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Abstract. We give a recursive algorithm for computing the Orlik-Terao algebra of the Coxeter

arrangement of type An−1 as a graded representation of Sn, and we give a conjectural description

of this representation in terms of the cohomology of the configuration space of n points in

SU(2) modulo translation. We also give a version of this conjecture for more general graphical

arrangements.

1 Introduction

We consider the subalgebra OTn of rational functions on C
n generated by 1

xi−xj
for all i 6= j.

This is a special case of a class of algebras called Orlik-Terao algebras, which have received much

recent attention [Ter02, PS06, ST09, Sch11, VLR13, SSV13, DGT14, Le14, Liu, MP15, EPW]. Our

interest is in understanding OTn as a graded representation of the symmetric group Sn, which acts

by permuting the indices.

Let Cn be the cohomology of the configuration space of n labeled points in R
3, which is also acted

on by Sn. The ring Cn is related to OTn in two different ways. The first is that Cn is isomorphic

to the quotient of OTn by the ideal generated by the squares of the generators. This can be seen

explicitly by computing presentations of the two rings, but there is also a much deeper geometric

explanation. Braden and the second author proved that OTn is isomorphic to the equivariant

intersection cohomology of a certain hypertoric variety (Theorem 3.1), and Cn is isomorphic to the

equivariant cohomology of a certain smooth open subset of that hypertoric variety; the map from

OTn to Cn is simply the restriction map in equivariant intersection cohomology. By exploring this

geometric relationship further and considering not only the open subset in question but also other

strata of higher codimension, we obtain a formula which allows us to recursively compute OTn in

terms of Cn (Theorem 3.2). Since the action of Sn on Cn is well understood, this allows us to

compute the action of Sn on OTn for arbitrary n.

Once we do these computations, a different and a priori unrelated relationship between OTn

and Cn becomes apparent. Let Rn be the symmetric algebra of the irreducible permutation rep-

resentation of Sn, generated in degree two. The ring OTn is naturally an algebra over Rn, and it

1Supported by NSF grant DMS-0950383.
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is finitely generated and free as a graded module. Thus we may define Mn := OTn ⊗Rn C, and we

have an Sn-equivariant isomorphism OTn
∼= Rn⊗CMn. This reduces the problem of understanding

OTn to the problem of understanding Mn. Let Dn be the cohomology of the configuration space

of n labeled points in SU(2) ∼= S3 modulo the action of SU(2) by simultaneous left translation.

It is easy to show that Cn and Dn are closely related; see Propositions 2.3 and 2.5 for precise

statements. Our computations suggest the following result, which is the main conjecture in this

paper (Conjecture 2.10):

Conjecture. There exists an isomorphism of graded Sn representations Mn
∼= Dn.

Given that we have descriptions of both Mn and Dn in terms of Cn, one would think that this

conjecture would be easy to prove. However, our recursive formula for Mn involves plethysms of

symmetric functions, and while plethysms are fine for computing in SAGE, it is notoriously difficult

to use them to prove anything.

Our paper is structured roughly in the reverse of the order in which it was presented above. We

begin in Section 2 by giving a detailed account of our main conjecture, without any discussion of

how to compute OTn and Mn. We also generalize our conjecture to arbitrary graphs. In Section 3,

we explain how to use the equivariant intersection cohomology of hypertoric varieties to compute

OTn. Our main result in this section is Theorem 3.2, but we also we also do some extra work to

translate our recursive formula to the language of symmetric functions (Proposition 3.6), since this

is the most convenient formulation for actually computing with SAGE. All of the code that was

used for this project is available at https://github.com/benyoung/ot.

Acknowledgments: The authors are grateful to Nick Addington, Richard Stanley, Dan Petersen, and

Ben Webster for their valuable suggestions and conversations. All computations were performed

with the assistance of the computer algebra systems SAGE [S+15] and Macaulay 2 [GS].

2 Conjectures

We begin by introducing the main players in our paper: the Orlik-Terao algebra OTn and its finite

dimensional quotient Mn (Section 2.1), the cohomology rings Cn and Dn of two closely related

configuration spaces (Section 2.2), and our main conjecture relating them (Section 2.3). We also

generalize our conjecture to arbitrary graphs (Section 2.4).

