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COUNTING AND TESTING DOMINANT

POLYNOMIALS

ARTŪRAS DUBICKAS AND MIN SHA

Abstract. In this paper, we concentrate on counting and testing
dominant polynomials with integer coefficients. A polynomial is
called dominant if it has a simple root whose modulus is strictly
greater than the moduli of its remaining roots. In particular, our
results imply that the probability that the dominant root assump-
tion holds for a random monic polynomial with integer coefficients
tends to 1 in some setting. However, for arbitrary integer polyno-
mials it does not tend to 1. For instance, the proportion of dom-
inant quadratic integer polynomials of height H among all qua-
dratic integer polynomials tends to (41 + 6 log 2)/72 as H → ∞.
Finally, we will design some algorithms to test whether a given
polynomial with integer coefficients is dominant or not without
finding the polynomial roots.

1. Introduction

Consider

f(X) = a0X
n + a1X

n−1 + · · ·+ an ∈ C[X ]

of degree n ≥ 2. Let α1, α2, . . . , αn be the roots of f . If there exists
one αi such that |αi| > |αj | for each j 6= i, we call f dominant, and αi

is called the dominant root of f (note that αi must be real if f(X) ∈
R[X ]). Dominant polynomials arise from various backgrounds (see, for
instance, the motivation and the results given in [1, 2, 3]; one can also
mention, e.g., linear recurrence sequences).
Recall that every linear recurrence sequence of complex numbers

s0, s1, s2, . . . of order n ≥ 2 is defined by the linear relation

(1.1) sk+n = a1sk+n−1 + · · ·+ ansk (k = 0, 1, 2, . . . ),

where a1, . . . , an ∈ C, an 6= 0 and sj 6= 0 for at least one j in the range
0 ≤ j ≤ n− 1. The characteristic polynomial of this linear recurrence
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sequence is

f(X) = Xn − a1X
n−1 − · · · − an ∈ C[X ].

The linear recurrence sequences with dominant characteristic polyno-
mial, which is the so-called dominant root assumption, are often much
easier to deal with, especially, when considering Diophantine proper-
ties of linear recurrence sequences. Let us consider Pisot’s conjecture
(Hadamard Quotient Theorem) as an example. Pisot’s conjecture,
which was proved by van der Poorten [29], asserts that if the quo-
tient sn/tn of two linear recurrence sequences {sn}n∈N and {tn}n∈N is
an integer for any n ∈ N, then {sn/tn}n∈N is also a linear recurrence
sequence. Corvaja and Zannier [14, Theorem 1] went further and gen-
eralized this conjecture to the case when sn/tn is an integer infinitely
often in some setting by using the subspace theorem and under the
dominant root assumption. Later, in [15, Corollary 1] they removed
the dominant root assumption.
In the first part of this paper, we consider how often the dominant

root assumption holds for linear recurrence sequences. By counting
dominant monic integer polynomials of fixed degree n and of height
bounded by H , we find that for fixed n, if in (1.1) we choose a1, . . . , an
as rational integers, the probability that the dominant root assumption
holds tends to 1 as H → ∞. Combining with [17, Theorem 1.1], we
see that almost every randomly generated linear recurrence sequence
is non-degenerate and has a dominant root, that is, it is exactly what
we usually prefer it to be.
In a similar way, we also evaluate the number of dominant (not

necessarily monic) integer polynomials of fixed degree and bounded
height.
To state our results we first define the set Sn(H) of dominant monic

integer polynomials of degree n ≥ 2 and of height at most H , that is,

Sn(H) = {f(X) =Xn + a1X
n−1 + · · ·+ an ∈ Z[X ] :

f is dominant, |ai| ≤ H, i = 1, . . . , n}.
Similarly, we define

S∗
n(H) = {f(X) =a0X

n + a1X
n−1 + · · ·+ an ∈ Z[X ] :

f is dominant, a0 6= 0, |ai| ≤ H, i = 0, 1, . . . , n}.
Then, put Dn(H) = |Sn(H)| and D∗

n(H) = |S∗
n(H)|.

Below, we shall use the Landau symbol O and the Vinogradov sym-
bol ≪. Recall that the assertions U = O(V ) and U ≪ V are both
equivalent to the inequality |U | ≤ CV with some constant C > 0.
In this paper, without special indication, the constants implied in the
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symbols O,≪ only depend on the degree n; moreover, all these con-
stants, except for some constants in Section 4.3.4, can be effectively
computed. In the sequel, we always assume that H is a positive in-
teger (greater than 1 if there is the factor logH in the corresponding
formula), and n is an integer greater than 1.
To determine how often dominant integer polynomials occur, we need

to consider the asymptotic behavior of Dn(H) and that of D∗
n(H).

First, we present a simple asymptotic formula for Dn(H).

Theorem 1.1. For any integer n ≥ 2, we have

lim
H→∞

Dn(H)/(2H)n = 1.

Theorem 1.1 says that the proportion of dominant monic integer
polynomials of degree n and of height at most H among all the monic
integer polynomials of degree n and of height at most H (there are
(2H + 1)n of these) tends to 1 as H → ∞. Roughly speaking, the
dominant monic integer polynomials occur with a probability tending
to 1. Moreover, the proof of Theorem 1.1 also implies an error term of
this formula.
We remark that the total number of real roots of a random polyno-

mial of degree n (if the coefficients are independent standard normals)
is only 2

π
log n+ c as n → ∞, where c is an absolute constant (see, e.g.,

[18]). That is, a random polynomial is expected to have much more
non-real roots. So, Theorem 1.1 is a bit surprising.
Moreover, for 0 < ε ≤ 1 we define the following set

Sn,ε(H) = {f(X) = a0X
n + a1X

n−1 + · · ·+ an ∈ Z[X ] :

f is dominant, 0 < |a0| ≤ H1−ε, |ai| ≤ H, i = 1, . . . , n},
and put Dn,ε(H) = |Sn,ε(H)|. Then, we can get a similar asymptotic
result.

Theorem 1.2. For each ε satisfying 0 < ε ≤ 1 and each integer n ≥ 2,
we have

lim
H→∞

Dn,ε(H)

2H1−ε(2H)n
= 1.

Selecting ε = 1 in Sn,ε(H), we obtain a0 ∈ {−1, 1}. Hence, Dn,1(H) =
2Dn(H), since half of the polynomials in Sn,1(H) have the leading co-
efficient 1 and half −1. Thus, Theorem 1.2 with ε = 1 implies Theo-
rem 1.1.
However, the situation for D∗

n(H) is quite different. We can get an
explicit asymptotic formula for D∗

2(H), but for n ≥ 3 we can only get
lower and upper bounds.
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Theorem 1.3. We have

lim
H→∞

D∗
2(H)/(2H)3 =

41 + 6 log 2

72
≈ 0.6272.

Theorem 1.4. For any integer n ≥ 2, we have

lim inf
H→∞

D∗
n(H)/(2H)n+1 ≥ 1

3n2
√
n+ 1

and

lim sup
H→∞

D∗
n(H)/(2H)n+1 ≤

{

1− 1/(3 · 23n/2−1) if n is even,
1− 1/(3 · 2(3n+1)/2) if n is odd.

