ON THE COHOMOLOGY OF STOVER SURFACE

AMIR DŽAMBIĆ, XAVIER ROULLEAU

Abstract

We study a surface discovered by Stover which is the surface with minimal Euler number and maximal automorphism group among smooth arithmetic ball quotient surfaces. We study the natural map $\wedge^{2} H^{1}(S, \mathbb{C}) \rightarrow H^{2}(S, \mathbb{C})$ and we discuss the problem related to the so-called Lagrangian surfaces. We obtain that this surface S has maximal Picard number and has no higher genus fibrations. We compute that its Albanese variety A is isomorphic to $(\mathbb{C} / \mathbb{Z}[\alpha])^{7}$, for $\alpha=e^{2 i \pi / 3}$.

1. Introduction

By the recent work of M. Stover [14, the number of automorphisms of a smooth compact arithmetic ball quotient surface $X=\Gamma \backslash \mathbb{B}_{2}$ is bounded by $288 \cdot e(X)$, where $e(X)$ denotes the topological Euler number of X.
Furthermore, Stover characterizes the arithmetic ball quotient surfaces X whose automorphism groups attain this bound, which by analogy with Hurwitz curves, he calls Hurwitz ball quotients; all such surfaces are finite Galois coverings of the Deligne-Mostow orbifold $\Lambda \backslash \mathbb{B}_{2}$ corresponding to the quintuple $(2 / 12,2 / 12,2 / 12,7 / 12,11 / 12)$ (see [12, 14]).
Stover constructs also a Hurwitz ball quotient S with Euler number $e(S)=63$ and automorphism group $\operatorname{Aut}(S)$ isomorphic to $U_{3}(3) \times \mathbb{Z} / 3 \mathbb{Z}$, of order $18144=2^{5} 3^{4} 7$. He shows that S is the unique Hurwitz ball quotient with Euler number $e=63$, and moreover that $e=63$ is the minimal possible value for the Euler number of a Hurwitz ball quotient. Having this property the surface S can be seen as the 2-dimensional analog of the Klein's quartic which is the unique curve uniformized by the ball \mathbb{B}_{1} with minimal genus and maximal possible automorphism group.
Our aim is to study more closely the cohomology of this particular surface S, which we will call Stover surface in the following. This surface S has the following numerical invariants (see [14]):

$e(S)$	$H_{1}(S, \mathbb{Z})$	q	$p_{g}=h^{2,0}$	$h^{1,1}$	$b_{2}(S)$
63	\mathbb{Z}^{14}	7	27	35	89

Let V be a vector space. Let us recall that a 2-vector $w \in \wedge^{2} V$ has rank 1 or is decomposable if there are vectors $w_{1}, w_{2} \in V$ with $w=w_{1} \wedge w_{2}$. A vector $w \in \wedge^{2} V$ has rank 2 if there exist linearly independent vectors $w_{i} \in V, i=1, . ., 4$ such that $w=w_{1} \wedge w_{2}+w_{3} \wedge w_{4}$.

Let B be an Abelian fourfold and let $p: S \rightarrow B$ be a map such that $p(S)$ generates B. We say that S is Lagrangian with respect to p if there exists a basis w_{1}, \ldots, w_{4} of $p^{*} H^{0}\left(B, \Omega_{B}\right)$ such that the rank 2 vector $w=w_{1} \wedge w_{2}+w_{3} \wedge w_{4}$ is in the kernel of the natural map $\phi^{2,0}: \wedge^{2} H^{0}\left(S, \Omega_{S}\right) \rightarrow H^{0}\left(S, K_{S}\right)$.

Theorem 1. The surface S has maximal Picard number. The natural map

$$
\phi^{1,1}: H^{0}\left(S, \Omega_{S}\right) \otimes H^{1}\left(S, \mathcal{O}_{S}\right) \rightarrow H^{1}\left(S, \Omega_{S}\right)
$$

is surjective with a 14-dimensional kernel. The kernel of the map

$$
\phi^{2,0}: \wedge^{2} H^{0}\left(S, \Omega_{S}\right) \rightarrow H^{0}\left(S, K_{S}\right)
$$

is 7-dimensional and contains no decomposable elements. The set of rank 2 vectors in $\operatorname{Ker}\left(\phi^{2,0}\right)$ is a quadric hypersurface.
There exists an infinite number (up to isogeny) of maps $p: S \rightarrow B$ (where B is an Abelian fourfold) such that S is Lagrangian with respect to p.
The Albanese variety of S is isomorphic to $(\mathbb{C} / \mathbb{Z}[\alpha])^{7}$, for $\alpha=e^{2 i \pi / 3}$.
By the Castelnuovo - De Franchis Theorem, the fact that there are no decomposable elements in $\wedge^{2} H^{0}\left(S, \Omega_{S}\right)$ means that S has no fibration $f: S \rightarrow C$ onto a curve of genus $g>1$. Moreover Theorem 1 implies that S has the remarkable feature that both maps

