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Abstract

We critically analyse a recent numerical method due to the first au-
thor, Rechnitzer and van Rensburg, which attempts to detect amenabil-
ity in a finitely generated group by numerically estimating its asymp-
totic cogrowth rate. We identify two potential sources of error. We then
propose a modification of the method that enables it to easily compute
surprisingly accurate estimates for initial terms of the cogrowth sequence.

1 Introduction

Researchers studying the amenability Thompson’s group F' will be familiar with
a distrust of experimental methods applied to this problem. Part of this scep-
ticism stems from the fact that (if it is amenable) F' is known to have a very
quickly growing Falner function [22]. However, experimental algorithms inves-
tigating amenability are rarely based on Fglner’s criteria directly, and to date
no identification is made in the literature of a mechanism by which a quickly
growing Fglner function could interfere with a given experimental method.

In this paper we identify such a mechanism for a recent algorithm proposed
by first author, A. Rechnitzer, and E. J. Janse van Rensburg [9], which was
designed to experimentally detect amenability via the Grigorchuk-Cohen char-
acterisation in terms of the cogrowth function. We will refer to this as the ERR
algorithm in the sequel.
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We show that, in the ERR algorithm, estimates of the asymptotic cogrowth
rate are compromised by sub-dominant behaviour in the reduced-cogrowth func-
tion.

However, even though sub-dominant behaviour in the cogrowth function
may interfere with estimates of the asymptotic growth rate, the ERR algorithm
can still be used to estimate other properties of the cogrowth function to high
levels of accuracy. In particular we are able re-purpose the algorithm to quickly
estimate initial values of the cogrowth function even for groups for which the
determination of the asymptotic cogrowth rate is not possible (for example
finitely generated groups with unsolvable word problem).

The present work started out as an independent verification by the second
author of the experimental results in [9], as part of his PhD research at the
University of Newcastle. More details can be found in [27].

The article is organised as follows. In Section 2 we give the necessary back-
ground on amenability, random walks and cogrowth. In Section 3 a function
quantifying the sub-dominant properties of the reduced-cogrowth function is
defined. In Section 4 the ERR algorithm is summarised, followed by an anal-
ysis of two types of pathological behaviour in Section 5. The first of these is
easily handled, while the second is shown to depend on sub-dominant terms in
the reduced-cogrowth function. In Section 6 the ERR method is modified to
provide estimates of initial cogrowth values. Using this the first 2000 terms for
the cogrowth function of Thompson’s group F' are estimated.

2 Preliminaries

The following characterisation of amenability is due to Grigorchuk [15] and
Cohen [8]. A shorter proof of the equivalence of this criteria with amenability
was provided by Szwarc [28].

Definition 2.1. Let G be a finitely generated non-free group with symmetric
generating set S. Let ¢, denote the number of freely reduced words of length n
over S which are equal to the identity in G. Then G is amenable if and only if

limsupc}/" =S| -1.
n—oo
Equivalently, let d,, denote the number of words (reduced and unreduced)
of length n over S which are equal to the identity. Then G is amenable if and
only if
lim sup d2/™ = |S].
n—oo
The function n +— ¢, is called the reduced-cogrowth function for G with
respect to S, and n — d,, the cogrowth function.

Kesten’s criteria for amenability is given in terms of the probability of a
random walk on the group returning to its starting point.



Definition 2.2. Let GG be a finitely generated group, and let pu be a symmetric
measure on GG. The random walk motivated by u is a Markov chain on the group
starting at the identity where the probability of moving from z to y is pu(x~1y).
Note the distribution after n steps is given by the n-fold convolution power of
, which we denote as p,. That is, u,(g) is the probability that an n-step walk
starting at e ends at g. By Kesten’s criteria [18] a group is amenable if and only
if
lim sup(jin (€))/" = 1.
n—roo
Pittet and Saloff-Coste proved that the asymptotic decay rate of the prob-
ability of return function is independent of measure chosen, up to the usual
equivalence [24]. For finitely generated groups we can choose the random walk
motivated by the uniform probability measure on a finite generating set. This
random walk is called a simple random walk and corresponds exactly with a
random walk on the Cayley graph. For this measure the probability of return
is given by p
n
fn(€) = W’ (1)

where the (reduced and non-reduced) cogrowth terms d,, are calculated with
respect to the support of the measure. Thus the cogrowth function arises from
a special case of return probabilities.

Fglner’s characterisation of amenability [13] can be phrased in several ways.
Here we give the definition for finitely generated groups.

Definition 2.3. Let G be a group with finite generating set S. For each finite
subset F' C G, we denote by |F'| the number of elements in F'. The boundary of
a finite set F' is defined to be

OF ={9g€ G : g¢ F,gs € F for some s € S}.

A finitely generated group G is amenable if and only if there exists a sequence
of finite subsets F;, such that

oF,,
lim | | =0.

n— oo |Fn| o

Vershik [29] defined the following function as a way to quantify how much
of the Cayley graph must be considered before sets with a given isoperimetric
profile can be found.

Definition 2.4. The Fglner function of a group is

oF 1
f(n) —min{|F| : ||F| < n}
Significant literature exists on Fglner functions. It is known that there exist
finitely presented amenable groups with Fglner functions growing faster than
n™" ([20] Corollary 6.3) and finitely generated groups (iterated wreath product



of k copies of Z) with Fglner functions growing faster than n" of height &k for
arbitrary k [11].
Richard Thompson’s group F' is the group with presentation

(a,b] [ab™t,a " ba), [ab™ !, a"2ba?]) (2)

where [z,y] = zyz~'y~! denotes the commutator of two elements. See for ex-
ample [6] for a more detailed introduction to this group. Whether or not F is
amenable has attracted a large amount of interest, and has so far evaded many
different attempts at a proof of both positive and negative answers. Experimen-
tal work previously done on this question includes [5, 1, 10, 17, 9].