2.1 The Orlik-Terao algebra

Fix a positive integer n, and let OTn be the subalgebra of rational functions on Cn generated by

the elements eij := 1
xi−xj

for all i 6= j. This algebra is known as the Orlik-Terao algebra of

the Coxeter arrangement of type An−1. It follows from [PS06, Theorem 4] and [ST09, Proposition

2.7] that the ideal of relations between these generators is generated by eij + eji for all i, j and
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eijejk+ejkeki+ekieij for all distinct triples i, j, k. We regard OTn as a graded ring with deg(eij) = 2.

Our goal is to understand OTn as a graded representation of the symmetric group Sn, which acts

by permuting the indices.

Let Rn := C[z1, . . . , zn]/〈z1 + · · · + zn〉, with its natural Sn action, and graded by putting

deg(zi) = 2. Consider the Sn-equivariant graded algebra homomorphism ϕn : Rn → OTn taking zi

to
∑

j 6=i eij. This gives OTn the structure of a graded module over Rn, and it is in fact a free module

by [PS06, Proposition 7]. In other words, if we define Mn := OTn ⊗Rn C to be the ring obtained

by setting ϕn(zi) equal to zero for all i, then there exists an isomorphism of graded Rn-modules

OTn
∼= Rn ⊗C Mn.

This isomorphism is not canonical, and is not compatible with the ring structures on the two sides.

However, it is compatible with the action of Sn on both sides. Thus, we may reduce the problem

of understanding OTn as a graded representation to the problem of understanding Mn.

Remark 2.1. It is easy to describe Mn as a graded vector space. For any finite dimensional

graded vector space V concentrated in even degree, let H(V, q) :=
∑

qi dimV2i, where V2i is the

degree 2i part of V . Then H(Mn, q) is equal to the h-polynomial of the broken circuit complex

associated with the Coxeter arrangement of type An−1 [PS06, Proposition 7], which is equal to

(1 + q)(1 + 2q) · · · (1 + (n− 2)q).

The following proposition was proved by the first author [Mos12, Theorem 3.10]; it may also

be deduced from [CEF15, Theorem 3.3.3].

Proposition 2.2. The sequence {Mn} of graded representations of symmetric groups is represen-

tation stable.

2.2 Two configuration spaces

Consider the configuration space Conf(n,R3) be the configuration space of n labeled points in R
3,

which admits an action of Sn given by permuting the labels. Let

Cn := H∗(Conf(n,R3);C),

which is a graded representation of Sn. The ring Cn has a presentation closely related to that of

OTn; it is isomorphic to the quotient of OTn by the ideal generated by e2ij for all i, j [CLM76,

Chapter III, Lemma 7.7]. This algebra is also known as the Artinian Orlik-Terao algebra of

the Coxeter arrangement of type An−1. The structure of Cn as a graded representation of Sn is

complicated but well understood; see Equation (1).

Next, let G = SU(2) ∼= S3, and consider the configuration space Conf(n,G)/G of n labeled

points in G up to simultaneous translation by left multiplication. This space admits an action of

Sn by permuting the labels; let

Dn := H∗(Conf(n,G)/G;C),
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which is a graded representation of Sn.

Proposition 2.3. There exists an isomorphism

Cn−1
∼= ResSn

Sn−1
(Dn)

of graded representations of Sn−1.

Proof. We have a diffeomorphism Conf(n,G)/G ∼= Conf(n − 1,R3) given by using the action of

G to take the nth point to the identity, leaving the remaining n points in G r {id} ∼= R3. This

diffeomorphism is equivariant with respect to the action of Sn−1 ⊂ Sn.

Remark 2.4. The polynomial H(Dn, q) = H(Cn−1, q) is equal to the f -polynomial of the broken

circuit complex associated with the Coxeter arrangement of type An−2 [OT94, Theorem 4.3], which

is equal to (1 + q)(1 + 2q) · · · (1 + (n − 2)q).