$$
\begin{gathered}
\phi^{2,0}: \wedge^{2} H^{1,0}(S) \rightarrow H^{2,0}(S) \\
\phi^{1,1}: H^{1,0}(S) \otimes H^{0,1}(S) \rightarrow H^{1,1}(S)
\end{gathered}
$$

have a non-trivial kernel. With Schoen surfaces (see [10, Remark 2.6]), this is the second example of surfaces enjoying such properties. For more on this subject, see e.g. [1, 5, 2, 8, 8].

We obtain these results using Sullivan's theory on the second lower quotient of the fundamental group $\pi_{1}(S)$ of S (see [4]).

For the motivation and a historic account of surfaces with maximal Picard number we refer to [3].

Aknowledgements We are grateful to Marston Conder and Derek Holt for their help in the computations of Theorem 3.

2. The Second lower central quotient of the fundamental group of S

Let $\Pi:=\pi_{1}(X)$ be the fundamental group of a manifold X. The group $H_{1}(X, \mathbb{Z})$ is the abelianization of $\Pi: H_{1}(X, \mathbb{Z})=\Pi / \Delta$ where $\Delta:=[\Pi, \Pi]$ is the derived subgroup of Π, that is, the subgroup generated by all elements $[h, g]=g^{-1} h^{-1} g h, h, g \in \Pi$.
The second group in the lower central series $[\Delta, \Pi]$ is the group generated by commutators $[h, g]$, with $h \in \Delta, g \in \Pi$. It is a normal subgroup of the commutator group Δ. According to [4], we have the following results:

Proposition 2. (Sullivan) Let X be a compact connected Kähler manifold. There exists an exact sequence

$$
0 \rightarrow \operatorname{Hom}(\Delta /[\Delta, \Pi], \mathbb{R}) \rightarrow \wedge^{2} H^{1}(X, \mathbb{R}) \rightarrow H^{2}(X, \mathbb{R})
$$

(Beauville) Suppose $H_{1}(X, \mathbb{Z})$ is torsion free. Then the group $\Delta /[\Delta, \Pi]$ is canonically isomorphic to the cokernel of the map

$$
\mu: H_{2}(X, \mathbb{Z}) \rightarrow \operatorname{Alt}^{2}\left(H^{1}(X, \mathbb{Z})\right) \text { given by } \mu(\sigma)(a, b)=\sigma \cap(a \wedge b)
$$

where $A l t^{2}\left(H^{1}(X, \mathbb{Z})\right)$ is the group of skew-symmetric integral bilinear forms on $H^{1}(X, \mathbb{Z})$.
In the case of the Stover surface, computer calculations give us the following result:
Theorem 3. Let $\Pi=\pi_{1}(S)$ be the fundamental group of the Stover surface and $\Delta=[\Pi, \Pi]$. The group $\Delta /[\Delta, \Pi]$ is isomorphic to $\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z}^{28}$.

Proof. By the construction of S [14], the fundamental group Π is isomorphic to the kernel $\operatorname{ker}(\varphi)$ of the unique epimorphism $\varphi: \Lambda \longrightarrow G$ from the Deligne-Mostow lattice Λ corresponding to the quintuple $(2 / 12,2 / 12,2 / 12,7 / 12,11 / 12)$ onto the finite group $G=U_{3}(3) \times \mathbb{Z} / 3 \mathbb{Z}$. The lattice Λ is described by Mostow in [12] as a complex reflection group, and by generators and relation by Cartwright and Steger in [7]. This lattice has presentation

$$
\Lambda=\left\langle j, u, v, b \mid u^{4}, v^{8},[u, j],[v, j], j^{-3} v^{2}, u v u v^{-1} u v^{-1},(b j)^{2}\left(v u^{2}\right)^{-1},\left[b, v u^{2}\right], b^{3},\left(b v u^{3}\right)^{3}\right\rangle
$$