Justin Moore [22] (2013) has shown that if F' were amenable then its Fglner
function would increase faster than a tower of n — 1 twos,

02"

This result has been proposed as an obstruction to all computational methods
for approximating amenability; a computationally infeasibly large portion of
the Cayley graph must be considered before sets with small boundaries can
be found. However, in all but one of the experimental algorithms ([1]) listed
above computing Fglner sets was not the principle aim. In order to understand
how a bad Fglner function affects the performance of these methods, we need
to understand the connection between convergence properties of the respective
limits in the various characterisations of amenability.

3 Quantifying sub-dominant cogrowth behaviour

The Fglner function quantifies the rate of convergence of the limit in Defini-
tion 2.3. We propose the following definitions to quantify the rate of convergence
of the limits in Definition 2.1.

Definition 3.1. Let G be a finitely generated group with symmetric generating
set S. Let ¢, be the number of all reduced trivial words of length n and let

C = limsup c/™. Define

i 1
R(n) min{k , k2 >02}
Cofk n

Definition 3.1 uses only even word lengths (and hence C? instead of C). This
is necessary because group presentations with only even length relators have no
odd length trivial words. For this paper we will only consider the function R
for amenable groups, in which case C' = |S| — 1 except when the group is free
(infinite cyclic).

A similar definition may be made for the cogrowth function.



Definition 3.2. For G a finitely generated group with symmetric generating
set S we may define

. d2k+2 9 1
'(n) = : D?— -
R'(n) = min {kj dor > -

where d,, be the number of all (reduced and non-reduced) trivial words of length
1/n

n and D = lim sup ¢y

Literature already exists studying the convergence properties of return prob-
abilities, and we suspect that the function R’ is a reformulation of the L2-
isoperimetric function [3].

Aside from the trivial group (where R(n) = 0), it is usually easier to compute
R’ (or its asymptotics) than it is to obtain R. For this reason we first consider
R’ functions for various groups, and then prove that for infinite, amenable,
non-free groups R’ and R have the same asymptotic behaviour.

Example 3.3. For any finite group the rate of growth of d,, is the dominant
eigenvalue of the adjacency matrix of the Cayley graph, and some simple analysis
shows that R’(n) is at most logarithmic in n.

Define f X g if there exist constants a,b > 0, such that for z large enough,
f(z) <ag(bx). Then f ~ g (f and g are asymptotic) if f S g and g X f.

Table 1 provides a sample of amenable groups for which the asymptotics of
R’(n), the Fglner function and probabilities of return are known [11, 25, 26].

The results for the asymptotics of R'(n) were derived directly from the
known asymptotics for p,. A discussion of these methods appears in [27]. In
practice however it proved quicker to guess the asymptotics and then refine
using the following method.

Proposition 3.4. The asymptotic results for R'(n) in Table 1 are correct.

Proof. For a given group suppose pn(e) ~ g(n) where g is a continuous real
valued function, as in Table 1. Then d,, ~ |S|"g(n).
Finding R’(n) requires solving the equation

dog+2 o2 1L
2ts g L ®

for k = k(n). This is equivalent to solving

d
l=n <|S|2 - ZZ:Q)

for k.
Suppose f(n) is a function where
daf(n
L= lim n <S|2 - W) (4)



Example F(n) tn(e) R'(n)
trivial ~ constant ~ constant ~ constant
7k ~ nk ~ pTR/2 ~n
BS(1,N) ~ el ~ et ~ p3/2
7 n" ~ g/ P(Inn)*? ~ In(n)n?/?
e " _d_ 2
VAYAREERY/ n" (tower of ~ e T2 (Inn) TF2 ~ In(n)n(4+2)/2
(d + 1)-fold d+1mn’s)
wreath product

Table 1: Comparing asymptotics of the probabilities of return, the Fglner func-
tion F, and R’ for various groups.

exists and is non-zero.

If L =1 then
S 2 d2f(")+2 1
L e
2f(n) n
and so
dafmyve 52 — 1
d2f(n) n

Then k(n) ~ f(n) satisfies Equation 3. Therefore R'(n) is asymptotic to f(n).
If L exists and is non-zero then

dof(n L
<S|2_ 2f( )+2> ~
d2f(n) n

o dap(rn)+2 L 1
spp - Sgumiz) L1
d2f(Ln) ILn n

Then

and so R'(n) ~ f(Ln).

The derivations of candidates for f(n) in each case in Table 1 is performed in
[27]. The results in the table do not include the constant L since the probabilities
of return used as input are only correct up to scaling. We leave the calculation
of Equation 4 for the results from Table 1 as an exercise. O



3.1 Converting from cogrowth to reduced-cogrowth

We now prove an equivalence between the sub-dominant behaviour of the cogrowth
and reduced-cogrowth functions. This allows us to borrow the previously listed
results for R’ when discussing R and the ERR method. The dominant and sub-
dominant cogrowth behaviour can be analysed from the generating functions
for these sequences.

Definition 3.5. Let d,, denote the number of trivial words of length n in a
finitely generated group. The cogrowth series is defined to be

Let ¢,, denote the number of reduced trivial words. Then

C(z) = i cnz2"
n=0

is said to be the reduced-cogrowth series.

D and C are the generating functions for d,, and ¢, respectively, and are
related in the following way. Let |S| = 2p be the size of a symmetric generating
set. Then from [19, 30]

1—22 <

and

D(z)

l—p+p 1—4(2p—1)z20 1—+/1—4(2p—1)22 5
B 1—4p222 2(2p — 1)z - (6)

The dominant and sub-dominant growth properties of the cogrowth func-
tions may be analysed by considering the singularities of these generating func-
tions. For a detailed study of the relationship between singularities of generating
functions and sub-dominant behaviours of coefficients see [12].

