
MINIMAL MAHLER MEASURE IN REAL QUADRATIC FIELDS

TODD COCHRANE, R. M. S. DISSANAYAKE, NICHOLAS DONOHOUE, M. I. M. ISHAK,
VINCENT PIGNO, CHRIS PINNER, AND CRAIG SPENCER

Abstract. We consider upper and lower bounds on the minimal height of an

irrational number lying in a particular real quadratic field.

1. Introduction

For a polynomial F (x) = an
∏n
i=1(x−αi) in C[x] one defines its Mahler measure

M(F ) as

M(F ) = |an|
n∏
i=1

max{1, |αi|}.

For an algebraic number α we use M(α) to denote the Mahler measure of an
irreducible integer polynomial with root α. Thus the logarithmic Weil height of α
can be written

h(α) =
logM(α)

[Q(α) : Q]
.

Of course M(α) = 1 iff α is a root of unity and the well known problem of Lehmer [3]
is to determine whether there is a constant C > 1 such that M(α) > C otherwise.
Schinzel [4] showed that for α in a Kroneckerian field (a totally real field or a
quadratic extension of such a field) the value of M(α) must in fact grow with its
degree, with the absolute minimum M(α) > 1 achieved for the golden ratio

M

(
1 +
√

5

2

)
=

1 +
√

5

2
.

Amoroso & Dvornicich [1] further extended this to cyclotomic fields. These of

course include the quadratic fields Q(
√
d), where d is a square-free positive integer.

Since the golden ratio is not in all these fields we are interested in how

L(d) := min
{
M(α) : α ∈ Q(

√
d) \Q

}
varies with d. We recall the discriminant of the field Q(

√
d)

D :=

{
d, if d ≡ 1 mod 4,

4d, if d ≡ 2 or 3 mod 4.
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Since M(α) = M(−α) = M(α) we assume that our α ∈ Q(
√
d) \Q takes the form

(1) α =
a+ b

√
d

c
, a, b, c ∈ Z, a ≥ 0, b > 0, c > 0, gcd(a, b, c) = 1,

with conjugate

α =
a− b

√
d

c
,

and

(2) M(α) = kmax{1, |α|}max{1, |α|}
where k is the smallest positive integer such that

(3) k(x− α)(x− α) = k

(
x2 − 2a

c
x+

a2 − b2d
c2

)
∈ Z[x].

We show that the minimal measure must grow with d:

Theorem 1.1. For square-free d in N
1

2

√
D < L(d) <

√
D.

2. Proof of Theorem 1.1

The upper bound follows at once from the following constructive examples:

Lemma 2.1. Suppose that d ≥ 2 is a square-free positive integer and let m be the
integer in (

√
d− 2,

√
d) with the same parity as d. Then

M

(
m+

√
d

2

)
=


2, if d = 2,
1
2 (
√
d+m), if d ≡ 1 mod 4,√

d+m, otherwise.

Proof. Observe that α = (m +
√
d)/2 has −1 < α < 0, with α > 1 for d ≥ 3

(and 0 < α < 1 for d = 2). The minimal k to make k(x − α)(x − α) =
k
(
x2 −mx+ 1

4 (m2 − d)
)

an integer polynomial is plainly k = 1 if d ≡ 1 mod
4 and k = 2 for d = 2 or 3 mod 4, and the claim is clear from (2).

�

For the lower bound we first observe that c or c/2 must divide the lead coefficient
k.

Lemma 2.2. Suppose that d ≥ 2 is squarefree and α is of the form (1). Suppose
that k(x− α)(x− α) is in Z[x].

If c is even and d ≡ 1 mod 4 then c/2 | k with k = c/2 iff a, b are odd with
2c | a2 − db2. If c is odd or d ≡ 2 or 3 mod 4 then c | k with k = c iff c | a2 − db2.