MAGMA command LowIndexSubgroups is used to identify the unique subgroup $\Gamma \triangleleft \Lambda$ of index 3 , which is $\Gamma=\langle u, j b, b j\rangle$. Using the primitive permutation representation of $U_{3}(3)$ of degree 28 , MAGMA is able to identify an homomorphism φ from Γ onto $U_{3}(3)$ induced from the assignment

$$
\begin{aligned}
u & \mapsto(3,8,23,20)(4,24,6,12)(7,9,14,22)(10,19,11,13)(15,16,21,18)(17,26,27,25) \\
j b & \mapsto(1,9,20,12,19,23,6,16)(2,27,14,17,13,26,15,25)(3,24)(4,5,10,21,7,11,28,8) \\
b j & \mapsto(1,13,20,15,19,2,6,14)(4,9,10,12,7,23,28,16)(5,27,21,17,11,26,8,25)(22,24) .
\end{aligned}
$$

This homomorphism extends to an homomorphism φ from Λ onto G such that $\Pi=\operatorname{ker}(\varphi)$ is a torsion-free normal subgroup in Λ, it is the fundamental group of S (see [14). Let be $\Delta=[\Pi, \Pi]$ and $\Delta_{2}=[\Delta, \Pi]$. It is easy to check that that Δ_{2} is distinguished into Π. The image of Δ under the quotient map $\Pi \longrightarrow \Pi / \Delta_{2}$ is Δ / Δ_{2}, but we observe that it is also equal the commutator subgroup $\left[\Pi / \Delta_{2}, \Pi / \Delta_{2}\right]$, and therefore, the computation of Δ / Δ_{2} is reduced to the one of the derived group $\left[\Pi / \Delta_{2}, \Pi / \Delta_{2}\right]$.
The MAGMA command $\mathrm{g}:=\operatorname{Rewrite}(\mathrm{G}, \mathrm{g})$ is used to have generators and relations of both subgroups $\Gamma<\Lambda$ and $\Pi<\Gamma$. The command NilpotentQuotient (.,2) applied to Π describes Π / Δ_{2} in terms of a polycyclic presentation. The derived subgroup $\left[\Pi / \Delta_{2}, \Pi / \Delta_{2}\right]$ is obtained with DerivedGroup (.) applied to Π / Δ_{2}. Finally, applying the MAGMA function AQInvariants to $\left[\Pi / \Delta_{2}, \Pi / \Delta_{2}\right]$, MAGMA computes that the structure of Δ / Δ_{2} is $\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z}^{28}$ 。

Corollary 4. The dimension of the kernel of $\wedge^{2} H^{1}(S, \mathbb{R}) \rightarrow H^{2}(S, \mathbb{R})$ is 28.

$$
\text { 3. Computation of the map } \wedge^{2} H^{1}(S, \mathbb{C}) \rightarrow H^{2}(S, \mathbb{C})
$$

Let A be the Albanese variety of the Stover surface S. The invariants are:

$$
\begin{gathered}
H_{1}(A, \mathbb{Z})=H_{1}(S, \mathbb{Z})=\mathbb{Z}^{14}, H_{2}(A, \mathbb{Z})=\wedge^{2} H_{1}(A, \mathbb{Z}), H^{2,0}(A)=\wedge^{2} H^{1,0}(S) \\
\\
H^{1,1}(A)=H^{1,0}(S) \otimes H^{0,1}(S), H^{0,2}(A)=\wedge^{2} H^{0,1}(S)
\end{gathered}
$$

and

$H_{1}(A, \mathbb{Z})$	q	$h^{2,0}(A)$	$h^{1,1}(A)$	$b_{2}(A)$
\mathbb{Z}^{14}	7	21	49	91

We have a map respecting Hodge decomposition

$$
\begin{gathered}
H^{2,0}(A) \oplus H^{1,1}(A) \oplus H^{0,2}(A) \\
\downarrow \\
\downarrow \\
H^{2,0}(S) \oplus H^{1,1}(S) \oplus H^{0,2}(S)
\end{gathered}
$$

which is an equivariant map of $\operatorname{Aut}(S)$-modules. By Corollary 4 the kernel of that map is 28 dimensional ; it is moreover a $\operatorname{Aut}(S)$-module.

According to the Atlas tables [11, the group $U_{3}(3)$ has 14 irreducible representations $\chi_{i}, 1 \leq i \leq 14$ of respective dimension $1,6,7,7,7,14,21,21,21,27,28,28,32,32$.

The irreducible representations of $\operatorname{Aut}(S)=U_{3}(3) \times \mathbb{Z} / 3 \mathbb{Z}$ are the $\chi_{i}^{t}, i=1, \ldots, 14, t=$ $0,1,2$ where $(g, s) \in U_{3}(3) \times \mathbb{Z} / 3 \mathbb{Z}$ acts on the same space as χ_{i} with action $(g, s) \cdot v=\alpha^{s} g(v)$ with $\alpha=e^{2 i \pi / 3}$ a primitive third root of unity.