We now outline an example of how the composition of functions (as in Equa-
tions 5 and 6) effects the growth properties of the series coeflicients.

Example 3.6. Consider

7 =(1- f)_p.

r

Then (for positive p) f(z) has a singularity at z = r, and this defines the
radius of convergence of f(z) and the asymptotic growth rate of the series coef-
ficients of the expansion of f(z). It also determines the principle sub-dominant
term contributing to the growth of the coefficients. In this example, the coeffi-
cients will grow like nP~1r—".



We wish to investigate what happens to this growth behaviour when we
compose the function f with a function g. Consider f(g(z)) for some function g
for which ¢g(0) = 0. The singularities of g are inherited by f(g(z)); if ¢ is analytic
everywhere then the only singularities of f(g(z)) will occur when g(z) = r. In
this case, the new radius of convergence will be the minimum |z| such that
g(z) = r. Importantly, however, the principle sub-dominant growth term of the
series coefficients will remain polynomial of degree p — 1.

A variation on this behaviour will occur if there is an rq for which g(z) is
analytic on the ball of radius rg, and g(z) = r for some z in this region. Again,
when this occurs, the new radius of convergence is obtained by solving g(z) =r
and the type of the principle sub-dominant term in the growth of the coefficients
remains unchanged.

If there does not exist such an rg, the principle singularity of g(z) will dom-
inate the growth properties of the coefficients.

Proposition 3.7. Let G be an infinite amenable group generated by p elements
and their inverses. Then the principle sub-dominant terms contributing to the
growth of d, and c, are asymptotically equivalent, except when the group is
infinite cyclic.

Proof. For an amenable group generated by p elements and their inverses the
radius of convergence for D(z) is exactly 1/2p. This follows immediately from
Definition 2.1.

Now from Equation 5, the reduced-cogrowth series is obtained by composing
the cogrowth series with

()= —
P =T ap— 122
and then multiplying by
1—22
1) = e

Both of these functions are analytic inside the ball of radius 1/+/2p — 1.

Now . )
p(2p_1) - @)

the singularity of D(z). Hence, 1/(2p —1) is a singularity of D(p(z)), and hence
of C(z). Note that if the group is infinite cyclic, then p = 1 and 1/(2p — 1)
and 1/4/2p —1 are equal. In this scenario the radius of convergence of p(z)
is reached at the same moment that p(z) reaches the radius of convergence of
D(z). This means that both p and ¢ contribute to the principle singularity,
and this explains why the reduced and non-reduced cogrowth functions for the
infinite cyclic group exhibit such different behaviour.

If p > 1 then 1/(2p — 1) is inside the ball of radius 1/4/2p — 1 (ie, inside the
region of convergence for p and ¢). Thus, the singularity of D is reached before
z approaches the singularity of p and gq.




In this case the substitutions in Equation 5 change the location of the prin-
ciple singularity, but do not change the type of the singularity, or the form of
the principle sub-dominant term contributing to the growth of the series coeffi-
cients. O

Corollary 3.8. Suppose G is a finitely generated, infinite amenable group that
is not the infinite cyclic group. Then R is asymptotically equivalent to R'.

Remark 3.9. An alternate proof of the Grigorchuk/Cohen characterisation of
amenability is easily constructed from an analysis of the singularities of C(z)
and D(z). For example, Equation 7 proves the first result from Definition 2.1.
This argument also picks up that the infinite cyclic group presents a special case.
Though amenable, limsup,, . ¢, # |S| — 1. For this group we have R(n) ~ 0
while R'(n) ~ n.

3.2 Sub-dominant behaviour in the cogrowth of F

The groups BS(1, N) limit to Z?Z in the space of marked groups. This implies
that the growth of the function R’ and hence R for BS(1,N) increases with
N. This is consistent with Table 1, since these results do not include scaling
constants. This leads to the following result.

Proposition 3.10. If Thompson’s group F is amenable, its R function grows
faster than the R function for any BS(1,N). In particular, it is asymptotically
super-polynomial.

Proof. By the convergence of BS(1, N) to ZZ in the space of marked groups
we have that, for any N, the function R’ for BS(1, N) grows slower than the
corresponding function for ZZ. In [24] it is proved that, for finitely generated
groups, the probability of return cannot asymptotically exceed the probability
of return of any finitely generated subgroup. This implies that, for finitely
generated amenable groups, the R’ function of the group must grow faster than
the R’ function of any finitely generated subgroup. Since there is a subgroup of
F isomorphic to Z1Z, R'(n) for F must grow faster than R’(n) for Z1Z and
hence BS(1, N).

Since F' contains every finite depth iterated wreath products of Z ([16] Corol-
lary 20), the probability of return for F' decays faster than

d_ 2
e " d+2 (Inn) d+2
for any d. Taking the limit as d approaches infinity of the corresponding values
for R’ and then performing the conversion from R’ to R gives the result. [

Note that if F' is non-amenable, then even though it still contains these
subgroups, they do not affect the R’ function. In this scenario it is still true
that the return probability for F' decays faster than the interated wreath prod-
uct, because F' would have exponentially decaying return probability. For non-
amenable groups the return probability does not identify the principle sub-
dominant term in d,, and hence does not correlate directly with R’.



4 The ERR algorithm

We start by summarising the original work by the first author, Rechnitzer and
van Rensburg. Only the details directly pertinent to the present paper are
discussed here, for a more detailed analysis of the random walk algorithm and a
derivation of the stationary distribution we refer the reader to [9]. For the sake
of brevity the random walk performed by the algorithm will be referred to as
the ERR walk.