Let Wn := Rn/〈zizj〉 be the ring obtained by truncating Rn to degree two. As a graded

representation of Sn, Wn is isomorphic to the 1-dimensional trivial representation in degree zero

plus the irreducible permutation representation of dimension n− 1 in degree two.

Proposition 2.5. There exists an isomorphism

Cn
∼= Dn ⊗C Wn

of graded representations of Sn.

Proof. Consider the projection Conf(n+1, G)/G → Conf(n,G)/G given by forgetting the (n+1)st

point. This is an Sn-equivariant fiber bundle with fiber diffeomorphic to the complement of n

points in G. The base is simply connected and both the base and the fiber have cohomology only

in even degree, thus the Leray-Serre spectral sequence degenerates and the cohomology of the total

space is isomorphic to the tensor product of the cohomology of the base and the cohomology of the

fiber. This yields the desired isomorphism.

Remark 2.6. Proposition 2.3 tells us that, if we know how to compute Dn+1, we know how to

compute Cn. Conversely, since Wn is not a zero divisor in the semiring of graded representations

of Sn, Proposition 2.5 tells us that we can recover Dn from Cn. This is important because there

exist extremely explicit formulas for Cn in the literature; see Equation (1).

Corollary 2.7. The sequence {Dn} of graded representations of symmetric groups is representation

stable.

Proof. Representation stability of {Cn} (or, more generally, for the cohomology of the configuration

space of any manifold) was proved by Church [Chu12, Theorem 1]. For {Wn}, it is obvious.

Representation stability of {Dn} then follows from Proposition 2.5.
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Given a graded representation V of Sn, let V be the ungraded representation obtained by

forgetting the grading. In this section, we describe Cn and Dn. Let Zn ⊂ Sn be the cyclic group.

Proposition 2.8. There exist isomorphisms

Cn
∼= C[Sn] and Dn

∼= C[Sn/Zn] ∼= IndSn

Zn
(triv)

of representations of Sn.

Proof. The first isomorphism is well-known, but we quickly review one proof here because we will

use a very similar argument for the second isomorphism. Consider the action of U(1) on R3 ∼= R⊕C

given by rotation on the second factor, which induces an action of U(1) on Conf(n,R3). Since

H∗(Conf(n,R3);C) is concentrated in even degree, this action is equivariantly formal, meaning that

the U(1)-equivariant cohomology of Conf(n,R3) is a free module over the equivariant cohomology

of a point. It follows that there is a natural filtration on the cohomology of the fixed point set

Conf(n,R3)U(1) whose associated graded is isomorphic to the cohomology of Conf(n,R3) [Mos,

Corollary 2.6]. Since the action of U(1) commutes with the action of Sn, this isomorphism is

Sn-equivariant [Mos, Proposition 2.8]. We have

Conf(n,R3)U(1) ∼= Conf(n,R) ≃ Sn,

so

H∗
(

Conf(n,R3)U(1);C
)

∼= C[Sn].

Passing to the associated graded does not change the isomorphism type of an (ungraded) represen-

tation of a finite group, thus Cn
∼= C[Sn].

For the second isomorphism, we note that U(1) acts on Conf(n,G)/G by right translation,

commuting with the action of Sn, with fixed point set

(Conf(n,G)/G)U(1) ∼= Conf(n,U(1))/U(1) ≃ Sn/Zn.

The second isomorphism follows by the same argument.

Remark 2.9. The filtration of H∗(Conf(n,R)) ∼= C[Sn] whose associated graded is isomorphic to

Cn can be described very explicitly. First, note that Conf(n,R) is a disjoint union of contractible

pieces, so its cohomology ring is simply the ring of locally constant functions. A Heaviside

function hij is a function that takes the value 1 on one side of a given hyperplane {xi = xj} and 0

on the other side. We define the pth filtered piece FpC[Sn] to be the vector space of functions that

can be expressed as polynomials of degree at most p in the Heaviside functions. This filtration,

was first studied by Varchenko and Gelfand [VG87], coincides with the one arising from equivariant

cohomology [Mos, Remark 4.9].