Proof. Suppose that pt || c with t ≥ 1.
For k(a2−db2)/c2 to be in Z we must have pt+1 | k unless pt | a2−db2 and pt | k

unless pt+1 | a2 − db2.
Hence we can assume that pt+1 | a2 − db2. Notice that in this case p - a; since

p | a and p2 | a2−db2 would imply p2 | db2, but gcd(a, b, c) = 1 means p - b and d is
squarefree. In particular this case can not happen when p = 2 and d ≡ 2 or 3 mod
4 (since a2− db2 6≡ 0 mod 4), and a, b must be odd if d ≡ 1 mod 4. Hence 2ka/c in
Z forces pt | k when p is odd and 2t−1 | k when p = 2 and d ≡ 1 mod 4.

�



MINIMAL MAHLER MEASURE IN REAL QUADRATIC FIELDS 3

The following lemma completes the proof of the lower bound:

Lemma 2.3. Suppose that d ≥ 2 is squarefree and α is of the form (1). Then

M(α) >
1

2

√
D.

Moreover
M(α) >

√
D

unless b = 1 and a <
√
d, with c | a2 − d if d ≡ 2 or 3 mod 4 and with c even and

2c | a2 − d if d ≡ 1 mod 4.

Proof. Observing that

2
b
√
d

c
= α− α ≤ α+ |α| < 2α,

we have

M(α) ≥ kα > k
b
√
d

c
,

and the bound follows from k ≥ c if c is odd or d ≡ 2 or 3 mod 4 (with k ≥ 2c if
c - a2 − db2), and k ≥ c/2 if c is even and d ≡ 1 mod 4 (with k ≥ c if 2c - a2 − db2).

If a ≥
√
d then M(α) ≥ kα >

√
D.

�

3. Computations

Hence 1
2

√
D < L(d) <

√
D, and an α of the form (1) with 1

2

√
D < M(α) <

√
D

must be of the form

α =
a+
√
d

c
, a <

√
d,

with c | a2 − d if d ≡ 2 or 3 mod 4, and c even with 2c | a2 − d if d ≡ 1 mod 4.
Since |α| ≤ α we have M(α) = kmax{1, α, α|α|}, and in these cases we have

(4) M(α) = εmax

{
c, a+

√
d,
d− a2

c

}
,

where

(5) ε :=

{
1, if d ≡ 2 or 3 mod 4,
1
2 , if d ≡ 1 mod 4.
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Figure 1. L(d)/
√
D for d ≡ 1 mod 4 less than five thousand.

Figure 2. L(d)/
√
D for d ≡ 2 mod 4 less than five thousand.
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Figure 3. L(d)/
√
D for d ≡ 3 mod 4 less than five thousand.

Figure 4. L(d)/
√
D for d ≡ 1 mod 4 between five thousand and

one million.
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Figure 5. L(d)/
√
D for d ≡ 2 mod 4 between five thousand and

one million.

Figure 6. L(d)/
√
D for d ≡ 3 mod 4 between five thousand and

one million.
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Figure 7. L(d)/
√
D for d between one billion and one billion five thousand.

Figure 8. L(d)/
√
D for d ≡ 2 mod 4 between one billion and one

billion five thousand.
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Figure 9. L(d)/
√
D for d ≡ 3 mod 4 between one billion and one

billion five thousand.

4. How good are our bounds?

Theorem 1.1 tells us that
1

2
<
L(d)√
D

< 1.

Figures 7,8 & 9 make it seem reasonable to make the following conjecture:

Conjecture 4.1.

lim
d→∞

L(d)√
D

=
1

2
.

In view of (4) this can be equivalently written:

Conjecture 4.2. For any square-free positive integer d there exists an a and c with

a = o(
√
d), c = (1 + o(1))

√
d,

and c | d− a2 when d ≡ 2 or 3 mod 4, c even and 2c | d− a2 when d ≡ 1 mod 4.

Checking computationally, pairs a and c satisfying

a < d2/5, d1/2 − d2/5 < c < d1/2 + d2/5

and c | d− a2 exist for all 827 < d < 2, 000, 000, 000, and even c with 2c | d− a2 for
all d ≡ 1 mod 4 with 1, 902, 773 < d < 2, 000, 000, 000.

The 1
2 in the lower bound is the optimal absolute constant.