Recall that a group presentation, denoted (S | R), consists of a set S of
formal symbols (generators) and a set R of words written in S** (relators) and
corresponds to the quotient of the free group on S by the normal closure of the
relators R. In our paper, as in [9], all groups will be finitely presented: both S
and R will be finite. Furthermore, the implementation of the algorithm assumes
both S and R to be symmetric, that is, S = S~! and R = R~!. In addition,
for convenience R is enlarged to be closed under cyclic permutation. Recall
that ¢, counts the number of reduced words in S of length n which represent
the identity in the group (that is, belong to the normal closure of R in the free

group).

4.1 The ERR walk

The ERR walk is not a random walk on the Cayley graph of a group, but instead
a random walk on the set of trivial words for the group presentation. This makes
the algorithm extremely easy to implement, since it does not require an easily
computable normal form or even a solution to the word problem. The walk
begins at the empty word, and constructs new trivial words from the current
trivial word using one of two moves:

e (conjugation by = € S). An element is chosen from S according to a
predetermined probability distribution. The current word is conjugated by
the chosen generator and then freely reduced to produce the new candidate
word.

e (insertion of a relator). A relator is chosen from R according to a predeter-
mined distribution and inserted into the current word at a position chosen
uniformly at random. In order to maintain detailed balance (from which
the stationary distribution is derived) it is necessary to allow only those
insertions which can be immediately reversed by inserting the inverse of
the relator at the same position. To this end the notion of left insertion
is introduced; after relators are inserted free reduction is done on only the
left hand side of the relator. If after this the word is not freely reduced
the move is rejected.

Transition probabilities are defined which determine whether or not the triv-
ial word created with these moves is accepted as the new state. These probabil-
ities involve parameters o € R and S € (0,1) which may be adjusted to control
the distribution of the walk.

Let the current word be w and the candidate word be w'.

10



e If w’ was obtained from w via a conjugation it is accepted as the new
current state with probability

/ 14+«
min{ 1, M 5|w'\*|wl )
|w| + 1

e If w’ was obtained from w via an insertion it is accepted as the new state

with probability
’ «
min {17 (MH> 5|w'—|w} )
lw| +1

If w’ is not accepted the new state remains as w.

These probabilities are chosen so that the distribution on the set of all trivial
words given by

1+« ul
7 (u) = (Ju| + 1)Z gl ’

(where Z is a normalizing constant) can be proved to be the unique stationary
distribution of the Markov chain, and the limiting distribution of the random
walk.

Proposition 4.1 ([9]). As 8 approaches

1
- hm Supn%oo (Cn)l/n

Be

the expected value of the word lengths visited approaches infinity.

This leads to the following method for estimating the value of §.. For each
presentation, walks are run with different values of 8. Average word length is
plotted against 5. The results obtained for Thompson’s group F' are reproduced
in Figure 1. The values for § at which the data points diverge gives an indication
of 8., and hence the amenability or otherwise of the group.

Random walks were run on presentations for a selection of amenable and
non-amenable groups, including Baumslag-Solitar groups, some free product
examples whose cogrowth series are known [21], the genus 2 hyperbolic surface
group, a finitely presented group related to the basilica group, and Thompson’s
group F'.

The data in Figure 1 appears to show fairly convincingly that the location
of B. is a long way from the value of % expected were the group amenable.

It is noted in [9] that a long random walk may be split into shorter segments,
and the variation in average word lengths of the segments gives an estimation
of the error in the estimated expected word length.

Remark 4.2. In the original work reported in [9], the algorithm was coded in
C++, words were stored as linked lists, the GNU Scientific Library was used to

11
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Figure 1: The results from [9] (Figure 10) of the ERR algorithm applied to
the standard presentation of Thompson’s group F. Each data point plots the
average word length of an ERR walk against the parameter § used.

generate pseudo-random numbers, and parallel tempering was used to speed up
the convergence of the random walk. For independent verification the second
author coded the algorithm in Python, kept words as strings, used the Python
package random, and no tempering was used. Results obtained were consistent
with those in [9]. The experimental analysis and modifications described in this
paper use the Python version of the second author.

5 Investigating Pathological Behaviour

The theory underpinning the ERR walk is complete — the random walk is cer-
tain to converge to the stationary distribution. This does not preclude, however,
convergence happening at a computationally indetectible rate. Since there are
finitely presented groups with unsolvable word problem, there is no chance of
deriving bounds on the rates of convergence of the walk in any generality. In
the process of independently verifying the results in [9], however, we were able
to identify two properties of group presentations which appear to slow the rate
of convergence. The first of these is unconnected with the Fglner function, and
does not pose any problem to the implementation of the ERR algorithm to
Thompson’s group F. It does, however, refute the claim in ([9] Section 3.7)
that the method can be successfully applied to infinite presentations.

12



5.1 Walking on the wrong group

It is easy to see from the probabilistic selection criteria used by the ERR walk

that moves which increase the word length by a large amount are rejected with

high probability. This poses a problem for group presentations containing long

relators since insertion moves that attempt to insert a long relator will be ac-

cepted much less often than moves which attempt to insert a shorter relation.
The following example makes this explicit.

Lemma 5.1. All presentations of the form
<a,b | abab~'a"b7t, a"b_"_1>
describe the trivial group.

Proof. Since a™ = b"t! we have a"ba = b"ba = bb"la = ba" ! = bab"t!.
Since aba = bab we have a’ba = a*~bab so a"ba = a” 'bab = a" 2bab? = - - - =
bab™. Putting these results together gives bab™ = bab™*! and hence b is trivial.
The result follows. O

By increasing n we can make the second relator arbitrarily large without
affecting the group represented by the presentation, or the group elements rep-
resented by the generators. This implies that ERR walks for each of these
presentations should converge to the same stationary distribution.

Changing the presentation, however, does change the number of steps in the
ERR walk needed to reach certain trivial words. ERR walks were performed on
these presentations for n = 1,2,...,19. As well as recording the average word
length of words visited, the number of accepted insertions of each relator was
recorded.

