The Orlik-Terao algebra and the cohomology of configuration space

Daniel Moseley
Department of Mathematics, Jacksonville University, Jacksonville, FL 32211
Nicholas Proudfoot ${ }^{11}$
Department of Mathematics, University of Oregon, Eugene, OR 97403

Ben Young
Department of Mathematics, University of Oregon, Eugene, OR 97403

Abstract

We give a recursive algorithm for computing the Orlik-Terao algebra of the Coxeter arrangement of type A_{n-1} as a graded representation of S_{n}, and we give a conjectural description of this representation in terms of the cohomology of the configuration space of n points in $S U(2)$ modulo translation. We also give a version of this conjecture for more general graphical arrangements.

1 Introduction

We consider the subalgebra $O T_{n}$ of rational functions on \mathbb{C}^{n} generated by $\frac{1}{x_{i}-x_{j}}$ for all $i \neq j$. This is a special case of a class of algebras called Orlik-Terao algebras, which have received much recent attention Ter02, PS06, ST09, Sch11, VLR13, SSV13, DGT14, Le14, Liu, MP15, EPW. Our interest is in understanding $O T_{n}$ as a graded representation of the symmetric group S_{n}, which acts by permuting the indices.

Let C_{n} be the cohomology of the configuration space of n labeled points in \mathbb{R}^{3}, which is also acted on by S_{n}. The ring C_{n} is related to $O T_{n}$ in two different ways. The first is that C_{n} is isomorphic to the quotient of $O T_{n}$ by the ideal generated by the squares of the generators. This can be seen explicitly by computing presentations of the two rings, but there is also a much deeper geometric explanation. Braden and the second author proved that $O T_{n}$ is isomorphic to the equivariant intersection cohomology of a certain hypertoric variety (Theorem 3.1), and C_{n} is isomorphic to the equivariant cohomology of a certain smooth open subset of that hypertoric variety; the map from $O T_{n}$ to C_{n} is simply the restriction map in equivariant intersection cohomology. By exploring this geometric relationship further and considering not only the open subset in question but also other strata of higher codimension, we obtain a formula which allows us to recursively compute $O T_{n}$ in terms of C_{n} (Theorem [3.2). Since the action of S_{n} on C_{n} is well understood, this allows us to compute the action of S_{n} on $O T_{n}$ for arbitrary n.

Once we do these computations, a different and a priori unrelated relationship between $O T_{n}$ and C_{n} becomes apparent. Let R_{n} be the symmetric algebra of the irreducible permutation representation of S_{n}, generated in degree two. The ring $O T_{n}$ is naturally an algebra over R_{n}, and it

[^0]is finitely generated and free as a graded module. Thus we may define $M_{n}:=O T_{n} \otimes_{R_{n}} \mathbb{C}$, and we have an S_{n}-equivariant isomorphism $O T_{n} \cong R_{n} \otimes_{\mathbb{C}} M_{n}$. This reduces the problem of understanding $O T_{n}$ to the problem of understanding M_{n}. Let D_{n} be the cohomology of the configuration space of n labeled points in $S U(2) \cong S^{3}$ modulo the action of $S U(2)$ by simultaneous left translation. It is easy to show that C_{n} and D_{n} are closely related; see Propositions 2.3 and 2.5 for precise statements. Our computations suggest the following result, which is the main conjecture in this paper (Conjecture 2.10):

Conjecture. There exists an isomorphism of graded S_{n} representations $M_{n} \cong D_{n}$.
Given that we have descriptions of both M_{n} and D_{n} in terms of C_{n}, one would think that this conjecture would be easy to prove. However, our recursive formula for M_{n} involves plethysms of symmetric functions, and while plethysms are fine for computing in SAGE, it is notoriously difficult to use them to prove anything.

Our paper is structured roughly in the reverse of the order in which it was presented above. We begin in Section 2 by giving a detailed account of our main conjecture, without any discussion of how to compute $O T_{n}$ and M_{n}. We also generalize our conjecture to arbitrary graphs. In Section 3, we explain how to use the equivariant intersection cohomology of hypertoric varieties to compute $O T_{n}$. Our main result in this section is Theorem [3.2, but we also we also do some extra work to translate our recursive formula to the language of symmetric functions (Proposition 3.6), since this is the most convenient formulation for actually computing with SAGE. All of the code that was used for this project is available at https://github.com/benyoung/ot.

Acknowledgments: The authors are grateful to Nick Addington, Richard Stanley, Dan Petersen, and Ben Webster for their valuable suggestions and conversations. All computations were performed with the assistance of the computer algebra systems SAGE [$\mathbf{S}^{+} 15$] and Macaulay 2 [GS].

2 Conjectures

We begin by introducing the main players in our paper: the Orlik-Terao algebra $O T_{n}$ and its finite dimensional quotient M_{n} (Section [2.1), the cohomology rings C_{n} and D_{n} of two closely related configuration spaces (Section 2.2), and our main conjecture relating them (Section 2.3). We also generalize our conjecture to arbitrary graphs (Section 2.4).

2.1 The Orlik-Terao algebra

Fix a positive integer n, and let $O T_{n}$ be the subalgebra of rational functions on \mathbb{C}^{n} generated by the elements $e_{i j}:=\frac{1}{x_{i}-x_{j}}$ for all $i \neq j$. This algebra is known as the Orlik-Terao algebra of the Coxeter arrangement of type A_{n-1}. It follows from [PS06, Theorem 4] and [T09, Proposition 2.7] that the ideal of relations between these generators is generated by $e_{i j}+e_{j i}$ for all i, j and
$e_{i j} e_{j k}+e_{j k} e_{k i}+e_{k i} e_{i j}$ for all distinct triples i, j, k. We regard $O T_{n}$ as a graded ring with $\operatorname{deg}\left(e_{i j}\right)=2$. Our goal is to understand $O T_{n}$ as a graded representation of the symmetric group S_{n}, which acts by permuting the indices.

Let $R_{n}:=\mathbb{C}\left[z_{1}, \ldots, z_{n}\right] /\left\langle z_{1}+\cdots+z_{n}\right\rangle$, with its natural S_{n} action, and graded by putting $\operatorname{deg}\left(z_{i}\right)=2$. Consider the S_{n}-equivariant graded algebra homomorphism $\varphi_{n}: R_{n} \rightarrow O T_{n}$ taking z_{i} to $\sum_{j \neq i} e_{i j}$. This gives $O T_{n}$ the structure of a graded module over R_{n}, and it is in fact a free module by [PS06, Proposition 7]. In other words, if we define $M_{n}:=O T_{n} \otimes_{R_{n}} \mathbb{C}$ to be the ring obtained by setting $\varphi_{n}\left(z_{i}\right)$ equal to zero for all i, then there exists an isomorphism of graded R_{n}-modules

$$
O T_{n} \cong R_{n} \otimes_{\mathbb{C}} M_{n}
$$

This isomorphism is not canonical, and is not compatible with the ring structures on the two sides. However, it is compatible with the action of S_{n} on both sides. Thus, we may reduce the problem of understanding $O T_{n}$ as a graded representation to the problem of understanding M_{n}.