Theorem 4.1.

lim inf
d→∞

L(d)√
D

=
1

2
.
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This follows at once from the following examples:

Small Examples. If d = m2 + 1 then

M

(√
d+ 1

m

)
=

{√
d+ 1, if m is odd,

1
2

(√
d+ 1

)
, if m is even.

It seems likely that the upper bound can be slightly reduced. The computations
suggest that the largest value occurs at d = 293.

Conjecture 4.3.

sup
d

L(d)√
D

=
L(293)√

293
=
M
(√

293+15
2

)
√

293
=

17√
293

= 0.993150 . . . .

If we separate out the residue classes mod 4:

Conjecture 4.4.

sup
d≡2 mod 4

L(d)√
D

=
L(398)

2
√

398
=
M
(√

398+18
2

)
2
√

398
=

√
398 + 18

2
√

398
= 0.951129 . . . .

sup
d≡3 mod 4

L(d)√
D

=
L(227)

2
√

227
=
M
(√

227+13
2

)
2
√

227
=

29

2
√

227
= 0.962398 . . . .

We found only ten values of d, namely d = 293, 173, 227, 53, 437, 398, 83, 29, 167, 1077,
with L(d)/

√
D > 0.9. As can be seen in the Appendix, the large values on each of

the Figures 1, 2 & 3 noticeably seem to correspond to d with the property that d is
a quadratic non-residues for all small primes p - d (specifically all p <

√
d for d = 2

or 3 mod 4 and p <
√
d/2 for d = 1 mod 4). Most of these d (with the exception

of 437) are of the form d = `p with p prime and ` small, and all have d 6≡ 1 mod 8.
The following lemma shows why such d have large L(d) values.

Lemma 4.1. Suppose that d is a squarefree positive integer with d ≡ 2 (mod 4) or

3 (mod 4) or 5 (mod 8), and that
(
d
p

)
= −1 for all primes p - d with

p <

{√
d, if d ≡ 2 or 3 (mod 4),√
d/2, if d ≡ 5 (mod 8).

For each odd A | d, with A <
√
d, let mA denote the integer in

(√
d/A− 2,

√
d/A

)
with the same parity as d. Then, with ε as in (5),

L(d) = ε min
A|d,A<

√
d odd

min

{
M

(√
d+mAA

2A

)
, M

(√
d+ (mA − 2)A

2A

)}
= ε min

A|d,A<
√
d odd

min
{√

d+mAA, (d− (mA − 2)2A2)/2A
}

≥
√
D − 2ε max

A|d,A<
√
d odd

A.

Proof. Suppose that d ≡ 2 or 3 (mod 4). Since
(
d
p

)
= −1 for all p <

√
d, p - d we

have d−a2 = A1 or 2A1 or A1p or 2A1p with A1 | d odd and p >
√
d prime. Hence
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we can assume that c | d− a2 is of the form c = A2 or 2A2 or A2p or 2A2p where

A2 | A1 and 0 ≤ a <
√
d, and

M

(
a+
√
d

c

)
= max

{
c, a+

√
d, (d− a2)/c

}
.

Hence with A = A1 or A1/A2 we can assume A | d odd, a = kA, and it is enough
to consider

M

(√
d+ kA

A

)
= max

{
A,
√
d+ kA, (d− k2A2)/A

}
with A <

√
d or

M

(√
d+ kA

2A

)
= max

{
2A,
√
d+ kA, (d− k2A2)/2A

}
with 2A <

√
d and k and d the same parity. Hence

M

(√
d+ kA

A

)
=

{√
d+ kA, if

√
d/A− 1 < k <

√
d/A,

(d− k2A2)/A, if k <
√
d/A− 1,

(6)

≥ 2
√
d−A,

and for k and d the same parity

M

(√
d+ kA

2A

)
=

{√
d+ kA, if

√
d/A− 2 < k <

√
d/A,

(d− k2A2)/2A, if k <
√
d/A− 2,

(7)

≥ 2
√
d− 2A.

For k ≥ mA the minimum of both is plainly

M

(√
d+mAA

2A

)
=
√
d+mAA.

