ON THE COHOMOLOGY OF STOVER SURFACE

AMIR DŽAMBIĆ, XAVIER ROULLEAU

ABSTRACT. We study a surface discovered by Stover which is the surface with minimal Euler number and maximal automorphism group among smooth arithmetic ball quotient surfaces. We study the natural map $\wedge^2 H^1(S,\mathbb{C}) \to H^2(S,\mathbb{C})$ and we discuss the problem related to the so-called Lagrangian surfaces. We obtain that this surface S has maximal Picard number and has no higher genus fibrations. We compute that its Albanese variety S is isomorphic to $(\mathbb{C}/\mathbb{Z}[\alpha])^7$, for S is isomorphic to S is isomorphic.

1. Introduction

By the recent work of M. Stover [14], the number of automorphisms of a smooth compact arithmetic ball quotient surface $X = \Gamma \backslash \mathbb{B}_2$ is bounded by $288 \cdot e(X)$, where e(X) denotes the topological Euler number of X.

Furthermore, Stover characterizes the arithmetic ball quotient surfaces X whose automorphism groups attain this bound, which by analogy with Hurwitz curves, he calls $Hurwitz\ ball\ quotients$; all such surfaces are finite Galois coverings of the Deligne-Mostow orbifold $\Lambda\backslash\mathbb{B}_2$ corresponding to the quintuple (2/12,2/12,2/12,7/12,11/12) (see [12, 14]).

Stover constructs also a Hurwitz ball quotient S with Euler number e(S)=63 and automorphism group $\operatorname{Aut}(S)$ isomorphic to $U_3(3)\times\mathbb{Z}/3\mathbb{Z}$, of order $18144=2^53^47$. He shows that S is the unique Hurwitz ball quotient with Euler number e=63, and moreover that e=63 is the minimal possible value for the Euler number of a Hurwitz ball quotient. Having this property the surface S can be seen as the 2-dimensional analog of the Klein's quartic which is the unique curve uniformized by the ball \mathbb{B}_1 with minimal genus and maximal possible automorphism group.

Our aim is to study more closely the cohomology of this particular surface S, which we will call *Stover surface* in the following. This surface S has the following numerical invariants (see [14]):

e(S)	$H_1(S,\mathbb{Z})$	q	$p_g = h^{2,0}$	$h^{1,1}$	$b_2(S)$
63	\mathbb{Z}^{14}	7	27	35	89

Let V be a vector space. Let us recall that a 2-vector $w \in \wedge^2 V$ has $rank\ 1$ or is decomposable if there are vectors $w_1, w_2 \in V$ with $w = w_1 \wedge w_2$. A vector $w \in \wedge^2 V$ has $rank\ 2$ if there exist linearly independent vectors $w_i \in V$, i = 1, ..., 4 such that $w = w_1 \wedge w_2 + w_3 \wedge w_4$.

Let B be an Abelian fourfold and let $p: S \to B$ be a map such that p(S) generates B. We say that S is Lagrangian with respect to p if there exists a basis w_1, \ldots, w_4 of $p^*H^0(B, \Omega_B)$ such that the rank 2 vector $w = w_1 \wedge w_2 + w_3 \wedge w_4$ is in the kernel of the natural map $\phi^{2,0}: \wedge^2 H^0(S,\Omega_S) \to H^0(S,K_S)$.

Theorem 1. The surface S has maximal Picard number. The natural map

$$\phi^{1,1}: H^0(S,\Omega_S) \otimes H^1(S,\mathcal{O}_S) \to H^1(S,\Omega_S)$$

is surjective with a 14-dimensional kernel. The kernel of the map

$$\phi^{2,0}: \wedge^2 H^0(S,\Omega_S) \to H^0(S,K_S)$$

is 7-dimensional and contains no decomposable elements. The set of rank 2 vectors in $Ker(\phi^{2,0})$ is a quadric hypersurface.

