6} by cubes, and {5, 3, 6} by
dodecahedra. We use the upper half space model of H3 and identify ∂H3 with C ∪ {∞} so
that PSL(2,C) and PGL(2,C) act by Möbius transformations and PSL(2,C) ∼= PGL(2,C) ∼=
Aut+(H3). For normalization, we move each of the above regular ideal tessellations in H3

such that there is a face with three consecutive vertices at the points ∞, 0, and 1. Let
Γ{p,q,r} ⊂ Aut+(H3) be the orientation-preserving isometries of such a regular tessellation of
H3.

Definition 2.1. A manifold M is a regular tessellation of type {p, q, r} if it is a quotient
M = H3/M by a torsion-free normal subgroup M of Γ{p,q,r}.

Let z be a number of the form a + bu where u = e2πi/r and a, b ∈ Z. For r = 4, we write

z = a+ bi and, for r = 6, z = a+ bζ where ζ = 1+
√
−3

2
.

Definition 2.2. The universal regular tessellation of cusp modulus z is the quotient

U{p,q,r}z =
H3

U
{p,q,r}
z

where U
{p,q,r}
z denotes the normal closure of pz =

(
1 z
0 1

)
in Γ{p,q,r}, i.e., the smallest

normal subgroup of Γ{p,q,r} containing pz.

The groups U
{3,q,r}
z were also called “stabilizer of infinity in the principal congruence

subgroup” in [BR14]. The quotient space can actually be an orbifold. It can also be infinite-

volume. We explain the regular tessellation structure and the universal property of U{p,q,r}z

in detail in Section 4 and only remark here that multiplication of z by u leaves the universal
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regular tessellation unchanged and complex conjugation only reflects it. Thus, for classifi-
cation purposes, we only have to enumerate those z that are in canonical form defined as
follows:

Definition 2.3. Let z = a+ bu. If a ≥ b ≥ 0, we say that z is in canonical form.

We can now state the main theorem:

Theorem 2.4. If M is a link complement admitting a regular tessellation, then it must be
a finite-volume manifold universal regular tessellation. All finite-volume universal regular

tessellations U{p,q,r}z are listed in Table 1, so there are 20 or 21 non-homeomorphic such
manifolds. For every manifold case not marked with ∗ in the table, the universal regular
tessellation is known to be a link complement. Thus there are 19 to 21 regular tessellation
link complements.

Table 1. Size of the universal regular tessellation U{p,q,r}z in number of Pla-
tonic solids and cusps (also see Figure 4).

{3, 3, 6} {4, 3, 6} {5, 3, 6} {3, 4, 4}
tetrahedron cube dodecahedron octahedron
z solids cusps solids cusps solids cusps z solids cusps

1 orbifold orbifold orbifold 1 orbifold
1 + ζ orbifold 6 8 orbifold 1 + i orbifold

2 10 5 16 16 240 600 2 4 6
2 + ζ 28 8 84 48 ? 2 + i 5 6

2 + 2ζ 120 20 2 + 2i 16 12
3 54 12 3 30 20

3 + ζ 182 28 3 + i 30 18
3 + 2ζ 570 60 3 + 2i 91 42

4 640 80 4 + i 204 72
4 + ζ 672 64 4 + 2i 122880 36864∗

Note that there are two unsettled cases U{5,3,6}2+ζ and U{3,4,4}4+2i . In the first case, it is unclear

whether the universal regular tessellation U{5,3,6}2+ζ is finite-volume. Computer experiments
strongly indicate that it is indeed infinite volume and thus not a link complement; see
also the discussion in Section 12. In the second case, we know that the universal regular

tessellation U{3,4,4}4+2i is finite-volume, but could neither prove nor disprove that it is a link
complement.

This leaves the question unsettled whether every finite volume manifold universal regular
tessellation is a link complement. Baker and Reid posed a more general formulation of this
question in [BR14]. We will discuss this further in the discussion section.

For some cases, a link with complement U{p,q,r}z could be found easily or has been explicitly

constructed: U{3,3,6}2 is shown in Figure 1, the complement of the Thurston congruence link

[Thu98] is U{3,3,6}2+ζ , links for U{3,3,6}2+2ζ and U{3,3,6}3 have been constructed in the author’s PhD



6 MATTHIAS GÖRNER

thesis [Gör11]. Finally, the complement of the minimally twisted 6-component chain link

turns out to be U{3,4,4}2 .
The rest of the paper is organized as follows: We first develop the theory of regular

tessellations in Section 3 and 4. An important invariant is the cusp modulus describing
the regular tessellation structure when restricting to a cusp neighborhood. The largest
tessellation and only potential link complement among all tessellations of given cusp modulus
is the universal regular tessellation.

Section 5 classifies all regular tessellations for small cusp modulus and all principal con-
gruence link complements for discriminant D = −3 and D = −4.

Section 6 introduces the central algorithm in this paper: the construction of the universal
regular tessellation. This has been implemented in python (see http://www.unhyperbolic.
org/regTess/) and Section 7 describes the details of the implementation as well as examples
of how to use the software to obtain the results in Table 1 and Section 5.

The rest of the paper is devoted to proving the main theorem which means proving that
the algorithm to construct the universal regular tessellation never terminates for a case not
listed in Table 1. Section 8 does this for large cusp modulus. Section 9 introduces cuspidal
homology to construct cuspidal covers. This is used in Section 10 to prove infinite universal
regular tessellations in the remaining cases.

3. Regular Tessellations of the Torus

Let OD be the ring of integers of the imaginary quadratic number field Q(
√
D) of discrim-

inant D < 0. Here, we will focus on the Eisenstein integers O−3 = Z[ζ] with ζ = 1+
√
−3

2
and

the Gaussian integers O−4 = Z[i]. Let u denote the generator ζ, respectively, i of each of
these two rings which are principal ideal domains so every ideal is of the form 〈z〉 for some
z ∈ Z[u] which is determined by the ideal up to a unit uk.

Draw a line segment between each pair of points in Z[u] ⊂ C that have unit distance. The
result is a regular tessellation of type {3, 6} for D = −3, respectively, {4, 4} for D = −4.

Definition 3.1. Given z ∈ Z[u] \ 0, let Tz be the triangulation of the torus obtained as
quotient of the above regular tessellation by the action of the elements in the ideal 〈z〉 by
translations. The dual tessellation of the torus is denoted by T ∗z .

Figure 2. Fundamental domain for the chiral regular tessellation T2+ζ for D = −3.

Recall that every regular tessellation of the torus is of the form Tz or T ∗z . An example
is given in Figure 2. Given an oriented regular tessellation of a torus, the z classifying the

http://www.unhyperbolic.org/regTess/
http://www.unhyperbolic.org/regTess/
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tessellation is determined up to multiplication by a unit uk. Note that Tz is the mirror image
of Tz̄. Hence, given an unoriented regular tessellation of the torus, z is only defined up to
multiplication by a unit uk and complex conjugation. Furthermore, Tz is chiral if and only
if 〈z〉 6= 〈z̄〉.

4. Cusp Modulus

Recall that we normalized the regular tessellations {3, 3, 6}, {3, 4, 4}, {4, 3, 6}, {5, 3, 6} such
that there is a face with three consecutive vertices at the points ∞, 0, and 1, see Figure 3.
Take a horosphere H about ∞ that is a high enough plane parallel to C. A solid of an ideal
regular hyperbolic tessellations {p, q, r} intersects H in a regular q-gon and thus the regular
tessellation of H3 induces a regular tessellation of type {q, r} on H with vertices at Z[u]
where u = e2iπ/r. The orientation-preserving isometries of the tessellation on H are given
by the upper triangular matrices with coefficients in Z[u] with upper unit-triangular matri-
ces corresponding to translations. In fact, Γ{p,q,r} coincides with the natural Z/2-extension
PGL(2,OD) of a Bianchi group PSL(2,OD) in two cases: Γ{3,3,6} is given by PGL(2,O−3)
and Γ{3,4,4} by PGL(2,O−4). One of the other two cases, Γ{4,3,6}, is also arithmetic because
it is commensurable with PGL(2,O−3) but does neither cover it nor is covered by it. How-
ever, Γ{5,3,6} is not arithmetic. As group, each Γ{p,q,r} is the orientation-preserving index-2
subgroup of a Coxeter reflection group.

Now consider a regular tessellationM of a finite-volume oriented cusped hyperbolic man-
ifold and of type {p, q, r}. Similarly, there is an induced oriented tessellation {q, r} of the
boundary of a cusp neighborhood for each cusp, this time on a torus. The tessellation of the
3-manifold being regular also implies that the induced tessellation is regular and the same
for each cusp. Thus, the induced oriented regular tessellation is given by some Tz. Thus,
we obtain an invariant z of M defined up to multiplication by a unit uk which we call the
cusp modulus. Note that for the non-arithmetic case {5, 3, 6}, the cusp modulus is still an
element in O−3 but that O−3 is not the invariant trace field.