Remark 2.1. It is easy to describe M_{n} as a graded vector space. For any finite dimensional graded vector space V concentrated in even degree, let $H(V, q):=\sum q^{i} \operatorname{dim} V_{2 i}$, where $V_{2 i}$ is the degree $2 i$ part of V. Then $H\left(M_{n}, q\right)$ is equal to the h-polynomial of the broken circuit complex associated with the Coxeter arrangement of type A_{n-1} [PS06, Proposition 7], which is equal to $(1+q)(1+2 q) \cdots(1+(n-2) q)$.

The following proposition was proved by the first author [Mos12, Theorem 3.10]; it may also be deduced from [CEF15, Theorem 3.3.3].
Proposition 2.2. The sequence $\left\{M_{n}\right\}$ of graded representations of symmetric groups is representation stable.

2.2 Two configuration spaces

Consider the configuration space $\operatorname{Conf}\left(n, \mathbb{R}^{3}\right)$ be the configuration space of n labeled points in \mathbb{R}^{3}, which admits an action of S_{n} given by permuting the labels. Let

$$
C_{n}:=H^{*}\left(\operatorname{Conf}\left(n, \mathbb{R}^{3}\right) ; \mathbb{C}\right),
$$

which is a graded representation of S_{n}. The ring C_{n} has a presentation closely related to that of $O T_{n}$; it is isomorphic to the quotient of $O T_{n}$ by the ideal generated by $e_{i j}^{2}$ for all i, j CLM76, Chapter III, Lemma 7.7]. This algebra is also known as the Artinian Orlik-Terao algebra of the Coxeter arrangement of type A_{n-1}. The structure of C_{n} as a graded representation of S_{n} is complicated but well understood; see Equation (11).

Next, let $G=S U(2) \cong S^{3}$, and consider the configuration space $\operatorname{Conf}(n, G) / G$ of n labeled points in G up to simultaneous translation by left multiplication. This space admits an action of S_{n} by permuting the labels; let

$$
D_{n}:=H^{*}(\operatorname{Conf}(n, G) / G ; \mathbb{C}),
$$

which is a graded representation of S_{n}.
Proposition 2.3. There exists an isomorphism

$$
C_{n-1} \cong \operatorname{Res}_{S_{n-1}}^{S_{n}}\left(D_{n}\right)
$$

of graded representations of S_{n-1}.
Proof. We have a diffeomorphism $\operatorname{Conf}(n, G) / G \cong \operatorname{Conf}\left(n-1, \mathbb{R}^{3}\right)$ given by using the action of G to take the $n^{\text {th }}$ point to the identity, leaving the remaining n points in $G \backslash\{\mathrm{id}\} \cong \mathbb{R}^{3}$. This diffeomorphism is equivariant with respect to the action of $S_{n-1} \subset S_{n}$.

Remark 2.4. The polynomial $H\left(D_{n}, q\right)=H\left(C_{n-1}, q\right)$ is equal to the f-polynomial of the broken circuit complex associated with the Coxeter arrangement of type A_{n-2} OT94, Theorem 4.3], which is equal to $(1+q)(1+2 q) \cdots(1+(n-2) q)$.

Let $W_{n}:=R_{n} /\left\langle z_{i} z_{j}\right\rangle$ be the ring obtained by truncating R_{n} to degree two. As a graded representation of S_{n}, W_{n} is isomorphic to the 1-dimensional trivial representation in degree zero plus the irreducible permutation representation of dimension $n-1$ in degree two.

Proposition 2.5. There exists an isomorphism

$$
C_{n} \cong D_{n} \otimes_{\mathbb{C}} W_{n}
$$

of graded representations of S_{n}.
Proof. Consider the projection $\operatorname{Conf}(n+1, G) / G \rightarrow \operatorname{Conf}(n, G) / G$ given by forgetting the $(n+1)^{\text {st }}$ point. This is an S_{n}-equivariant fiber bundle with fiber diffeomorphic to the complement of n points in G. The base is simply connected and both the base and the fiber have cohomology only in even degree, thus the Leray-Serre spectral sequence degenerates and the cohomology of the total space is isomorphic to the tensor product of the cohomology of the base and the cohomology of the fiber. This yields the desired isomorphism.

Remark 2.6. Proposition 2.3 tells us that, if we know how to compute D_{n+1}, we know how to compute C_{n}. Conversely, since W_{n} is not a zero divisor in the semiring of graded representations of S_{n}, Proposition 2.5 tells us that we can recover D_{n} from C_{n}. This is important because there exist extremely explicit formulas for C_{n} in the literature; see Equation (1).

Corollary 2.7. The sequence $\left\{D_{n}\right\}$ of graded representations of symmetric groups is representation stable.

Proof. Representation stability of $\left\{C_{n}\right\}$ (or, more generally, for the cohomology of the configuration space of any manifold) was proved by Church [Chu12, Theorem 1]. For $\left\{W_{n}\right\}$, it is obvious. Representation stability of $\left\{D_{n}\right\}$ then follows from Proposition 2.5.

Given a graded representation V of S_{n}, let \bar{V} be the ungraded representation obtained by forgetting the grading. In this section, we describe \bar{C}_{n} and \bar{D}_{n}. Let $Z_{n} \subset S_{n}$ be the cyclic group.