Theorem 5. The image of S by the Albanese map $\vartheta: S \rightarrow A$ is 2-dimensional.
The map $H^{1,1}(A) \rightarrow H^{1,1}(S)$ is surjective, with a 14 dimensional kernel isomorphic to χ_{6}^{0} as an $\operatorname{Aut}(S)$-module. We have $H^{1}(S, \mathbb{Z})=\chi_{3}^{1} \oplus \chi_{3}^{2}$ and $H^{1,1}(S)=\chi_{1}^{0} \oplus \chi_{3}^{0} \oplus \chi_{10}^{0}$, as $\operatorname{Aut}(S)$ modules.
The kernel of the natural map $\wedge^{2} H^{0}\left(S, \Omega_{S}\right) \rightarrow H^{0}\left(S, K_{S}\right)$ is 7-dimensional, isomorphic to χ_{3}^{0} as a $\operatorname{Aut}(S)$-module.
The surface S has maximal Picard number.
The Albanese variety A of S is isomorphic to $(\mathbb{C} / \mathbb{Z}[\alpha])^{7}$, for $\alpha=e^{2 i \pi / 3}$.

Since A is CM, it follows that S is Albanese standard, that is, the class of its image inside its Albanese variety A sits in the subring of $H^{*}(A, \mathbb{Q})$ generated by the divisor classes. That contrasts with the above mentioned Schoen surfaces, see [10].

Proof. Suppose that the image of S in A is 1-dimensional. Then there exists a smooth curve C of genus 7 with a fibration $f: S \rightarrow C$ and the map $\wedge^{2} H^{0}\left(S, \Omega_{S}\right) \rightarrow H^{0}\left(S, K_{S}\right)$ is the 0 map and the kernel of $\wedge^{2} H^{1}(S, \mathbb{C}) \rightarrow H^{2}(S, \mathbb{C})$ is at least 42 dimensional, which is impossible. Thus the image of S by the Albanese map $\vartheta: S \rightarrow A$ is 2-dimensional.

According to the Atlas character table [11], the possibilities for the $U_{3}(3)$-module $H_{1}(S, \mathbb{Z})=$ $H_{1}(A, \mathbb{Z})=\mathbb{Z}^{14}$ are:

$$
\chi_{3}^{\oplus 2}, \mathcal{R}_{\mathbb{Z}}\left(\chi_{4}\right)=\mathcal{R}_{\mathbb{Z}}\left(\chi_{5}\right)=\chi_{4} \oplus \chi_{5}, \chi_{4}^{\oplus 2}, \chi_{5}^{\oplus 2} \text { or } \chi_{6}
$$

where $\mathcal{R}_{\mathbb{Z}}\left(\chi_{j}\right)$ is the restriction to \mathbb{Z} of the 7 -dimensional complex representation χ_{j} defined over $\mathbb{Z}[i]$. It cannot be $\chi_{4}^{\oplus 2}$ nor $\chi_{5}^{\oplus 2}$ because these are not is not defined over \mathbb{Z} (some traces of elements are in $\mathbb{Z}[i] \backslash \mathbb{Z})$. We cannot have $H^{1}(S, \mathbb{Z})=\chi_{6}$ since χ_{6} remains irreducible, but $H^{1}(S, \mathbb{Z}) \otimes \mathbb{C}=H^{1,0} \oplus H^{0,1}$ is a Hodge decomposition on which the representation of $U_{3}(3)$ splits.

By duality, the kernel of $H^{2,0}(A) \rightarrow H^{2,0}(S)$ has same dimension d as the kernel of $H^{0,2}(A) \rightarrow H^{0,2}(S)$. Let k be the dimension of the kernel of the $U_{3}(3)$-equivariant map $H^{1,1}(A) \rightarrow H^{1,1}(S)$. We have $28=k+2 d$, moreover since $h^{1,1}(S)=35$ and $h^{1,1}(A)=49$, we get $28 \geq k \geq 14$.

Let us suppose that $H^{1}(S, \mathbb{Z})=\chi_{4} \oplus \chi_{5}$. Then the representation $H^{1,1}(A)$ equals to $\chi_{4} \otimes \chi_{5}=\chi_{1}+\chi_{7}+\chi_{10}$ (of dimension $1+21+27$). An Abelian variety on which a finite group G acts possesses a G-invariant polarization (for example $\sum_{g \in G} g^{*} L$, where L is some polarization). Therefore the one dimensional Aut (S)-invariant space of $H^{1,1}(A)$ is generated by the class of an ample divisor and the natural map $\vartheta^{*}: H^{1,1}(A) \rightarrow H^{1,1}(S)$ is injective on that subspace. Therefore the map ϑ^{*} has a kernel of dimension $k=21,27$ or 48 . This is impossible because $k+2 d$ equals 28 .