It seems very likely that the limit limH→∞D∗
n(H)/(2H)n+1 exists;

see Conjecture 4.5. Theorem 1.4 tells us that, contrary to the monic
case, the proportion of dominant integer polynomials is positive but
does not tend to 1.
After some preparations we shall prove Theorems 1.1-1.4 in Section 3.

Then, in the second part of this paper (Section 4), we apply Sturm’s
theorem and the Bistritz stability criterion to design algorithms on
testing whether a given integer polynomial is dominant or not. By
realizing these algorithms, we obtain some numerical results, which are
consistent with the above theorems. Based on the numerical results,
we conjecture that at least half of integer polynomials are dominant;
see Conjecture 4.6.

2. Preliminaries

Given a polynomial

f(X) = a0X
n + a1X

n−1 + · · ·+ an = a0(X − α1) · · · (X − αn) ∈ C[X ],

where a0 6= 0, its height is defined by H(f) = max0≤j≤n |aj|, and its
Mahler measure by

M(f) = |a0|
n
∏

j=1

max{1, |αj|}.

For each f(X) ∈ C[X ] of degree n, these quantities are related by
the following well-known inequality

(2.1) 2−nH(f) ≤ M(f) ≤
√
n + 1H(f),

for instance, see [31, (3.12)].
For an algebraic number α ∈ Q of degree d, its Mahler measureM(α)

is the Mahler measure of its minimal polynomial f over Z. Then, for
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the (Weil) absolute logarithmic height h(α) of α, we have

(2.2) h(α) =
logM(α)

d
.

Some special forms of polynomials will play an important role here.
The one below is nontrivial. It was obtained by Ferguson [21]; see also
a previous result of Boyd [7].

Lemma 2.1. If f(X) ∈ Z[X ] is an irreducible polynomial which has
exactly m roots on a circle |z| = c > 0, at least one of which is real,
then one has f(X) = g(Xm), where the polynomial g(X) ∈ Z[X ] has at
most one real root on any circle in the plane with center at the origin.

The following lemma concerning the upper bound of the moduli of
roots of polynomials is a classical result due to Cauchy [13] (see also
[25, Theorem 2.5.1 and Proposition 2.5.9] or [26, Corollary 8.3.2]) or
[28, Theorems 1.1.2 and 1.1.3].

Lemma 2.2. All the roots of the polynomial of degree n ≥ 1

f(X) = a0X
n + a1X

n−1 + · · ·+ an ∈ C[X ],

where a0 6= 0 and (a1, . . . , an) 6= (0, . . . , 0), are contained in the disc
|z| ≤ R, where X = R is the unique positive solution of the equation

|a0|Xn − |a1|Xn−1 − · · · − |an−1|X − |an| = 0.

In addition, for an arbitrary non-zero root x of f , we have

(2.3)
min0≤i≤n |ai|

H(f) + min0≤i≤n |ai|
< |x| < 1 +

1

|a0|
max{|a1|, . . . , |an|}.

This lemma will assist us in constructing a family of dominant poly-
nomials explicitly.
For bounding the distance between two distinct roots of a complex

polynomial (especially an integer polynomial), the initial work done
by Mahler [23], and then it has been studied extensively for a long
time. See [8, 9, 10, 11, 12, 16, 19] for more recent progress including
some nontrivial constructions of polynomials with close roots. Usually,
one needs to separate the roots of a polynomial by circles centered at
these roots. However, for our purpose we also need to use separations
of roots by annuli centered at the origin. So, we need to study the
distance between two distinct moduli of roots of an integer polynomial.
For this, there are two main tools that we use below.
The first one is Mahler’s inequality [23] asserting that if γ and γ′

are two distinct roots of a separable polynomial g(X) ∈ Z[X ] of degree
m ≥ 2 then

(2.4) |γ − γ′| >
√
3m−m/2−1M(g)1−m.
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The following lemma is a direct consequence of (2.1) and (2.4).

Lemma 2.3. Let f(X) ∈ Z[X ] be a polynomial of degree n ≥ 2, and
let α and β be two distinct roots of f . Then, we have

(2.5) |α− β| >
√
3(n + 1)−n−1/2H(f)1−n.

The second tool is a Liouville type inequality. See, e.g., [31, Lemma
3.14]. We use the following version given in [20]: if γ1, . . . , γs are al-
gebraic numbers with degrees d1, . . . , ds over Q and P (z1, . . . , zs) is a
polynomial with integer coefficients of degree N1, . . . , Ns in the vari-
ables z1, . . . , zs, respectively, then either P (γ1, . . . , γs) = 0 or

(2.6) |P (γ1, . . . , γs)| ≥ L(P )1−δd

s
∏

k=1

M(γk)
−δNkd/dk ,

where L(P ) is the sum of the moduli of the coefficients of P , d =
[Q(γ1, . . . , γs) : Q] and δ = 1 (resp. δ = 1/2) if the field Q(γ1, . . . , γs)
is real (resp. complex).
We first consider quadratic integer polynomials.

Lemma 2.4. Let f(X) ∈ Z[X ] be a quadratic polynomial. Suppose
that f has two real roots α and β such that |α| 6= |β|. Then, we have

||α| − |β|| ≥ H(f)−1.

Proof. Let f(X) = aX2 + bX + c = a(X − α)(X − β). Since α and β
are real, we have ||α| − |β|| = |α− β|, or |α + β|. In the first case, we
obtain

H(f)2|α− β|2 ≥ |a|2|α− β|2 = |b2 − 4ac| ≥ 1,

which implies the desired result. In the second case, α 6= −β, so b 6= 0.
Thus, |α+ β| = | − b/a| ≥ 1/|a| ≥ 1/H(f) again. �

Now, we consider the general case.

Lemma 2.5. Let f(X) ∈ Z[X ] be a polynomial of degree n ≥ 2, and
let α and β be two roots of f satisfying |α| 6= |β|. Then,

||α| − |β|| > 2n(n−1)/4(n+ 1)−n3/4+3n/4−3H(f)−n3/2+n2+n/2−2

if both α and β are complex (non-real). If, furthermore, α is real and
β is complex (non-real), then

(2.7) ||α| − |β|| ≥ 2−n(n−1)(n−2)/2(n+ 1)−n(n−1)−1/2H(f)−2n(n−1)−1.