Proposition 2.8. There exist isomorphisms

$$
\bar{C}_{n} \cong \mathbb{C}\left[S_{n}\right] \quad \text { and } \quad \bar{D}_{n} \cong \mathbb{C}\left[S_{n} / Z_{n}\right] \cong \operatorname{Ind}_{Z_{n}}^{S_{n}}(\text { triv })
$$

of representations of S_{n}.
Proof. The first isomorphism is well-known, but we quickly review one proof here because we will use a very similar argument for the second isomorphism. Consider the action of $U(1)$ on $\mathbb{R}^{3} \cong \mathbb{R} \oplus \mathbb{C}$ given by rotation on the second factor, which induces an action of $U(1)$ on $\operatorname{Conf}\left(n, \mathbb{R}^{3}\right)$. Since $H^{*}\left(\operatorname{Conf}\left(n, \mathbb{R}^{3}\right) ; \mathbb{C}\right)$ is concentrated in even degree, this action is equivariantly formal, meaning that the $U(1)$-equivariant cohomology of $\operatorname{Conf}\left(n, \mathbb{R}^{3}\right)$ is a free module over the equivariant cohomology of a point. It follows that there is a natural filtration on the cohomology of the fixed point set $\operatorname{Conf}\left(n, \mathbb{R}^{3}\right)^{U(1)}$ whose associated graded is isomorphic to the cohomology of $\operatorname{Conf}\left(n, \mathbb{R}^{3}\right)$ Mos, Corollary 2.6]. Since the action of $U(1)$ commutes with the action of S_{n}, this isomorphism is S_{n}-equivariant [Mos, Proposition 2.8]. We have

$$
\operatorname{Conf}\left(n, \mathbb{R}^{3}\right)^{U(1)} \cong \operatorname{Conf}(n, \mathbb{R}) \simeq S_{n}
$$

so

$$
H^{*}\left(\operatorname{Conf}\left(n, \mathbb{R}^{3}\right)^{U(1)} ; \mathbb{C}\right) \cong \mathbb{C}\left[S_{n}\right]
$$

Passing to the associated graded does not change the isomorphism type of an (ungraded) representation of a finite group, thus $\bar{C}_{n} \cong \mathbb{C}\left[S_{n}\right]$.

For the second isomorphism, we note that $U(1)$ acts on $\operatorname{Conf}(n, G) / G$ by right translation, commuting with the action of S_{n}, with fixed point set

$$
(\operatorname{Conf}(n, G) / G)^{U(1)} \cong \operatorname{Conf}(n, U(1)) / U(1) \simeq S_{n} / Z_{n}
$$

The second isomorphism follows by the same argument.
Remark 2.9. The filtration of $H^{*}(\operatorname{Conf}(n, \mathbb{R})) \cong \mathbb{C}\left[S_{n}\right]$ whose associated graded is isomorphic to C_{n} can be described very explicitly. First, note that $\operatorname{Conf}(n, \mathbb{R})$ is a disjoint union of contractible pieces, so its cohomology ring is simply the ring of locally constant functions. A Heaviside function $h_{i j}$ is a function that takes the value 1 on one side of a given hyperplane $\left\{x_{i}=x_{j}\right\}$ and 0 on the other side. We define the $p^{\text {th }}$ filtered piece $F_{p} \mathbb{C}\left[S_{n}\right]$ to be the vector space of functions that can be expressed as polynomials of degree at most p in the Heaviside functions. This filtration, was first studied by Varchenko and Gelfand VG87, coincides with the one arising from equivariant cohomology [Mos, Remark 4.9].

Similarly, we may define a cyclic Heaviside function $h_{i j k}$ on $\operatorname{Conf}(n, U(1)) / U(1)$ by specifying a cyclic ordering of the $i^{\text {th }}, j^{\text {th }}$ and $k^{\text {th }}$ points. This is equal to the pullback of $h_{i j}$ from $\operatorname{Conf}(n-1, \mathbb{R})$
along the isomorphism from $\operatorname{Conf}(n, U(1)) / U(1)$ to $\operatorname{Conf}(n-1, \mathbb{R})$ given by using the action of $U(1)$ to move the $k^{\text {th }}$ point to the origin. Since we know that the filtration of $H^{*}(\operatorname{Conf}(n-1, \mathbb{R}) ; \mathbb{C})$ arising from equivariant cohomology coincides with the one induced by Heaviside functions, we may conclude that, for any fixed index k, the filtration of $H^{*}(\operatorname{Conf}(n, U(1)) / U(1) ; \mathbb{C})$ arising from equivariant cohomology coincides with the filtration generated by the cyclic Heaviside functions $\left\{h_{i j k} \mid 0 \leq i<j \leq n\right\}$. Since the filtration arising from equivariant cohomology is preserved by the action of S_{n}, it must also coincide with the filtration generated by all cyclic Heaviside functions, where all three indices are allowed to vary.

2.3 The main conjecture

Our main conjecture is as follows.
Conjecture 2.10. There exists an isomorphism of graded S_{n} representations $M_{n} \cong D_{n}$.
Remark 2.11. Using the computational technique described in Section 3 (specifically Proposition (3.6), we have checked Conjecture 2.10 on a computer up to $n=10$.

Remark 2.12. Remarks 2.1 and 2.4 tell us that Conjecture 2.10 holds at the level of graded vector spaces.

Remark 2.13. Since W_{n} is not a zero divisor in the semiring of graded representations of S_{n}, Conjecture 2.10 is equivalent to the statement that $M_{n} \otimes_{\mathbb{C}} W_{n} \cong D_{n} \otimes_{\mathbb{C}} W_{n}$. Since $O T_{n} \cong R_{n} \otimes_{\mathbb{C}} M_{n}$, we have

$$
M_{n} \otimes_{\mathbb{C}} W_{n} \cong O T_{n} /\left\langle z_{i} z_{j}\right\rangle
$$

On the other hand, Proposition 2.5 says that

$$
D_{n} \otimes_{\mathbb{C}} W_{n} \cong C_{n} \cong O T_{n} /\left\langle e_{i j}^{2}\right\rangle
$$

We know that $\mathbb{C}\left\{z_{i} z_{j}\right\}$ and $\mathbb{C}\left\{e_{i j}^{2}\right\}$ are both isomorphic to the symmetric square of the irreducible permutation representation, thus Conjecture 2.10 holds in degrees zero, two, and four for all values of n.

Remark 2.14. Since $z_{i} z_{j}=-e_{i j}^{2}+f_{i j}$, where $f_{i j}$ is a certain sum of square-free monomials, it is natural to consider the family of rings

$$
A_{n}(t):=O T_{n} /\left\langle(1-t) e_{i j}^{2}-t z_{i} z_{j}\right\rangle=O T_{n} /\left\langle e_{i j}^{2}-t f_{i j}\right\rangle
$$

where $t \in \mathbb{C}$. By Remark 2.13, $A_{n}(0) \cong D_{n} \otimes_{\mathbb{C}} W_{n}$ and $A_{n}(1) \cong M_{n} \otimes_{\mathbb{C}} W_{n}$. There exists a nonempty Zariski open subset $U \subset \mathbb{C}$ such that the restriction of this family to U is flat, which means that the graded S_{n} representations $A_{n}(t)$ are isomorphic for all $t \in U$. If $0,1 \in U$, this would imply Conjecture 2.10. Unfortunately, this is not the case. For example, when $n=4$, computations in Macaulay 2 reveal that $U=\mathbb{C} \backslash\left\{0,1,-\frac{1}{2}\right\}$.

