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4 Kazhdan’s Property (T) via semidefinite

optimization

Tim Netzer and Andreas Thom

Abstract. Following an idea of Ozawa, we give a new proof of Kazhdan’s property

(T) for SL(3,Z), by showing that ∆2− 1

6
∆ is a hermitian sum of squares in the group

algebra, where ∆ is the unnormalized Laplace operator with respect to the natural

generating set. This corresponds to a spectral gap of 1

72
∼ 0.014 for the associated

random walk operator.

The sum of squares representation was found numerically by a semidefinite pro-

gramming algorithm, and then turned into an exact symbolic representation, provided

in an attached Mathematica file.

1. Introduction

Eversince David Kazhdan introduced Property (T) in [5], it has been a challenge to

prove that particular groups have this property or not. Moreover, it has become an

intriguing task to provide explicit bounds (in case of particular groups such as SL(n,Z))

for the associated Kazhdan constants or the spectral gap, see [3,4,12,13]. See [1,12]

for general information on Kazhdan’s Property (T).

In [9], Narutaka Ozawa has found a new necessary and sufficient criterion of Prop-

erty (T) for discrete groups, using a sum-of-squares approach inspired by the solution

to Hilbert’s 17th problem, and a systematic study of its generalizations to a non-

commutative context, see for example [10]. Let Γ be a group and S ⊂ Γ be a symmetric

finite generating set and define

∆ := |S| −
∑

s∈S

s.

The group Γ has Property (T) if and only if ∆ has a spectral gap at zero, i.e., if

and only if there exists some ε > 0, such that sp(∆) ⊂ {0} ∪ [ε,∞) in every unitary
1
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representation of Γ on a Hilbert space. Ozawa showed in [9] that this happens if and

only if there exists b1, . . . , bn ∈ R[Γ] such that

(1) ∆2 − ε∆ =

n
∑

i=1

b∗i bi,

for some ε > 0. Whereas the sufficiency is obvious, the proof of necessity of this

criterion involved some observations in the context of so-called non-commutative real

algebraic geometry of the group ring associated with the group – inspired in part

on previous work by the authors [8]. Even though sufficiency was easy to establish,

Ozawa’s work has been an eye-opener and triggered the concrete attempt to find explicit

certificates – that means solutions to Equation (1) – for groups well-known to have

Property (T). In this short paper, we have achieved this goal for the group SL(3,Z)

and its natural generating set consisting of elementary matrices. Using Matlab, Yalmip,

SeDuMi and finally Mathematica, we could improve all previous bounds on the spectral

gap by a factor of about 2500. To the best of our knowledge, the best previously known

bound for the Kazhdan constant was 1/300, see [2, Theorem 12.1.14], and this leads

to a spectral gap for unnormalized Laplace operator of at least 1/15000 – for example

using the estimate from [11, Proposition 3].

In our solution to Equation (1), we have that ε = 1

6
, n ≤ 121, and each bi a sum of

at most 121 monomials in the real group ring and supported on elements of length

≤ 2 with respect to the generating set. Even though the length of the elements in

the support is rather low and it appears that we have been extremely lucky, it seems

unlikely that this sum-of-squares representation (and maybe any other) could have

been found without computer assistance.

Our result also shows that the spectral gap is significant in the sense that the resulting

bounds on the mixing time of the Product Replacement Algorithm for abelian groups

(see [6] and the references therein) is actually useful for practical purposes.

Any attempt like this for groups like Aut(F4) and related groups has failed so far due

to lack of computational power – and maybe our limited programming skills. Anyhow,

the challenge and the desire to understand why a group has Property (T) and why

the Product Replacement Algorithm for general groups works so well (see [6]) would

remain untouched by any such computational result.
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2. Description of the algorithm

Let A be a (non-commutative) ∗-algebra over R, and let W ⊆ A be a finite dimensional

subspace. Checking whether some a ∈ A belongs to

Σ2W :=

{

n
∑

i=1

w∗
iwi | n ∈ N, wi ∈ W

}

can be done with the so-called Gram-matrix method. Fix a basis a1, . . . , am of W . A

matrix P ∈ Mm(R) is called a Gram matrix for a, if

(2) a = (a∗
1
, . . . , a∗m)P (a1, . . . , am)

t

holds. Note that any a ∈ span
R
{w∗v | w, v ∈ W} admits a Gram matrix, and in

general different ones. Indeed the set of all Gram matrices for a is an affine subspace

of Mm(R). The element a is hermitian (i.e. fulfills a∗ = a) if and only if it admits a

symmetric Gram matrix. The crucial (and straightforward) observation is that

a ∈ Σ2W

if and only if a admits a positive semidefinite symmetric Gram matrix. Now this

condition can be checked with semidefinite programming. Indeed, equation (2) boils

down to finitely many affine-linear conditions on the entries of P , and looking for

a positive semidefinite matrix fulfilling these conditions is the feasibility check of a

semidefinite programm (see for example [16]). There exist numerical software for such

problems, in our case the Matlab plugin Yalmip [7], employing the sdp-solver SeDuMi

[14]. With these solvers we were able to find a suitable sums of squares representation

for our problem.