There exists an infinite number (up to isogeny) of maps $p: S \to B$ (where B is an Abelian fourfold) such that S is Lagrangian with respect to p.

The Albanese variety of S is isomorphic to $(\mathbb{C}/\mathbb{Z}[\alpha])^7$, for $\alpha = e^{2i\pi/3}$.

By the Castelnuovo - De Franchis Theorem, the fact that there are no decomposable elements in $\wedge^2 H^0(S,\Omega_S)$ means that S has no fibration $f:S\to C$ onto a curve of genus g>1. Moreover Theorem 1 implies that S has the remarkable feature that both maps

$$\phi^{2,0}: \wedge^2 H^{1,0}(S) \to H^{2,0}(S)$$

$$\phi^{1,1}: H^{1,0}(S) \otimes H^{0,1}(S) \to H^{1,1}(S)$$

have a non-trivial kernel. With Schoen surfaces (see [10, Remark 2.6]), this is the second example of surfaces enjoying such properties. For more on this subject, see e.g. [1, 5, 2, 8, 9].

We obtain these results using Sullivan's theory on the second lower quotient of the fundamental group $\pi_1(S)$ of S (see [4]).

For the motivation and a historic account of surfaces with maximal Picard number we refer to [3].

Aknowledgements We are grateful to Marston Conder and Derek Holt for their help in the computations of Theorem 3.

2. The Second lower central quotient of the fundamental group of S

Let $\Pi := \pi_1(X)$ be the fundamental group of a manifold X. The group $H_1(X,\mathbb{Z})$ is the abelianization of Π : $H_1(X,\mathbb{Z}) = \Pi/\Delta$ where $\Delta := [\Pi,\Pi]$ is the derived subgroup of Π , that is, the subgroup generated by all elements $[h,g] = g^{-1}h^{-1}gh$, $h,g \in \Pi$.

The second group in the lower central series $[\Delta, \Pi]$ is the group generated by commutators [h, g], with $h \in \Delta$, $g \in \Pi$. It is a normal subgroup of the commutator group Δ . According to [4], we have the following results:

Proposition 2. (Sullivan) Let X be a compact connected Kähler manifold. There exists an exact sequence

$$0 \to Hom(\Delta/[\Delta,\Pi],\mathbb{R}) \to \wedge^2 H^1(X,\mathbb{R}) \to H^2(X,\mathbb{R}).$$

(Beauville) Suppose $H_1(X,\mathbb{Z})$ is torsion free. Then the group $\Delta/[\Delta,\Pi]$ is canonically isomorphic to the cokernel of the map

$$\mu: H_2(X,\mathbb{Z}) \to Alt^2(H^1(X,\mathbb{Z}))$$
 given by $\mu(\sigma)(a,b) = \sigma \cap (a \wedge b)$,

where $Alt^2(H^1(X,\mathbb{Z}))$ is the group of skew-symmetric integral bilinear forms on $H^1(X,\mathbb{Z})$.

In the case of the Stover surface, computer calculations give us the following result:

Theorem 3. Let $\Pi = \pi_1(S)$ be the fundamental group of the Stover surface and $\Delta = [\Pi, \Pi]$. The group $\Delta/[\Delta, \Pi]$ is isomorphic to $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}^{28}$.

Proof. By the construction of S [14], the fundamental group Π is isomorphic to the kernel $ker(\varphi)$ of the unique epimorphism $\varphi: \Lambda \longrightarrow G$ from the Deligne-Mostow lattice Λ corresponding to the quintuple (2/12, 2/12, 2/12, 7/12, 11/12) onto the finite group $G = U_3(3) \times \mathbb{Z}/3\mathbb{Z}$. The lattice Λ is described by Mostow in [12] as a complex reflection group, and by generators and relation by Cartwright and Steger in [7]. This lattice has presentation

$$\Lambda = \langle j, u, v, b | u^4, v^8, [u, j], [v, j], j^{-3}v^2, uvuv^{-1}uv^{-1}, (bj)^2(vu^2)^{-1}, [b, vu^2], b^3, (bvu^3)^3 \rangle.$$