Put differently, this means that most ideals in $O T_{4}$ that are generated by a copy of the symmetric square of the permutation representation in degree four are strictly larger than both $\left\langle e_{i j}^{2}\right\rangle$ and $\left\langle z_{i} z_{j}\right\rangle$. These two ideals are exceptional, and our conjecture (which is true when $n=4$) says that they are exceptional in the same way.

2.4 Generalizing to graphs

In this section we generalize some of our results and conjectures to graphs; the cases described above correspond to the complete graph.

Let Γ be a simple connected graph with vertex set $[n]$, and let $\operatorname{Aut}(\Gamma) \subset S_{n}$ be the group of automorphisms of Γ. Let $O T_{\Gamma}$ be the Orlik-Terao algebra of the hyperplane arrangement associated with Γ; this is the subalgebra of rational functions on \mathbb{C}^{n} generated by $\frac{1}{x_{i}-x_{j}}$ whenever i and j are connected by an edge. It is a graded representation of the automorphism group $\operatorname{Aut}(\Gamma) \subset S_{n}$, with the generators in degree two. We again have a map from R_{n} to $O T_{\Gamma}$ as before, and we let

$$
M_{\Gamma}:=O T_{\Gamma} \otimes_{R_{n}} \mathbb{C}
$$

Then there exists a graded $\operatorname{Aut}(\Gamma)$-equivariant isomorphism

$$
O T_{\Gamma} \cong R_{n} \otimes_{\mathbb{C}} M_{\Gamma}
$$

and $H\left(M_{\Gamma}, q\right)=h_{\Gamma}(q)$, the h-polynomial of the corresponding broken circuit complex PS06, Proposition 7].

For any space X, consider the space $\operatorname{Conf}(\Gamma, X)$ of maps from the vertices of Γ to X such that adjacent vertices map to different points. Let

$$
C_{\Gamma}:=H^{*}\left(\operatorname{Conf}\left(\Gamma, \mathbb{R}^{3}\right) \quad \text { and } \quad D_{\Gamma}:=H^{*}(\operatorname{Conf}(\Gamma, G) / G ; \mathbb{C})\right.
$$

both graded representations of $\operatorname{Aut}(\Gamma)$. Let $\hat{\Gamma}$ be the cone over Γ; this is the graph with vertex set $[n+1]$ such that the $(n+1)^{\text {st }}$ vertex is connected to all other vertices and the subgraph spanned by the remaining vertices is equal to Γ. The following proposition is a straightforward generalization of Proposition 2.3 .

Proposition 2.15. There exists an isomorphism

$$
C_{\Gamma} \cong \operatorname{Res}_{\operatorname{Aut}(\Gamma)}^{\operatorname{Aut}(\hat{\Gamma})}\left(D_{\hat{\Gamma}}\right)
$$

of graded representations of $\operatorname{Aut}(\Gamma)$.
The following conjecture is a natural generalization of Conjecture 2.10.
Conjecture 2.16. For any simple connected graph Γ, there exists an isomorphism

$$
M_{\Gamma} \cong D_{\Gamma}
$$

of graded representations of $\operatorname{Aut}(\Gamma)$. In particular, there exists an isomorphism

$$
\operatorname{Res}_{\operatorname{Aut}(\Gamma)}^{\operatorname{Aut}(\hat{\Gamma})}\left(M_{\hat{\Gamma}}\right) \cong C_{\Gamma}
$$

Remark 2.17. We have $H\left(M_{\hat{\Gamma}}, q\right)=h_{\hat{\Gamma}}(q)=f_{\Gamma}(q)=H\left(C_{\Gamma}, q\right)$, thus the second part of Conjecture 2.16 holds at the level of graded vector spaces.

3 Computing M_{n} via hypertoric geometry

In this section, we explain how to use the geometry of hypertoric varieties to compute M_{n}.

3.1 Hypertoric varieties

Given any hyperplane arrangement \mathcal{A} defined over the rational numbers, one may define a variety called a hypertoric variety. Rather than giving a general construction, we will instead give a direct definition of the hypertoric variety X_{n} associated with the (doubled) Coxeter arrangement of type A_{n-1}. For a general definition, see [Pro08].

Let K_{n} be the lattice of rank $n(n-1)$ with basis $\left\{y_{i j} \mid i \neq j \in[n]\right\}$. Consider the map $\pi: K_{n} \rightarrow \mathbb{Z}\left\{x_{1}, \ldots, x_{n}\right\}$ taking $y_{i j}$ to $x_{i}-x_{j}$, and let L_{n} be the image of π. Consider the polynomial ring in $2 n(n-1)$ variables

$$
Q_{n}:=\mathbb{C}\left[z_{i j}, w_{i j}\right]_{i \neq j}
$$

This ring has a grading by K_{n}^{*} defined by putting $\operatorname{deg}\left(z_{i j}\right)=y_{i j}^{*}=-\operatorname{deg}\left(w_{i j}\right)$. Let Q_{n}^{L} denote the subring of Q_{n} spanned by homogeneous elements whose degree lies in the sublattice $L_{n}^{*} \subset K^{*}$. Consider the map

$$
\mu_{n}: \operatorname{Sym} K_{n}^{\mathbb{C}} \rightarrow Q_{n}^{L}
$$

taking $y_{i j}$ to $z_{i j} w_{i j}$, and define

$$
P_{n}:=Q_{n}^{L} /\left\langle\mu_{n}(y) \mid \pi(y)=0\right\rangle \quad \text { and } \quad X_{n}:=\operatorname{Spec} P_{n}
$$

The variety X_{n} is the hypertoric variety that will be the main object of our attention. Let

$$
T_{n}:=\operatorname{Hom}\left(L_{n}^{*}, \mathbb{C}^{\times}\right)
$$

be the algebraic torus of dimension $n-1$ with character lattice L_{n}^{*}; the grading of P_{n} by L_{n}^{*} induces an action of T_{n} on X_{n}. We also have an action of the symmetric group S_{n} on X_{n} given by permuting indices. This action does not commute with the action of T_{n}, but rather defines an action of the semidirect product $T_{n} \rtimes S_{n}$ on X_{n}, where S_{n} acts on T_{n} in the obvious way. The variety X_{n} and its various symmetries are important to us due to the following theorem [BP09, Corollary 4.5] (see also [MP15, Proposition 3.16]).