Remark 4.1. The regular tessellation structure is also equal to the canonical cell decompo-
sition of the underlying hyperbolic manifold [EP88]. In particular, a hyperbolic 3-manifold
admits at most one regular tessellation structure and the cusp modulus is an invariant of the
underlying hyperbolic 3-manifold admitting a regular tessellation. Note that this is in general
false for non-regular tessellations by Platonic solids. For example, the manifold underlying

the regular tessellation U{3,3,6}2 of ten tetrahedra also admits several different tessellations
by two regular cubes but none of the cubical tessellations is regular and thus equal to the

canonical cell decomposition (U{3,3,6}2 is a double cover of the orbifold in Figure 1. This
orbifold was named Q4 in [NR92] and shown to decompose into a cube).

We can also characterize tessellations algebraically. A manifold M = H3/M has a tessel-
lation induced from the tessellation {p, q, r} of H3 if M is a torsion-free subgroup of Γ{p,q,r}.
The induced tessellation onM is a regular tessellation if furthermore M is normal in Γ{p,q,r}

(this is how it was defined earlier in Definiton 2.1). To see this, recall that a tessellation
is regular if its orientation-preserving symmetry group acts transitively on all flags. Γ{p,q,r}

acts freely and transitively on all flags of the tessellation of H3. Thus a manifold quotient
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1
2

3

0

P

QR

H

0 1

1+ii

(1+i)/2

Figure 3. An octahedron in the regular tessellation {3, 4, 4}. The dashed
lines form one of the simplices obtained from a barycentric subdivision. The
octahedron intersects the horosphere H in a square so there is an induced
regular tessellation {4, 4} on H.

H3/M is a regular tessellation if every symmetry of Γ{p,q,r} descends to a symmetry of H3/M
which is equivalent to M being normal in Γ{p,q,r}.

Let

pz =

(
1 z
0 1

)
, P = {pw : w ∈ C} and Pz = {pw : w ∈ 〈z〉} .

Definition 4.2. Let M be a cusped orientable 3-manifold such that M = H3/M where M is
a torsion-free normal subgroup of Γ{p,q,r}. Then z is the cusp modulus of M if M ∩ P = Pz.

Note that in this definition, the cusp modulus is defined up to a multiplication by a unit
uk again. To see this, look at the group M ∩ P . If pw and pw′ ∈ M ∩ P , then pw+w′ =

pwpw′ ∈ M ∩ P and puw = gRpwg
−1
R ∈ M ∩ P where gR =

(
u 0
0 1

)
∈ Γ{p,q,r} because M is

normal. Thus, the off-diagonal entries of the matrices in M ∩ P form an ideal and the ideal
is generated by an element z determined up to uk.
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This definition of cusp modulus also matches the earlier geometric definition of cusp mod-
ulus: the group M ∩ P acts on the regular tessellation {q, r} on the horosphere H by trans-
lations and the resulting quotient is the tessellated torus Tz.

Recall the universal regular tessellation U{p,q,r}z from Definition 2.2. If it is a manifold, it
is a regular tessellation by definition and it always has the following universal property:

Lemma 4.3. Let M be a (not necessarily finite volume) regular tessellation {p, q, r} with

cusp modulus z. Then there is a covering map U{p,q,r}z →M.

Proof. The group M contains pz and is normal in Γ{p,q,r}. Thus it must contain U
{p,q,r}
z by

definition. �

Lemma 4.4. If a regular tessellation M is a link complement, then it is also a universal

regular tessellation U{p,q,r}z .

Proof. A regular tessellationM is universal if and only if the fundamental group M is gener-
ated by parabolic elements only. Note that the Wirtinger representation of the fundamental
group of hyperbolic link complement implies that it also has this property. �

5. Classification of Regular Tessellations with Small Cusp Modulus

Once we have constructed a finite-volume universal regular tessellation for a cusp modulus
z, we can construct all regular tessellation of cusp modulus z using the techniques described
later in Section 7.2. This is done in Table 2 by listing the following categories to capture the
relationships between these regular tessellations:

Definition 5.1. Let C{p,q,r}z denote the category of all pointed manifold regular tessellations
of type {p, q, r} and cusp modulus z. Recall that each regular tessellation is a cover of the
orbifold H3/Γ{p,q,r} and pick a generic point p0 in the orbifold (that is not on the singular

locus or preserved under any symmetries of the orbifold). An object (M, p) ∈ C{p,q,r}z is a
regular tessellation of type {p, q, r} and cusp modulus z such that p is a lift of p0. A morphism
is a covering map respecting the base point p.

For the categories C{3,3,6}z and C{3,4,4}z , we can describe three objects as quotients by an
arithmetically defined group if such a quotient happens to be a manifold. These objects are
congruence manifolds with discriminant D = −3 (for {3, 3, 6}) or D = −4 (for {3, 4, 4}) and
among them are the principal congruence manifolds WD

z :

WD
z = H3/XD

z where WD
z = ker

(
PSL

(
2,OD

)
→ SL

(
2,OD/〈z〉

)
/±1

)
XD
z = H3/XD

z where XD
z = ker

(
PSL

(
2,OD

)
→ PSL

(
2,OD/〈z〉

))
,

YDz = H3/YD
z where YD

z = ker
(

PGL
(
2,OD

)
→ PGL

(
2,OD/〈z〉

))
.

Here, PGL(2, R) = GL(2, R)/R∗ and PSL(2, R) = SL(2, R)/{e ∈ R|e2 = 1}. For R = OD,
±1 are the only two elements e with e2 = 1, so the map to SL

(
2,OD/〈z〉

)
/±1 is well-defined.
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Table 2. Categories C{p,q,r}z up to category equivalence for small cusp modulus.

C{p,q,r}z
∼=
{
U{p,q,r}z

}
for C{3,3,6}2 , C{3,3,6}2+ζ , C{3,3,6}3 , C{3,3,6}3+2ζ , C{4,3,6}1+ζ , C{3,4,4}2 , C{3,4,4}2+i , C{3,4,4}3+2i

C{3,3,6}2+2ζ
∼=
{
Z (Z/2)2←−−− Y−3

2+2ζ

}
C{3,3,6}3+ζ

∼=
{
Y−3

3+ζ

Z/2←−− X−3
3+ζ

}
C{3,3,6}4

∼=
{
X−3

4 W−3
4Z/2

oo U{3,3,6}4Z/2
oo

Z/4
ss

}
C{3,3,6}4+ζ

∼=
{
Z X−3

4+ζ(Z/2)2
oo W−3

4+ζZ/2
oo

Q8

tt
}

C{4,3,6}2
∼=

{ Z0

Z1(Z/2)2

ss

kk

U{4,3,6}2Z/2oo

Q8oo

Q8
pp

Z/2
// Z2

Z̄0

}
C{4,3,6}2+ζ

∼=
{
Z0 Z1Z/2
oo U{4,3,6}2+ζZ/3

oo

S3

uu
}

C{5,3,6}2
∼=

{ Z0

Z1A5

uu

ii
U{5,3,6}2Z/2oo

SL(2,5)oo

SL(2,5)
oo

Z/2
// Z2

Z̄0

}

C{3,4,4}2+2i
∼=
{
Z Z/2←−− Y−4

2+2i

}
C{3,4,4}3

∼=
{
Y−4

3

Z/2←−− X−4
3

}
C{3,4,4}3+i

∼=
{
Z Z/3←−− Y−4

3+i

}
C{3,4,4}4+i

∼=
{
Y−4

4+i

Z/2←−− X−4
4+i

}
C{3,4,4}4+2i

∼=
{
· · · X−4

4+2i W−4
4+2i

Z/2
oo · · · U−4

4+2i

H

|H|=512uu }
Lemma 5.2. If a space WD

z ,XD
z , respectively, YDz is a manifold, then it is a regular tessel-

lation. Thus, there are covering maps (some might be isomorphisms)

U{p,q,r}z →WD
z → XD

z → YDz .

Proof. We need to show that all the groups WD
z ,X

D
z ,Y

D
z are normal in the respective Γ{3,q,r}.

This is obvious for the kernel YD
z since PGL(2,O−3) = Γ{3,3,6} and PGL(2,O−4) = Γ{3,4,4}.

It is also obvious that XD
z and WD

z are normal in PSL(2,Od) which is an index-2 subgroup

of PGL(2,Od) with an element in the complement being g =

(
u 0
0 1

)
. Hence, it is enough

to show that the conjugate M g of a matrix M in XD
z or WD

z is also in XD
z , respectively, WD

z .
This follows from M g still being in PSL(2,OD) and its image in PSL(2,OD/〈z〉), respectively,
PGL(2,OD/〈z〉) still being congruent to the identity matrix. �

If there are other objects in C{p,q,r}z not listed in the above lemma, we denote them by Z(j)

and Z̄(j). The latter one is used for the mirror image of Z(j) when Z(j) is chiral. Q8 denotes
the quaternion group of order 8.