MAGMA command LowIndexSubgroups is used to identify the unique subgroup $\Gamma \triangleleft \Lambda$ of index 3, which is $\Gamma = \langle u, jb, bj \rangle$. Using the primitive permutation representation of $U_3(3)$ of degree 28, MAGMA is able to identify an homomorphism φ from Γ onto $U_3(3)$ induced from the assignment

$$\begin{aligned} u \mapsto & (3,8,23,20)(4,24,6,12)(7,9,14,22)(10,19,11,13)(15,16,21,18)(17,26,27,25) \\ jb \mapsto & (1,9,20,12,19,23,6,16)(2,27,14,17,13,26,15,25)(3,24)(4,5,10,21,7,11,28,8) \\ bj \mapsto & (1,13,20,15,19,2,6,14)(4,9,10,12,7,23,28,16)(5,27,21,17,11,26,8,25)(22,24). \end{aligned}$$

This homomorphism extends to an homomorphism φ from Λ onto G such that $\Pi = ker(\varphi)$ is a torsion-free normal subgroup in Λ , it is the fundamental group of S (see [14]). Let be $\Delta = [\Pi, \Pi]$ and $\Delta_2 = [\Delta, \Pi]$. It is easy to check that that Δ_2 is distinguished into Π . The image of Δ under the quotient map $\Pi \longrightarrow \Pi/\Delta_2$ is Δ/Δ_2 , but we observe that it is also equal the commutator subgroup $[\Pi/\Delta_2, \Pi/\Delta_2]$, and therefore, the computation of Δ/Δ_2 is reduced to the one of the derived group $[\Pi/\Delta_2, \Pi/\Delta_2]$.

The MAGMA command g:=Rewrite(G,g) is used to have generators and relations of both subgroups $\Gamma < \Lambda$ and $\Pi < \Gamma$. The command NilpotentQuotient(.,2) applied to Π describes Π/Δ_2 in terms of a polycyclic presentation. The derived subgroup $[\Pi/\Delta_2, \Pi/\Delta_2]$ is obtained with DerivedGroup(.) applied to Π/Δ_2 . Finally, applying the MAGMA function AQInvariants to $[\Pi/\Delta_2, \Pi/\Delta_2]$, MAGMA computes that the structure of Δ/Δ_2 is $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}^{28}$.

Corollary 4. The dimension of the kernel of $\wedge^2 H^1(S,\mathbb{R}) \to H^2(S,\mathbb{R})$ is 28.

3. Computation of the map
$$\wedge^2 H^1(S,\mathbb{C}) \to H^2(S,\mathbb{C})$$

Let A be the Albanese variety of the Stover surface S. The invariants are:

$$H_1(A,\mathbb{Z}) = H_1(S,\mathbb{Z}) = \mathbb{Z}^{14}, \ H_2(A,\mathbb{Z}) = \wedge^2 H_1(A,\mathbb{Z}), \ H^{2,0}(A) = \wedge^2 H^{1,0}(S)$$

 $H^{1,1}(A) = H^{1,0}(S) \otimes H^{0,1}(S), \ H^{0,2}(A) = \wedge^2 H^{0,1}(S),$

and

$H_1(A,\mathbb{Z})$	q	$h^{2,0}(A)$	$h^{1,1}(A)$	$b_2(A)$
\mathbb{Z}^{14}	7	21	49	91

We have a map respecting Hodge decomposition

$$H^{2,0}(A) \oplus H^{1,1}(A) \oplus H^{0,2}(A)$$

 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$
 $H^{2,0}(S) \oplus H^{1,1}(S) \oplus H^{0,2}(S)$

which is an equivariant map of Aut(S)-modules. By Corollary 4, the kernel of that map is 28 dimensional; it is moreover a Aut(S)-module.