Theorem 3.1. There exists a canonical isomorphism

$$
I H_{T_{n}}^{*}\left(X_{n} ; \mathbb{C}\right) \cong O T_{n}
$$

between the T_{n}-equivariant intersection cohomology of X_{n} and $O T_{n}$. This isomorphism is compatible with the maps from

$$
H_{T_{n}}^{*}(* ; \mathbb{C}) \cong \operatorname{Sym}\left(L_{n}^{*}\right)_{\mathbb{C}} \cong R_{n}
$$

In particular, this implies that

$$
I H^{*}\left(X_{n} ; \mathbb{C}\right) \cong M_{n}
$$

Furthermore, all of these isomorphisms are compatible with the natural actions of the symmetric group S_{n}.

We next define a stratification of X_{n}, following the general construction in PW07, Section 2]. For each partition $B_{1} \sqcup \cdots \sqcup B_{\ell}$ of the set $[n]$, consider the ideal

$$
\left.J_{n}^{B}:=\left\langle z_{i j}, w_{i j}\right| \text { there exists an } r \text { such that } i, j \in B_{r}\right\rangle \subset Q_{n}
$$

This ideal descends to an ideal in P_{n}, which cuts out a subvariety $X_{n}^{B} \subset X_{n}$. We have $X_{n}^{B^{\prime}} \subset X_{n}^{B}$ if and only if B refines B^{\prime}, and we define

$$
\stackrel{\circ}{X}_{n}^{B}:=X_{n}^{B} \backslash \bigcup_{B \text { refines } B^{\prime}} X_{n}^{B^{\prime}}
$$

Then

$$
X_{n}=\bigsqcup_{B} \stackrel{\circ}{X}_{n}^{B}
$$

is a T_{n}-equivariant stratification of X_{n}. For each partition B, consider the subtorus

$$
T_{n}^{B}:=T_{\left|B_{1}\right|} \times \cdots \times T_{\left|B_{\ell}\right|} \subset T_{n}
$$

embedded in the natural way. Then T_{n}^{B} is the stabilizer of every point in \dot{X}_{n}^{B} [PW07, Remark 2.3], thus the torus T_{n} / T_{n}^{B} acts freely on \dot{X}_{n}^{B}. The quotient space is not Hausdorff, but if we take the quotient of $\stackrel{\circ}{X}_{n}^{B}$ by the maximal compact subtorus of T_{n} / T_{n}^{B}, we obtain a manifold homeomorphic to $\operatorname{Conf}\left(\ell, \mathbb{R}^{3}\right)$ PW07, Proposition 5.2]. Finally, the stratum \dot{X}_{n}^{B} has a normal slice that is T_{n}^{B} equivariantly isomorphic to $X_{\left|B_{1}\right|} \times \cdots \times X_{\left|B_{\ell}\right|}$ PW07, Lemma 2.4].

3.2 A geometric recursion

Given any partition B of $[n]$, let S_{B} be the stabilizer of B. Letting m_{i} be the number of parts of B of size i, we may express S_{B} as a product of wreath products:

$$
S_{B} \cong \prod_{i=1}^{n} S_{i} \backslash S_{m_{i}}
$$

Given any partition λ of n, let $B(\lambda)$ be the partition of $[n]$ given by putting $B_{1}=\left\{1, \ldots, \lambda_{1}\right\}$, $B_{2}=\left\{\lambda_{1}+1, \ldots, \lambda_{1}+\lambda_{2}\right\}$, and so on. Let $S_{\lambda}:=S_{B(\lambda)} \subset S_{n}$ be the stabilizer of the partition $B(\lambda)$, and let $W_{\lambda}:=\prod S_{m_{i}} \subset S_{\lambda}$.

We define a graded representation M_{n}^{c} of S_{n} by putting $\left(M_{n}^{c}\right)_{i}:=\left(M_{n}\right)_{4(n-1)-i}$. Theorem 3.1 says that $M_{n} \cong I H^{*}\left(X_{n} ; \mathbb{C}\right)$, and $4(n-1)=2 \operatorname{dim}_{\mathbb{C}} X_{n}=\operatorname{dim}_{\mathbb{R}} X_{n}$, thus we have $M_{n}^{c} \cong I H_{c}^{*}\left(X_{n} ; \mathbb{C}\right)$ by Poincaré duality. We will use the geometry of the hypertoric variety X_{n} to prove the following result.

Theorem 3.2. For any positive integer n, there exists an isomorphism of graded S_{n} representations

$$
O T_{n} \cong \bigoplus_{\lambda \vdash n} \operatorname{Ind}_{S_{\lambda}}^{S_{n}}\left(C_{\ell(\lambda)} \otimes\left(M_{\lambda_{1}}^{c} \otimes R_{\lambda_{1}}\right) \otimes \cdots \otimes\left(M_{\lambda_{\ell(\lambda)}}^{c} \otimes R_{\lambda_{\ell(\lambda)}}\right)\right) .
$$

Here the subgroup $W_{\lambda} \subset S_{\lambda}$ acts on $C_{\ell(\lambda)}$ via the embedding $W_{\lambda} \hookrightarrow S_{\sum m_{i}}=S_{\ell(\lambda)}$, and it also permutes the remaining tensor factors of the same size. In addition, each factor of the form $M_{\lambda_{j}}^{c} \otimes R_{\lambda_{j}}$ is acted on by a separate subgroup $S_{\lambda_{j}} \subset S_{\lambda}$.

Remark 3.3. We claim that Theorem 3.2 provides a recursive means of computing M_{n} for all $n \geq 2$. To see this, we first observe that, since $O T_{n} \cong R_{n} \otimes \mathbb{C} M_{n}$, it is possible to recover M_{n} from $O T_{n}$. Moreover, since M_{n} vanishes in degrees greater than $2(n-2)$, it is possible to recover M_{n} from the truncation of $O T_{n}$ to degree $2(n-2)$. If we try to use Theorem 3.2 to compute $O T_{n}$ and M_{n} in terms of M_{k} for $k<n$, we run into the problem that M_{n}^{c} appears on the right-hand side of the isomorphism. However, M_{n}^{c} vanishes in degrees less than $4(n-1)-2(n-2)=2 n$, therefore we can compute the truncation of $O T_{n}$ to degree $2(n-2)$ without knowing M_{n}, and we avoid any circularity.