Finally, if both α and β are real, then

(2.8) ||α| − |β|| > (2n+ 1)−3nH(f)2−4n.
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Proof. Let us begin with the case when both α and β are real. If α
and β both have the same sign, then ||α| − |β|| = |α − β|. If α and β
have different signs, then ||α| − |β|| = |α + β| = |α − (−β)|. In both
cases, α and β (or −β) are the roots of the polynomial f(X)f(−X) ∈
Z[X ]. Its separable part g(X) (which is the product of the factors
of f(X)f(−X) that are irreducible over Q) has degree at most 2n
and Mahler measure M(g) ≤ M(f)2. Clearly, α, β and −β are the
roots of g. Applying Mahler’s bound (2.4) and inequality (2.1) to the
polynomial g, we obtain

||α| − |β|| >
√
3(2n)−n−1M(f)2−4n > (2n+ 1)−n−1(

√
2n+ 1H(f))2−4n

= (2n+ 1)−3nH(f)2−4n,

as claimed.
Now, assume that α and β are both complex (non-real). Then n ≥ 4

and

2M(f)||α|−|β|| ≥ 2max{|α|, |β|}||α|−|β|| ≥ ||α|2−|β|2| = |αᾱ−ββ̄|,

so

||α| − |β|| ≥ |αᾱ− ββ̄|
2M(f)

.

Take a separable polynomial f1(X) = c0(X − γ1) . . . (X − γl) ∈ Z[X ]
dividing f(X) whose roots contain α and β. Observe that ᾱ and β̄ are
also roots of f1. Clearly, l = deg f1 ≤ n and M(f1) ≤ M(f). Consider
a separable polynomial g(X) ∈ Z[X ] whose roots contain αᾱ and ββ̄
(which is either the minimal polynomial of αᾱ in Z[X ] if ββ̄ is conjugate
to αᾱ or, otherwise, it is the product of the minimal polynomials of
αᾱ in Z[X ] and that of ββ̄ in Z[X ]). It is clear that g(X) divides the
polynomial cl−1

0

∏

1≤i<j≤l(X − γiγj) ∈ Z[X ], so deg g ≤ l(l − 1)/2 ≤
n(n− 1)/2 and

M(g) ≤ |c0|l−1
∏

1≤i<j≤l

max{1, |γiγj|}

≤ |c0|l−1
∏

1≤i<j≤l

max{1, |γi|}max{1, |γj|}

= |c0|l−1

l
∏

k=1

max{1, |γk|}l−1 = M(f1)
l−1

≤ M(f)n−1.
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Now, as above applying Mahler’s bound (2.4) to the pair of roots αᾱ, ββ̄
of g and then inequality (2.1) to the polynomial g, we obtain

||α| − |β|| ≥ |αᾱ− ββ̄|
2M(f)

>

√
3

2M(f)

(

n(n− 1)

2

)−n(n−1)/4−1

M(f)(n−1)(1−n(n−1)/2)

> 2n(n−1)/4(n(n− 1))−n(n−1)/4−1M(f)n−2−n(n−1)2/2

> 2n(n−1)/4(n+ 1)−n(n−1)/2−2(
√
n + 1H(f))n−2−n(n−1)2/2

= 2n(n−1)/4(n+ 1)−n3/4+3n/4−3H(f)−n3/2+n2+n/2−2.

It remains to consider the case when α is real and β is complex. By
Lemma 2.4, (2.7) is true when n = 2. In the sequel, we assume that
n ≥ 3.
As above, we obtain

(2.9) ||α| − |β|| ≥ |α2 − ββ̄|
2M(f)

.

In order to estimate |α2 − ββ̄| from below, we shall apply (2.6) to the
polynomial P (z1, z2, z3) = z21 − z2z3 at the point (z1, z2, z3) = (α, β, β̄).
Then, we have N1 = 2, N2 = N3 = 1, L(P ) = 2, δ = 1/2 and
d = [Q(α, β, β̄) : Q] ≤ n(n− 1)(n− 2). Also,

d

d1
=

[Q(α, β, β̄) : Q]

[Q(α) : Q]
= [Q(α, β, β̄) : Q(α)] ≤ [Q(β, β̄) : Q)]

≤ n(n− 1)

and, similarly, d/d2 = d/d3 ≤ n(n − 1). Thus, applying (2.6), in view
of M(β) = M(β̄) we find that

|α2 − ββ̄| ≥ 21−n(n−1)(n−2)/2M(α)−n(n−1)M(β)−n(n−1).

Now, from M(α) ≤ M(f), M(β) ≤ M(f) and (2.9), we deduce

||α| − |β|| ≥ 2−n(n−1)(n−2)/2M(f)−2n(n−1)−1.

By (2.1), M(f)2n(n−1)+1 ≤ (n+ 1)n(n−1)+1/2H(f)2n(n−1)+1. Hence,

||α| − |β|| ≥ 2−n(n−1)(n−2)/2(n+ 1)−n(n−1)−1/2H(f)−2n(n−1)−1.

This completes the proof of the lemma. �

In Lemma 2.5, if f(X) is irreducible and n ≥ 3, then (2.7) can be
replaced by the following

||α| − |β|| ≥ 2−n(n−1)(n−2)/2(n+ 1)−(n−1)(n−2)−1/2H(f)−2(n−1)(n−2)−1,
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because d/di ≤ (n− 1)(n− 2) for i = 1, 2, 3. This will make sense for
computations.
We conclude this section with the following lemma, which gives a

lower bound better than (2.8) for irreducible polynomials of lower de-
grees (for example, of degree n with 2 ≤ n ≤ 11 and of arbitrary
height).

Lemma 2.6. Let f ∈ Z[X ] be an irreducible polynomial of degree n ≥
2, α and β two real roots of f . If |α| 6= |β|, then we have

||α| − |β|| ≥ 2−n(n−1)(n + 1)−n+1H(f)−2(n−1).

Proof. By Liouville’s inequality (see [31, (3.13)]), we have

||α| − |β|| ≥ exp (−[Q(|α| − |β|) : Q]h(|α| − |β|)) .
Note that α and β are two real algebraic numbers, we have

[Q(|α| − |β|) : Q] ≤ [Q(α, β) : Q] ≤ n(n− 1).

In addition, combining some basic properties of the height function
with (2.1) and (2.2), we have

h(|α| − |β|) ≤ h(|α|) + h(|β|) + log 2

≤ h(α) + h(β) + log 2

=
2 logM(f)

n
+ log 2

≤ 2

n
logH(f) +

1

n
log(n+ 1) + log 2.

Collecting the above inequalities, we derive the desired result. �

3. Counting dominant polynomials

We first give several families of dominant polynomials.

Lemma 3.1. Let f(X) = a0X
n + a1X

n−1 + · · ·+ an ∈ Z[X ]. Suppose
that f is irreducible. If either a0 > 0 and ai < 0 for 1 ≤ i ≤ n or
a0 < 0 and ai > 0 for 1 ≤ i ≤ n, then f is dominant.