Similarly, we may define a cyclic Heaviside function hijk on Conf(n,U(1))/U(1) by specifying

a cyclic ordering of the ith, jth and kth points. This is equal to the pullback of hij from Conf(n−1,R)
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along the isomorphism from Conf(n,U(1))/U(1) to Conf(n−1,R) given by using the action of U(1)

to move the kth point to the origin. Since we know that the filtration of H∗(Conf(n − 1,R);C)

arising from equivariant cohomology coincides with the one induced by Heaviside functions, we

may conclude that, for any fixed index k, the filtration of H∗(Conf(n,U(1))/U(1);C) arising from

equivariant cohomology coincides with the filtration generated by the cyclic Heaviside functions

{hijk | 0 ≤ i < j ≤ n}. Since the filtration arising from equivariant cohomology is preserved by the

action of Sn, it must also coincide with the filtration generated by all cyclic Heaviside functions,

where all three indices are allowed to vary.

2.3 The main conjecture

Our main conjecture is as follows.

Conjecture 2.10. There exists an isomorphism of graded Sn representations Mn
∼= Dn.

Remark 2.11. Using the computational technique described in Section 3 (specifically Proposition

3.6), we have checked Conjecture 2.10 on a computer up to n = 10.

Remark 2.12. Remarks 2.1 and 2.4 tell us that Conjecture 2.10 holds at the level of graded vector

spaces.

Remark 2.13. Since Wn is not a zero divisor in the semiring of graded representations of Sn,

Conjecture 2.10 is equivalent to the statement that Mn⊗CWn
∼= Dn⊗CWn. Since OTn

∼= Rn⊗CMn,

we have

Mn ⊗C Wn
∼= OTn/〈zizj〉.

On the other hand, Proposition 2.5 says that

Dn ⊗C Wn
∼= Cn

∼= OTn/〈e
2
ij〉.

We know that C{zizj} and C{e2ij} are both isomorphic to the symmetric square of the irreducible

permutation representation, thus Conjecture 2.10 holds in degrees zero, two, and four for all values

of n.

Remark 2.14. Since zizj = −e2ij + fij, where fij is a certain sum of square-free monomials, it is

natural to consider the family of rings

An(t) := OTn/〈(1 − t)e2ij − tzizj〉 = OTn/〈e
2
ij − tfij〉,

where t ∈ C. By Remark 2.13, An(0) ∼= Dn ⊗C Wn and An(1) ∼= Mn ⊗C Wn. There exists a

nonempty Zariski open subset U ⊂ C such that the restriction of this family to U is flat, which

means that the graded Sn representations An(t) are isomorphic for all t ∈ U . If 0, 1 ∈ U , this would

imply Conjecture 2.10. Unfortunately, this is not the case. For example, when n = 4, computations

in Macaulay 2 reveal that U = Cr {0, 1,−1
2}.
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Put differently, this means thatmost ideals in OT4 that are generated by a copy of the symmetric

square of the permutation representation in degree four are strictly larger than both 〈e2ij〉 and 〈zizj〉.

These two ideals are exceptional, and our conjecture (which is true when n = 4) says that they are

exceptional in the same way.

2.4 Generalizing to graphs

In this section we generalize some of our results and conjectures to graphs; the cases described

above correspond to the complete graph.

Let Γ be a simple connected graph with vertex set [n], and let Aut(Γ) ⊂ Sn be the group of

automorphisms of Γ. Let OTΓ be the Orlik-Terao algebra of the hyperplane arrangement associated

with Γ; this is the subalgebra of rational functions on C
n generated by 1

xi−xj
whenever i and j are

connected by an edge. It is a graded representation of the automorphism group Aut(Γ) ⊂ Sn, with

the generators in degree two. We again have a map from Rn to OTΓ as before, and we let

MΓ := OTΓ ⊗Rn C.

Then there exists a graded Aut(Γ)-equivariant isomorphism

OTΓ
∼= Rn ⊗C MΓ,

andH(MΓ, q) = hΓ(q), the h-polynomial of the corresponding broken circuit complex [PS06, Propo-

sition 7].