We can now classify all principal congruence link complements as a corollary of the main
theorem. It is left to run the algorithm described later in Section 7.1.2 to check whether
the arithmetically defined space is an orbifold or manifold. We obtain an orbifold for the
arithmetically defined spaces in exactly the following cases: WD

z ,XD
z ,YDz with |z| < 2 and

Y−4
2 ,X−4

2 ,Y−3
2 .
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2 + ζ
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2 + 2ζ
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4 + 2i

U{3,3,6}z U{3,4,4}z

WD
z not link complement, U{p,q,r}z unknown

WD
z not link complement, U{p,q,r}z link complement

WD
z
∼= U{p,q,r}z link complement

Figure 4. Overview of regular tessellation link complements and principal
congruence link complements for {3, 3, 6}, D = −3 and {3, 4, 4}, D = −4.

Corollary 5.3. A principal congruence manifold WD
z with D = −3,−4 and z in canonical

form is a link complement if and only if:

• D = −3 and z ∈ {2, 2 + ζ, 2 + 2ζ, 3, 3 + ζ, 3 + 2ζ, 4 + ζ}
• D = −4 and z ∈ {2, 2 + i, 2 + 2i, 3, 3 + i, 3 + 2i, 4 + i}

Proof. By Lemma 5.2 and Theorem 2.4, WD
z can only be a link complement if it is a finite

volume universal regular tessellation. There are 16 potential cases of type {3, 3, 6} and
{3, 4, 4}. In all these cases, WD

z is a manifold. But in the case W−3
4 and W−4

4+2i, it is not
the universal regular tessellation, leaving 7 cases for each discriminant. An overview is also
given in Figure 4. �

6. Construction of the Universal Regular Tessellation

In this section, we give an algorithm to construct U{p,q,r}z which will terminate if and only

if U{p,q,r}z is finite-volume. Recall the definition of the torus T ∗z from Definition 3.1.

Definition 6.1. A nanotube is the product R≥0×T ∗z where T ∗z is tessellated by regular r-gons
when constructing tessellations of type {p, q, r} and cusp modulus z.

Figure 5 shows an example nanotube. Whereas a regular tessellation M is built from
ideal Platonic solids, its dual M∗ is built from topological nanotubes R≥0 × T ∗z such that
p nanotubes meet at each edge and z is the cusp modulus. The reader is probably already
familiar with the decomposition of a regularly tessellated cusped hyperbolic manifold into
nanotubes because the nanotubes happen to be the Ford domains of the manifold. This is
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Figure 5. A nanotube R≥0 × T ∗z for tessellations of type {p, 3, 6}. The core
of the torus is removed.

analogous to the regular tessellation by Platonic solids being identical to the canonical cell
decomposition [EP88]. However, we prefer the dual nanotubes as building blocks in this
section because they already have the cusp modulus encoded in them, thus making it easier
to build tessellation with prescribed cusp modulus. The use of the dual as well as the term
“nanotube” was first suggested by Ian Agol.

To obtain the universal regular tessellation U{p,q,r}z , we can (roughly speaking) just glue
enough nanotubes together and enforce that there are always p nanotubes at an edge. A
deterministic algorithm for this is described in the following definition.

Definition 6.2. Let U{p,q,r}z (0) be a single nanotube. To obtain U{p,q,r}z (n+1) from U{p,q,r}z (n),
perform the following steps:

(1) Attach a nanotube to each open face of U{p,q,r}z (n).
(2) If there is an edge e of the resulting complex with p nanotubes around e and two open

faces adjacent to e, we need to glue the two faces so we a get an edge cycle about e.
If we already had an edge cycle about an edge e of length different from p or there are
more than p nanotubes adjacent to e, we need to identify every p-th nanotube. Repeat
until there is no edge left for which such a gluing or identification is necessary.

A

A
B
B

C

A

A
B

B
C

Figure 6. Attaching nanotubes to U{3,3,6}z (0). Only two of the new nanotubes
are shown here, those will be attached along faces A. In step 2, the B faces
will be glued. Thus, the edges of an A face are glued up to 3-cycles. The edge
that the C faces share with a B face will be labeled by 2.

Remark 6.3. U{p,q,r}z (n+1) is well-defined as the result is independent of the order in which

we process the edges in step 2. To see this, note that the space U{p,q,r}z (n+ 1) is the quotient
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of the complex obtained from step 1 under a certain equivalence relationship. Namely, this
relationship is the minimal equivalence relationship closed under the operation of rotating a
point near any edge e to the next nanotube p times. It does not matter in which order we
perform this operation to obtain the minimal relationship closed under this operation.

The open faces of U{p,q,r}z (n) form a 2-complex, but since we never glue two nanotubes
along edges, only along faces, they even form a surface (or potentially, a 2-orbifold, but only
for small z, see Remark 6.6). This surface is orientable, connected, and tessellated by r-gons.

We will label an edge e of ∂U{p,q,r}z (n) with a numeral 1, . . . , p− 1 indicating the number of

nanotubes in U{p,q,r}z (n) that are adjacent to e.
An example for {3, 3, 6} is shown in Figure 6. In later iterations, there are edges labeled

by 2. Choose one, say e. We again attach two nanotubes to the two open faces adjacent to e,
so we have four nanotubes around e now. Thus, we need to identify the two newly attached
nanotubes with each other. As before, the edge e will become a 3-cycle and disappear from

U{p,q,r}z (n + 1). Effectively, we added only one nanotube glued to the two open faces of

U{p,q,r}z (n) adjacent to e to close up the edge to a 3-cycle.

Remark 6.4. If the map U{p,q,r}z (n) → U{p,q,r}z (n + 1) is an embedding, the edge-labeled

tessellation of ∂U{p,q,r}z (n+ 1) can be determined purely from ∂U{p,q,r}z (n), so it is enough to
look at the surface for studying the evolution of the algorithm.

Lemma 6.5. LetM be a regular tessellation of a finite-volume hyperbolic 3-manifold of type

{p, q, r} with cusp modulus z. There is a map fn : U{p,q,r}z (n)→M which is unique once we

identify U
{p,q,r}
z (0) with a Ford domain of M. For n large enough, f will be surjective. If M

is furthermore a universal regular tessellation U{p,q,r}z , then U{p,q,r}z (n) ∼= U{p,q,r}z for a large

enough n. In other words, if U{p,q,r}z is finite volume, there is an n such that ∂U{p,q,r}z (n) is
empty.

Proof. The existence of f is trivial for U{p,q,r}z (0) and follows inductively for U{p,q,r}z (n) from
the construction which enforces only the cusp modulus and edge cycle as relations. We say
that two cusps of M are neighbors if they span an edge in the regular tessellation of M.
Note that the Im(f0) covers one cusp ofM, Im(f1) covers that cusp and its neighbors, Im(f2)
covers that cusp, its neighbors, and its neighbors’ neighbors and so on. Hence, becauseM is
connected and has only finitely many cusps, fn will eventually be surjective. Now consider
the case thatM is a finite volume universal regular tessellation. Since the only two relations

used in the construction of U{p,q,r}z (n) are the cusp modulus and the edge cycle, the map fn
will be an isomorphism for n large enough. Since U{p,q,r}z (n) ∼= U{p,q,r}z , there will be no open

faces in U{p,q,r}z (n) and ∂U{p,q,r}z (n) will be empty. �

Remark 6.6. The algorithm can produce an orbifold for small z, for example, U{3,3,6}1 .

∂U{3,3,6}1 (0) consists of a single hexagon. Step 1 doubles the space along the hexagon, thus
all edges are closed up and there are two nanotubes about an edge. Step 2 now identifies
every third nanotube about an edge and since gcd(2, 3) = 1, there will be only one nanotube
adjacent to e after identification. Thus, we have introduced singular locus of order 3. There
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is always a map U{p,q,r}z (n) → U{p,q,r}z (n + 1), but in this case, the map will not be an

embedding for n = 0. The cases in which U{p,q,r}z is an orbifold are shown in Table 1.

Remark 6.7. If the map U{p,q,r}z (n) → U{p,q,r}z (n + 1) is an embedding for all n, the con-

struction also gives an algorithm to solve the word problem for the group U
{p,q,r}
z .

7. Computer Implementation

The algorithm described in the previous section has been implemented. The source code
and all other files necessary for the reader to easily certify the correctness of the results in
this paper are available at http://www.unhyperbolic.org/regTess/. We encourage the
reader to read and experiment with the well-commented code for details. Each subsection
starts with an example how to use the software followed by implementation details.

Furthermore, we want to point out that regularTessellations.py contains a new trian-
gulation data structure that allows not just gluing tetrahedra but also identifying them (see
Remark 7.1). This seems to be a useful feature in general, e.g., for constructing quotient
spaces but neither SnapPy [CDW] nor Regina [Bur09] implement it.