Proof. Since a0 > 0 and a1, . . . , an < 0, or a0 < 0 and a1, . . . , an > 0,
by Lemma 2.2, f has a unique positive root R such that all the other
roots lie in the disc |z| ≤ R. By the choice of coefficients of f and by
Lemma 2.1, we see that f is dominant. �

Lemma 3.2. Let f(X) = a0X
n + a1X

n−1 + · · · + an ∈ C[X ]. If
|a1| > n(n+ 1)1/4|a0|1/2H(f)1/2, then f is dominant.
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Proof. Let R be the largest modulus of the roots of f . Suppose that f
is not dominant, that is, it has at least two roots on the circle |z| = R.
Then, by the definition of the Mahler measure, we must have R2 ≤
M(f)/|a0|. Noticing that |a1| ≤ nR|a0|, and applying (2.1), we obtain

|a1| ≤ n(n+ 1)1/4|a0|1/2H(f)1/2,

which contradicts with our assumption. �

Lemma 3.3. Let f(X) = (X−a)(a0X
n−1+a1X

n−2+· · ·+an−1) ∈ C[X ]
be of degree n ≥ 2. If either |a| ≥ 2 and |a0| ≥ |ai| for 1 ≤ i ≤ n − 1

or |a| ≥
√

H(f) + n− 1 and |a0| ≥ 1, then f is dominant.

Proof. First, suppose that |a| ≥ 2 and |a0| ≥ |ai| for 1 ≤ i ≤ n − 1.
Then, by (2.3), the roots of a0X

n−1 + a1X
n−2 + · · ·+ an−1 are strictly

inside the circle

|z| = 1 +
1

|a0|
max{|a1|, . . . , |an−1|} ≤ 2.

So, a is a dominant root of f , and thus f is dominant.
Next, suppose that |a0| ≥ 1 and |a| ≥

√

H(f) + n− 1. Note that

f(X) = a0X
n + (a1 − aa0)X

n−1 + · · ·+ (an−1 − aan−2)X − aan−1.

Since |a| >
√

H(f) and H(f) ≥ 1, we obtain |ai| <
√

H(f)+n− 1− i
for 0 ≤ i ≤ n − 1. By (2.3), the moduli of the roots of a0X

n−1 +
a1X

n−2 + · · ·+ an−1 are less than

1 +
1

|a0|
max{|a1|, . . . , |an−1|} <

√

H(f) + n− 1,

where the inequality comes from |a0| ≥ 1. So, a is a dominant root of
f , and thus f is a dominant polynomial. �

Here, we also give two families of non-dominant polynomials, which
can help us to prove Theorem 1.4.

Lemma 3.4. For even integer n ≥ 2, let f(X) = a0X
n − a1X

n−1 +
a2X

n−2 + · · · + an ∈ R[X ] with ai > 0 for each 0 ≤ i ≤ n, and
a0 ≥ a1, a2 ≥ a3, · · · , an−2 ≥ an−1, an ≥ a0. Then, f is non-dominant.

Proof. Let x be any positive real root of f . Then

0 = f(x) > a0x
n − a1x

n−1 = xn−1(a0x− a1),

which yields x < a1/a0 ≤ 1.
Set g(X) = f(−X). Then, the negative real roots of f(X) are

exactly the positive real roots of g(X). Since

g(X) = a0X
n+a1X

n−1+a2X
n−2−a3X

n−3+· · ·+an−2X
2−an−1X+an,
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it is easy to see that g(x) > 0 for any real x ≥ 1 (Evidently, for n = 2
the polynomial g(X) has no positive roots). Thus, all the real roots of
f(X) lie in the interval (−1, 1).
Moreover, writing f(X) as f(X) = a0

∏n
i=1(X−αi), we obtain an =

(−1)na0
∏n

i=1 αi = a0
∏n

i=1 αi. Since an ≥ a0 > 0, we see that |αi| ≥ 1
for at least one index i. So, not all the roots of f(X) lie strictly inside
the unit circle. It follows that the largest in modulus root of f is
complex (non-real), thus f(X) is non-dominant. �

Lemma 3.5. For odd integer n, let f(X) = a0X
n−a1X

n−1+a2X
n−2+

· · · + an ∈ R[X ] with ai > 0 for any 0 ≤ i ≤ n, and a0 ≥ a1, a2 ≥
a3, · · · , an−1 ≥ an, an ≥ a0. Then, f is non-dominant.

Proof. The proof is the same as that of Lemma 3.4, the only one dif-
ference is that here one should consider g(X) = −f(−X). �

Now, by using some of the above polynomial families, we will prove
the theorems stated in Section 1.

Proof of Theorem 1.1. Consider the polynomial

f(X) = Xn + a1X
n−1 + · · ·+ an ∈ Z[X ],

where H(f) ≤ H and |a1| > n(n + 1)1/4H1/2. By Lemma 3.2, we have
f ∈ Sn(H). Note that, for each sufficiently large H , the number of
such polynomials f is at least

(2H + 1)n−12(H − ⌊n(n + 1)1/4H1/2⌋),
which implies the desired result. �

Proof of Theorem 1.2. Evidently, Dn,ε(H) ≤ 2H1−ε(2H + 1)n. For the
lower bound, consider the polynomials

f(X) = a0X
n + a1X

n−1 + · · ·+ an ∈ Z[X ]

satisfying H(f) ≤ H , 0 < |a0| ≤ H1−ε and |a1| > n(n+1)1/4|a0|1/2H1/2.
Lemma 3.2 implies that f ∈ Sn,ε(H). Notice that the number of such
polynomials f is asymptotic to

(2H)n−1 · 4
⌊H1−ε⌋
∑

a0=1

(H − ⌊cH1/2a
1/2
0 ⌋)

as H → ∞, where c = n(n + 1)1/4, which is asymptotic to

4(2H)n−1

∫ H1−ε

1

(H − cH1/2x1/2) dx
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as H → ∞. Since the above integral is equal to

H2−ε − 2

3
cH2−3ε/2 +

2

3
cH1/2 −H,

the main term is 4(2H)n−1H2−ε = 2H1−ε(2H)n as H → ∞. This gives
the desired result. �

Proof of Theorem 1.3. It is easy to see that the quadratic polynomial
f(X) = aX2 + bX + c ∈ Z[X ] is dominant if and only if b 6= 0 and its
discriminant is greater than zero (namely, ∆ = b2 − 4ac > 0). Since
the number of polynomials f with H(f) ≤ H and abc = 0 is O(H2),
in the sequel we will assume that abc 6= 0.
If ac < 0, we always have ∆ > 0, so that f is dominant. This gives

exactly 2H(H2 + H2) = 4H3 of such dominant polynomials. Now,
suppose that ac > 0. The two cases a, c > 0 and a, c < 0 yield the same
number of such dominant polynomials, so we only need to consider one
case, say a, c > 0, and then multiply the result by 2. Since b can be
both negative and positive, it is obvious that the number is equal to

2
H
∑

a=1

H
∑

c=1

H
∑

b=⌊2√ac⌋+1

1 = 2
H
∑

a,c=1
2
√
ac≤H

(H − ⌊2
√
ac⌋),

which is asymptotic to the following double integral
∫∫

D

(2H − 4
√
xy) dx dy

as H → ∞, where D = {(x, y) : 1 ≤ x, y ≤ H, 2
√
xy ≤ H}. By a

direct calculation of this double integral (here, for 1 ≤ x ≤ H/4 we
have 1 ≤ y ≤ H whereas for H/4 ≤ x ≤ H we have 1 ≤ y ≤ H2/(4x)),
we find that it is asymptotic to