For any space X, consider the space Conf(Γ,X) of maps from the vertices of Γ to X such that

adjacent vertices map to different points. Let

CΓ := H∗(Conf(Γ,R3) and DΓ := H∗(Conf(Γ, G)/G;C),

both graded representations of Aut(Γ). Let Γ̂ be the cone over Γ; this is the graph with vertex set

[n+1] such that the (n+1)st vertex is connected to all other vertices and the subgraph spanned by

the remaining vertices is equal to Γ. The following proposition is a straightforward generalization

of Proposition 2.3.

Proposition 2.15. There exists an isomorphism

CΓ
∼= Res

Aut(Γ̂)
Aut(Γ)

(

DΓ̂

)

of graded representations of Aut(Γ).

The following conjecture is a natural generalization of Conjecture 2.10.

Conjecture 2.16. For any simple connected graph Γ, there exists an isomorphism

MΓ
∼= DΓ

7



of graded representations of Aut(Γ). In particular, there exists an isomorphism

Res
Aut(Γ̂)
Aut(Γ)

(

MΓ̂

)

∼= CΓ.

Remark 2.17. We have H(MΓ̂, q) = hΓ̂(q) = fΓ(q) = H(CΓ, q), thus the second part of Conjecture

2.16 holds at the level of graded vector spaces.

3 Computing Mn via hypertoric geometry

In this section, we explain how to use the geometry of hypertoric varieties to compute Mn.

3.1 Hypertoric varieties

Given any hyperplane arrangement A defined over the rational numbers, one may define a variety

called a hypertoric variety. Rather than giving a general construction, we will instead give a

direct definition of the hypertoric variety Xn associated with the (doubled) Coxeter arrangement

of type An−1. For a general definition, see [Pro08].

Let Kn be the lattice of rank n(n − 1) with basis {yij | i 6= j ∈ [n]}. Consider the map

π : Kn → Z{x1, . . . , xn} taking yij to xi − xj , and let Ln be the image of π. Consider the

polynomial ring in 2n(n− 1) variables

Qn := C[zij , wij ]i 6=j.

This ring has a grading by K∗
n defined by putting deg(zij) = y∗ij = − deg(wij). Let QL

n denote

the subring of Qn spanned by homogeneous elements whose degree lies in the sublattice L∗
n ⊂ K∗.

Consider the map

µn : SymKC
n → QL

n

taking yij to zijwij, and define

Pn := QL
n/〈µn(y) | π(y) = 0〉 and Xn := SpecPn.

The variety Xn is the hypertoric variety that will be the main object of our attention. Let

Tn := Hom(L∗
n,C

×)

be the algebraic torus of dimension n−1 with character lattice L∗
n; the grading of Pn by L∗

n induces

an action of Tn on Xn. We also have an action of the symmetric group Sn on Xn given by permuting

indices. This action does not commute with the action of Tn, but rather defines an action of the

semidirect product Tn ⋊ Sn on Xn, where Sn acts on Tn in the obvious way. The variety Xn and

its various symmetries are important to us due to the following theorem [BP09, Corollary 4.5] (see

also [MP15, Proposition 3.16]).
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Theorem 3.1. There exists a canonical isomorphism

IH∗
Tn
(Xn;C) ∼= OTn

between the Tn-equivariant intersection cohomology of Xn and OTn. This isomorphism is compatible

with the maps from

H∗
Tn
(∗;C) ∼= Sym(L∗

n)C
∼= Rn.

In particular, this implies that

IH∗(Xn;C) ∼= Mn.

Furthermore, all of these isomorphisms are compatible with the natural actions of the symmetric

group Sn.

We next define a stratification of Xn, following the general construction in [PW07, Section 2].

For each partition B1 ⊔ · · · ⊔Bℓ of the set [n], consider the ideal

JB
n := 〈zij , wij | there exists an r such that i, j ∈ Br〉 ⊂ Qn.

This ideal descends to an ideal in Pn, which cuts out a subvariety XB
n ⊂ Xn. We have XB′

n ⊂ XB
n

if and only if B refines B′, and we define

X̊B
n := XB

n r

⋃

B refines B′

XB′

n .