According to the Atlas tables [11], the group $U_3(3)$ has 14 irreducible representations χ_i , $1 \le i \le 14$ of respective dimension 1, 6, 7, 7, 7, 14, 21, 21, 27, 28, 28, 32, 32.

The irreducible representations of Aut $(S) = U_3(3) \times \mathbb{Z}/3\mathbb{Z}$ are the χ_i^t , i = 1, ..., 14, t = 0, 1, 2 where $(g, s) \in U_3(3) \times \mathbb{Z}/3\mathbb{Z}$ acts on the same space as χ_i with action $(g, s) \cdot v = \alpha^s g(v)$ with $\alpha = e^{2i\pi/3}$ a primitive third root of unity.

Theorem 5. The image of S by the Albanese map $\vartheta: S \to A$ is 2-dimensional.

The map $H^{1,1}(A) \to H^{1,1}(S)$ is surjective, with a 14 dimensional kernel isomorphic to χ_6^0 as an $\operatorname{Aut}(S)$ -module. We have $H^1(S,\mathbb{Z}) = \chi_3^1 \oplus \chi_3^2$ and $H^{1,1}(S) = \chi_1^0 \oplus \chi_3^0 \oplus \chi_{10}^0$, as $\operatorname{Aut}(S)$ -modules.

The kernel of the natural map $\wedge^2 H^0(S, \Omega_S) \to H^0(S, K_S)$ is 7-dimensional, isomorphic to χ^0_3 as a $\operatorname{Aut}(S)$ -module.

The surface S has maximal Picard number.

The Albanese variety A of S is isomorphic to $(\mathbb{C}/\mathbb{Z}[\alpha])^7$, for $\alpha = e^{2i\pi/3}$.

Since A is CM, it follows that S is Albanese standard, that is, the class of its image inside its Albanese variety A sits in the subring of $H^*(A, \mathbb{Q})$ generated by the divisor classes. That contrasts with the above mentioned Schoen surfaces, see [10].

Proof. Suppose that the image of S in A is 1-dimensional. Then there exists a smooth curve C of genus 7 with a fibration $f: S \to C$ and the map $\wedge^2 H^0(S, \Omega_S) \to H^0(S, K_S)$ is the 0 map and the kernel of $\wedge^2 H^1(S, \mathbb{C}) \to H^2(S, \mathbb{C})$ is at least 42 dimensional, which is impossible. Thus the image of S by the Albanese map $\vartheta: S \to A$ is 2-dimensional.

According to the Atlas character table [11], the possibilities for the $U_3(3)$ -module $H_1(S, \mathbb{Z}) = H_1(A, \mathbb{Z}) = \mathbb{Z}^{14}$ are:

$$\chi_3^{\oplus 2}, \mathcal{R}_{\mathbb{Z}}(\chi_4) = \mathcal{R}_{\mathbb{Z}}(\chi_5) = \chi_4 \oplus \chi_5, \, \chi_4^{\oplus 2}, \, \chi_5^{\oplus 2} \text{ or } \chi_6$$

where $\mathcal{R}_{\mathbb{Z}}(\chi_j)$ is the restriction to \mathbb{Z} of the 7-dimensional complex representation χ_j defined over $\mathbb{Z}[i]$. It cannot be $\chi_4^{\oplus 2}$ nor $\chi_5^{\oplus 2}$ because these are not is not defined over \mathbb{Z} (some traces of elements are in $\mathbb{Z}[i] \setminus \mathbb{Z}$). We cannot have $H^1(S,\mathbb{Z}) = \chi_6$ since χ_6 remains irreducible, but $H^1(S,\mathbb{Z}) \otimes \mathbb{C} = H^{1,0} \oplus H^{0,1}$ is a Hodge decomposition on which the representation of $U_3(3)$ splits.