Table 2 shows the sharp decline in the number of accepted insertions of the
second relator as n increases. Indeed, for n > 14 there were no instances in
which the longer relator was successfully inserted. Unsurprisingly, walks for
large n did not converge to the same distribution as those where n was small,
and for large n the data did not accurately predict the asymptotic growth rate
of the cogrowth function. For these n the ERR walk was actually taking place
on {(a,b | abab=*a~'b~1), a presentation for the 3-stand braid group, which is
non-amenable.

Note that, given enough time, the longer relator would be successfully sam-
pled, and that an infinite random walk is still guaranteed to converge to the
theoretical distribution for the trivial group. Such convergence, however, may
take a computationally infeasible amount of time.

Claim 5.2. The presence of long relators in the input presentation slows the
rate at which an ERR walk converges to the stationary distribution. Therefore,
the ERR method cannot be reliably extended to accept infinite presentations.

This result is not surprising. In [4] an infinitely presented amenable group is
given for which any truncated presentation (removing all but a finite number of
relators) is non-amenable. The ERR method could not expect to succeed on this

13



n number of | number of accepted | number of accepted
steps insertions of small insertions for big
relator relator
1 2.0 x 108 2977228 7022772
2 3.6 x 10% 4420185 5579815
3 6.1 x 108 6323376 3676624
4 9.0 x 10% 8016495 1983505
5 1.2 x 107 9088706 911294
6 1.4 x 10° 9621402 378598
7 1.5 x 10° 9850251 149749
8 1.7 x 10° 9943619 56381
9 1.8 x 10° 9977803 22197
10 1.9 x 10° 9991680 8320
11 2.1 x 107 9997122 2878
12 2.2 x 109 9998720 1280
13 2.2 x 109 9999585 415
14 2.3 x 109 9999938 62
15 2.4 x 107 10000000 0
16 2.6 x 109 10000000 0
17 2.7 x 109 10000000 0
18 2.8 x 109 10000000 0
19 2.9 x 109 10000000 0

Table 2: The ERR algorithm applied to the trivial group with presentation
<a, b | aba = bab, a™ = b’L+1> for various n. As n increases, the longer relator is
successfully inserted less frequently.

14



group even if long relators were sampled often; since the ERR walk can only be
run for a finite time there can never be a representative sampling of an infinite
set of relators, so ERR would incorrectly conclude this group is non-amenable.

The pathological presentations of the trivial group studied here form a se-
quence of presentations for amenable (trivial) groups which approach a non-
amenable group in the space of marked groups. The failure of the ERR method
to predict amenability for these groups suggests that one does not need partic-
ularly elaborate or large presentations to produce pathological behaviour.

However, we remark that this behaviour is easily monitored. In addition to
counting the number of attempted moves of the walk, one should record the rel-
ative number of successful insertions of each relator. In the case of Thompson’s
group F' the two relators have similar lengths, and in our experiments both were
sampled with comparable frequency.

Further analysis of this phenomena appears [27].

5.2 Sub-dominant behaviour in cogrowth.

Recall that the solvable Baumslag-Solitar groups BS(1, N) = (a,t | tat~ta=")
are the only two generator, single-relator, amenable groups [7]; for each of these
groups 3. = 1/3. In [9] walks were run on BS(1,1) = Z?, BS(1,2) and BS(1,3)
and for these groups the random walk behaved as predicted with divergence
occurring at the moment when 8 exceeded .. It may be surprising then to see
the output of some ERR walks for BS(1,7) shown in Figure 2.

It is clear that, for this group, the divergence for g > (. predicted by the
theory is not occurring. This is further seen in Figure 3, which shows the pro-
gression over time of one of the random walks used to generate Figure 2. The
results in Figure 3 show the word lengths visited for ten ERR walks (superim-
posed) performed on BS(1,7), with « = 3 and 8 = 0.34. Since the group has
only a single relator, which was successfully inserted into the word 10000 times,
it is not an error of the type identified in Subsection 5.1. The ERR method relies
on the divergence of the average word length to identify 8., so application of
the method in this case will not accurately identify the amenability of BS(1,7).

Divergence of the ERR walk (when 8 > .) relies on the abundance of long
trivial words. For most presentations, at all points in an ERR walk there are al-
ways more moves which lengthen the word than shorten it, but the probabilistic
selection criteria ensures balance. More specifically, the parameter 5 imposes a
probabilistic barrier which increases exponentially with attempted increase in
word length. When 8 > (. this exponential cap is insufficient, and the word
length diverges.

Recall that for a given word length n the function R(n) quantifies how many
reduced-trivial words there are of length similar to n. The results in Table 1
imply that, for many groups, large word lengths must be reached before the
asymptotic growth rate is reflected by a local abundance of longer trivial words.
We have noted in Section 3.2 that the convergence properties of BS(1, N) in
the space of marked groups requires R(n) to grow more quickly as N increases.
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Figure 2: A graph (as in [9]), of average word length in ERR walks for (a,t |
t~lata~7) plotted against the parameter 3. The orange points (top curve) come
from walks where o = 3, and the blue points (bottom curve) come from walks

where oz = 0. The vertical line at 1/3 marks the expected asymptote.

We now show that the growth rate of R(n) is sufficient to cause the pathological
behaviour noted above.

To this end we postulate a hypothetical cogrowth function for which we can
explicitly identify and control R(n).

Example 5.3. Suppose that for some group on two generators and ¢ > 0, p €
(0,1), the reduced-cogrowth is known to be exactly

c, = 3"
Then limsup,,_, c,l/ " = 3 and so the group is amenable. It may easily be
verfied by the methods outlined in Proposition 3.4 that

R(n) = (9log(3)qp2n) =7 .