5 + 6 log 2

18
H3

as H → ∞.
Taking into account all the the above results, we find that

lim
H→∞

D∗
2(H)

(2H)3
= lim

H→∞

4H3 + 2 · 5+6 log 2
18

H3

(2H)3

=
41 + 6 log 2

72
,

which completes the proof of the theorem. �

Proof of Theorem 1.4. Consider the polynomial

f(X) = a0X
n + a1X

n−1 + · · ·+ an ∈ Z[X ],
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where H(f) ≤ H and |a1| > n(n+1)1/4|a0|1/2H1/2. By Lemma 3.2, we
have f ∈ S∗

n(H). Set c = n(n+1)1/4. The number of such polynomials
f is asymptotic to

(2H)n−1 · 4
⌊H/c2⌋
∑

a0=1

(H − ⌊cH1/2a
1/2
0 ⌋)

as H → ∞, which is asymptotic to the following integral

4(2H)n−1

∫ H/c2

1

(H − cH1/2x1/2) dx

as H → ∞. Note that the main term in the above integral is H2/(3c2)
as H → ∞. The main term for the number of such polynomials f is
thus (2H)n+1/(3c2), which gives the desired lower bound of the lower
limit.
Now, we want to derive the claimed upper bound for the upper

limit. If n is even, we will count the polynomials f(X) with integer
coefficients as in Lemma 3.4. Since an ≥ a0 ≥ a1 and a2i ≥ a2i+1 for
each i = 1, . . . , n/2 − 1, it is easy to find that the number of these
polynomials f(X) is asymptotic to

H3

6
·
(

H2

2

)n/2−1

=
Hn+1

3 · 2n/2

as H → ∞. Notice that f(−X), −f(X) and −f(−X) are also non-
dominant, and they are different polynomials. So, as H → ∞, we get
Hn+1/(3 · 2n/2−2) non-dominant polynomials. Thus, we have

lim sup
H→∞

D∗
n(H)/(2H)n+1 ≤ 1− 1

3 · 23n/2−1
,

where n is even.
If n is odd, similarly as the above, the number of polynomials f(X)

with integer coefficients as in Lemma 3.5 (so satisfying an−1 ≥ an ≥
a0 ≥ a1 and a2i ≥ a2i+1 for i = 1, . . . , (n− 3)/2) is asymptotic to

H4

24
·
(

H2

2

)(n−3)/2

=
Hn+1

3 · 2(n+3)/2

as H → ∞. Now, as H → ∞, multiplying by 4 as above, we also get
Hn+1/(3 · 2(n−1)/2) of non-dominant polynomials. Thus, for n odd, we
obtain

lim sup
H→∞

D∗
n(H)/(2H)n+1 ≤ 1− 1

3 · 2(3n+1)/2
,

as claimed. �



14 ARTŪRAS DUBICKAS AND MIN SHA

Consider cubic polynomials f(X) = a0X
3+a1X

2+a2X+a3 ∈ Z[X ]
with H(f) ≤ H . The number of these polynomials f with discriminant
zero or a1a2a3 zero is O(H3), and the number of such reducible poly-
nomials f is also O(H3). It is well-known that f has three distinct real
roots if its discriminant ∆ is positive, and that it has two conjugate
complex roots if ∆ < 0. So, in particular, f is dominant if ∆ > 0. If
f is irreducible, ∆ < 0 and a1a2a3 6= 0, then not all three roots of f
lie on the same circle in view of Lemma 2.1; hence, either f(X) or its
reciprocal polynomial X3f(X−1) is dominant. Thus, at least half of all
cubic integer polynomials f are dominant.

4. Testing dominant polynomials

In this section, we will design some algorithms to test whether a
given polynomial f ∈ Z[X ] is dominant or not without finding the
polynomial roots. We first recall Sturm’s theorem and the Bistritz
stability criterion.

4.1. Sturm’s theorem. For an arbitrary real sequence a0, a1, · · · , an,
its number of sign changes is determined as follows: one first deletes all
the zero terms of the sequence, then for the remaining non-zero terms
one counts the number of pairs of neighboring terms of different sign.
Given a polynomial f(X) ∈ R[X ], applying Euclid’s algorithm to

f(X) and its derivative yields the following construction:

p0(X) := f(X),

p1(X) := f ′(X),

p2(X) := −rem(p0(X), p1(X)) = p1(X)q0(X)− p0(X),

p3(X) := −rem(p1(X), p2(X)) = p2(X)q1(X)− p1(X),

. . .

0 = −rem(pm−1(X), pm(X)), where pm(X) 6= 0,

where rem(pi(X), pj(X)) and qi(X) are the remainder and the quotient
of the polynomial division of pi(X) by pj(X), respectively.
Now we state Sturm’s theorem as follows; see [28, Theorem 1.4.3].

Theorem 4.1. Let f(X), p0(X), p1(X), · · · , pm(X) be as above. For
any x ∈ R, let σ(x) be the number of sign changes of the sequence

p0(x), p1(x), · · · , pm(x).
Given real numbers a, b with a < b, suppose that f(a)f(b) 6= 0, then
the number of distinct real roots of f(X) in the interval (a, b) is equal
to σ(a)− σ(b).
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4.2. Bistritz stability criterion. We say that a real polynomial is
stable if all of its roots lie strictly inside the unit circle. The Bistritz
stability criterion, arising from signal processing and control theory and
developped by Y. Bistritz, is a simple method to determine whether a
given real polynomial is stable or not; see [4] for more details and also
[5, 6].
For any real polynomial f(X) ∈ R[X ] of degree n ≥ 1, we denote by

f ∗(X) the reciprocal polynomial of f(X), that is f ∗(X) = Xnf(1/X).
Consider

An(X) = a0X
n + · · ·+ an ∈ R[X ],

where n ≥ 2, a0 6= 0 and An(1) 6= 0 (If An(1) = 0, the polynomial is
not stable.). We assign to An(X) a sequence of symmetric polynomials

Tm(X) = T ∗
m(X), m = n, n− 1, . . . , 0,

created by a three-term polynomial recursion as follows.
Initiation:

(4.1) Tn(X) = An(X) + A∗
n(X), Tn−1(X) =

An(X)−A∗
n(X)

X − 1
.

Recursion: for k = n, n− 1, . . . , 2, define

(4.2) Tk−2(X) =
δk(X + 1)Tk−1(X)− Tk(X)

X
,

where δk = Tk(0)
Tk−1(0)

. This recursion requires the normal conditions :

Tk−1(0) 6= 0, k = n, . . . , 1,

which mean that each polynomial Tk−1(X) is of degree k − 1. The
recursion is interrupted when a Tk−1(0) = 0 occurs (k ≥ 2), which
corresponds to a singular case.
We classify the singular cases into the following two classes: the case

when Tk−1(X) = 0 is called the first type singularity, and the case when
Tk−1(0) = 0 but Tk−1(X) 6= 0 is called the second type singularity.
There is a necessary and sufficient condition for the occurrence of

the first type singularity.