Hence, we have $H^{1}(S, \mathbb{Z})=\chi_{3}^{\oplus 2}$ and moreover

$$
H^{2,0}(A)=\wedge^{2} \chi_{3}=\chi_{3} \oplus \chi_{6}
$$

(the dimensions are $21=7+14$) and

$$
H^{1,1}(A)=\chi_{3}^{\otimes 2}=\chi_{1} \oplus \chi_{3} \oplus \chi_{6} \oplus \chi_{10}
$$

$(49=1+7+14+27)$. By checking the possibilities, we obtain $k=14, H^{1,1}(S)=\chi_{1} \oplus \chi_{3} \oplus \chi_{10}$, and the map $H^{1,1}(A) \rightarrow H^{1,1}(S)$ is surjective. The kernel of the map $H^{2,0}(A) \rightarrow H^{2,0}(S)$ is isomorphic to χ_{3}, of dimension 7 , the action of $U_{3}(3)$ on $H^{2,0}(S)$ is then $H^{2,0}(S)=\chi_{6} \oplus \chi$, where χ is a 13 dimensional representation.

Let $\sigma \in \operatorname{Aut}(S)=U_{3}(3) \times \mathbb{Z} / 3 \mathbb{Z}$ be the order 3 automorphism commuting with every other element. It corresponds to an element $\sigma^{\prime} \in \Lambda$ normalizing Π in Λ and such that the group Π^{\prime} generated by Π and σ^{\prime} contains Π with index 3 . Using MAGMA, one find that we can choose $\sigma^{\prime}=j^{4}$, where j is the order 12 element described in the proof of Theorem 3]
The quotient surface S / σ of S by σ is equal to $\mathbb{B}_{2} / \Pi^{\prime}$. The fundamental group of S^{\prime} is $\Pi^{\prime} / \Pi_{\text {tors }}^{\prime}$ where $\Pi_{\text {tors }}^{\prime}$ is the subgroup of Π^{\prime} generated by torsion elements. Using MAGMA, one find that Π^{\prime} has a set of 8 generators with 7 of them which are torsion elements. Using these elements, we readily compute that $\Pi^{\prime} / \Pi_{\text {tors }}^{\prime}$ is trivial. Therefore the space of one-forms on S that are invariant by σ is 0 . Using the symmetries of $U_{3}(3)$, one see that σ acts on the tangent space $H^{0}\left(S, \Omega_{S}\right)^{*}$ as the multiplication by α or α^{2}. After possible permutation of σ and σ^{2}, we can suppose it is α.

We see that the representation of $\operatorname{Aut}(S)$ on $H_{1}(S, \mathbb{Z})$ is $\chi_{3}^{1} \oplus \chi_{3}^{2}$. The lattice $H_{1}(S, \mathbb{Z}) \subset$ $H^{0}\left(S, \Omega_{S}\right)^{*}$ is moreover a $\mathbb{Z}[\alpha]$-module. The ring $\mathbb{Z}[\alpha]$ is a principal ideal domain, therefore $H_{1}(S, \mathbb{Z})=\mathbb{Z}[\alpha]^{7}$ (for the choice of a certain basis) and A is isomorphic to $(\mathbb{C} / \mathbb{Z}[\alpha])^{7}$.

Therefore A has maximal Picard number and all the classes of $H^{1,1}(A)$ are algebraic. These classes remain of course algebraic under the map $H^{1,1}(A) \rightarrow H^{1,1}(S)$, which is surjective. Thus S is a surface with maximal Picard number.

4. Lagrangian surfaces and Stover surface

Let B be an Abelian fourfold and let $p: S \rightarrow B$ be a map such that $p(S)$ generates B. Let us recall that S is Lagrangian with respect to p if there exists a basis w_{1}, \ldots, w_{4} of $p^{*} H^{0}\left(B, \Omega_{B}\right)$ such that the rank 2 vector $w=w_{1} \wedge w_{2}+w_{3} \wedge w_{4}$ is in the kernel of the natural map $\phi^{2,0}: \wedge^{2} H^{0}\left(S, \Omega_{S}\right) \rightarrow H^{0}\left(S, K_{S}\right)$. Let us now prove
Theorem 6. The 7 dimensional space $\operatorname{Ker}\left(\phi^{2,0}\right)$ contains no decomposable elements. The algebraic set of rank 2 vectors in $\operatorname{Ker}\left(\phi^{2,0}\right)$ is a quadric $\tilde{Q} \subset \operatorname{Ker}\left(\phi^{2,0}\right)$.
There exists an infinite number (up to isogeny) of maps $p: S \rightarrow B$ where B is an Abelian fourfold such that S is Lagrangian with respect to p.
There exists an infinite number (up to isogeny) of maps $p: S \rightarrow B$ where B is an Abelian fourfold such that