Note that as p approaches 1, the exponent ﬁ approaches infinity. This in-

creases both the degree of the polynomial in n, and the coefficient (9 log(3)gp2?) =3
Even though we do not know a group presentation with precisely this cogrowth
function, by varying p and ¢ this hypothetical example models the groups listed
in Table 1.
Figure 4 shows the effect of increasing the parameter p on the ERR walk
distribution. Note that this figure is not the output of any computer simulation,
rather it models the distributions for an ERR walk on an amenable group with
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Figure 4: Graphs of ¢, (n 4 1)0.335" for ¢, = 3"~ "".
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the hypothetical cogrowth function, for « = 0,8 = 0.335 and ¢ = 1. Recall that
for 8 < B, the theoretical distribution of word lengths visited by the ERR walk
is
Cn(’/l + 1)a+lﬂn

Z

where Z is a normalizing constant. For § > (. the distribution cannot be
normalised. In this case the function ¢, (n + 1)®T13" still contains information
about the behaviour of the walk. If the walk reaches a word of length x then
the relative heights of ¢, (n + 1)®T13" either side of x describe the relative
probabilities of increasing or decreasing the word length in the next move.

From Figure 4 we see that, for p = 0.3, the slope of c¢,(n + 1)**18" is
always positive, so at all word lengths probabilities are uniformly in favour of
increasing the word length. However, as p increases (and the growth rate for
R(n) increases) a ‘hump’ appears at short word lengths. A walk for such a group
would tend to get stuck in the ‘hump’. Indeed, for p = 0.39 the distribution
looks much less like a walk diverging towards infinite word lengths and much
more like the distributions for BS(1,7) used to produce Figure 2, where the
average word length in the ERR walk remained finite.

Pr(n) =

The distributions in Figure 4 exhibit a mechanism which can explain anoma-
lous behaviour previously observed. When R (n) increases quickly the ERR walk
may adhere to the behaviour predicted by the theory and simultaneously give
anomalous results about the asymptotics of the cogrowth function. In this sense
if [9] contains incorrect answers it is because the original ERR algorithm as it
was initially proposed asks the wrong question. The ERR walk does not mea-
sure asymptotic properties of the cogrowth function; it provides information
about the cogrowth function only for word lengths visited by the walk. This
observation forms the basis of Section 6.

Note that increasing the parameter a pushes the algorithm towards longer
word lengths. Thus, any pathological behaviour caused by the growth of R(n)
could theoretically be overcome by increasing . If R(n) is known, then it may
be used to calculate how large words have to get before divergence occurs. A
method to do this is outlined by the following example.

Suppose that ERR walks are run on a two generator group with 5 = 0.34 (as
in Figure 3). If we eliminate the a term of the stationary distribution (which,
being polynomial, becomes insignificant for long word lengths) the divergence
properties are controlled by the contest between 0.34"™ and ¢,. That is, diver-
gence will occur when co, 12/c2, > 1/0.34%2 = 3—1/17; the word length at which
divergence will occur is R(17). If this value is known o may be increased until
the walk visits words of this length. This process, however, requires specific
information about R(n) including all scaling constants. It is hard to imag-
ine a group for which the sub-dominant cogrowth behaviour was known to this
level of precision, but dominant cogrowth behaviour (and hence the amenability
question for the group) was still unknown.
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5.3 Reliability of the ERR results for Thompson’s group
F

In Proposition 3.10 we saw that the R function for F' grows faster than that
of any iterated wreath product of Z’s, and certainly faster than that of any
BS(1, N) group. Since the ERR method fails to predict the amenability of these
groups for N as low as 7, and this behaviour is consistent with the pathological
behaviour caused by R, we conclude that the data encoded in Figure 1 does not
imply the non-amenability of F', and so the conclusion of the paper [9] that F'
appears to be non-amenable based on this data is unreliable.

6 Appropriation of the ERR algorithm

The original implementation of the ERR walk uses only the mean length of
words visited in an attempt to estimate asymptotic behaviour of the cogrowth
function. In this section we show that, using the full distribution of word lengths
visited, it is possible to estimate specific values of the cogrowth function.

When doing a long ERR walk, the probability of arriving at a word of length
n can be estimated by multiplying the number of words of that length by the
asymptotic probability that the walk ends at a word of this length, m(n). That
is,
(n+1)7 "

Z .

The proportion of the time that the walks spends at words of length n, however,
gives us another estimate of Pr(n). If we let W,, be the number of times the
walk visits a word of length n then we have that

Pr(n) = epm(n) = cp

W,
Pr(n) = v

where Y is equal to the length of the walk. From this we obtain
Wo _ (n+1)p"

=~ Cp

Y Z

For two different values, n and m, we obtain the result

Wi n(m+1)" 8™
W, — ca(n+1)pn7°

Wn (n+1 “ _
m 2 Cn n-m, 8
n e <m+1> 8 ®)

Equation 8 provides a method of estimating the value of ¢,, using some
known or previously estimated value of ¢, and the distribution of word lengths
visited from an ERR walk. Let’s try a quick implementation of this for Thomp-
son’s group F, where the first 48 cogrowth terms of which are known [17].

Thus,
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n W, | n W, | n W,
0 | 32547326274 | 22 | 3360907182 | 36 | 65983874
10 | 56273373521 | 24 | 1905434239 | 38 | 37210588
12 | 31613690578 | 26 | 1121735814 | 40 | 20642387
14 | 26477475739 | 28 | 638093341 | 42 | 11332618
16 | 13576713156 | 30 | 367320461 | 44 | 6243538
18 | 9684082360 | 32 | 208025510 | 46 | 3421761
20 | 5444250723 | 34 | 118432982 | 48 | 1863477

Table 3: Data collected from an ERR walk of length Y = 1.8 x 10! with o = 3
and # = 0.3 on the standard presentation for Thompson’s group F.