Theorem 4.2. Let An(X) ∈ R[X ] be of degree n ≥ 2. Then, in
the normal conditions for An(X), the first type singularity occurs if
and only if An(X) has roots on the unit circle or reciprocal pair roots
(x, x−1).

Based on Theorem 4.2, we will see later that for our purpose, es-
sentially we don’t need to afraid the first type singularity, see Lemma
4.4.
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However, the appearance of the second type singularity does not
correspond to a special pattern of roots location, except that it implies
an unstable polynomial. So, here we need to handle the second type
singularity. Starting from n to 1, if k is the first integer for which
Tk−1(0) = 0 and Tk−1(X) 6= 0, we replace Tk(X) and Tk−1(x) by

Tk(X) + (X − 1)Tk−1(X)(Xq −X−q)

and
Tk−1(X)(K +Xq +X−q), K > 2,

respectively, where q is the multiplicity of Tk−1(X) at X = 0 and
K is an arbitrary real constant greater than 2; after this replace-
ment we can see that Tk−1(0) 6= 0. Then, we return to the recursion
(4.2). As soon as we encounter the second type singularity, we apply
the same treatment again. Finally, we will also obtain the sequence
Tn(X), Tn−1(X), . . . , T0(X).

Theorem 4.3. Let An(X), T0(X), . . . , Tn(X) be as above (including
the situation that the second type singularity occurs). Define νn as the
number of sign changes of the sequence

Tn(1), . . . , T0(1).

Then, An(X) is stable if and only if the normal conditions hold and
νn = 0. Furthermore, if the normal conditions hold or only the second
type singularity occurs, then An(X) has νn roots strictly outside the
unit circle, and n− νn roots strictly inside the unit circle (counted with
multiplicity).

4.3. Algorithms for testing dominant polynomials. For a qua-
dratic real polynomial f = aX2 + bX + c ∈ R[X ], the testing problem
is easy, because f is dominant if and only if b 6= 0 and b2 − 4ac > 0.
Now, we will apply Sturm’s theorem and the Bistritz stability criterion
to design general algorithms for testing dominant integer polynomials.
In fact, there are several ways to design such a general algorithm.

We first present a simple algorithm (see Algorithm 1) as a comparison,
and then provide a more efficient one in practice (see Algorithm 3).
Finally, we will give a slight improvement of Algorithm 3 in the case
of irreducible polynomials; see Algorithm 4.

4.3.1. General case I. Following (2.5) and (2.7), for any polynomial
f ∈ Z[X ] of degree n ≥ 2, we define the following:

d1(f) = 2−n(n−1)(n−2)/2(n+ 1)−n(n−1)−1/2H(f)−2n(n−1)−1,

and
d2(f) =

√
3(n + 1)−n−1/2H(f)1−n.
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Moreover, for f(X) = a0X
n + a1X

n−1 + · · ·+ an ∈ Z[X ], we define

C1(f) =
1

1 +H(f)

and

C2(f) = 1 +
1

|a0|
max{|a1|, . . . , |an|}.

Then, by (2.3), every root of f is of modulus greater than C1(f) and
less than C2(f).
Given a polynomial f(X) ∈ Z[X ] and a real root x of f , if x is

located in a small annulus r < |z| < R with R − r < d1(f), then, by
(2.7), we can see that there are no roots of f located in this annulus
and with modulus not equal to |x|.
Lemma 4.4. Let f(X) ∈ Z[X ] be of degree n ≥ 2, and assume that
there is a real root x of f lying in the annulus r < |z| < R, where
R − r ≤ 1

2
d1(f). We define g(X) = f(rX), and consider the normal

conditions of g(X). If the first type singularity occurs, then f has a
root y such that |y| > |x|.
Proof. Suppose that the first type singularity occurs for g(X). By
Theorem 4.2, we know that g(X) has roots on the unit circle or a
reciprocal pair of roots.
If g(X) has a root α on the unit circle, then rα is a root of f and

|rα| = r. But by the choice of r and R, f has no roots on the circle
|z| = r. This is a contradiction. So, g(X) has a reciprocal pair of roots.
In the sequel, we let (α, α−1) be this reciprocal pair roots of g(X)

with |α| < 1. So, f has roots rα and rα−1.
Assume that |rα−1| = |x|. Since |rα| < r < |x|, we have

(4.3) 0 < |x| − |rα| = |x| − r2

|x| < R− r2

R
≤ (1 +

r

R
) · 1

2
d1(f) < d1(f).

Notice that both x and rα are roots of f and x is real. Therefore, (4.3)
contradicts (2.7).
Now, assume that |rα−1| < |x|. Since |α−1| > 1, we have

0 < |x| − |rα−1| < |x| − r < R− r ≤ 1

2
d1(f).

As the above, this also yields a contradiction.
Thus, we must have |rα−1| > |x|. So, rα−1 is exactly a root we need,

this completes the proof. �

Now we will explain Algorithm 1 step by step.
Step 1: Let R+ be the largest positive root of f (if it exists), and

let R− be the largest modulus of the negative roots of f (if it exists).
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Suppose that R+ exists. Applying Algorithm 2 to f in the interval
(C1(f), C2(f)) by setting d = 1

2
d1(f), we locate the positive root R+ in

an annulus r1 < |z| < R1 such that R1 − r1 ≤ 1
2
d1(f). Then, we apply

a similar algorithm to f in the interval (−C2(f),−R1). Note that we
might have R1 = C2(f), but this case also can be excluded by Sturm’s
theorem. If there are no roots locating in this interval, then return
r = r1, R = R1; otherwise, we can get an annulus r2 < |z| < R2 such
that r2 < R− < R2 and R2 − r2 ≤ 1

2
d1(f), then return r = r2, R =

R2. If R+ doesn’t exist, we search negative roots of f in the interval
(−C2(f),−C1(f)).
Step 2: Since g(X) already has a real root strictly outside the unit

circle, it is not stable. So, the normal conditions of g(X) may not
hold. When the first type singularity occurs, by Lemma 4.4, we see
that f is not dominant. If the normal conditions hold or only the
second type singularity occurs, following the discussions in Section 4.2
we construct the sequence Tn(X), . . . , T0(X) and compute the number
of sign changes νn of the sequence Tn(1), . . . , T0(1). Then, by Theorem
4.3, g(X) has νn roots strictly outside the unit circle.
Step 3: If g(X) has only one root strictly outside the unit circle

(νn = 1), then f has only one root strictly outside the circle |z| = r.
Since we already know that there exists one real root located in the
annulus r < |z| < R, we can deduce that f is dominant. Otherwise, f
is not dominant.

Algorithm 1 Simple test of dominant polynomials

Require: polynomial f(X) ∈ Z[X ] of degree n ≥ 2.
Ensure: 1 (f is dominant) or 0 (f is not dominant).
1: Use Sturm’s theorem to locate a real root with the largest modulus

among the real roots of f in a small annulus r < |z| < R such that
R − r ≤ 1

2
d1(f). If no non-zero real roots exist, return 0.