In (7) the smallest for k ≤ mA − 2 is

M

(√
d+ (mA − 2)A

2A

)
= (d− (mA − 2)2A2)/2A,

and for (6) the smallest for k ≤ mA − 1 is

M

(√
d+ (mA − 1)A

A

)
= (d− (mA − 1)2A2)/A.

Writing mA =
√
d/A− δ, 0 < δ < 2 and observing that

M

(√
d+ (mA − 1)A

A

)
−M

(√
d+ (mA − 2)A

2A

)
= δ
√
d+A

(
1− δ2

2

)
> δ

(√
d− 1

2
A

)
> 0

the result follows.
Similarly for d ≡ 5 mod 8 we must have d− a2 = 22A1 or 22A1p, and our even

c with 2c | d− a2 must be of the form c = 2A2 or 2A2p. Thus we again reduce to

M

(√
d+ kA

2A

)
=

1

2
max

{
2A,
√
d+ kA, (d− k2A2)/2A

}
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with A | d odd, 2A <
√
d, k odd, and the minimum occurs for k = mA or mA − 2

as before. �

Plainly d ≡ 2 or 3 (mod 4) or 5 (mod 8) with no divisors in (o(
√
d,
√
d) that

are quadratic non-residues for all p <
√
d would have L(d) ≥

√
D − o(

√
d). In

particular infinitely many would immediately give

lim sup
d→∞

L(d)√
D

= 1

in contradiction to Conjecture 4.1, but this seems unlikely:

Conjecture 4.5. All but finitely many squarefree d have
(
d
p

)
= 1 for some odd

prime p < 1
2

√
D.

Assuming GRH for the mod 4d character

χ(n) :=

{(
d
n

)
, if gcd(n, 4d) = 1,

0, otherwise,

(where
(
d
n

)
denotes the Jacobi symbol), we have the bound

(8)

∣∣∣∣∣∣
∑
n≤x

χ(n)Λ(n)

∣∣∣∣∣∣� x
1
2 log2(Dx)

(see, for example, [2, Chapter 20]), and so we should in fact have
(
d
p

)
= 1 for some

prime p� log4D.

Note, a squarefree d 6≡ 1 mod 8 with
(
d
p

)
= −1 for all odd primes p - d with

p < 1
2

√
D must be of the form d = (kA)2 ± 2A or ((2k − 1)A)2 ± 4A, for some k

and squarefree odd A | d with A < 1
2

√
D. To see this, write d = N2 + r, N = [

√
d],

1 ≤ r ≤ 2N . If r is even then A = r/2 is odd if d ≡ 2, 3 mod 4 and A = r/4 is
odd if d ≡ 5 mod 8. Since d is a square mod A we must have p | A ⇒ p | d. As

d is squarefree, A < 1
2

√
D must be squarefree with A | d, giving d = N2 + 2A or

N2 + 4A with A | N . Similarly for r odd

d =

(
r + 1

2

)2

+

(
N − 1

2
(r − 1)

)(
N +

1

2
(r − 1)

)
,

with A = N − 1
2 (r − 1) odd for d = 2 or 3 mod 4 and A = 1

2

(
N − 1

2 (r − 1)
)

odd

for d ≡ 5 mod 8. Since d is a square mod A, A < 1
2

√
D is squarefree with A | d,

giving d = (N + 1)2 − 2A or (N + 1)2 − 4A with A | N + 1.
Conversely if d is a quadratic residue mod p for a suitably sized p or if d ≡ 1

mod 8 then we can obtain a bound less than one for L(d)/
√
D:

Lemma 4.2. Suppose that d is a square mod q, where q is odd or 4 | q and λ
defined by

λ
√
d =

{
q, if q is odd,
1
4q, if q is even,
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has 0 < λ < 1. Then

L(d)√
D
≤


1
2 (1 + λ+

√
(1− λ)2 − 4λ2), if 0 < λ < 1

4 (
√

5− 1),
1
4λ , if 1

4 (
√

5− 1) < λ < 1
2 (
√

3− 1),
1
2 (1 + λ), if 1

2 (
√

3− 1) < λ < 1.