$$
\tilde{Q} \cap p^{*} H^{0}\left(B, \wedge^{2} \Omega_{B}\right)=\{0\}
$$

and for some of them we even have $\operatorname{Ker}\left(\phi^{2,0}\right) \cap p^{*} H^{0}\left(B, \wedge^{2} \Omega_{B}\right)=\{0\}$.
The generic rank 2 element w in $\tilde{Q} \subset \operatorname{Ker}\left(\phi^{2,0}\right)$ does not correspond to any morphism to an Abelian fourfold.

Proof. We proved in Theorem 5 that

$$
H^{2,0}(A)=\wedge^{2} \chi_{3}=\chi_{3} \oplus \chi_{6}
$$

and the kernel of $\phi^{2,0}: H^{2,0}(A) \rightarrow H^{2,0}(S)$ is the 7-dimensional subspace with representation χ_{3}. In a basis $\gamma=\left(e_{1}, \ldots, e_{7}\right)$ of $\chi_{3}=H^{0}\left(S, \Omega_{S}\right)=H^{1,0}(S)$, the two following matrices A, B are generators of the group $U_{3}(3)$:

$$
A=\left(\begin{array}{ccccccc}
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right), B=\left(\begin{array}{ccccccc}
0 & -1 & 0 & 0 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1
\end{array}\right) .
$$

Using the basis $\beta=\left(e_{i j}\right)_{1 \leq i<j \leq 7}$ of $\wedge^{2} \chi_{3}\left(e_{i j}=e_{i} \wedge e_{j}\right)$ with order $e_{i j} \leq e_{s t}$ if $i<s$ or $i=s$ and $j \leq t$, one computes that the subspace $\operatorname{Ker}\left(\phi^{2,0}\right)=\chi_{3} \subset \wedge^{2} \chi_{3}$ is generated by the columns of the matrix $M \in M_{21,7}$, where ${ }^{t} M=\left(N, 2 I_{7}\right)$, for

$$
N=\left(\begin{array}{cccccccccccccc}
0 & 0 & 2 & -2 & -2 & -2 & 0 & 2 & 2 & -2 & 2 & 2 & 2 & 2 \\
-1 & 0 & 0 & 2 & 4 & 0 & 1 & -3 & -3 & 1 & -3 & -4 & -2 & -4 \\
0 & -2 & 0 & -2 & -2 & 0 & -2 & 2 & 2 & 0 & 0 & 2 & 2 & 2 \\
-1 & -2 & 2 & 0 & -2 & 0 & -1 & 1 & 3 & 1 & 1 & 0 & 0 & 2 \\
-1 & 1 & -1 & 3 & 1 & 3 & 0 & -4 & -2 & 2 & 0 & -4 & -2 & -2 \\
0 & 3 & -3 & 1 & -1 & 1 & 1 & -3 & -3 & -1 & 1 & 0 & -2 & -2 \\
1 & 1 & 1 & 3 & 3 & 1 & 2 & -2 & 0 & 0 & 0 & -2 & 0 & -2
\end{array}\right) \in M_{7,14}
$$

and I_{7} the 7×7 identity matrix. Knowing that, we obtain the ideal I_{V} of the algebraic set V of couples $\left(w_{1}, w_{2}\right) \in \chi_{3} \oplus \chi_{3}$ such that $w_{1} \wedge w_{2} \in \operatorname{Ker}\left(\phi^{2,0}\right) \subset \wedge^{2} \chi_{3}$. That ideal is generated by 14 homogeneous quadratic polynomials in the variables x_{1}, \ldots, x_{14}. Let W be
the algebraic set of couples $\left(w_{1}, w_{2}\right) \in \chi_{3} \oplus \chi_{3}$ such that $w_{1} \wedge w_{2}=0 \in \wedge^{2} \chi_{3}$. The ideal I_{W} of W is generated by the 2 by 2 minors of the matrix

$$
L=\left(\begin{array}{ccc}
x_{1} & \ldots & x_{7} \\
x_{8} & \ldots & x_{14}
\end{array}\right)
$$