By duality, the kernel of $H^{2,0}(A) \to H^{2,0}(S)$ has same dimension d as the kernel of $H^{0,2}(A) \to H^{0,2}(S)$. Let k be the dimension of the kernel of the $U_3(3)$ -equivariant map $H^{1,1}(A) \to H^{1,1}(S)$. We have 28 = k + 2d, moreover since $h^{1,1}(S) = 35$ and $h^{1,1}(A) = 49$, we get 28 > k > 14.

Let us suppose that $H^1(S,\mathbb{Z}) = \chi_4 \oplus \chi_5$. Then the representation $H^{1,1}(A)$ equals to $\chi_4 \otimes \chi_5 = \chi_1 + \chi_7 + \chi_{10}$ (of dimension 1 + 21 + 27). An Abelian variety on which a finite group G acts possesses a G-invariant polarization (for example $\sum_{g \in G} g^*L$, where L is some polarization). Therefore the one dimensional $\operatorname{Aut}(S)$ -invariant space of $H^{1,1}(A)$ is generated by the class of an ample divisor and the natural map $\vartheta^*: H^{1,1}(A) \to H^{1,1}(S)$ is injective on that subspace. Therefore the map ϑ^* has a kernel of dimension k = 21, 27 or 48. This is impossible because k + 2d equals 28.

Hence, we have $H^1(S,\mathbb{Z}) = \chi_3^{\oplus 2}$ and moreover

$$H^{2,0}(A) = \wedge^2 \chi_3 = \chi_3 \oplus \chi_6$$

(the dimensions are 21 = 7 + 14) and

$$H^{1,1}(A) = \chi_3^{\otimes 2} = \chi_1 \oplus \chi_3 \oplus \chi_6 \oplus \chi_{10}$$

(49 = 1 + 7 + 14 + 27). By checking the possibilities, we obtain k = 14, $H^{1,1}(S) = \chi_1 \oplus \chi_3 \oplus \chi_{10}$, and the map $H^{1,1}(A) \to H^{1,1}(S)$ is surjective. The kernel of the map $H^{2,0}(A) \to H^{2,0}(S)$ is isomorphic to χ_3 , of dimension 7, the action of $U_3(3)$ on $H^{2,0}(S)$ is then $H^{2,0}(S) = \chi_6 \oplus \chi$, where χ is a 13 dimensional representation.

Let $\sigma \in Aut(S) = U_3(3) \times \mathbb{Z}/3\mathbb{Z}$ be the order 3 automorphism commuting with every other element. It corresponds to an element $\sigma' \in \Lambda$ normalizing Π in Λ and such that the group Π' generated by Π and σ' contains Π with index 3. Using MAGMA, one find that we can choose $\sigma' = j^4$, where j is the order 12 element described in the proof of Theorem 3.

The quotient surface S/σ of S by σ is equal to \mathbb{B}_2/Π' . The fundamental group of S' is Π'/Π'_{tors} where Π'_{tors} is the subgroup of Π' generated by torsion elements. Using MAGMA, one find that Π' has a set of 8 generators with 7 of them which are torsion elements. Using these elements, we readily compute that Π'/Π'_{tors} is trivial. Therefore the space of one-forms on S that are invariant by σ is 0. Using the symmetries of $U_3(3)$, one see that σ acts on the tangent space $H^0(S,\Omega_S)^*$ as the multiplication by α or α^2 . After possible permutation of σ and σ^2 , we can suppose it is α .

We see that the representation of Aut(S) on $H_1(S,\mathbb{Z})$ is $\chi_3^1 \oplus \chi_3^2$. The lattice $H_1(S,\mathbb{Z}) \subset H^0(S,\Omega_S)^*$ is moreover a $\mathbb{Z}[\alpha]$ -module. The ring $\mathbb{Z}[\alpha]$ is a principal ideal domain, therefore $H_1(S,\mathbb{Z}) = \mathbb{Z}[\alpha]^7$ (for the choice of a certain basis) and A is isomorphic to $(\mathbb{C}/\mathbb{Z}[\alpha])^7$.