Then

Xn =
⊔

B

X̊B
n

is a Tn-equivariant stratification of Xn. For each partition B, consider the subtorus

TB
n := T|B1| × · · · × T|Bℓ| ⊂ Tn,

embedded in the natural way. Then TB
n is the stabilizer of every point in X̊B

n [PW07, Remark 2.3],

thus the torus Tn/T
B
n acts freely on X̊B

n . The quotient space is not Hausdorff, but if we take the

quotient of X̊B
n by the maximal compact subtorus of Tn/T

B
n , we obtain a manifold homeomorphic

to Conf(ℓ,R3) [PW07, Proposition 5.2]. Finally, the stratum X̊B
n has a normal slice that is TB

n -

equivariantly isomorphic to X|B1| × · · · ×X|Bℓ| [PW07, Lemma 2.4].

3.2 A geometric recursion

Given any partition B of [n], let SB be the stabilizer of B. Letting mi be the number of parts of

B of size i, we may express SB as a product of wreath products:

SB
∼=

n
∏

i=1

Si ≀ Smi
.
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Given any partition λ of n, let B(λ) be the partition of [n] given by putting B1 = {1, . . . , λ1},

B2 = {λ1+1, . . . , λ1+λ2}, and so on. Let Sλ := SB(λ) ⊂ Sn be the stabilizer of the partition B(λ),

and let Wλ :=
∏

Smi
⊂ Sλ.

We define a graded representation M c
n of Sn by putting (M c

n)i := (Mn)4(n−1)−i. Theorem 3.1

says that Mn
∼= IH∗(Xn;C), and 4(n−1) = 2dimCXn = dimRXn, thus we have M

c
n
∼= IH∗

c (Xn;C)

by Poincaré duality. We will use the geometry of the hypertoric variety Xn to prove the following

result.

Theorem 3.2. For any positive integer n, there exists an isomorphism of graded Sn representations

OTn
∼=

⊕

λ⊢n

IndSn

Sλ

(

Cℓ(λ) ⊗ (M c
λ1

⊗Rλ1)⊗ · · · ⊗ (M c
λℓ(λ)

⊗Rλℓ(λ)
)
)

.

Here the subgroup Wλ ⊂ Sλ acts on Cℓ(λ) via the embedding Wλ →֒ S∑
mi

= Sℓ(λ), and it also

permutes the remaining tensor factors of the same size. In addition, each factor of the form

M c
λj

⊗Rλj
is acted on by a separate subgroup Sλj

⊂ Sλ.

Remark 3.3. We claim that Theorem 3.2 provides a recursive means of computing Mn for all

n ≥ 2. To see this, we first observe that, since OTn
∼= Rn ⊗C Mn, it is possible to recover Mn from

OTn. Moreover, since Mn vanishes in degrees greater than 2(n − 2), it is possible to recover Mn

from the truncation of OTn to degree 2(n− 2). If we try to use Theorem 3.2 to compute OTn and

Mn in terms of Mk for k < n, we run into the problem that M c
n appears on the right-hand side of

the isomorphism. However, M c
n vanishes in degrees less than 4(n − 1) − 2(n − 2) = 2n, therefore

we can compute the truncation of OTn to degree 2(n− 2) without knowing Mn, and we avoid any

circularity.

Remark 3.4. Theorem 3.2 can be generalized to a recursive expression for OTA in terms M c
A′ for

various restrictions A′ of A and CA′′ for various localizations A′′ of A. Taking A to be a graphical

arrangement, this means we may compute OTΓ in terms of M c
Γ′ for various contractions Γ′ of Γ

and CΓ′′ for various subgraphs Γ′′ of Γ.

Let ICXn be the Tn-equivariant intersection cohomology sheaf on Xn. For each partition B =

B1 ⊔ · · · ⊔ Bℓ of [n], let ιB : X̊B
n →֒ Xn be the inclusion. To prove Theorem 3.2, we first establish

the following lemma.