We ran an ERR walk of length exceeding 10'? steps on the standard pre-
sentation (Equation 2) f or & = 3 and 8 = 0.3. The frequency of word length
visited is shown in Table 3.

We used Equation 8 and the data in Table 3 to estimate c1¢ from ¢y, and
then this estimate was used to estimate cj2. (Note that the shortest non-empty
trivial words are of length 10. Since the relators in the standard presentation
of F are even in length there are no odd length relators.) Using the data and
the previous estimate for ¢,,_s, estimates were made of the first 48 terms, and
these compared to the correct value in Table 4.

This implementation of Equation 8 may be refined in several ways. Firstly, in
many groups we have exact initial values of ¢, for more than the trivial result
co = 1. In this case these initial values can be used to estimate subsequent
terms. In this paper we are primarily concerned with testing the efficacy of this
method for determining cogrowth, and so do not make use of such data.

Secondly, in the above implementation the only cogrowth value used to es-
timate ¢, was ¢,_o. Instead, estimates for ¢, may be made from ¢ for any
k < n. These estimates may then be averaged to form an estimate for ¢,,. Note,
however, that if only one ERR walk is used, and each of the ¢ is itself esti-
mated from previous values of the same distribution there may be issues with
interdependence.

This leads naturally to the following refinement — to obtain several inde-
pendent estimates for a given cogrowth value several ERR walks can be run
with different values for the parameters o and .

6.1 The ERR-R algorithm.

The ERR-R algorithm accepts as input a group presentation and the cogrowth
value with ¢g = 1. As above, recursive application of Equation 8 is used to
produce estimates for longer word lengths. However, in each step previous
estimates for a range of ¢, are used to produce new estimates. A detailed
analysis of the error incurred with each application of Equation 8 is performed in
Section 6.5. All error bounds which appear in subsequent graphs are constructed
using these techniques.
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n exact estimate percentage
error

10 20 19.9988 .006
12 64 63.9928 .01
14 336 335.969 .01
16 1160 1160.23 .02
18 5896 5893.13 .05
20 24652 24667.2 .06
22 117628 117588 .03
24 531136 530650 .09
26 2559552 2551340 .3
28 12142320 12116600 2
30 59416808 59353400 1
32 | 290915560 290848000 .02
34 | 1449601452 1453990000 3
36 | 7269071976 7206930000 .8
38 | 36877764000 | 36583500000 .8
40 | 1.8848 x 10! | 1.8461 x 10! 2
42 1 9.7200 x 10 | 9.3078 x 10! 4
44 | 5.0490 x 102 | 4.7504 x 102 6
46 | 2.6423 x 1013 | 2.4308 x 10'3 8
48 | 1.3920 x 10'* | 1.245 x 1014 10

Table 4: Estimate of the first 48 terms of the cogrowth function for Thompson’s
group F, constructed from an ERR walk of Y = 1.8 x 10'! steps with a = 3
and S = 0.3. Exact values from [17].

Unsurprisingly, the errror analysis in Section 6.5 predicts that the largest
errors are incurred when data is used from the tails of random walk distributions.
Ideally then, a separate walk should be run for each c¢,, with parameters o and
[ chosen so that the sampled word lengths occupy the peaks of the distribution.
If many estimates are to be made this is computationally infeasible. Instead we
performed ERR walks using a range of « and S values, which can be chosen so
that all word lengths of interest are visited often.

When estimating c¢,,, one estimate was made from each walk distribution
and from each ¢,, m — 100 < n < m. To avoid using the tails of distributions
only data points which were greater than 10% of the maximum height were
used.

Using Equation 9 each estimate was assigned a weight equal to the inverse
of the estimated error. The final value for ¢, was taken as the weighted average
of the estimates, and the error in ¢,, was taken to be the weighted average of
the individual error estimates.

Random walk data was obtained as before using the Python code of the
second author as described in Remark 4.2.
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Figure 5: Estimates for c}/n for the groups BS(1,N), N = 2,...,7. As N
increases the curves takes longer to approach the asymptote.

6.2 Application to the examples in Section 5

Applying the ERR-R algorithm can be used to analyse in more detail the patho-
logical behaviours analysed above. Unsurprisingly, for the presentations of the
trivial group given in 5.1 which ignore the long relator, the ERR-R estimates for
cogrowth values align closely with the three strand braid group. For BS(1, N)
we can use estimates of initial cogrowth to analyse how R increases with V.
This is shown, for example in Figure 5 which exhibits the behaviour predicted
by the convergence to Z ! Z in the space of marked groups. Further analysis of
these presentations appears in [27].

6.3 Application to surface group

The fundamental group of a surface of genus 2 has presentation (a,b,c,d |
[a, b][c,d]). The cogrowth of this group has received a lot of attention, and good
upper and lower bounds are known for the asymptotic rate of growth [14, 23].

ERR walks were run on this surface group with a = 3, 30, 300 and 8 =
0.281, 0.286, 0.291,...,0.351. Estimates were made for ¢,, as well as the error

Ac,,. The resultant upper and lower bounds for 071/ " are shown in Figure 6.