Notice that if we assume GRH then estimate (8), with∑
x−y≤n≤x

Λ(n) = y +O(x
1
2 log2 x)

from assuming RH, guarantees that
(
d
p

)
= 1 for some prime p in(

1

2
(
√

3− 1)d
1
2 ,

1

2
(
√

3− 1)d
1
2 + cd

1
4 log2 d

)
for suitably large c, and Lemma 4.2 gives

L(d)√
D
≤ 1

4
(
√

3 + 1) +O

(
log2 d

d
1
4

)
= 0.683012 . . .+ o(1).

Proof. Suppose that r0 has r20 ≡ d mod q. If q is odd we take r to be the integer

in (
√
d− 2q,

√
d) with the same parity as d and r ≡ r0 mod q, write r =

√
d− δq,

and set

α1 =

√
d+ r

2q
, α2 =

√
d+ r − 2q

2q
.

Notice that c = 2q and a = r or r − 2q will have c | (d− a2) with 2c | d− a2 when
d = 1 mod 4.

For 4 | q (which of course only occurs when d = 1 mod 4) we write q = 2lq1 with

q1 odd and l ≥ 2 and take r to be the integer in (
√
d−2l−1q1,

√
d) with r ≡ r0 mod

2l−1q1 and set

α1 =

√
d+ r

2l−1q1
, α2 =

√
d+ r − 2l−1q1

2l−1q1
.

Again c = 2l−1q1 and a = r or r − 2l−1q1 will have 2c | (d− a2).

Writing r =
√
d − δq for q odd, and r =

√
d − δ2l−2q1 for q even, we have

r = (1− λδ)
√
d with 0 < δ < 2 and

α1 =
(2− δλ)

2λ
, α1 = −δ

2
, α2 =

(2− 2λ− δλ)

2λ
, α2 = −δ

2
− 1.

For α1 and α2 we also plainly have k = εc = 2ελ
√
d = λ

√
D.

Clearly α1 > 0, α2 > −1, −1 < α1 < 0 and −2 < α2 < −1.
If α1 < 1 then M(α1) = λ

√
D < 1

2 (1+λ)
√
D. Hence we can assume that α1 > 1

(this is automatic for λ < 1
2 ).

So

M(α1) = λ
√
Dα1 =

√
D

(
1− δ

2
λ

)
.

If α2 < 1 then

M(α2) = λ
√
D|α2| =

√
Dλ

(
1 +

δ

2

)
,

and plainly

min{M(α1),M(α2)} ≤ 1

2
(M(α1) +M(α2)) =

1

2
(1 + λ)

√
D.



MINIMAL MAHLER MEASURE IN REAL QUADRATIC FIELDS 13

So we can assume that α2 > 1 and

M(α2) = λ
√
D|α2|α2 =

√
D

(
1 +

δ

2

)(
1− λ− δ

2
λ

)
.

Observing that the quadratic is maximized for δ
2 = 1

2λ − 1 we plainly have

M(α2) ≤
√
D

1

4λ

with this less than 1
2 (1 + λ)

√
D for 1

2 (
√

3 − 1) < λ < 1. For λ < 1
4 (
√

5 − 1) the

value δ
2 = 1

2λ

(
1− λ−

√
(1− λ)2 − 4λ2

)
equating M(α1) and M(α2) is less than

1
2λ − 1 and the minimum of the two is at most the value at that point:

min{M(α1),M(α2)} ≤
√
D

(
1

2
(1 + λ) +

1

2

√
(1− λ)2 − 4λ2

)
.

�

In particular from the lemma we immediately obtain a bound away from 1 for
the d ≡ 1 mod 8.

Corollary 4.1. If d ≡ 1 (mod 8) then

L(d)√
D
≤ 1

4
(
√

5 + 1) = 0.809016 . . . .

If d ≡ 1 (mod 3) then

L(d)√
D
≤ 1

7
(2 + 3

√
2) = 0.891805 . . . .