Let us go into more details. We consider the group Γ = SL(3,Z) and its real group

algebra A = R[Γ], which is a ∗-algebra via
(

∑

g

cgg

)∗

=
∑

g

cgg
−1.

We use 12 generators M1, . . . ,M12 for Γ, obtained from

M1 =







1 1 0

0 1 0

0 0 1






,M2 =







1 0 1

0 1 0

0 0 1






,M3 =







1 0 0

0 1 1

0 0 1






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by closing up under transposing and taking inverses. We then form all products of

length ≤ 2 in these generators. After removing multiples, this results in m = 121

group elements, including the identity matrix. We let W be the linear span of these

group elements in R[Γ] and take a1, . . . , am ∈ W to be the natural basis. Now let

∆ := 12−

12
∑

i=1

Mi =
1

2

12
∑

i=1

(1−Mi)
∗(1−Mi) ∈ A

be the unnormalized Laplace operator, and set

a := ∆2 − ǫ∆

with ǫ = 0.2805. We used the Matlab plugin Yalmip with sdp-solver SeDuMi to find

a positive semidefinite matrix P ∈ Mm(R) satisfying (2) in the group algebra R[Γ].

From the numerical result P we computed a square-root, rounded to rational entries,

and multiplied with a common denominator 106. The resulting integer matrix is stored

in the attached file ”RootOfP.txt”.

Now certifying that the result is correct is done as follows (and can be reproduced

with the attached Mathematica [15] file ”Sl3ZComment.nb”). We take the matrix Q

stored in ”RootOfP.txt” and change it slightly to make all rows sum to zero. We then

compute P := 1

1012
QtQ. Thus P is a positive semidefinite matrix with rational entries,

and the total sum over all entries equals zero. With a1, . . . , am as above we compute

the sum of squares

b := (a∗
1
, . . . , a∗m)P (a1, . . . , am)

t

in the group algebra. Since the sum over all entries of P is zero, b will lie in the

augmentation ideal

ω[Γ] :=

{

∑

g

cgg |
∑

g

cg = 0

}

⊆ R[Γ].

We next compare b to a = ∆2 − ǫ∆. The difference c = a− b is hermitian and belongs

again to the augmentation ideal ω[Γ]. Furthermore, each group element in the support

of c is a product of at most four of our generators Mi, since each ai is a product of at

most two of them. We compute ‖c‖1 ≤ 0.0225. From Lemma 2.1 below applied when

d = 2 we know that c+ 0.09 ·∆ is a sum of squares, and so is

a+ 0.09∆ = b+ c+ 0.09∆ = ∆2 − (ǫ− 0.09)∆.
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Since ǫ − 0.09 ≥ 0.19 ≥ 1

6
, this finishes the proof. Note that all computations in this

final step are done with Mathematica and involve rational numbers only – and are

therefore exact. The missing lemma is a quantitative version of Lemma 2 in [9]:

Lemma 2.1. Let Γ be a group with finite generating set S = S−1, and let

∆ = |S| −
∑

s∈S

s ∈ R[Γ]

be the unnormalized Laplace operator. Let c =
∑

g cgg ∈ ω[Γ]h be such that whenever

cg 6= 0, then g is a product of at most 2d elements from S. Then

c+ 22d−1‖c‖1 ·∆ ∈ Σ2
R[Γ],

where ‖c‖1 =
∑

g |cg|. If S does not contain self-inverse elements, then even

c+ 22d−2‖c‖1 ·∆ ∈ Σ2
R[Γ].

Proof. From the proof of Lemma 2 in [9] we use the equation

(1− gh)∗(1− gh) ≤ 2(1− g)∗(1− g) + 2(1− h)∗(1− h)

for group elements g, h, where ξ ≤ η means that η−ξ is a sum of squares. By iteration

we immediately obtain

(3) (1− g1 · · · g2d)
∗(1− g1 · · · g2d) ≤ 2d

2d
∑

i=1

(1− gi)
∗(1− gi)

for group elements gi. For c =
∑

g cgg ∈ ω[Γ]h we have
∑

g cg = 0 and cg = cg−1 for all

g. Thus

−c =
∑

g 6=e

cg
2

(

2− g − g−1
)

=
∑

g 6=e

cg
2
(1− g)∗(1− g).

Since every occuring g is a product of at most 2d elements from S, and

(1− s)∗(1− s) ≤ 2∆

for s ∈ S, we get from (3)

−c ≤
∑

g 6=e,cg>0

cg
2
(1− g)∗(1− g) ≤





∑

g 6=e,cg>0

cg



 22d∆.
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From
∑

g cg = 0 we obtain
∑

g 6=e,cg>0
cg ≤ 1

2
‖c‖1, the result. In case that S does not

contain self-inverse elements, we even have (1 − s)∗(1 − s) = 2 − s − s.1 ≤ ∆. This

yields the improved statement. �
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