7.1. Generating Triangulations with regularTessellations.py.

7.1.1. The Universal Regular Tessellation U{p,q,r}z . Definition 6.2 described the algorithm in
terms of nanotubes, but we use triangulations here as they are easier to work with and can
also be exported into existing 3-manifold software such as Regina or SnapPy. We obtain
the triangulation of a nanotube through the barycentric subdivision, i.e., the subdivision
on R≥0 × T ∗z induced from the barycentric subdivision of T ∗z . After gluing such subdivided
nanotubes, the resulting triangulation is also the barycentric subdivision of the regular tes-
sellation (recall that the unsubdivided nanotubes corresponded to the dual Ford domains but
barycentric subdivision is invariant under duality). Note that such a triangulation has finite
vertices but still can be imported into SnapPy, as SnapPy performs algorithms to remove
finite vertices without changing the topology of the manifold upon import.

The following example shows how this triangulation of the universal regular tessellation,

here U{3,3,6}2+ζ , can be constructed. As regular tessellation, U{3,3,6}2+ζ consists of 28 regular ideal
tetrahedra. Thus its barycentric subdivision consists of 672 simplices, each ideal tetrahedron
contributing 24. The last two lines of code convert the data to a Regina triangulation and
write it to a file that can be read with SnapPy. Only those last two lines actually depend
on Regina being installed, whereas all other methods work in pure Python 2.x:

>>> from regularTessellations import *

>>> tessConext = TessellationContext(3,3,6,2,1)

>>> tess = tessContext.UniversalRegularTessellation()

>>> len(tess), len(tess)/24

672, 28

>>> reginaTrig = TetrahedraToReginaTriangulation(tess)

>>> open(’2_plus_1_zeta_tets.trig’,’w’).write(reginaTrig.snapPea())

We now describe in more detail how this is implemented and refer the reader to the python
code for details. We first need to write a nanotube factory that produces the triangulation

http://www.unhyperbolic.org/regTess/
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of a nanotube obtained by barycentric subdivision. An algorithm to create the resulting
triangulation is easily implemented and we spare the reader with the details, only mentioning
the conventions we use here (also see Figure 3): We label the vertices of a simplex in this
subdivision such that vertex 0 is ideal, 1 at the center of a face of the nanotube, 2 at an
edge adjacent to the face, and 3 at a vertex adjacent to the edge. Thus, face i opposite to
vertex i is always glued to face i of another simplex such that the face pairing permutation
is trivial, i.e., such that the vertex j (6= i) is glued to vertex j, and the only gluing data
we need to store per simplex is one reference to another simplex per face. We also label
the simplices with an orientation so that two neighboring simplices always have opposite
orientations since each face gluing reverses the orientation. Every face 0 of a newly created
nanotube is unglued.

Step 1 of Definition 6.2 just invokes the nanotube factory to create a new nanotube F

for each open r-gon A′ of U{p,q,r}z (n) and then glues some r-gon A of F to A′. An r-gon is

formed by 2r simplices, so this involves gluing 2r simplices of U{p,q,r}z (n) to 2r simplices of
F along face 0 and we must be careful to glue them in such a way that a positively oriented
simplex is glued to a negatively oriented simplex.

Then we need to apply step 2 to each simplex T . Let Ti be the simplex glued to face i of
T . If the face is unglued, we say that Ti does not exist. Similarly, let Ta1...aj be the simplex
glued to face aj of simplex Ta1...aj−1

. If simplex T1010...10 exists, then identify T1010...10 with T
if they are not already identified. Otherwise, glue T to T1010...1 along face 0 if face 0 of T is
unglued and T1010...1 exists. Here, strings such as “1010. . . 1” are supposed to contain “1” p
times.

We need to iterate step 2 until no identification or gluing happened in an iteration. This
is because gluing up one edge might trigger that nearby edges have more adjacent simplices
and need to be glued up.

It is left to write a loop that repeats step 1 and 2 until there are no open faces.

Remark 7.1. When we identify two simplices T and T ′, the identification needs to be
pushed through the already existing gluings, e.g., if T0 is glued to T along face 0 and T ′0
is glued to T ′, then T0 and T ′0 need to be identified as well if they are different, and this
identification then needs to be recursively pushed through as well. If only T is glued to a
simplex T0, but face 0 of T ′ is unglued, the simplex resulting from identifying T and T ′ will
be glued to T0.

7.1.2. Arithmetically Defined Regular Tessellations. The following example shows how to
construct X−3

2 and Y−3
2 . We see that X−3

2 is a double cover of Y−3
2 (they are actually the

manifold and orbifold in Figure 1).

>>> tessContext = TessellationContext(3,3,6,2,0)

>>> X = tessContext.PrincipalCongruenceManifold(’X’)

>>> len(X)

240

>>> tessContext = TessellationContext(3,3,6,2,0)

>>> Y = tessContext.PrincipalCongruenceManifold(’Y’)

>>> len(Y)

120
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The algorithm works as follows: To construct WD
z ,XD

z , respectively, YDz , take the trian-

gulation of U{p,q,r}z (n) from Section 7.1.1 with n large enough and fix a positively oriented
simplex of it, say T̃ . Lift T̃ to the universal cover H3 such that it becomes the simplex in
Figure 3 (for D = −3, vertex 3 is above (1 + ζ)/3 instead of (1 + i)/2). We can now label
each simplex T with positive orientation by a 2 × 2 matrix that would take T̃ to T in H3.
To start, label T̃ by the identity. Let

gP =

(
0 1
−1 1

)
, gQ =

(
−1/u 1

0 1

)
and gR =

(
u 0
0 1

)
.

They correspond to the rotations indicated in Figure 3. Assume T is labeled by g ∈
GL(2,Z[u]). Let Ta1 be the simplex glued to face a1 of T and Ta1a2 be the simplex glued
to face a2 of Ta1 . We assign the label ggP to T01, ggQ to T12, ggR to T23, ggPgQ to T02,
ggQgR to T13 and ggPgQgR to T03. We need to identify two simplices if the images of their
labels in PGL(2,Z[u]) differ by a matrix in WD

z ,X
D
z , or YD

z . We can represent the image
in PGL(2,Z[u]) by a matrix ukg such that the determinant ‖ukg‖ is either 1 or u. Replace
each label g by such a matrix.

It turns out that the coefficients of the labels g ∈ GL(2,Z[u]) explode when computing
the products. Hence, we instead label the simplices by pairs (‖g‖, g mod z) where g is
normalized as above such that ‖g‖ is either 1 or u. We need to store the determinant here
as well, because it is not determined by (g mod z) alone for small z. Now identify two
simplices if their labels have

• the same (g mod z) up to ±1 and the same ‖g‖ (for WD
z )

• the same (g mod z) up to (Z[u]/〈z〉)∗ and the same ‖g‖ (for XD
z )

• the same (g mod z) up to (Z[u]/〈z〉)∗ (for YDz ).

If there are open faces left, n was not chosen large enough.

7.1.3. Orbifold Detection. For a triangulation returned by one of the above algorithms, we
can check the number of simplices around each edge. If these numbers are 2p, 2q, 2r, 4, 4, 4
for the respective edges of each simplex, it is the triangulation of a hyperbolic manifold,
otherwise, an orbifold. This can be checked as follows (continuing previous example, recall
that Y was the orbifold and X the manifold in Figure 1):

>>> tessContext.IsManifold(Y)

False

>>> tessContext.IsManifold(X)

True

7.2. Finding All Regular Tessellations Using regularTessellations.g. Recall that
every regular tessellation of type {p, q, r} and cusp modulus z can be obtained as quotient

of U{p,q,r}z /N by a normal subgroup N / G where G = Isom+(U{p,q,r}z ) is the orientation-

preserving symmetry group of U{p,q,r}z . If U{p,q,r}z is finite-volume, we can use Gap [GAP08]
to find all suitable normal subgroups and thus classify all regular tessellations in these cases.
Here is an example for {3, 3, 6} and z = 4:

gap> Read("regularTessellations.g");

gap> G:=SymmetriesUniversalRegularTessellationPermGroup(3,3,6,4,0);
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<permutation group of size 7680 with 3 generators>

gap> L:=AllRegularTessellationsFromUniversalRegularTessellation(G);;

gap> List(L,StructureDescription);

[ "1", "C2", "C4" ]

gap> IsSubgroup(L[3],L[2]);

true

This shows that there are three manifold regular tessellations with cusp modulus 4: U{3,3,6}4

and two extra manifolds covered by U{3,3,6}4 such that the Decktransformations are Z/2,
respectively, Z/4. We also see that one of these extra manifolds is covered by the other one.

Here, we use the following representation for G (where z = a+ bu):

(1) G ∼= 〈P,Q,R|P p, Qq, Rr, (PQ)2, (QR)2, (PQR)2, (QRr/2+1)a(RQRr/2)b〉.

Fixing a simplex T̃ of U{p,q,r}z , the three generators can be identified with rotations about
edges of T̃ as shown in Figure 3. Namely, a right multiplication by P means we go along
face 0 and 1. Analogously, Q goes along face 1 and 2, and R along face 2 and 3.