6.4 Application to Thompson’s group F

We now apply the more sophisticated implementation of the method to F.
We again compare the first 48 values with exact values obtained by Haagerup
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Figure 6: Upper and lower bounds for the n-th root of the cogrowth function for
the fundamental group of a surface of genus 2 as calculated from ERR walks.
The horizontal lines (indistinguishable at this scale) identify the known upper
and lower bounds. Note that after 12000 recursive applications of Equation 8
the error in the n-th root is still only approximately 0.01.
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. predicted
n exact estimate | error (%) error (%)
10 20 19.9996 0.002 .03
12 64 63.9981 0.003 0.06
14 336 335.999 0.0002 0.07
16 1160 1159.96 0.003 0.1
18 5896 5895.98 0.0003 0.1
20 24652 24653.1 0.005 0.1
22 117628 117625 0.003 0.2
24 531136 531098 0.007 0.2
26 2559552 2558950 0.02 0.2
28 12142320 12138200 0.03 0.3
30 59416808 59408300 0.01 0.3
32 290915560 290861000 0.02 0.3
34 | 1449601452 1449260000 0.02 0.3
36 | 7269071976 7268550000 0.007 0.4
38 | 36877764000 | 36876700000 0.003 0.5
40 | 1.8848 x 10" | 1.88491 x 10! 0.003 0.5
42 1 9.7200 x 10 | 9.7205 x 10! 0.005 0.5
44 | 5.0490 x 102 | 5.05097 x 102 0.04 0.6
46 | 2.6423 x 103 | 2.64353 x 10'3 0.05 0.6
48 | 1.3920 x 10 | 1.39246 x 104 0.03 0.7

Table 5: Estimate of the first 48 terms of the cogrowth function for Thompson’s
group F, constructed from 60 ERR walks. Exact values from [17].

ERR walks were run on F' with o = 3,13,23,33,53,63 and f =

1/n
n

et al..
0.28,0.29,...0.37. Table 5 shows comparisons between estimates for ¢ and
the actual values, for n < 48, as well as the estimates for the error obtained
from the experimental data.

Remark 6.1. Table 5 shows a marked increase in the degree of accuracy of the
estimates over those of Table 4. This suggests the method of using multiple dis-
tributions and weighted averages is effective. Note that there are approximately
10'2 trivial words of length 48 so the walks could not possibly have visited each
one. The sample of words visited by the walk seem to reflect the space as a
whole reasonably accurately.

Our method allows us to go much further than this though. Figure 7 shows
our estimates for upper and lower bounds of c}l ™ for n < 2000.

6.5 Error analysis

Here we identify a method by which error in cogrowth estimates may be esti-
mated. We stress that this is a statistical measurement of error, rather than
theoretical.
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Figure 7: Estimates of c}/ " for Thompsons group F for n < 2000, using the
ERR-R method. The figure includes upper and lower bounds, but at this scale
the estimated error is too small for the bounds to be distinguished.

Recall Equation 8. Suppose that ¢, is known up to +Ac,, and that the
error in the measurements W,, and W,, are £AW,,, and £AW,, respectively.
Then, from elementary calculus, the error in ¢,, is given by

Wy (m+1\Y
n mAn
W <m+1) B ¢

Cn (n+1

Ac,, ~

n n—mA
+Wn m—l—l) P W

W (n+1\"

w2 (m+1) prT AWy

W (n+1 aﬂnfm Acy, n AW, n AW,
—on m+1 Cn W W,

+cp

Wy
Ac, AW,, AW,
XCm ( o + W + W, .

9)

Hence the proportional error in the estimate of ¢, is approximately equal
to the sum of the proportional errors in ¢,, W, and W,,. It is clear from
this that if Equation 8 is used recursively (building new estimates based on
previously estimated cogrowth values) the proportional error in ¢, is certain
to increase. Note, the factor controlling the rate of growth in the proportional
error of estimates is the proportional error in AW,. If this is constant as n
increases the proportional error in ¢, will grow linearly with n.
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To calculate useful error margins for ¢, it is necessary to quantify AW,.
Here we employ the same method used in [9]; walks are split into M segments
and the number of times the walk visits words of length n is recorded for each
segment. Let x; ,, denote the number of times the walk visited words of length n
in the ith segment. Then W, is taken to be the average of z; ,, fori=1,..., M
and the error in W, is calculated from the statistical variance of these values,

_ IVar{zinhi<i<m
AW, = | === (10)

Example 6.2. Equations 9 and 10 were used to produce the estimates of the
error in the estimates contained in Table 5. Note that the estimated error is
much larger than the actual error.

6.6 Error in the n-th root of ¢,

We have noted that recursive uses of Equation 8 will result in an increasing
proportional error in ¢,. However, it is the n-th root of ¢, which reflects the
amenability of a group. Let v, = c,ll/ " and Av, denote the error of the estimate

for v,. Once again from elementary calculus we obtain that for a given n

%
)
33
|
>
$

Ay,

— n
= —Cn

Ay, 1 Ac,

and so (11)

Tn n cp

A .
T can be expected to remain
n

Thus, if ACC" increases at most linearly,
constant. !

The values for ¢, grow exponentially, so a linearly increasing proportional
error in ¢, corresponds with a massive increase in the absolute error in ¢,. In
contrast, 7y, approaches a constant, so the proportional error depends linearly
on the absolute error. Thus it is not surprising that our experimental results
show that even when the error in cogrowth estimates grows large, the error in
the n-th root grows very slowly.

7 Conclusion

Several ideas emerge from this study. Firstly, researchers performing experi-
mental mathematics to determine the amenability of a group need to take care
that their algorithm is not susceptible to interference from sub-dominant be-
haviours. For the reduced-cogrowth function the sub-dominant behaviour is
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identified by R. Amenability is an asymptotic property, and the interference
of sub-dominant behaviours on experimental algorithms can be subtle and nu-
anced. In particular, we have shown that, if Thompson’s group F' is amenable,
its function R grows faster than any polynomial. This implies that the predic-
tion of non-amenability of F' in [9] is unreliable.

We have also shown that, despite potential inaccuracies in estimates of
asymptotics, the ERR-R method can produce accurate results for initial cogrowth
values. These are interesting in their own right. Indeed, if Thompson’s group
is not amenable, then its R function need not be super-polynomial and results
from experimental methods might well inform the construction of conjectures
regarding cogrowth.

In this context the original benefits of the ERR algorithm still stand: it
requires no group theoretic computational software, no solution to the word
problem, and remains a computationally inexpensive way to quickly gain insight
into the cogrowth function of a finitely presented group.
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