Computations indicate room for improvement in these bounds.

Conjecture 4.6.

sup
d≡1 mod 8

L(d)√
D

=
L(41)√

41
=
M
(√

41+27
4

)
√

41
=

√
41 + 3

2
√

41
= 0.734261 . . . ,

sup
d≡1 mod 3

L(d)√
D

=
L(13)√

13
=
M
(√

13+1
2

)
√

13
=

4√
13

= 0.832050 . . . .

Proof. If d ≡ 1 (mod 8) then we can solve r2 ≡ d mod 2l for any l. Hence if we pick

l such that 1
4 (
√

5− 1)
√
d ≤ 2l−2 ≤ 1

2 (
√

5− 1)
√
d and we can apply the lemma with

1
4 (
√

5 − 1) ≤ λ ≤ 1
2 (
√

5 − 1). Likewise, for an odd prime p, if p - d and
(
d
p

)
= 1

then we can solve r2 ≡ d mod pl for any l. Choosing l so that

1

1 +
√

(p− 1)2 + 4

√
d ≤ pl ≤ p

1 +
√

(p− 1)2 + 4

√
d,

and applying the lemma with q = pl gives

L(d)√
D
≤ 1

2

(
1 +

p

1 +
√

(p− 1)2 + 4

)
.

Taking p = 3 gives the result claimed for d ≡ 1 mod 3.
Likewise, for d ≡ 1, 4 mod 5 we get the upper bound 0.956859 . . . (from d = 29

we know 0.928476 . . . would be best possible).
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For d ≡ 1, 2, 4 mod 7 we get 0.977844 . . . and for d ≡ 1, 3, 4, 5, 9 mod 11 the
bound 0.991157 . . . (from d = 53 these can not be reduced below 0.961523 . . .).

For d ≡ 1, 3, 4, 9, 10, 12 mod 13 we get the bound 0.993713 . . . (the optimal bound
is likely 0.988371 . . . from d = 173).

For d ≡ 1, 2, 4, 8, 9, 13, 15, 16 mod 17 our bound gives 0.996364 . . . (optimal is
probably 0.993150 . . . at d = 293). �

5. Appendix of Large Values

We give the largest values found in Figure 1, Figure 2 & Figure 3 down to the
first value not satisfying the quadratic non-residue conditions of Lemma 4.1.

Largest values for d ≡ 1 mod 4.

L(293)√
293

=
M
(√

293+15
2

)
√

293
=

17√
293

= 0.993150 . . . ,

(
293

p

)
= −1, p = 3, 5, 7, 11, 13,

L(173)√
173

=
M
(√

173+11
2

)
√

173
=

13√
173

= 0.988371 . . . ,

(
173

p

)
= −1, p = 3, 5, 7, 11,

L(53)√
53

=
M
(√

53+5
2

)
√

53
=

7√
53

= 0.961523 . . . ,

(
53

p

)
= −1, p = 3, 5,

L(437)√
437

=
M
(√

437+19
2

)
√

437
=

√
437 + 19

2
√

437
= 0.954446 . . . ,

(
437

p

)
= −1, p = 3, 5, 7, 11, 13, 17, 29,

L(29)√
29

=
M
(√

29+3
2

)
√

29
=

5√
29

= 0.928476 . . . ,

(
29

p

)
= −1, p = 3,

L(1077)√
1077

=
M
(√

1077+27
6

)
√

1077
=

√
1077 + 27

2
√

1077
= 0.911363 . . . ,

(
1077

p

)
= −1, p = 5, 7, 11, 13, 17, 19, 23,

L(77)√
77

=
M
(√

77+7
2

)
√

77
=

√
77 + 7√

77
= 0.898862 . . . ,

(
77

p

)
= −1, p = 3, 5,

L(453)√
453

=
M
(√

453+15
6

)
√

453
=

19√
453

= 0.892697 . . . ,

(
453

p

)
= −1, p = 5, 7, 11, 13, 17,

L(717)√
717

=
M
(√

717+21
6

)
√

717
=

√
717 + 21√

717
= 0.892129 . . . ,

(
717

p

)
= −1, p = 5, 7, 11, 13, 17, 19,

L(3053)√
3053

=
M
(√

3053+41
14

)
√

3053
=

49√
3053

= 0.886814 . . . ,

(
3053

7

)
= 1.