Given a normal subgroup N of G, we need to check that the quotient is a manifold regular
tessellation of the same cusp modulus. Let C1 = 〈P 〉, C2 = 〈PQ〉, C3 = 〈PQR〉, C4 = 〈QR〉,
C5 = 〈Q〉 and C6 = 〈R〉 be the cyclic subgroups of the rotations about one of the six edges
of T0. Let B = 〈Q,R〉 be the subgroup of elements fixing the cusp corresponding to vertex

0 of T0. Then, the quotient U{p,q,r}z /N by a normal subgroup N /G is a manifold if and only
if N intersects each of the six Ci trivially and has the same cusp modulus if and only if N
intersects B trivially.

It should be noted that a quotient U{p,q,r}z /N can be chiral even though U{p,q,r}z is am-
phicheiral. Here is an example for regular tessellations of type {4, 3, 6} and cusp modulus
z = 2:

gap> G:=SymmetriesUniversalRegularTessellationPermGroup(4,3,6,2,0);;

gap> L:=AllRegularTessellationsFromUniversalRegularTessellation(G);;

gap> IsAmphicheiralRegularTessellation(L[4],G);

false

gap> mu:=MirrorIsomorphismUniversalRegularTessellation(G);;

gap> Image(mu,L[4])=L[5];

true

We see that the fourth regular tessellation in the list is chiral and that its mirror image is
the fifth regular tessellation in the list (Table 2 lists them as Z0 and Z̄0).

To detect this in general when U{p,q,r}z is amphicheiral, let µ be the group automorphism

obtained by conjugating G = Isom+(U{p,q,r}z ) with an orientation-reversing symmetry:

µ : G→ G,P 7→ Q−1P−1Q,Q 7→ Q−1, R 7→ R−1.

Now the mirror image of a quotient U{p,q,r}z /N is given by U{p,q,r}z /µ(N) and the quotient is
amphicheiral if and only if N = µ(N).
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7.3. Proving a Manifold Is a Link Complement.

7.3.1. Link Complement Certificates. For 19 of the 21 potential finite-volume manifold uni-

versal regular tessellations U{p,q,r}z (those not marked with a “∗” or a “?” in Table 1), we

provide SnapPy files named ...with meridians.trig certifying that U{p,q,r}z is indeed a link

complement. Except for U{5,3,6}2 , each respective file contains a triangulation that is homeo-

morphic to U{p,q,r}z . The peripheral curves saved in the file are such that (1, 0)-Dehn-filling
along each cusp yields a manifold with trivial fundamental group and, hence, homeomorphic
to S3 by Perelman’s Theorem.

For U{5,3,6}2 , we use the quotientM = U{5,3,6}2 /H by a suitable subgroup H ∼= Z/15 which
has the same cusp modulus. (1, 0)-Dehn-fillingM now yields a manifold L with fundamental
group Z/15 (actually a lens space by Geometrization). Thus, lifting the embedded M ⊂ L
to the universal cover of L gives a link complement M̃ ⊂ S3. We need to verify that M̃ is

indeed U{5,3,6}2 . It is enough to show that M̃ →M is a cuspidal covering map as defined in
Section 9. The cuspidal homology Hcusp

1 (M) ∼= Z/15 is equal to H1(L) ∼= π1(L) of the filled
manifold L. So, H1(∂M) dies in H1(L) and a cusp of M lifts to 15 disjoint copies in M̃.

The reader can thus prove that a universal regular tessellation is a link complement by:

(1) Following the steps in 7.1.1 to write U{p,q,r}z to a SnapPy file (for M = U{5,3,6}2 /H,
using tess=DodecahedralUniversalQuotientedByC15() which also verifies that the
quotient has the same cusp modulus).

(2) Comparing the resulting manifold with the provided file using SnapPy Manifold’s

is isometric to. (In case of U{5,3,6}2 , also verifying H1(M) = Z40 ⊕ Z/15 and that
M has 40 cusps).

(3) Dehn-filling the provided manifold and check that π1 is trivial (in case of U{5,3,6}2 ,
π1
∼= Z/15). This has been automated in the script

universalRegularTessellationLinkComplementsProofs.py.

7.3.2. Method Used To Find the Certificates. It turns out that the existing methods to
find exceptional slopes did not suffice (see discussion section), so we just briefly sketch the

procedure we used to find the right slopes for the Dehn-fillings of a U{p,q,r}z . We iterated the
following steps in SnapPy until there were only a few unfilled cusps left:

(1) Pick the next unfilled cusp of the manifold.
(2) Among the slopes (1,0), (0,1), (1,1), (-1,1), fill along the one resulting in the least

“volume” as reported by SnapPy’s volume and for which H1 = Zc where c is the
number of unfilled cusps.

(3) Every couple of iterations, replace the deformed manifold with the filled manifold
(from filled triangulation())

For the last few unfilled cusps, we use a brute force search among all combinations of the
above slopes until we find one for which SnapPy computes a presentation of the fundamental
group with no generators. Once suitable slopes are found, the above certificates can be
created using SnapPy’s set peripheral curves.

In case of U{p,q,r}z , we use Gap to find cyclic subgroups H of G from presentation (1) that
intersect all conjugates of the subgroups Ci and B trivially. Given such an H, we find a
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word representing the generator of H and use it to identify a positively oriented tetrahedron

in U{5,3,6}2 with the image of the tetrahedron when applying the word to it (see (1) and the
following comment to see how a word acts on the tetrahedra). The result is the quotient

space M = U{5,3,6}2 /H. For one of these cyclic subgroups H, applying techniques analogous
to the above to M yields the certificate described earlier.

8. Proof of Infinite Universal Regular Tessellation for Large-Enough
Cusp Modulus

In this section, we always assume that z has combinatorial length 6 or greater where
combinatorial length is defined as:

Definition 8.1. The combinatorial length ‖z‖ of z ∈ OD is the minimal number n of units
z1, . . . , zn ∈ O∗D such that z = z1 + · · ·+ zn.

The combinatorial length is a norm on OD, invariant under complex conjugation and
multiplication by a unit. If z is in canonical form a+ bu, then the combinatorial length ‖z‖
is just a+ b.

Theorem 8.2. Let z ∈ O−3 and ‖z‖ ≥ 6. Then, U{3,3,6}z , U{4,3,6}z , and U{5,3,6}z are infinite

volume. Let z = a+ bi ∈ O−4 and ‖z‖ ≥ 9 or a ≥ 6, then U{3,4,4}z is infinite volume.

The rest of this section is devoted to the proof of this theorem which is split into various
cases with each case being an immediate consequence of Lemma 6.5 and one of Lemmas 8.7,
8.8, 8.9, and 8.10. Recall the construction in Definition 6.2.

{p,3,6} {3,4,4}

Figure 7. Small (p− 1)-clusters.

Definition 8.3. Split the surface ∂U{p,q,r}z (n) along all edges labeled by p − 2 or less. We
call the resulting connected components (p− 1)-clusters. We call a (p− 1)-cluster small if it
is one of the clusters shown in Figure 7.

We can align a nanotube and a small (p − 1)-cluster such that each face of the cluster
goes to a face of the nanotube and we can attach the nanotube by gluing along those faces.
Thus, we can eliminate the need to ever identify nanotubes by simplifying the construction
as follows:

Definition 8.4 (Simplified Construction). To obtain Ū{p,q,r}z (n+ 1) from U{p,q,r}z (n):

(1) Attach one new nanotube for each (p − 1)-cluster along all the faces of the (p − 1)-
cluster simultaneously.
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(2) If there is an edge e with p nanotubes around e and two open faces adjacent to e, we
need to glue the two faces. Repeat until there is no edge left for which such a gluing
is necessary.

If U{p,q,r}z (n) has a (p−1)-cluster that is not small or we encounter an edge e with more than
p nanotubes around e or an edge cycle of length different from p during the construction, we

say that the construction of Ū{p,q,r}z (n+ 1) failed.

Unless the simplified construction Ū{p,q,r}z (n + 1) fails, it is equal to U{p,q,r}z (n + 1). In

this case, the map U{p,q,r}z (n) → U{p,q,r}z (n + 1) is also an embedding as the construction

of Ū{p,q,r}z (n + 1) only glues but never identifies. Futhermore, the edge-labeled surface

∂U{p,q,r}z (n) determines ∂U{p,q,r}z (n+ 1) completely in this case.

1 1
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vertex link

3
3

3

on surface

vertex link

on surface

vertex link

on surfacedisappeared

Figure 8. Graphical construction Ū{3,3,6}z (1) shown left to right using a
stretched nanotube shown on the top left. The evolution of the link of the
dotted vertex is shown below. A bold line indicates this is a “new” edge.

Figure 8 shows a way of visualizing the construction, here of Ū{3,3,6}z (1). We can take a
nanotube and stretch one hexagon to be very large and facing away from us as shown on

the top left. Imagine a small piece of the surface ∂U{3,3,6}z (0) which consists of hexagons
and edges labeled by 1. In step 1, we glue a copy of the stretched nanotube on top of each
hexagon. The old edges will now be labeled with 3, hence step 2 will glue them up resulting
in the next picture. Note that the faces marked C form a 2-cluster of 3 hexagons and the
faces marked D a 2-cluster of 2 hexagons. All other edges will be labeled by 1.