Since $W \subset V$, we have $\operatorname{Rad}\left(I_{V}\right) \subset \operatorname{Rad}\left(I_{W}\right)$ where $\operatorname{Rad}(I)$ is the radical of an ideal I. On the other hand, using Maple, one can check that the 21 minors of L are in $\operatorname{Rad}\left(I_{V}\right)$, hence $\operatorname{Rad}\left(I_{W}\right) \subset \operatorname{Rad}\left(I_{V}\right)$, thus $V=W$.
We therefore conclude that the kernel of $\phi^{2,0}$ contains no decomposable elements.
A 2 -vector w over a characteristic 0 field can be expressed uniquely as $w=\sum_{i, j} a_{i j} e_{i} \wedge e_{j}$ where $a_{i j}=-a_{j i}$. The rank of the vector w is half the rank of the (skew-symmetric) coefficient matrix $A_{w}:=\left(a_{i j}\right)_{1 \leq i, j \leq 7}$ of w [6, Thm 1.7\& Remark p. 13]. Thus the 2-vector $w=a_{1} v_{1}+\cdots+a_{7} v_{7}$ in $\operatorname{Ker}\left(\phi^{2,0}\right)$ (where the $v_{i}, i=1 . .7$ are the vectors corresponding to the columns of the matrix M) is a rank 2 vector if and only if the 496×6 minors of the matrix A_{w} are 0 . The radical of the ideal generated by these minors is principal, generated by a homogeneous quadric in a_{1}, \ldots, a_{7} whose associated symmetric matrix is

$$
Q=\left(\begin{array}{ccccccc}
7 & 3 & 3 & 1 & -3 & -3 & -5 \\
3 & 7 & 3 & 3 & 1 & -3 & -3 \\
3 & 3 & 7 & 3 & 3 & 1 & -3 \\
1 & 3 & 3 & 7 & 3 & 3 & 1 \\
-3 & 1 & 3 & 3 & 7 & 3 & 3 \\
-3 & -3 & 1 & 3 & 3 & 7 & 3 \\
-5 & -3 & -3 & 1 & 3 & 3 & 7
\end{array}\right)
$$

Therefore $w \in \operatorname{Ker}\left(\phi^{2,0}\right)$ has rank 2 if and only if $\left(a_{1}, \ldots, a_{7}\right) Q^{t}\left(a_{1}, \ldots, a_{7}\right)=0$.
The point $(10+8 \alpha,-7,0,0,7,0,0)$ lies on the associated smooth quadric \tilde{Q}, therefore $\tilde{Q}(\mathbb{Q}[\alpha])$ is infinite. Let be w be a 2 -vector in $\tilde{Q}(\mathbb{Q}[\alpha])$. The decomposable vector $\wedge^{2} w \neq 0$ has coordinates in $\mathbb{Q}[\alpha]$ in the basis $\left(e_{i 1} \wedge . \cdots \wedge e_{i 4}\right)$ of $\wedge^{4} H^{0}\left(S, \Omega_{S}\right)$. The corresponding 4dimensional vector space W is therefore generated by 4 vectors w_{1}, \ldots, w_{4} with coordinates over $\mathbb{Q}[\alpha]$ in the basis $\gamma=\left(e_{1}, \ldots, e_{7}\right)$ of $H^{0}\left(S, \Omega_{S}\right)$.
One computes that the image of $\mathbb{Q}[\alpha]\left[U_{3}(3) \times \mathbb{Z} / 3 \mathbb{Z}\right]$ in $M_{7}(\mathbb{Q}[\alpha])$ is 49 dimensional over $\mathbb{Q}[\alpha]$, thus

$$
\mathbb{Q}\left[U_{3}(3) \times \mathbb{Z} / 3 \mathbb{Z}\right]=M_{7}(\mathbb{Q}(\alpha))(=\operatorname{End}(A) \otimes \mathbb{Q})
$$

in the basis $\gamma,\left(H_{1}(S, \mathbb{Q}[\alpha])\right.$ is the $\mathbb{Q}[\alpha]$-vector space generated by $\left.e_{1}, \ldots, e_{k}\right)$ and therefore there exists a morphism $p: S \rightarrow E^{4}=B$ (where $\left.E=\mathbb{C} / \mathbb{Z}[\alpha]\right)$ such that $W=p^{*} H^{0}\left(B, \Omega_{B}\right)$. By hypothesis the image $p(S)$ generates B. By construction

$$
\wedge^{2} p^{*} H^{0}\left(B, \Omega_{B}\right) \cap \operatorname{Ker}\left(\phi^{2,0}\right)
$$

is at least one dimensional since it contains w, and therefore S is Lagrangian for p.
A contrario, the trace of an order 2 automorphism $\sigma \in \operatorname{Aut}(S) \subset \operatorname{Aut}(A)$ acting on the tangent space of A at 0 equals to -1 , therefore the image B^{\prime} of the endomorphism $p: \sigma-1_{A}$, where 1_{A} is the identity of A is an Abelian fourfold. Using Maple, one computes that

$$
\wedge^{2} p^{*} H^{0}\left(B, \Omega_{B}\right) \cap \operatorname{Ker}(f)=\{0\}
$$