2: Let g(X) = f(rX), and apply the Bistritz stability criterion to
calculate the number of roots of g(X) strictly outside the unit circle.

3: If g(X) has only one root strictly outside the unit circle, then return
1; otherwise, return 0.

4.3.2. General case II. Since the lower bound d1(f) in (2.7) will become
very small for large n, Algorithm 1 will be less efficient for polynomials
of higher degrees. Here, we will use the lower bound d2(f) in (2.5) to
design a more efficient algorithm; see Algorithm 3.
Now, we explain briefly Algorithm 3 step by step.
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Algorithm 2 Searching the largest positive real root

Require: polynomial f ∈ Z[X ] of degree n ≥ 2, interval (a, b) with
0 < a < b and f(a)f(b) 6= 0, a real number d > 0.

Ensure: If f has roots in (a, b), output 1 and a small annulus r <
|z| < R with R − r ≤ d and the annulus contains the largest root
in (a, b); otherwise, output 0.

1: i = 0
2: Calculate the sequence p0(X), . . . , pm(X) in Sturm’s theorem.
3: if f has roots in (a, b) (using Sturm’s theorem) then

4: i = 1
5: while b− a > d do

6: Put c = a+b
2

7: if f(c) = 0 then

8: a = c− 1
2
d

9: else

10: if f has roots in (c, b) (using Sturm’s theorem) then
11: a = c
12: else

13: b = c
14: end if

15: end if

16: end while

17: end if

18: If i = 1, return 1, r = a, R = b; otherwise, return 0.

Step 1: the explanation is the same as Step 1 of Algorithm 1, except
that we apply Algorithm 2 by setting d = d2(f).
Step 2: if g is not stable, then f has roots on or strictly outside the

circle |z| = R. Note that all the real roots of f are strictly inside the
circle |z| = R, so we can judge that f is not dominant.
Step 3: if g is stable, we have to narrow the annulus to ensure that

it contains no complex (non-real) roots.
Steps 4 and 5: the explanations are the same as Steps 2 and 3 of

Algorithm 1.
In Algorithm 3, we first apply the lower bound d2(f) to locate a

real root with the largest modulus among all real roots. If f is not
dominant, then the process is likely to stop in Step 2; otherwise, we
will use the lower bound d1(f) to narrow the small annulus r < |z| < R.
Clearly, Algorithm 3 is more efficient than Algorithm 1, especially when
one wants to test a large number of polynomials at the same time, like
Section 4.4.
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Algorithm 3 Efficient test of dominant polynomials

Require: polynomial f(X) ∈ Z[X ] of degree n ≥ 2.
Ensure: 1 (f is dominant) or 0 (f is not dominant).
1: Use Sturm’s theorem to locate a real root with the largest modulus

among the real roots of f in a small annulus r < |z| < R such that
R − r ≤ d2(f). If no non-zero real roots exist, return 0.

2: Let g(X) = f(RX), and apply the Bistritz stability criterion to
test whether g(X) is stable or not. If g is not stable, then return
0; otherwise, execute the following steps.

3: Similar as Step 1, use Sturm’s theorem to narrow the annulus r <
|z| < R, and then obtain a new annulus r1 < |z| < R1 with R1 −
r1 ≤ 1

2
d1(f), where the real root is located.

4: Let h(X) = f(r1X), and apply the Bistritz stability criterion to
calculate the number of roots of h(X) strictly outside the unit
circle.

5: If h(X) has only one root strictly outside the unit circle, then return
1; otherwise, return 0.

4.3.3. Irreducible polynomials. Algorithm 3 is applicable to all inte-
ger polynomials of degree at least 2. However, for irreducible integer
polynomials, we can make a slight improvement of Algorithm 3; see
Algorithm 4 below.
Comparing with Algorithm 3, we only need to explain the following

steps.
Step 1: we gather all the exponents of X in f whose coefficients are

non-zero, then compute their greatest common divisor. If it is greater
than 1, then f has such a form, and thus f is not dominant.
Step 4: in fact, we change the condition of Step 5 in Algorithm 2 to

be “b− a ≥ d1(f)”. Because here we don’t need to use Lemma 4.4.
Step 6: if h(X) is stable, then all the roots of f are strictly inside the

circle |z| = R1. Note that f has a real root, say α, lying in the annulus
r1 < |z| < R1. If there exists another root lying in this annulus, then
it must have modulus |α| by the choice of r1 and R1. Thus, by Lemma
2.1, f is a polynomial with respect to Xm for some integer m ≥ 2; but
this has been excluded in Step 1. It follows that α is the dominant root
of f , and so f is dominant.
In addition, if n ≥ 3, by the discussion below Lemma 2.5, we can let

d1(f) be the following

2−n(n−1)(n−2)/2(n+ 1)−(n−1)(n−2)−1/2H(f)−2(n−1)(n−2)−1.
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We also would like to indicate that for an irreducible polynomial
f ∈ Z[X ], f has no roots in rational numbers, so we can drop Steps 7
and 8 in Algorithm 2.

Algorithm 4 Test of dominant irreducible polynomials

Require: irreducible polynomial f ∈ Z[X ] of degree n ≥ 2.
Ensure: 1 (f is dominant) or 0 (f is not dominant).
1: Check whether f is a polynomial with respect to Xm for some

integer m ≥ 2. If yes, return 0; otherwise, executive the following
steps.

2: Use Sturm’s theorem to locate a real root with the largest modulus
among the real roots of f on a small annulus r < |z| < R such that
R − r ≤ d2(f). If no non-zero real roots exist, return 0.

3: Let g(X) = f(RX), and apply the Bistritz stability criterion to
test whether g(X) is stable or not. If g is not stable, then return
0; otherwise, execute the following steps.

4: Similar as Step 2, use Sturm’s theorem to narrow the annulus r <
|z| < R, and then obtain a new annulus r1 < |z| < R1 with R1 −
r1 < d1(f), where the real root is located.

5: Let h(X) = f(R1X), and apply the Bistritz stability criterion to
test whether h(X) is stable or not.

6: If h(X) is stable, then return 1; otherwise, return 0.