Remark 8.5. We can also draw pictures to study the evolution of a vertex link as in the

bottom of the figure. The evolution of a vertex link of U{p,q,r}z (n+ 1) during the construction
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of Ū{p,q,r}z (n + 1) is as follows: take the boundary of the vertex link, split it at the points
where p− 2 or fewer q-gons meet. Step 1: Attach a new q-gon along each component. Step
2: if a point now has p adjacent polygons, glue the two open sides. As we will see later, a
vertex link will always be a subcomplex of the polyhedron {q, p}, the dual of the Platonic
solid of the regular tessellation. It eventually closes up to the polyhedron {q, p} and thus

will disappear from the surface ∂U{p,q,r}z (n) as n grows.
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v BCD
eoth
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er

Figure 9. Labels of faces, edges, and vertices of a nanotube’s surface.

8.1. The Cases {p, 3, 6}. Given a newly attached attached nanotube, we label the hexagons
as follows:

• A: faces along which the nanotube was attached.
• B: neighbors of A-faces
• C: faces neighboring two B-faces
• D: faces neighboring one B-face
• “other” faces: remaining faces

We label an edge or vertex by e, respectively, v and a subscript indicating all classes of faces
that are adjacent to the edge or vertex. An edge or vertex that is not adjacent to any A- or
B-face is called “other” edge eother, respectively, “other” vertex vother. This is shown for a
nanotube attached along a (p− 1)-cluster of 3 hexagons in Figure 9.

Lemma 8.6. If ‖z‖ ≥ 6, the pattern of A-, B-, C-, and D-hexagons in Figure 9 and its
analogues for smaller (p− 1)-clusters embeds into the nanotube’s surface T ∗z .

Proof. We work in the universal covering space which is the complex plane tessellated by
honeycombs: we need to show that the pattern does not collide with a copy of itself in the
complex plane when translated by an element t ∈ 〈z〉 \ 0. Note that ‖t‖ ≥ 6. By symmetry,
we ca assume that t is in canonical form. Figure 10 and similar diagrams for t = 5 + ζ,
4 + 2ζ, 3 + 3ζ show that there is no collision when ‖t‖ = 6. Larger value of ‖t‖ ensure this
as well. �
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Figure 10. The pattern from Figure 9 does not overlap with a copy of it self
when translated by t = 6.

Assuming that ‖z‖ ≥ 6 so the lemma holds true, we make the following observations about

the construction of Ū{p,3,6}z (n+ 1):

(i) The following vertices and edges were already in U{p,3,6}z (n): vA, vAB, eA, eAB. We thus
call them “old”.

(ii) During step 1, A-faces, vA and eA are always glued up and disappear from the surface

∂Ū{p,3,6}z (n+ 1).
(iii) The label of an edge eAB is two plus the original label of the corresponding edge in

∂U{p,3,6}z (n). This label might potentially be p and thus the edge might glue up causing
the adjacent B-face to be glued up to a B-face of another nanotube.

(iv) This might cause an edge eB to have an edge label greater 1 and to even glue up.
(v) An edge eBC , respectively, eBD will be labeled with 1 or 2 depending on whether the

B-face was glued.
(vi) Any “other” edge has label 1.

(vii) This leaves edge eB as only potential edge having more than p nanotubes about it

causing the simplified construction of Ū{p,3,6}z (n+ 1) to fail.
(viii) As the vertex vAB is “old”, its vertex link is obtained as described in Remark 8.5.
(ix) A “new” vertex vBC has as vertex link a number of triangles sharing a vertex. This

number is the edge label of the adjacent eB edge after step 2. If it is p, the vertex link
is a cycle of triangles.

(x) A “new” vertex vBCD has vertex link one or two triangles.
(xi) Any “other” vertex is “new” and has vertex link one triangle.

(xii) If p = 3, the B-faces always glue up. When looking for faces that could potentially

form too large 2-clusters on the surface of Ū{p,3,6}z (n+ 1), we only need to consider C-
and D-faces as they are the only unglued faces with edges labeled with 2.

(xiii) If p > 3, the only edges with new label larger than 2 are eAB and eB. Thus we only
need to consider B-faces as potentially forming too large p− 1 clusters.

Lemma 8.7. Let ‖z‖ ≥ 6. The following hold for U{3,3,6}z (n):

• ∂U{3,3,6}z (n) is non-empty.

• Every vertex link of U{3,3,6}z (n) is a subcomplex of the tetrahedron.
• Every 2-cluster is small.

Thus, the simplified construction Ū{3,3,6}z (n+ 1) ∼= U{3,3,6}z (n+ 1) is well-defined.
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Proof. The three properties of the lemma are obviously true for U{3,3,6}z (0). Assume they are
true for n.

The first property holds for n+ 1 because a C-face will be unglued.

Step 1

Step 2

Figure 11. Vertex link evolution for U{3,3,6}z (n).

Figure 11 shows that the vertex link of any “old” vertex becomes a tetrahedron. By
observation (ix), the vertex link of a “new” vertex is a subcomplex of a tetrahedron as
shown on the left column of Figure 11. Thus, the second property holds. Since every
“old” vertex immediately closes up to a tetrahedron, every eB always closes up to a cycle
with 3 nanotubes around it. Thus, by observation (vii) above, the simplified construction

Ū{3,3,6}z (n+ 1) is well-defined and equal to U{3,3,6}z (n+ 1).

It is left to show that every 2 cluster of ∂Ū{3,3,6}z (n+1) is small. Regarding observation (xii),
we only need to look at C- and D-faces. Since a D-face has only one edge with label 2, namely
eBD, a 2-cluster of more than two hexagons has to contain a C-face. Such a C-face forms
a 2-cluster of three hexagons together with C-faces of other nanotubes. To see this, look at
the vertex link of vBC which by observation (ix) consists of a cycle of 3 triangles. �

1

1

1

1

1 1
3 3

3

3

3

Figure 12. Vertex link evolution for U{4,3,6}z (n).

Lemma 8.8. Let ‖z‖ ≥ 6. The following hold for U{4,3,6}z (n):

• ∂U{4,3,6}z (n) is non-empty.

• Every vertex link of a vertex in ∂U{4,3,6}z (n) is as shown in Figure 12, in particular

all edges of ∂U{4,3,6}z (n) are labeled by 1 or 3.
• Every 3-cluster is small.

Thus, the simplified construction Ū{4,3,6}z (n+ 1) ∼= U{4,3,6}z (n+ 1) is well-defined.
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Proof. The three properties of the lemma are obviously true for U{4,3,6}z (0). Assume it is true
for n.

The first property holds for n+ 1 because a C-face will be unglued.
Figure 12 shows the evolution of a vertex link, so since any “old” vertex had a vertex link

shown in the figure for n by assumption, it will have again a vertex link shown in the figure
for n+1. Since no edge had label 2, no B-face will be glued. In particular, the label of edges
eB, eBC , and eBD will be 1, so the vertex link of any “new” vertex is just a triangle. Thus,

we have proven the second property and also that the simplified construction Ū{4,3,6}z (n+ 1)

is equal to U{4,3,6}z (n+ 1).
It also follows that 3-clusters of more than one hexagon can only be formed by B-faces.

3-clusters of more than two hexagons have to contain a B-face touching two A-faces. Looking
at the vertex links of the vertex that the B-face shares with the two A-faces, we see that we
get a 3-cluster of three hexagons. �

Lemma 8.9. Let ‖z‖ ≥ 6. The following hold for U{5,3,6}z (n):

• ∂U{5,3,6}z (n) is non-empty.

• Every vertex link of a vertex in ∂U{5,3,6}z (n) is as shown in Figure 13.
• Every 4-cluster is small.

Thus, the simplified construction Ū{5,3,6}z (n+ 1) ∼= U{5,3,6}z (n+ 1) is well-defined.

Proof. The three properties of the lemma are obviously true for U{5,3,6}z (0). Assume it is true
for n.

The first property holds for n+ 1 because a C-face will be unglued.
Figure 13 shows the evolution of a vertex link. An “old” vertex had one such vertex link

for n, so it will have the next vertex link in the figure for n+1. By observation (ix), a “new”
vertex will have one of the five vertex links on the left of the figure. So, the second property
holds and we also never run into a case of an edge having more than 5 nanotubes about it,

so Ū{5,3,6}z (n+ 1) is well-defined.
It remains to show that every 4-cluster is small. By observation (xiii), it is enough to

look at the unglued B-faces. The unglued B-faces are those faces of ∂Ū{5,3,6}z (n+ 1) that are

adjacent to some “old” vertex vAB. Figure 13 shows what ∂Ū{5,3,6}z (n+ 1) looks like near an
“old” vertex. The “new” edges eB are marked in bold to distinguish them from the “old”
edges eAB.

We need to show that for each unglued B-face, the cluster we obtain by following all its
edges with label 4 is small. Recall that a B-face can potentially have up to four edges with
label 4: two “new” edges eB and up to two “old” edges eAB meeting at an “old” vertex.