Let $\vartheta: S \rightarrow A$ be the Albanese map of S, and let $q: A \rightarrow A$ be an endomorphism with a 4 dimensional image and a representation in $M_{7}(\mathbb{Q}) \subset M_{7}(\mathbb{Q}(\alpha))$ in the basis γ. Since the matrix Q is positive definite, we have

$$
\wedge^{2} p^{*} H^{0}\left(B, \Omega_{B}\right) \cap \tilde{Q}=\{0\}
$$

where p is the map $p=q \circ \vartheta: S \rightarrow B$. Therefore S is not Lagrangian with respect to p.

Remark 7. Let X be a surface and let $\phi^{2,0}: \wedge^{2} H^{0}\left(X, \Omega_{X}\right) \rightarrow H^{0}\left(X, K_{X}\right)$ be the natural map. Let be $d=\operatorname{dim} \operatorname{Ker}\left(\phi^{2,0}\right)$ and $q=\operatorname{dim} H^{0}\left(X, \Omega_{X}\right)$. In the proof of Theorem 6, we saw that the set of rank k vectors in $\operatorname{Ker}\left(\phi^{2,0}\right)$ is a determinantal variety: the intersection of minors of size $\geq 2 k+1$ of some anti-symmetric matrix of size $q \times q$ with linear entries in d variables. It seems to the authors quite remarkable that for Stover's surface the set of rank 2 vectors (obtained as the zero set of 496×6 minors of a size $q=7$ matrix) is an hypersurface in $\operatorname{Ker}\left(\phi^{2,0}\right)$. That hypersurface is the only $U_{3}(3)$-invariant quadric of $U_{3}(3)$ acting on $\operatorname{Ker}\left(\phi^{2,0}\right)$.

References

[1] Barja M.A., Naranjo J.C., Pirola G.P., On the topological index of irregular surfaces, J. Algebraic Geom. 16 (2007), no. 3, 435-458.
[2] Bastianelli F., Pirola G.P., Stoppino L., Galois closure and Lagrangian varieties, Advances in Math., 225 (2010), 3463-3501.
[3] Beauville A., Some surfaces with maximal Picard number, Journal de l'École Polytechnique 1 (2014), 101-116.
[4] Beauville A., On the second lower quotient of the fundamental group of a compact Kahler manifold, ArXiv, to appear in "Algebraic and Complex Geometry" in honor of K. Hulek (Springer).
[5] Bogomolov F., Tschinkel Y., Lagrangian subvarieties of abelian fourfolds, Asian J. Math. 4 (2000), no. 1, 19-36.
[6] Bryant R.L., Chern S.S., Gardner R.B., Goldschmidt H.H., Griffiths P.A. Exterior differential systems, (Mathematical Sciences Research Institute publications, 18), Springer-Verlag (1991).
[7] Cartwright D., Steger T., Enumeration of the 50 fake projective planes, Comptes Rendus Mathematique 348 (1): 11-13, doi:10.1016/j.crma.2009.11.016
[8] Campana, F. Remarques sur les groupes de Kähler nilpotents, Ann. Sci. École Norm. Sup. (4) 28 (1995), no. 3, 307-316.
[9] Causin A, Pirola G.P., Hermitian matrices and cohomology of Kähler varieties, Manuscripta Math. 121 (2006), no. 2, 157-168.
[10] Ciliberto C., Mendes Lopes M., Roulleau X., On Schoen surfaces, to appear in Comment. Math. Helvet.
[11] Conway, J., Curtis R., Parker R., Norton S., Wilson R., Atlas of finite groups. Oxford University Press, 1985.
[12] Mostow G.D., On a remarkable class of polyhedra in complex hyperbolic space, Pacific J. Math., 86(1) 1980, 171-276.
[13] Schoen C., Albanese standard and Albanese Exotic varieties, J. of London Math. Soc. (2) 74 (2006) 304-320.
[14] Stover M., Hurwitz ball quotients, Math. Z. 277 (2014), no. 1-2, 75-91
Amir Džambić,
Johann Wolfgang Goethe Universität, Institut für Mathematik,
Robert-Mayer-Str. 6-8, 60325 Frankfurt am Main,
Germany
dzambic@math.uni-frankfurt.de

Xavier Roulleau,
Laboratoire de Mathématiques et Applications, Université de Poitiers, Téléport 2 - BP 30179-86962 Futuroscope Chasseneuil
France
roulleau@math.univ-poitiers.fr