Remark 3.4. Theorem 3.2 can be generalized to a recursive expression for $O T_{\mathcal{A}}$ in terms $M_{\mathcal{A}^{\prime}}^{c}$ for various restrictions \mathcal{A}^{\prime} of \mathcal{A} and $C_{\mathcal{A}^{\prime \prime}}$ for various localizations $\mathcal{A}^{\prime \prime}$ of \mathcal{A}. Taking \mathcal{A} to be a graphical arrangement, this means we may compute $O T_{\Gamma}$ in terms of $M_{\Gamma^{\prime}}^{c}$ for various contractions Γ^{\prime} of Γ and $C_{\Gamma^{\prime \prime}}$ for various subgraphs $\Gamma^{\prime \prime}$ of Γ.

Let $I C_{X_{n}}$ be the T_{n}-equivariant intersection cohomology sheaf on X_{n}. For each partition $B=$ $B_{1} \sqcup \cdots \sqcup B_{\ell}$ of $[n]$, let $\iota_{B}: \dot{X}_{n}^{B} \hookrightarrow X_{n}$ be the inclusion. To prove Theorem 3.2, we first establish the following lemma.

Lemma 3.5. There exists an S_{B}-equivariant isomorphism of graded vector spaces

$$
\mathbb{H}_{T_{n}}^{*}\left(\dot{X}_{n}^{B} ; \iota_{B}^{!} I C_{X_{n}}\right) \cong C_{\ell} \otimes\left(M_{\left|B_{1}\right|}^{c} \otimes R_{\left|B_{1}\right|}\right) \otimes \cdots \otimes\left(M_{\left|B_{\ell}\right|}^{c} \otimes R_{\left|B_{\ell}\right|}\right) .
$$

Proof. The cohomology of the complex $\iota_{B}^{!} I C_{X_{n}}$ is a T_{n}-equivariant local system on \dot{X}_{n}^{B} whose fiber at a point is the compactly supported cohomology of the stalk of $I C_{X_{n}}$ at that point. This is the same as the compactly supported intersection cohomology of the normal slice $X_{\left|B_{1}\right|} \times \cdots \times X_{\left|B_{\ell}\right|}$ to $\dot{X}_{n}^{B} \subset X_{n}$. Since the quotient of \dot{X}_{n}^{B} by the maximal compact subtorus of T_{n} is homeomorphic to
the simply connected space $\operatorname{Conf}\left(\ell, \mathbb{R}^{3}\right)$, this local system is trivial. We therefore have a spectral sequence E with

$$
E_{2}^{p, q}=H_{T_{n}}^{p}\left(\dot{X}_{n}^{B} ; \mathbb{C}\right) \otimes I H_{c}^{q}\left(X_{\left|B_{1}\right|} \times \cdots \times X_{\left|B_{\ell}\right|} ; \mathbb{C}\right)
$$

that converges to $\mathbb{H}_{T_{n}}^{*}\left(\dot{X}_{n}^{B} ; \iota_{B}^{!} I C_{X_{n}}\right)$. Since these cohomology groups are concentrated in even degree, all differentials are zero, therefore

$$
\begin{aligned}
E_{\infty}=E_{2} & =H_{T_{n}}^{*}\left(\dot{X}_{n}^{B} ; \mathbb{C}\right) \otimes I H_{c}^{*}\left(X_{\left|B_{1}\right|} \times \cdots \times X_{\left|B_{\ell}\right|} ; \mathbb{C}\right) \\
& \left.\cong H^{*}\left(\operatorname{Conf}\left(\ell, \mathbb{R}^{3}\right) ; \mathbb{C}\right) \otimes H_{T_{n}^{B}}^{*} * ; \mathbb{C}\right) \otimes I H_{c}^{*}\left(X_{\left|B_{1}\right|} \times \cdots \times X_{\left|B_{\ell}\right|} ; \mathbb{C}\right) \\
& \cong C_{\ell} \otimes R_{\left|B_{1}\right|} \otimes \cdots \otimes R_{\left|B_{\ell}\right|} \otimes M_{\left|B_{1}\right|}^{c} \otimes \cdots \otimes M_{\left|B_{\ell}\right|}^{c} \\
& \cong C_{\ell} \otimes\left(M_{\left|B_{1}\right|}^{c} \otimes R_{\left|B_{1}\right|}\right) \otimes \cdots \otimes\left(M_{\left|B_{\ell}\right|}^{c} \otimes R_{\left|B_{\ell}\right|}\right) .
\end{aligned}
$$

Since the category of graded representations of S_{B} is semisimple, we have a (noncanonical) $S_{B^{-}}$ equivariant isomorphism of graded vector spaces $\mathbb{H}_{T_{n}}^{*}\left(\dot{X}_{n}^{B} ; \iota_{B}^{\prime} I C_{X_{n}}\right) \cong E_{\infty}$.

Proof of Theorem 3.2; There is a spectral sequence E with

$$
E_{1}^{p, q}=\bigoplus_{\substack{B_{1} \sqcup \ldots \cup B_{\ell}=[n] \\ \ell=n-p}} \mathbb{H}_{T_{n}}^{p+q}\left(\dot{X}_{n}^{B} ; \iota_{B}^{!} I C_{X_{n}}\right)
$$

that converges to $I H_{T_{n}}^{*}\left(X_{n} ; \mathbb{C}\right)$ BGS96, Section 3.4]. By Lemma 3.5, $E_{1}^{p, q}=0$ unless $p+q$ is even, thus

$$
\begin{aligned}
E_{\infty}=E_{1} & \cong \bigoplus_{B} \mathbb{H}_{T_{n}}^{*}\left(\dot{X}_{n}^{B} ; \iota_{B}^{\prime} I C_{X_{n}}\right) \\
& \cong \bigoplus_{B} C_{\ell} \otimes\left(M_{\left|B_{1}\right|}^{c} \otimes R_{\left|B_{1}\right|}\right) \otimes \cdots \otimes\left(M_{\left|B_{\ell}\right|}^{c} \otimes R_{\left|B_{\ell}\right|}\right) .
\end{aligned}
$$

As a representation of S_{n}, this is isomorphic to

$$
\bigoplus_{\lambda \vdash n} \operatorname{Ind}_{S_{\lambda}}^{S_{n}}\left(C_{\ell(\lambda)} \otimes\left(M_{\lambda_{1}}^{c} \otimes R_{\lambda_{1}}\right) \otimes \cdots \otimes\left(M_{\lambda_{\ell(\lambda)}}^{c} \otimes R_{\lambda_{\ell(\lambda)}}\right)\right) .
$$

Since the category of graded representations of S_{n} is semisimple, we have a (noncanonical) $S_{n^{-}}$ equivariant isomorphism of graded vector spaces $I H_{T_{n}}^{*}\left(X_{n} ; \mathbb{C}\right) \cong E_{\infty}$. The result now follows from Theorem 3.1,