First, we consider only B-faces where an “old” edge is labeled by 4 but no “new” edge
(bold) is labeled by 4, so a 4-cluster has to form around an “old” vertex. As we see in
Figure 13, these clusters are all small.

Now, we consider the case where a “new” eB edge has label 4. We find exactly one
vertex link (third row, fourth column) where this is the case. The diagram left to it shows

what ∂U{5,3,6}z (n) looks near that vertex. When ∂U{5,3,6}z (n) was constructed, the two edges
labeled with 2 were “new” edges eB, hence their other end points were “new” vertices, so
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Figure 13. Vertex link evolution for U{5,3,6}z (n).

by observation (ix), we know that their vertex link consists of two triangles (new vertex

in the second row of Figure 13). Thus, we can draw ∂U{5,3,6}z (n) near these three vertices
and obtain the diagram on the left of Figure 14. Similarly to Figure 8, we can perform the

construction of Ū{5,3,6}z (n + 1), this time stretching one of nanotubes such that two A-faces
are facing away from us. We see that in step 2, six of the B-faces glue up and the remaining
three B-faces touching the central vertex form a small 4-cluster.

�

8.2. The Case {3, 4, 4}.

Lemma 8.10. Let ‖z‖ ≥ 9 or z = a+ bi with a ≥ 6. The following hold for U{3,4,4}z (n):

• ∂U{3,4,4}z (n) is non-empty.

• Every vertex of ∂U{3,4,4}z (n) has one of the vertex links shown in Figure 15.
• Every 2-cluster is small. Furthermore, most vertices of a 2-cluster have trivial vertex

link as indicated in Figure 16.

Thus, the simplified construction Ū{3,4,4}z (n) ∼= U{3,4,4}z (n) is well-defined.
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Figure 14. Construction of ∂Ū{5,3,6}z (n+ 1) for special case.
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Figure 15. Vertex link evolution for U{3,4,4}z (n).
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Figure 16. Neighborhoods of 2-clusters.

Proof. The claims in the lemma are obviously true for n = 0. Assume they are true for n.

Similar to Figure 8, we can graphically construct ∂Ū{3,4,4}z (n+ 1) as shown in Figure 17.
We label the faces of a newly attached nanotube:

• A: faces along which the nanotube was attached.
• B: a face that shares an edge with A or a vertex with A that had a non-trivial vertex

link in ∂U{3,4,4}z (n).
• C: faces neighboring two B-faces
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Figure 17. Graphical construction of ∂Ū{3,4,4}z (n+ 1).

• D: faces neighboring one B-face
• E: faces touching a B-face in a vertex.
• “other” faces: remaining faces

We call a vertex touching an A-face “old” and all other vertices “new”. Assume that the
pattern of A-, B-, C-, D-, and E-faces embeds into the surface of a nanotube. Then the
vertex links evolve as shown in Figure 15. In particular, every non-trivial vertex link closes

up to a cube and every B-face glues up. The new ∂Ū{3,4,4}z (n + 1) thus consists only of C-,

D-, E-, and “other” faces. An edge of ∂Ū{3,4,4}z (n+ 1) has label 2 if and only if it touched a
B-face. Similarly, a “new” vertex has non-trivial vertex link if and only if it is adjacent to a
B-face. A C-face thus has two edges with label 2. Four C-faces form a 2-cluster around an
“old” vertex. The vertex of C opposite to the “old” vertex touches no B-face and will have
trivial vertex link. Thus we get the pattern on the right of Figure 16. Similarly, a D-face has
exactly one edge with label 2 and thus forms a cluster with exactly one other D-face. The
two vertices where these two D-faces meet have non-trivial vertex link but all other vertices
of the D-face have trivial vertex link so we get the pattern in the middle of Figure 16. An
E-face has no edge with label 2. Only one of its vertices touches a B-face, so three of its
vertices have trivial vertex link. Every “other” face forms a 2-cluster by itself with all vertex
links trivial. Thus we get the pattern on the left in Figure 16 for E- and “other” faces.

It remains to show that the pattern of A-, B-, C-, D-, and E-faces embeds into the
surface of a nanotube for each 2-cluster as shown in Figure 16. These patterns are shown
in Figure 18. We distinguish between two cases for 2-clusters of one square depending on
whether three or four vertices of the square have trivial vertex link.

Similarly to the proof of Lemma 8.6, it is enough to show that two copies of these patterns
do not collide when translated by t ∈ 〈z〉 \ 0. The left configuration in Figure 19 shows that
they do not collide when translated by z = a+ bi with a ≥ 6. The right configuration shows
that they do not collide when translated z = 5 + 4i and that we can furthermore move one
copy by an integral multiple of i− 1 without collision. Thus a ≥ 6 or ‖z‖ ≥ 9 suffices. �
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Figure 18. Labels of faces of a nanotubes attached along a 2-cluster.
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Figure 19. No collision of patterns for z = 6 and z = 5 + 4i.

9. Cuspidal Covers and Homology

Definition 9.1. A cuspidal covering space M̃ →M of a cusped 3-manifoldM is a covering
space such that each cusp has a neighborhood N whose preimage consists of disjoint copies
of N .

We can extend the universal property of U{p,q,r}z to the larger class of tessellations with
well-defined cusp modulus: LetM be a (not necessarily regular) tessellation by ideal Platonic
solids. We say that M has well-defined cusp modulus z if the tessellation induced on
each cusp is a regular tessellation Tz and characterized by the same z (up to a unit) for every
cusp. Note that Γ{p,q,r} acts transitively on the ideal vertices of the tessellation {p, q, r}
and thus can take any cusp to the cusp corresponding to ∞. Thus, we can also define it
algebraically:

Definition 9.2. LetM be a cusped orientable 3-manifold such thatM = H3/M where M is
a torsion-free subgroup of Γ{p,q,r}. ThenM has well-defined cusp modulus z if (gMg−1)∩P =
Pz for every g ∈ Γ{p,q,r}.

Lemma 9.3. LetM be a tessellation with well-defined cusp modulus z and M̃ be a cuspidal
covering space. Then the tessellation M̃ has well-defined cusp modulus z.

Proof. Follows from the definitions. �

Lemma 9.4. Let M be a tessellation of type {p, q, r} with well-defined cusp modulus z.

Then there is a cuspidal covering map U{p,q,r}z →M.
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Proof. As a group, U
{p,q,r}
z is generated by all elements gpzg

−1, thus it must be contained in
M. �

For the rest of this chapter, we will useM interchangeably to denote a cusped hyperbolic
manifold as well as the manifold with boundary whose interior is the cusped hyperbolic man-
ifold. Let i : ∂M→M be the inclusion of the boundary. Let Hcusp

1 (M) = H1(M)/Im(i∗).

Lemma 9.5. Connected cuspidal Abelian covering spaces M̃ → M correspond to epimor-
phisms ρ : Hcusp

1 (M)→ G. The number of sheets of the covering space is |G|.

Proof. Connected regular covering spaces M̃ →M correspond to epimorphisms ρ : π1(M)→
G. Such a cover is cuspidal if the image of every peripheral curve is trivial and is Abelian if
ρ factors through the homology H1(M). The peripheral curves go to Im(i∗) in Hcusp

1 (M).
Hence, if a cover is both cuspidal and Abelian, ρ factors through Hcusp

1 (M). �

The following lemma is useful to computeHcusp
1 (M), especially in SnapPy, which computes

only H1(M):

Lemma 9.6. Let M be a cusped hyperbolic 3-manifold with c cusps. Then H1(M) ∼=
Zc ⊕Hcusp

1 (M).

Proof. For rational coefficients, the result follows from the Half-Lives-Half-Dies Theorem
[Bre97, Chapter VI, Theorem 10.4] stating that

dim ker(i∗ : H1(∂M;Q)→ H1(M;Q)) = dimH1(∂M;Q)/2 = c.

We have dimH1(∂M;Q) = 2c, so dim Im(i∗ : H1(∂M;Q)→ H1(M;Q)) = c, so dimH1(M)⊗
Q = c+ dim(Hcusp

1 (M)⊗Q).
It is left to show that the torsion of H1(M) matches that of Hcusp

1 (M). The universal
coefficient theorem for cohomology states that

0→ Ext(H1(M),Z)→ H2(M)→ Hom(H2(M),Z)→ 0,

so the torsion of H1(M) given by Ext is equal to the torsion of H2(M) ∼= H1(M, ∂M) (by
Lefschetz duality) since Hom is torsion-free. The long exact sequence in homology

· · · → H1(∂M)
i∗−→ H1(M)

j∗−→ H1(M,∂M)
∂−→ H0(∂M)→ · · ·

implies that Hcusp
1 (M) = H1(M)/Im(i∗) ∼= H1(M)/ ker(j∗) ∼= Im(j∗) ∼= ker(∂). But

H0(∂M) has no torsion, so the torsion of ker(∂) matches that of H1(M,∂M) match. �

This argument was given by Ian Agol.