Therefore A has maximal Picard number and all the classes of $H^{1,1}(A)$ are algebraic. These classes remain of course algebraic under the map $H^{1,1}(A) \to H^{1,1}(S)$, which is surjective. Thus S is a surface with maximal Picard number.

4. Lagrangian surfaces and Stover surface

Let B be an Abelian fourfold and let $p: S \to B$ be a map such that p(S) generates B. Let us recall that S is Lagrangian with respect to p if there exists a basis w_1, \ldots, w_4 of $p^*H^0(B,\Omega_B)$ such that the rank 2 vector $w = w_1 \wedge w_2 + w_3 \wedge w_4$ is in the kernel of the natural map $\phi^{2,0}: \wedge^2 H^0(S,\Omega_S) \to H^0(S,K_S)$. Let us now prove

Theorem 6. The 7 dimensional space $Ker(\phi^{2,0})$ contains no decomposable elements. The algebraic set of rank 2 vectors in $Ker(\phi^{2,0})$ is a quadric $\tilde{Q} \subset Ker(\phi^{2,0})$.

There exists an infinite number (up to isogeny) of maps $p: S \to B$ where B is an Abelian fourfold such that S is Lagrangian with respect to p.

There exists an infinite number (up to isogeny) of maps $p: S \to B$ where B is an Abelian fourfold such that

$$\tilde{Q} \cap p^* H^0(B, \wedge^2 \Omega_B) = \{0\},\$$

and for some of them we even have $Ker(\phi^{2,0}) \cap p^*H^0(B, \wedge^2\Omega_B) = \{0\}.$

The generic rank 2 element w in $\tilde{Q} \subset Ker(\phi^{2,0})$ does not correspond to any morphism to an Abelian fourfold.

Proof. We proved in Theorem 5 that

$$H^{2,0}(A) = \wedge^2 \chi_3 = \chi_3 \oplus \chi_6$$

and the kernel of $\phi^{2,0}: H^{2,0}(A) \to H^{2,0}(S)$ is the 7-dimensional subspace with representation χ_3 . In a basis $\gamma = (e_1, \ldots, e_7)$ of $\chi_3 = H^0(S, \Omega_S) = H^{1,0}(S)$, the two following matrices A, B are generators of the group $U_3(3)$:

Using the basis $\beta = (e_{ij})_{1 \leq i < j \leq 7}$ of $\wedge^2 \chi_3$ $(e_{ij} = e_i \wedge e_j)$ with order $e_{ij} \leq e_{st}$ if i < s or i = s and $j \leq t$, one computes that the subspace $Ker(\phi^{2,0}) = \chi_3 \subset \wedge^2 \chi_3$ is generated by the columns of the matrix $M \in M_{21,7}$, where ${}^t M = (N, 2I_7)$, for

and I_7 the 7×7 identity matrix. Knowing that, we obtain the ideal I_V of the algebraic set V of couples $(w_1, w_2) \in \chi_3 \oplus \chi_3$ such that $w_1 \wedge w_2 \in Ker(\phi^{2,0}) \subset \wedge^2 \chi_3$. That ideal is generated by 14 homogeneous quadratic polynomials in the variables x_1, \ldots, x_{14} . Let W be

the algebraic set of couples $(w_1, w_2) \in \chi_3 \oplus \chi_3$ such that $w_1 \wedge w_2 = 0 \in \wedge^2 \chi_3$. The ideal I_W of W is generated by the 2 by 2 minors of the matrix

$$L = \left(\begin{array}{ccc} x_1 & \dots & x_7 \\ x_8 & \dots & x_{14} \end{array}\right).$$

Since $W \subset V$, we have $Rad(I_V) \subset Rad(I_W)$ where Rad(I) is the radical of an ideal I. On the other hand, using Maple, one can check that the 21 minors of L are in $Rad(I_V)$, hence $Rad(I_W) \subset Rad(I_V)$, thus V = W.