Lemma 3.5. There exists an SB-equivariant isomorphism of graded vector spaces

H
∗
Tn
(X̊B

n ; ι!BICXn)
∼= Cℓ ⊗ (M c

|B1|
⊗R|B1|)⊗ · · · ⊗ (M c

|Bℓ|
⊗R|Bℓ|).

Proof. The cohomology of the complex ι!BICXn is a Tn-equivariant local system on X̊B
n whose fiber

at a point is the compactly supported cohomology of the stalk of ICXn at that point. This is the

same as the compactly supported intersection cohomology of the normal slice X|B1|×· · ·×X|Bℓ| to

X̊B
n ⊂ Xn. Since the quotient of X̊B

n by the maximal compact subtorus of Tn is homeomorphic to
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the simply connected space Conf(ℓ,R3), this local system is trivial. We therefore have a spectral

sequence E with

Ep,q
2 = Hp

Tn
(X̊B

n ;C)⊗ IHq
c (X|B1| × · · · ×X|Bℓ|;C)

that converges to H
∗
Tn
(X̊B

n ; ι!BICXn). Since these cohomology groups are concentrated in even

degree, all differentials are zero, therefore

E∞ = E2 = H∗
Tn
(X̊B

n ;C)⊗ IH∗
c (X|B1| × · · · ×X|Bℓ|;C)

∼= H∗(Conf(ℓ,R3);C)⊗H∗
TB
n
(∗;C)⊗ IH∗

c (X|B1| × · · · ×X|Bℓ|;C)

∼= Cℓ ⊗R|B1| ⊗ · · · ⊗R|Bℓ| ⊗M c
|B1|

⊗ · · · ⊗M c
|Bℓ|

∼= Cℓ ⊗ (M c
|B1|

⊗R|B1|)⊗ · · · ⊗ (M c
|Bℓ|

⊗R|Bℓ|).

Since the category of graded representations of SB is semisimple, we have a (noncanonical) SB-

equivariant isomorphism of graded vector spaces H∗
Tn
(X̊B

n ; ι!BICXn)
∼= E∞.

Proof of Theorem 3.2: There is a spectral sequence E with

Ep,q
1 =

⊕

B1⊔···⊔Bℓ=[n]
ℓ=n−p

H
p+q
Tn

(X̊B
n ; ι!BICXn)

that converges to IH∗
Tn
(Xn;C) [BGS96, Section 3.4]. By Lemma 3.5, Ep,q

1 = 0 unless p+ q is even,

thus

E∞ = E1
∼=

⊕

B

H
∗
Tn
(X̊B

n ; ι!BICXn)

∼=
⊕

B

Cℓ ⊗ (M c
|B1|

⊗R|B1|)⊗ · · · ⊗ (M c
|Bℓ|

⊗R|Bℓ|).

As a representation of Sn, this is isomorphic to

⊕

λ⊢n

IndSn

Sλ

(

Cℓ(λ) ⊗ (M c
λ1

⊗Rλ1)⊗ · · · ⊗ (M c
λℓ(λ)

⊗Rλℓ(λ)
)
)

.

Since the category of graded representations of Sn is semisimple, we have a (noncanonical) Sn-

equivariant isomorphism of graded vector spaces IH∗
Tn
(Xn;C) ∼= E∞. The result now follows from

Theorem 3.1.

3.3 Symmetric functions

In order to implement the recursive formula in Theorem 3.2 in SAGE, it is convenient to convert

everything to the language of symmetric functions. Let Λ be the ring of symmetric functions in

infinitely many variables with coefficients in the formal power series ring Z[[q]]. If V is a graded

representation of Sn, concentrated in even degree, with finite dimensional graded parts, then its

11



graded Frobenius characteristic ch V is an element of Λ of symmetric degree n; the coefficient

of qi is equal to the usual Frobenius characteristic of V2i. The Frobenius characteristic map is an

isomorphism of vector spaces, thus it is sufficient to compute chOTn and chMn for each n. More

concretely, expressing Mn as an N[q]-linear combination of irreducible representations is equivalent

to expressing chMn as an N[q]-linear combination of Schur functions.