Lemma 9.7. The universal regular tessellation U{p,q,r}z is a homology link complement (i.e.,

H1(U{p,q,r}z ) ∼= Zc where c is the number of cusps). If there exists a finite-volume tessellation
M with well-defined cusp modulus z that is not a rational homology link complement (i.e.,

H1(M;Q) 6∼= Qc), then U{p,q,r}z has infinite volume.

Proof. The first part follows from the fact that a universal regular tessellation has no
non-trivial cuspidal covers and thus vanishing Hcusp

1 . For the second part, notice that
Lemma 9.6 implies that Hcusp

1 (M) has a free factor, so the cuspidal Abelian cover induced
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by ρ : Hcusp
1 (M)→ Hcusp

1 (M)⊗ Z/n has at least n sheets and can thus be arbitrarily large

but is always covered by U{p,q,r}z . �

Remark 9.8. The converse of the first statement is wrong: X−3
5+ζ is a homology link, so

H1(X−3
5+ζ) is generated by peripheral curves, but it is not universal and not a link complement.

See discussion section for the question whether π1(M) being generated by peripheral curves
is sufficient for being a link complement.

10. Proof of Infinite Universal Regular Tessellation for Special Cases

Table 3. Homologies of some arithmetically defined manifolds showing that
the corresponding universal regular tessellation is infinite volume.

Case Manifold Cusps H1

U{3,3,6}5 X−3
5 104 Z117

U{3,4,4}3+3i X−4
3+3i 60 Z65

U{3,4,4}4 W−4
4 48 Z52

U{3,4,4}4+4i Y−4
4+4i 48 Z72 ⊕ (Z/4)

U{3,4,4}5 W−4
5 144 Z168

U{3,4,4}5+2i Y−4
5+2i 210 Z238 ⊕ (Z/3)

U{3,4,4}5+3i X−4
5+3i 216 Z265 ⊕ (Z/2)10 ⊕ (Z/3)

U{3,4,4}6 X−4
6 120 Z167 ⊕ (Z/2)5

We have two different techniques to prove that a certain U{p,q,r}z is infinite. In one tech-
nique, we can construct WD

z , XD
z , or YDz as in Section 7.1.2 and use SnapPy to compute

its homology (SnapPy might crash on such large manifolds unless pari.allocatemem() is
called a couple of times in advance). By Lemma 9.7, it is sufficient to show that the Betti
number is larger than the number of cusps. Table 3 shows the results.

The other technique uses Gap [GAP08] to prove that the group G in Section 7.2 with
presentation (1) is infinite. Table 4 shows these proofs. Gap cannot directly show that G is
infinite, so we look for a subgroup K ⊂ G such that Gap can show that K is infinite either
by showing that the Abelianization K/[K;K] is infinite or applying the Newman criterion
given in [New90] for some prime p (see last column in table). This technique was suggested
by Derek Holt [Hol]. To find K, consider the n-th derived subgroup defined by G(0) = G
and G(n+1) = [G(n);G(n)]. For each subgroup H ⊂ G(n) of index i and for each epimorphism
of H into a suitable simple group Q, define K = Ker(H → Q). Here is an example of how

the table entry for U{4,3,6}4+ζ would translate into Gap code proving infinity:

gap> G := SymmetriesUniversalRegularTessellation(4,3,6,4,1);;

gap> G1 := DerivedSubgroup(G);;

gap> for H in LowIndexSubgroupsFpGroup(G1,3) do

> for q in GQuotients(H, PSL(2,7)) do

> K := Kernel(q); A := AbelianInvariants(K);
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Table 4. Proofs that some universal regular tessellation are infinite using Gap.

Case n i Q Criterion

U{4,3,6}2+2ζ 3 1 {e} inf. Abelianization

U{4,3,6}3 3 1 {e} inf. Abelianization

U{4,3,6}3+ζ 1 1 PSL(3, 3) inf. Abelianization

U{4,3,6}3+2ζ 0 2 PSL(2, 19) Newman p = 5

U{4,3,6}4 0 8 A5 inf. Abelianization

U{4,3,6}4+ζ 1 3 PSL(2, 7) inf. Abelianization

U{4,3,6}5 1 3 A5 inf. Abelianization

U{5,3,6}2+2ζ 1 1 A7 inf. Abelianization

U{5,3,6}3 0 6 A5 inf. Abelianization

U{5,3,6}3+ζ 1 26 PSL(2, 11) inf. Abelianization

U{5,3,6}3+2ζ 0 20 {e} inf. Abelianization

U{5,3,6}4 1 5 PSL(2, 13) inf. Abelianization

U{5,3,6}4+ζ 1 10 PSL(2, 7) Newman p = 3

U{5,3,6}5 0 1 PSL(2, 25) inf. Abelianization

U{3,4,4}4+3i 1 15 PSp(4, 3) inf. Abelianization

U{3,4,4}5+i 2 1 PSL(2, 25) inf. Abelianization

> if 0 in A then Print("infinite "); fi;

> od;

> od;

infinite infinite

We have prepared a script infiniteUniversalRegularTessellationProofs.g that auto-
matically verifies that the cases in Table 4 are indeed infinite.

11. Proof of Main Theorem

The first statement of the main theorem, Theorem 2.4, is just Lemma 4.4. Section 7.1.1
described how the finite universal regular tessellations were constructed and Section 7.3 how
Dehn fillings were found for each case not marked with a star in Table 1 to verify that
these universal regular tessellations are link complements. It is thus left to show that every

universal regular tessellation U{p,q,r}z not listed in this table is infinite. Theorem 8.2 does
this for large cusp modulus. For the remaining cases, this was done in Section 10. Figure 4
gives an overview for the cases {3, 3, 6} and {3, 4, 4} indicating where the generic proof in
Theorem 8.2 applies and where the special cases are needed.
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12. Discussion

The fundamental group being generated by peripheral curves is a necessary condition for
a manifold to be a link complement. This fact is the only technique we used here to prove
that a manifold is not a link complement. In particular, we did not invoke Gromov and
Thurston’s 2π-Theorem (see [BH96]), the later improvement to the 6-theorem in [Lac00]
and [Ago00], or the bound on the systole of link complements given in [AR00].

The 6-theorem states that if M is a hyperbolic manifold and sk are slopes of length greater
than 6 (measured on the boundary of disjoint cusp neighborhoods), then Dehn fillingM along
these slopes results again in a hyperbolic manifold that, in particular, cannot be S3.

This theorem implies many classification results about exceptional Dehn fillings, among
them the software by Kazuhiro Ichihara and Hidetoshi Masai [IM] for listing all potential
exceptional slopes. This is powerful enough to decide whether a hyperbolic manifold is a
knot complement, because it leaves only finitely many Dehn fillings to test for being S3.
But when applied to link complements, it generally leaves infinitely many Dehn fillings to
test. Moreover, the techniques in Ichihara and Masais work do not scale to the size of the
manifolds encountered in this paper.

Thus, we still had to use a method based on greedily minimizing volume in Section 7.3.2 to
find Dehn fillings resulting in S3; this method is rather ad hoc, but it proved to be successful.

12.1. Peripherally Generated Fundamental Groups and Link Complements. Is
being a peripherally generated fundamental group also a sufficient condition for being a link
complement? The same question was asked for hyperbolic manifolds in [BR14]:

Let M = H3/Γ be a finite volume orientable hyperbolic 3-manifold for which Γ
is generated by parabolic elements. Is M homeomorphic to a link complement
in S3?

It turns out that the answer is negative, a one-cusped counterexample being the manifold
m011: we verified in SnapPy and Gap that its fundamental group is generated by peripheral
curves. But according to fef gen.py (part of Ichihara and Masais work cited above), there
are seven potential exceptional slopes: (−1, 1), (−1, 2), (0, 1), (1, 0), (1, 1), (1, 2), (2, 1), each,
H1 6∼= 0.

12.2. The unsettled case U{3,4,4}4+2i . Although this finite-volume manifold U{3,4,4}4+2i fulfills the
universal cuspidal cover property, this is not sufficient for being a link complement as we
have seen earlier. The technique used to find the Dehn-fillings for the other cases fails in this

case, suggesting that U{3,4,4}4+2i might actually not be a link complement. However, the other
theorems mentioned above (e.g., Gromov and Thurston’s 2π-Theorem) are not strong enough
to disprove link complement in this case. So, this case unfortunately remains unsettled.

12.3. The unsettled case U{5,3,6}2+ζ . It is not even known in this case whether the manifold

U{5,3,6}2+ζ is finite volume. Experimentally though, the situation seems clearer: The growth of

the algorithm to construct the universal regular tessellation U{5,3,6}2+ζ is 84, 588, 3528, 17640,
79380, 353976, 1545852, 6630288, 28208124, ... simplices. Extra code furthermore confirmed

that the 4-clusters consisted of at most three hexagons for each of those surfaces U{5,3,6}2+ζ (n)
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that the computer could still construct in reasonable time. Together, this strongly suggests

that U{5,3,6}2+ζ is infinite volume but so far we have no proof.
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