We therefore conclude that the kernel of $\phi^{2,0}$ contains no decomposable elements.

A 2-vector w over a characteristic 0 field can be expressed uniquely as $w = \sum_{i,j} a_{ij} e_i \wedge e_j$ where $a_{ij} = -a_{ji}$. The rank of the vector w is half the rank of the (skew-symmetric) coefficient matrix $A_w := (a_{ij})_{1 \leq i,j \leq 7}$ of w [6, Thm 1.7 & Remark p. 13]. Thus the 2-vector $w = a_1v_1 + \cdots + a_7v_7$ in $Ker(\phi^{2,0})$ (where the v_i , i = 1...7 are the vectors corresponding to the columns of the matrix M) is a rank 2 vector if and only if the 49 6 × 6 minors of the matrix A_w are 0. The radical of the ideal generated by these minors is principal, generated by a homogeneous quadric in a_1, \ldots, a_7 whose associated symmetric matrix is

Therefore $w \in Ker(\phi^{2,0})$ has rank 2 if and only if $(a_1, \ldots, a_7)Q^t(a_1, \ldots, a_7) = 0$.

The point $(10 + 8\alpha, -7, 0, 0, 7, 0, 0)$ lies on the associated smooth quadric \tilde{Q} , therefore $\tilde{Q}(\mathbb{Q}[\alpha])$ is infinite. Let be w be a 2-vector in $\tilde{Q}(\mathbb{Q}[\alpha])$. The decomposable vector $\wedge^2 w \neq 0$ has coordinates in $\mathbb{Q}[\alpha]$ in the basis $(e_{i1} \wedge \cdots \wedge e_{i4})$ of $\wedge^4 H^0(S, \Omega_S)$. The corresponding 4-dimensional vector space W is therefore generated by 4 vectors w_1, \ldots, w_4 with coordinates over $\mathbb{Q}[\alpha]$ in the basis $\gamma = (e_1, \ldots, e_7)$ of $H^0(S, \Omega_S)$.

One computes that the image of $\mathbb{Q}[\alpha][U_3(3) \times \mathbb{Z}/3\mathbb{Z}]$ in $M_7(\mathbb{Q}[\alpha])$ is 49 dimensional over $\mathbb{Q}[\alpha]$, thus

$$\mathbb{Q}[U_3(3) \times \mathbb{Z}/3\mathbb{Z}] = M_7(\mathbb{Q}(\alpha)) (= End(A) \otimes \mathbb{Q})$$

in the basis γ , $(H_1(S, \mathbb{Q}[\alpha]))$ is the $\mathbb{Q}[\alpha]$ -vector space generated by $e_1, \ldots, e_k)$ and therefore there exists a morphism $p: S \to E^4 = B$ (where $E = \mathbb{C}/\mathbb{Z}[\alpha]$) such that $W = p^*H^0(B, \Omega_B)$. By hypothesis the image p(S) generates B. By construction

$$\wedge^2 p^* H^0(B, \Omega_B) \cap Ker(\phi^{2,0})$$

is at least one dimensional since it contains w, and therefore S is Lagrangian for p.

A contrario, the trace of an order 2 automorphism $\sigma \in \operatorname{Aut}(S) \subset \operatorname{Aut}(A)$ acting on the tangent space of A at 0 equals to -1, therefore the image B' of the endomorphism $p : \sigma - 1_A$, where 1_A is the identity of A is an Abelian fourfold. Using Maple, one computes that

$$\wedge^2 p^* H^0(B, \Omega_B) \cap Ker(f) = \{0\}.$$

Let $\vartheta: S \to A$ be the Albanese map of S, and let $q: A \to A$ be an endomorphism with a 4 dimensional image and a representation in $M_7(\mathbb{Q}) \subset M_7(\mathbb{Q}(\alpha))$ in the basis γ . Since the matrix Q is positive definite, we have

$$\wedge^2 p^* H^0(B, \Omega_B) \cap \tilde{Q} = \{0\},\$$

where p is the map $p = q \circ \vartheta : S \to B$. Therefore S is not Lagrangian with respect to p. \square