We begin by analyzing a single summand from Theorem 3.2. The first piece that we need to

understand better is Cℓ(λ), which is acted on by the subgroup Wλ ⊂ Sλ. We want to decompose

Cℓ(λ) into irreducible representations for this subgroup:

Cℓ(λ)
∼=

⊕

(ν1,...,νn)
νi⊢mi

Vν1 ⊗ · · · ⊗ Vνn ⊗ U(ν1, . . . , νn),

where

U(ν1, . . . , νn) := HomWλ

(

Vν1 ⊗ · · · ⊗ Vνn , Cℓ(λ)

)

∼= HomSn

(

IndSn

Wλ
(Vν1 ⊗ · · · ⊗ Vνn) , Cℓ(λ)

)

is the graded vector space that records the graded multiplicity of Vν1 ⊗ · · · ⊗ Vνn in Cℓ(λ).

Let Yλ denote the Young subgroup
∏n

i=1 Simi
, so that we have Sλ ⊂ Yλ ⊂ Sn. We will break

up our induction into two steps, first from Sλ to Yλ and then from Yλ to Sn. We have

IndSn

Sλ

(

Cℓ(λ) ⊗ (M c
λ1

⊗Rλ1)⊗ · · · ⊗ (M c
λℓ(λ)

⊗Rλℓ(λ)
)
)

∼= IndSn

Yλ
IndYλ

Sλ

(

Cℓ(λ) ⊗ (M c
λ1

⊗Rλ1)⊗ · · · ⊗ (M c
λℓ(λ)

⊗Rλℓ(λ)
)
)

∼=
⊕

(ν1,...,νn)
νi⊢mi

U(ν1, . . . , νn)⊗ IndSn

Yλ

(

n
⊗

i=1

Ind
Simi

Si≀Smi

(

Vνi ⊗ (M c
i ⊗Ri)

⊗mi
)

)

.

The graded Frobenius characteristic map has the following properties [Mac95, Sections I.7-8]:

• ch Vν = sν (irreducibles go to Schur functions)

• if Sn y V and Sn y V ′, then ch(V ⊕ V ′) = ch V + ch V ′

• if Sn y V and Sn y V ′, then ch(V ⊗ V ′) = ch V ∗ ch V ′ (internal or “Kroneker” product)

• if Sn y V and Sn y V ′, then H(HomSn (V, V
′) , q) = 〈ch V, ch V ′〉 (inner product)

• if Si y V and Sj y V ′, then ch Ind
Si+j

Si×Sj
(V ⊗ V ′) = ch V · chV ′ (ordinary product)

• if Si y V and Sj y V ′, then ch Ind
Sij

Si≀Sj

(

V ′ ⊗ V ⊗j
)

= chV ′[ch V ] (plethysm).

The analysis that we have done in this section, combined with Theorem 3.2, gives us the following

result.

12



Proposition 3.6. We have

chOTn =
∑

(ν1,...,νn)∑
i|νi|=n

〈

sν1 · · · sνn , chC
∑

|νi|

〉

n
∏

i=1

sνi[chM
c
i ∗ chRi].

Recall that M c
i is just Mi “backward”, so chM c

i is obtained from chMi by replacing q with q−1

and multiplying by q2(i−1). Thus, in order to use Proposition 3.6 to compute chOTn and chMn

recursively, it remains only to find explicit formulas for chCn and chRn. A formula for Cn is

given by Hersh and Reiner [HR, Theorem 2.7], based on the work of Sundaram and Welker [SW97,

Theorem 4.4(iii)]. Let ζn be an irreducible 1-dimensional representation of the cyclic group Zn ⊂ Sn

whose character takes a generator of Zn to a primitive nth root of unity, and let ℓn := ch IndSn

Zn
(ζn).

Let hn denote the complete homogeneous symmetric function of degree n. Then

chCn =
∑

λ⊢n

q
∑

(i−1)mi

n
∏

i=1

hmi
[ℓi]. (1)

The description of chRn can be found in [Pro03, Section 5.6]:

chRn = (1− q)
∑

λ⊢n

sλ(1, q, q
2, . . .)sλ.
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