Note other αmay achieve the minimum, for exampleM
(√

437+19
2

)
= M

(√
437+19
38

)
.



MINIMAL MAHLER MEASURE IN REAL QUADRATIC FIELDS 15

Largest values for d ≡ 2 mod 4.

L(398)

2
√

398
=
M
(√

398+18
2

)
2
√

398
=

√
398 + 18

2
√

398
= 0.951129 . . . ,

(
398

p

)
= −1, p = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

L(38)

2
√

38
=
M
(√

38+4
2

)
2
√

38
=

11

2
√

38
= 0.892217 . . . ,

(
38

p

)
= −1, p = 3, 5,

L(62)

2
√

62
=
M
(√

62+6
2

)
2
√

62
=

√
62 + 6

2
√

62
= 0.881000 . . . ,

(
62

p

)
= −1, p = 3, 5, 7, 11,

L(318)

2
√

318
=
M
(√

318+12
6

)
2
√

318
=

√
318 + 12

2
√

318
= 0.836463 . . . ,

(
318

p

)
= −1, p = 5, 7, 11, 13, 17, 19, 23,

L(14)

2
√

14
=
M
(√

14+2
2

)
2
√

14
=

√
14 + 2

2
√

14
= 0.767261 . . . ,

(
14

p

)
= −1, p = 3,

L(138)

2
√

138
=
M
(√

138+6
6

)
2
√

138
=

√
138 + 6

2
√

138
= 0.755376 . . . ,

(
138

p

)
= −1, p = 5, 7, 11, 13,

L(22)

2
√

22
=
M
(√

22+2
3

)
2
√

22
=

√
22 + 2

2
√

22
= 0.713200 . . . ,

(
22

3

)
= 1.
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Largest values for d ≡ 3 mod 4.

L(227)

2
√

227
=
M
(√

227+13
2

)
2
√

227
=

29

2
√

227
= 0.962398 . . . ,

(
227

p

)
= −1, p = 3, 5, 7, 11, 13, 17, 19, 23,

L(83)

2
√

83
=
M
(√

83+7
2

)
2
√

83
=

17

2
√

83
= 0.932966 . . . ,

(
83

p

)
= −1, p = 3, 5, 7, 11, 13,

L(167)

2
√

167
=
M
(√

167+11
2

)
2
√

167
=

√
167 + 11

2
√

167
= 0.925602 . . . ,

(
167

p

)
= −1, p = 3, 5, 7, 11, 13, 17, 19,

L(447)

2
√

447
=
M
(√

447+15
6

)
2
√

447
=

37

2
√

447
= 0.875019 . . . ,

(
447

p

)
= −1, p = 5, 7, 11, 13, 17,

L(47)

2
√

47
=
M
(√

47+5
2

)
2
√

47
=

√
47 + 5

2
√

47
= 0.864662 . . . ,

(
47

p

)
= −1, p = 3, 5, 7,

L(635)

2
√

635
=
M
(√

635+15
10

)
2
√

635
=

41

2
√

635
= 0.813517 . . . ,

(
635

p

)
= −1, p = 3, 7, 11, 13, 17, 19, 23, 29, 31, 37,

L(23)

2
√

23
=
M
(√

23+3
2

)
2
√

23
=

√
23 + 3

2
√

23
= 0.812771 . . . ,

(
23

p

)
= −1, p = 3, 5,

L(3)

2
√

3
=
M
(√

3+1
2

)
2
√

3
=

√
3 + 1

2
√

3
= 0.788675 . . . ,

(
3

p

)
= −1, p = 3, 7, 11, 13, 17, 19, 23, 29, 31, 37,

L(827)

2
√

827
=
M
(√

827+15
14

)
2
√

827
=

√
827 + 15

2
√

827
= 0.760800 . . . ,

(
827

7

)
= 1.
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