Remark 7. Let X be a surface and let $\phi^{2,0}: \wedge^2 H^0(X,\Omega_X) \to H^0(X,K_X)$ be the natural map. Let be $d=\dim Ker(\phi^{2,0})$ and $q=\dim H^0(X,\Omega_X)$. In the proof of Theorem 6, we saw that the set of rank k vectors in $Ker(\phi^{2,0})$ is a determinantal variety: the intersection of minors of size $\geq 2k+1$ of some anti-symmetric matrix of size $q\times q$ with linear entries in d variables. It seems to the authors quite remarkable that for Stover's surface the set of rank 2 vectors (obtained as the zero set of 49 6 × 6 minors of a size q=7 matrix) is an hypersurface in $Ker(\phi^{2,0})$. That hypersurface is the only $U_3(3)$ -invariant quadric of $U_3(3)$ acting on $Ker(\phi^{2,0})$.

References

- [1] Barja M.A., Naranjo J.C., Pirola G.P., On the topological index of irregular surfaces, J. Algebraic Geom. 16 (2007), no. 3, 435–458.
- [2] Bastianelli F., Pirola G.P., Stoppino L., Galois closure and Lagrangian varieties, Advances in Math., 225 (2010), 3463–3501.
- [3] Beauville A., Some surfaces with maximal Picard number, Journal de l'École Polytechnique 1 (2014), 101–116.
- [4] Beauville A., On the second lower quotient of the fundamental group of a compact Kahler manifold, ArXiv, to appear in "Algebraic and Complex Geometry" in honor of K. Hulek (Springer).
- [5] Bogomolov F., Tschinkel Y., Lagrangian subvarieties of abelian fourfolds, Asian J. Math. 4 (2000), no. 1, 19–36.
- [6] Bryant R.L., Chern S.S., Gardner R.B., Goldschmidt H.H., Griffiths P.A. Exterior differential systems, (Mathematical Sciences Research Institute publications, 18), Springer-Verlag (1991).
- [7] Cartwright D., Steger T., Enumeration of the 50 fake projective planes, Comptes Rendus Mathematique 348 (1): 11–13, doi:10.1016/j.crma.2009.11.016
- [8] Campana, F. Remarques sur les groupes de Kähler nilpotents, Ann. Sci. École Norm. Sup. (4) 28 (1995), no. 3, 307–316.
- [9] Causin A, Pirola G.P., Hermitian matrices and cohomology of Kähler varieties, Manuscripta Math. 121 (2006), no. 2, 157–168.
- [10] Ciliberto C., Mendes Lopes M., Roulleau X., On Schoen surfaces, to appear in Comment. Math. Helvet.
- [11] Conway, J., Curtis R., Parker R., Norton S., Wilson R., Atlas of finite groups. Oxford University Press, 1985.
- [12] Mostow G.D., On a remarkable class of polyhedra in complex hyperbolic space, Pacific J. Math., 86(1) 1980, 171–276.
- [13] Schoen C., Albanese standard and Albanese Exotic varieties, J. of London Math. Soc. (2) 74 (2006) 304–320
- [14] Stover M., Hurwitz ball quotients, Math. Z. 277 (2014), no. 1-2, 75-91

Amir Džambić,

Johann Wolfgang Goethe Universität, Institut für Mathematik,

Robert-Mayer-Str. 6-8, 60325 Frankfurt am Main,

Cormans

dzambic@math.uni-frankfurt.de

Xavier Roulleau,

Laboratoire de Mathématiques et Applications, Université de Poitiers,

Téléport 2 - BP 30179 - 86962 Futuroscope Chasseneuil

France

roulleau@math.univ-poitiers.fr