3.3 Symmetric functions

In order to implement the recursive formula in Theorem 3.2 in SAGE, it is convenient to convert everything to the language of symmetric functions. Let Λ be the ring of symmetric functions in infinitely many variables with coefficients in the formal power series ring $\mathbb{Z}[[q]]$. If V is a graded representation of S_{n}, concentrated in even degree, with finite dimensional graded parts, then its
graded Frobenius characteristic ch V is an element of Λ of symmetric degree n; the coefficient of q^{i} is equal to the usual Frobenius characteristic of $V_{2 i}$. The Frobenius characteristic map is an isomorphism of vector spaces, thus it is sufficient to compute ch $O T_{n}$ and $\operatorname{ch} M_{n}$ for each n. More concretely, expressing M_{n} as an $\mathbb{N}[q]$-linear combination of irreducible representations is equivalent to expressing ch M_{n} as an $\mathbb{N}[q]$-linear combination of Schur functions.

We begin by analyzing a single summand from Theorem 3.2. The first piece that we need to understand better is $C_{\ell(\lambda)}$, which is acted on by the subgroup $W_{\lambda} \subset S_{\lambda}$. We want to decompose $C_{\ell(\lambda)}$ into irreducible representations for this subgroup:

$$
C_{\ell(\lambda)} \cong \bigoplus_{\substack{\left(\nu_{1}, \ldots, \nu_{n}\right) \\ \nu_{i} \gtrless m_{i}}} V_{\nu_{1}} \otimes \cdots \otimes V_{\nu_{n}} \otimes U\left(\nu_{1}, \ldots, \nu_{n}\right)
$$

where

$$
\begin{aligned}
U\left(\nu_{1}, \ldots, \nu_{n}\right) & :=\operatorname{Hom}_{W_{\lambda}}\left(V_{\nu_{1}} \otimes \cdots \otimes V_{\nu_{n}}, C_{\ell(\lambda)}\right) \\
& \cong \operatorname{Hom}_{S_{n}}\left(\operatorname{Ind}_{W_{\lambda}}^{S_{n}}\left(V_{\nu_{1}} \otimes \cdots \otimes V_{\nu_{n}}\right), C_{\ell(\lambda)}\right)
\end{aligned}
$$

is the graded vector space that records the graded multiplicity of $V_{\nu_{1}} \otimes \cdots \otimes V_{\nu_{n}}$ in $C_{\ell(\lambda)}$.
Let Y_{λ} denote the Young subgroup $\prod_{i=1}^{n} S_{i m_{i}}$, so that we have $S_{\lambda} \subset Y_{\lambda} \subset S_{n}$. We will break up our induction into two steps, first from S_{λ} to Y_{λ} and then from Y_{λ} to S_{n}. We have

$$
\begin{aligned}
& \operatorname{Ind}_{S_{\lambda}}^{S_{n}}\left(C_{\ell(\lambda)} \otimes\left(M_{\lambda_{1}}^{c} \otimes R_{\lambda_{1}}\right) \otimes \cdots \otimes\left(M_{\lambda_{\ell(\lambda)}}^{c} \otimes R_{\lambda_{\ell(\lambda)}}\right)\right) \\
\cong & \operatorname{Ind}_{Y_{\lambda}}^{S_{n}} \operatorname{Ind}_{S_{\lambda}}^{Y_{\lambda}}\left(C_{\ell(\lambda)} \otimes\left(M_{\lambda_{1}}^{c} \otimes R_{\lambda_{1}}\right) \otimes \cdots \otimes\left(M_{\lambda_{\ell(\lambda)}}^{c} \otimes R_{\lambda_{\ell(\lambda)}}\right)\right) \\
\cong & \bigoplus_{\substack{\left(\nu_{1}, \ldots, \nu_{n}\right) \\
\nu_{i} \vdash m_{i}}} U\left(\nu_{1}, \ldots, \nu_{n}\right) \otimes \operatorname{Ind}_{Y_{\lambda}}^{S_{n}}\left(\bigotimes_{i=1}^{n} \operatorname{Ind}_{S_{i} S S_{m_{i}}}^{S_{i m_{i}}}\left(V_{\nu_{i}} \otimes\left(M_{i}^{c} \otimes R_{i}\right)^{\otimes m_{i}}\right)\right) .
\end{aligned}
$$

The graded Frobenius characteristic map has the following properties Mac95, Sections I.7-8]:

- ch $V_{\nu}=s_{\nu}$ (irreducibles go to Schur functions)
- if $S_{n} \curvearrowright V$ and $S_{n} \curvearrowright V^{\prime}$, then $\operatorname{ch}\left(V \oplus V^{\prime}\right)=\operatorname{ch} V+\operatorname{ch} V^{\prime}$
- if $S_{n} \curvearrowright V$ and $S_{n} \curvearrowright V^{\prime}$, then $\operatorname{ch}\left(V \otimes V^{\prime}\right)=\operatorname{ch} V * \operatorname{ch} V^{\prime}$ (internal or "Kroneker" product)
- if $S_{n} \curvearrowright V$ and $S_{n} \curvearrowright V^{\prime}$, then $H\left(\operatorname{Hom}_{S_{n}}\left(V, V^{\prime}\right), q\right)=\left\langle\operatorname{ch} V, \operatorname{ch} V^{\prime}\right\rangle$ (inner product)
- if $S_{i} \curvearrowright V$ and $S_{j} \curvearrowright V^{\prime}$, then $\operatorname{ch} \operatorname{Ind}_{S_{i} \times S_{j}}^{S_{i+j}}\left(V \otimes V^{\prime}\right)=\operatorname{ch} V \cdot \operatorname{ch} V^{\prime}$ (ordinary product)
- if $S_{i} \curvearrowright V$ and $S_{j} \curvearrowright V^{\prime}$, then $\operatorname{ch} \operatorname{Ind}_{S_{i} l}^{S_{i j}} S_{j}\left(V^{\prime} \otimes V^{\otimes j}\right)=\operatorname{ch} V^{\prime}[\operatorname{ch} V]$ (plethysm).

The analysis that we have done in this section, combined with Theorem 3.2, gives us the following result.