4.3.4. Complexity. Finally, we want to estimate the time complexity
of Algorithms 1, 3 and 4.
Here, the time complexity means the total number of required arith-

metic operations (multiplication and addition). We omit the running
time for comparisons and decisions, because this indeed can be ignored
compared to the time required for arithmetic operations.
In fact, we only need to count the running time which is devoted to

applying Sturm’s theorem and the Bistritz stability criterion. Accord-
ing to [5, Section 4], testing the Bistritz stability criterion needs O(n2)
additions and multiplications.
For applying Sturm’s theorem to a given polynomial f of degree

n, we first need to compute the sequence p0(X), p1(X), . . . , pm(X) by
using the polynomial long division. Note that for two polynomials
g(X), h(X) ∈ Z[X ] with deg g ≥ deg h, the polynomial long division of
g by h needs at most 2 deg h(deg g − deg h+ 1) arithmetic operations.
So, computing the above sequence for f requires O(n2) arithmetic op-
erations.
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For a given f(X) ∈ Z[X ] with deg f = n, we use Horner’s method
(see [25, Section 1.2.2]) to compute the evaluation of f at a point X =
a. This requires 2n arithmetic operations. Thus, one call of Sturm’s
theorem needs O(n2) arithmetic operations. In view of Algorithm 2
and the definitions of d1(f), C1(f) and C2(f), there are about n3 +
n2 logH(f) (up to a constant time) calls of Sturm’s theorem.
Therefore, most of the running time is used on applying repeatedly

Sturm’s theorem, and the time complexity of Algorithm 1 is O(n5 +
n4 logH(f)).
However, if f is not dominant, then the time complexity to test

f by using Algorithm 3 or Algorithm 4 is likely to be O(n3 log n +
n3 logH(f)). In general, the time complexity of Algorithms 3 and 4 is
also O(n5 + n4 logH(f)).
If we know that f has only real roots beforehand, then in Algorithm

3, we can drop Step 3 and let h(X) = f(rX) in Step 4. In this case,
the complexity will be O(n3 log n+ n3 logH(f)).

4.3.5. Remark. According to Section 4.3.4, most of the running time
is devoted to locate the real root with the largest modulus among all
the real roots of the given polynomial. In view of Algorithms 1 and
3, our strategy is to apply Sturm’s theorem. Although our method is
very simple, it might be not enough efficient. For example, one may
adopt some root isolation methods based on Descartes’ rule of signs;
see [24, 30] and the references therein.

4.4. Numerical results. In this section, we will present some numer-
ical results concerning dominant integer polynomials. These have been
obtained by realizing the algorithms described in Section 4.3 by using
PARI/GP [27]. Here, we want to indicate that because of the limited
computation resources, we haven’t made computations for polynomials
of higher degrees.
In order to realize the algorithms successfully in PARI/GP, we should

guarantee that all the polynomials arising in the process have rational
coefficients. So, we replace the quantity d1(f) by

21−n(n−1)(n−2)/2(n+ 1)−n(n−1)−1H(f)−2n(n−1)−1

or

21−n(n−1)(n−2)/2(n+ 1)−(n−1)(n−2)−1H(f)−2(n−1)(n−2)−1,

according to which case we consider, the former one is for the general
case, and the latter one is for the case of irreducible polynomials and
n ≥ 3. We also replace d2(f) with

3H(f)1−n(n + 1)−n−1.
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To speed up the computations, we apply Algorithm 3 if f is reducible,
and otherwise we apply Algorithm 4.
Moreover, one can reduce the computations by using the fact that if

f(X) ∈ Z[X ] is dominant, then −f(X), f(−X) and −f(−X) are also
dominant. For example, if a0 ∈ Z is fixed, then we have

|{a0Xn + a1X
n−1 + · · ·+ an ∈ S∗

n(H)}|
= |{−a0X

n + a1X
n−1 + · · ·+ an ∈ S∗

n(H)}|
and

|{a0Xn + a1X
n−1 + · · ·+ an ∈ S∗

n(H) : a1 > 0}|
= |{a0Xn + a1X

n−1 + · · ·+ an ∈ S∗
n(H) : a1 < 0}|.

In order to demonstrate that Algorithms 3 and 4 and their real-
izations are correct, we first perform some computations concerning
quadratic integer polynomials and then compare the numerical results
with Theorems 1.1 and 1.3. One can also test quadratic integer poly-
nomials by checking their discriminants and coefficients.
Besides, numerical results about cubic integer polynomials also can

reflect the correctness of Algorithms 3 and 4 and their realizations.
For integers n ≥ 2 and H ≥ 1, let Mn(H) be the proportion of

dominant monic integer polynomials of degree n and height at most
H among all the monic integer polynomials of degree n and height at
most H , that is

Mn(H) =
Dn(H)

(2H + 1)n
.

By Theorem 1.1, we have

lim
H→∞

Mn(H) = lim
H→∞

Dn(H)/(2H)n = 1.

Similarly, we define

Pn(H) =
D∗

n(H)

2H(2H + 1)n
,

and

Qn(H) =
|{f ∈ S∗

n(H) : f is irreducible}|
2H(2H + 1)n

.

By Theorem 1.3, we know that

lim
H→∞

P2(H) = lim
H→∞

D∗
2(H)/(2H)3 =

41 + 6 log 2

72
≈ 0.6272.

Theorem 1.4 implies the rate of growth of the quantity D∗
n(H):

Hn+1 ≪ D∗
n(H) ≪ Hn+1.
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Table 1. Values of M2(H), P2(H), Q2(H) for various H

H 10 30 50 70 90 110 130
M2(H) 0.7664 0.8707 0.9009 0.9169 0.9271 0.9343 0.9397
P2(H) 0.5923 0.6148 0.6195 0.6216 0.6228 0.6236 0.6241
Q2(H) 0.4508 0.5454 0.5722 0.5849 0.5926 0.5979 0.6016

Table 2. Values of M3(H), P3(H), Q3(H) for various H

H 10 20 30 40 50 60 70
M3(H) 0.7852 0.8502 0.8779 0.8944 0.9056 0.9139 0.9203
P3(H) 0.5881 0.5993 0.6026 0.6043 0.6053 0.6059 0.6063
Q3(H) 0.4962 0.5453 0.5640 0.5743 0.5807 0.5850 0.5883

Noticing further the distribution of reducible polynomials [22, Theorem
4], we find that

lim
H→∞

Qn(H)

Pn(H)
= 1,

which implies that

lim
H→∞

Q2(H) = lim
H→∞

D∗
2(H)/(2H)3 =

41 + 6 log 2

72
≈ 0.6272.

Table 1 gives the values of M2(H), P2(H), Q2(H) for various H , and
it is highly consistent with the above limits. The table also suggests
that the above limits can almost be achieved for small H , which also
can be seen from Table 2. This means that to investigate statistical
properties of dominant integer polynomials, we might not need to con-
sider polynomials of large height.
Based on Table 3, we can conjecture the following

Conjecture 4.5. For any integer n ≥ 2, Pn(H) is an increasing func-
tion with respect to H.

This conjecture implies that the limit limH→∞ Pn(H) exists for n ≥
3.
According to the numerical results (especially Table 4), we also can

make the following conjecture, which roughly says that at least half of
integer polynomials are dominant.

Conjecture 4.6. For any integer n ≥ 2, we have lim supH→∞ Pn(H) >
1/2.
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Table 3. Values of Pn(H) for n = 2, 3, 4 and various H

H 11 12 13 21 22 31 32
P2(H) 0.5956 0.5978 0.5998 0.6099 0.6106 0.6152 0.6155
P3(H) 0.5904 0.5919 0.5935 0.5997 0.6002 0.6029 0.6031
P4(H) 0.5363 0.5376 0.5388 0.5443 0.5447 0.5472 0.5474

Table 4. Values of Pn(H) for n = 4, 5, 6 and H = 5, 10

H P4(H) P5(H) P6(H)
5 0.5155 0.5107 0.4947
10 0.5345 0.5272 0.5111
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