Proposition 3.6. We have

$$
\operatorname{ch} O T_{n}=\sum_{\substack{\left(\nu_{1}, \ldots, \nu_{n}\right) \\ \sum i\left|\nu_{\nu}\right|=n}}\left\langle s_{\nu_{1}} \cdots s_{\nu_{n}}, \operatorname{ch} C_{\sum\left|\nu_{i}\right|}\right\rangle \prod_{i=1}^{n} s_{\nu_{i}}\left[\operatorname{ch} M_{i}^{c} * \operatorname{ch} R_{i}\right] .
$$

Recall that M_{i}^{c} is just M_{i} "backward", so ch M_{i}^{c} is obtained from ch M_{i} by replacing q with q^{-1} and multiplying by $q^{2(i-1)}$. Thus, in order to use Proposition 3.6 to compute ch $O T_{n}$ and ch M_{n} recursively, it remains only to find explicit formulas for $\operatorname{ch} C_{n}$ and $\operatorname{ch} R_{n}$. A formula for C_{n} is given by Hersh and Reiner [HR, Theorem 2.7], based on the work of Sundaram and Welker SW97, Theorem 4.4(iii)]. Let ζ_{n} be an irreducible 1-dimensional representation of the cyclic group $Z_{n} \subset S_{n}$ whose character takes a generator of Z_{n} to a primitive $n^{\text {th }}$ root of unity, and let $\ell_{n}:=\operatorname{ch}_{\operatorname{Ind}}^{Z_{n}} S_{n}\left(\zeta_{n}\right)$. Let h_{n} denote the complete homogeneous symmetric function of degree n. Then

$$
\begin{equation*}
\operatorname{ch} C_{n}=\sum_{\lambda \vdash n} q^{\sum(i-1) m_{i}} \prod_{i=1}^{n} h_{m_{i}}\left[\ell_{i}\right] . \tag{1}
\end{equation*}
$$

The description of ch R_{n} can be found in Pro03, Section 5.6]:

$$
\operatorname{ch} R_{n}=(1-q) \sum_{\lambda \vdash n} s_{\lambda}\left(1, q, q^{2}, \ldots\right) s_{\lambda} \text {. }
$$

References

[BGS96] Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), no. 2, 473-527.
[BP09] Tom Braden and Nicholas Proudfoot, The hypertoric intersection cohomology ring, Invent. Math. 177 (2009), no. 2, 337-379.
[CEF15] Thomas Church, Jordan S. Ellenberg, and Benson Farb, FI-modules and stability for representations of symmetric groups, Duke Math. J. 164 (2015), no. 9, 1833-1910.
[Chu12] Thomas Church, Homological stability for configuration spaces of manifolds, Invent. Math. 188 (2012), no. 2, 465-504.
[CLM76] Frederick R. Cohen, Thomas J. Lada, and J. Peter May, The homology of iterated loop spaces, Lecture Notes in Mathematics, Vol. 533, Springer-Verlag, Berlin-New York, 1976.
[DGT14] Graham Denham, Mehdi Garrousian, and Ştefan O. Tohǎneanu, Modular decomposition of the Orlik-Terao algebra, Ann. Comb. 18 (2014), no. 2, 289-312.
[EPW] Ben Elias, Nicholas Proudfoot, and Max Wakefield, The Kazhdan-Lusztig polynomial of a matroid, preprint.
[GS] Daniel R. Grayson and Michael E. Stillman, Macaulay2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/.
[HR] Patricia Hersh and Vic Reiner, Representation stability for cohomology of configuration spaces in \mathbb{R}^{d}, arXiv:1505.04196.
[Le14] Dinh Van Le, On the Gorensteinness of broken circuit complexes and Orlik-Terao ideals, J. Combin. Theory Ser. A 123 (2014), 169-185.
[Liu] Ricky Ini Liu, On the commutative quotient of Fomin-Kirillov algebras, arXiv:1409.4872.
[Mac95] I. G. Macdonald, Symmetric functions and Hall polynomials, second ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, With contributions by A. Zelevinsky, Oxford Science Publications.
[Mos] Daniel Moseley, Equivariant cohomology and the Varchenko-Gelfand filtration, arXiv:1110.5369.
[Mos12] Daniel Moseley, Group actions on hyperplane arrangements, ProQuest LLC, Ann Arbor, MI, 2012, Thesis (Ph.D.)-University of Oregon.
[MP15] Michael McBreen and Nicholas Proudfoot, Intersection cohomology and quantum cohomology of conical symplectic resolutions, Algebr. Geom. 2 (2015), no. 5, 623-641.
[OT94] Peter Orlik and Hiroaki Terao, Commutative algebras for arrangements, Nagoya Math. J. 134 (1994), 65-73.
[Pro03] Claudio Procesi, 2003, http://garsia.math.yorku.ca/ghana03/chapt2.pdf.
[Pro08] Nicholas Proudfoot, A survey of hypertoric geometry and topology, Toric Topology, Contemp. Math., vol. 460, Amer. Math. Soc., Providence, RI, 2008, pp. 323-338.
[PS06] Nicholas Proudfoot and David Speyer, A broken circuit ring, Beiträge Algebra Geom. 47 (2006), no. 1, 161-166.
[PW07] Nicholas Proudfoot and Ben Webster, Intersection cohomology of hypertoric varieties, J. Algebraic Geom. 16 (2007), no. 1, 39-63.
[$\left.\mathrm{S}^{+} 15\right]$ W.A. Stein et al., Sage Mathematics Software (Version 6.8), The Sage Development Team, 2015, http://www.sagemath.org.
[Sch11] Hal Schenck, Resonance varieties via blowups of \mathbb{P}^{2} and scrolls, Int. Math. Res. Not. IMRN (2011), no. 20, 4756-4778.
[SSV13] Raman Sanyal, Bernd Sturmfels, and Cynthia Vinzant, The entropic discriminant, Adv. Math. 244 (2013), 678-707.
[ST09] Hal Schenck and Ştefan O. Tohăneanu, The Orlik-Terao algebra and 2-formality, Math. Res. Lett. 16 (2009), no. 1, 171-182.
[SW97] Sheila Sundaram and Volkmar Welker, Group actions on arrangements of linear subspaces and applications to configuration spaces, Trans. Amer. Math. Soc. 349 (1997), no. 4, 1389-1420.
[Ter02] Hiroaki Terao, Algebras generated by reciprocals of linear forms, J. Algebra 250 (2002), no. 2, 549-558.
[VG87] A. N. Varchenko and I. M. Gel'fand, Heaviside functions of a configuration of hyperplanes, Funktsional. Anal. i Prilozhen. 21 (1987), no. 4, 1-18, 96.
[VLR13] Dinh Van Le and Tim Römer, Broken circuit complexes and hyperplane arrangements, J. Algebraic Combin. 38 (2013), no. 4, 989-1016.

[^0]: ${ }^{1}$ Supported by NSF grant DMS-0950383.

