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Abstract. Apollonian gaskets are formed by repeatedly filling the interstices between four
mutually tangent circles with further tangent circles. We experimentally study the pair
correlation, electrostatic energy, and nearest neighbor spacing of centers of circles from
Apollonian gaskets. Even though the centers of these circles are not uniformly distributed
in any ‘ambient’ space, after proper normalization, all these statistics seem to exhibit some
interesting limiting behaviors.

1. introduction

Apollonian gaskets, named after the ancient Greek mathematician, Apollonius of Perga
(200 BC), are fractal sets obtained by starting from three mutually tangent circles and
iteratively inscribing new circles in the curvilinear triangular gaps. Over the last decade,
there has been a resurgent interest in the study of Apollonian gaskets. Due to its rich
mathematical structure, this topic has attracted attention of experts from various fields
including number theory, homogeneous dynamics, group theory, and significant results have
been obtained.

Figure 1. Construction of an Apollonian gasket

For example, it has been known since Soddy [22] that there exist Apollonian gaskets with
all circles having integer curvatures (reciprocal of radii). This is due to the fact that the
curvatures from any four mutually tangent circles satisfy a quadratic equation (see Figure
2). Inspired by [11], [9], and [7], Bourgain and Kontorovich used the circle method to prove a
fascinating result that for any primitive integral (integer curvatures with gcd 1) Apollonian
gasket, almost every integer in certain congruence classes modulo 24 is a curvature of some
circle in the gasket.

In another direction, Kontorovich and Oh [15] obtained an asymptotic result for counting
circles from an Apollonian gasket P using the spectral theory of infinite volume hyperbolic
spaces, which was originally developed by Lax-Phillips [16]. Their result is stated below.

1

ar
X

iv
:1

70
5.

06
21

2v
2 

 [
m

at
h.

M
G

] 
 1

8 
M

ay
 2

01
7



2 WEIRU CHEN, MO JIAO, CALVIN KESSLER, AMITA MALIK, AND XIN ZHANG

Theorem 1.1 (Kontorovich-Oh). Fix an Apollonian gasket P, and let PT be the collection
of circles with curvatures ă T . Then as T approaches infinity,

lim
TÑ8

#PT
T δ

“ cP ,

where cP is a positive constant depending on P, and δ « 1.305688 is the Hausdorff dimension
of any Apollonian gasket.

The reason for all Apollonian gaskets to have the same Hausdorff dimension is that they
belong to the same conformally equivalent class. In other words, for any two fixed gaskets,
one can always find a Möbius transformation which takes one gasket to the other. The
estimate δ « 1.305688 was obtained in [18].

Kontorovich and Oh’s result was refined by Oh and Shah [20] using homogeneous dynam-
ics.

Theorem 1.2 (Oh-Shah). For any Apollonian gasket P placed in the complex plane C,
there exists a finite Borel measure µ, such that for any region R Ă C with piecewise analytic
boundary (see Figure 3), the cardinality of PT pRq, the set of circles from PT lying in R,
satisfies

lim
TÑ8

PT pRq
T δ

“ µpRq.

Figure 2. An integer Apollo-
nian gasket

Figure 3. A region R with
piecewise analytic boundary

Theorem 1.2 gives a satisfactory explanation on how circles are distributed in an Apollo-
nian gasket in large scale. However, it yields little information on questions concerning the
fine scale distribution of circles. For example, one such question is the following.

Question 1.3. If one sits at the center of a random circle from PT , how many circles can
one see within a distance of 10{T?

The fine structures of Apollonian gaskets are encoded by local spatial statistics. In this
article, we report our empirical results on some of such statistics, namely, pair correlation,
nearest neighbor spacing and electrostatic energy. We find numerically that after proper
normalization all these statistics exhibit some interesting limiting behavior when the grow-
ing parameter T approaches infinity. Our conjectures in this direction are based on these
numerical results. In particular, a proof of Conjecture 2.1 will provide an asymptotic answer
to Question 1.3 when T is large.
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These spatial statistics have been widely used in disciplines such as physics and biology.
For instance, in microscopic physics, the Kirkwood-Buff Solution Theory [14] links the pair
correlation function of gas molecules, which encodes the microscopic details of the distri-
bution of these molecules, to macroscopic thermodynamical properties of the gas such as
pressure and potential energy. On a macroscopic level, cosmologists use pair correlations to
study the distribution of stars and galaxies.

Within mathematics, there is a rich literature on the spatial statistics of point processes
arising from various settings. A stunning application of pair correlation is a discovery made
by Montgomery and Dyson. Montgomery computed that the pair correlation function of
the zeros of the Riemann zeta function, which agrees with the pair correlation function of
random Hermitian matrices computed by Dyson. This conjectural relation (still unproven)
is known as the Montgomery’s pair correlation conjecture [19]. It appears to give evidences
to Hilbert and Pólya’s speculation that zeros of the Riemann zeta function correspond to
eigenvalues of a self-adjoint operator on a Hilbert space.

Spatial statistics from some other point processes have otherwise been rigorously estab-
lished: gap distribution of the fractional parts of p

?
nq by Elkies and McMullen [8], distri-

bution of directions of Euclidean or hyperbolic lattices [6], [5], [13], [21], [17], distribution of
Farey sequences [12], [4], [3], and gap distribution of saddle connection directions in trans-
lation surfaces [1], [2]. Our list of interesting works here is far from inclusive.

There is a fundamental difference between all mentioned works above and our investigation
of circles. In their work, the underlying point sequences become uniformly distributed in
their ‘ambient’ spaces. In our case, we parametrize each circle by its center and we define
the distance between two circles by the Euclidean distance of their centers, then our study
of circles becomes the study of their centers. However, the set of centers is clearly not even
dense in any reasonable ambient space such as D, the disk bounded by the largest circle
of the gasket. In fact, we notice that centers tend to cluster over some tiny regions and
meanwhile we can find in D plenty of holes in which no center can be found. Consequently,
we need different normalizations of parameters, as hinted in the last author’s work [23] on
the gap distribution of a point orbit of an infinite-covolume Schottky group.

2. Experimental results and conjectures

The point process under our investigation is CT , the set of centers of circles with curva-
tures ă T . In this section, we provide data for the (normalized) spatial statistics such as
electrostatic energy, nearest neighbor spacing, pair correlations and state our conjectures.
All packings under consideration here come from four mutually tangent circles C0, C1, C2, C3

with C0 bounding the other three and of radius 1. We use C-coordinates for these circles so
that C0 “ tz P C : |z| “ 1u, and C1 tangent to C0 at e0i “ 1. Suppose C2 and C3 are tangent
to C0 at eθ1i and eθ2i, respectively. The pair pθ1, θ2q then uniquely determines an Apollonian
gasket which we denote by Ppθ1, θ2q.

2.1. Pair correlation. The pair correlation function FT psq for the set CT is defined to be

FT psq :“
1

2#CT

ÿ

p,qPCT
p‰q

1 tdpp, qqT ă su ,

where dp¨, ¨q is the Euclidean distance function, and 1tAu is the indicator function which has
the value 1 if the condition A is true, and 0 otherwise.
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From Theorem 1.2, we have #CT „ cPT
δ. If these centers were randomly distributed in

D, then a typical point has distance — 1{T δ{2 to its nearest neighbor. But here we need to
normalize the distance by multiplying T instead of T δ{2. The reason is that in the family PT ,
a typical circle has radius — 1{T , and the neighbor circles in CT also typically have distance
— 1{T (recall that the distance between two circles is the Euclidean distance between their
centers), so that 1{T is the right scale to measure the local spacing of circles. We also use
the same normalization for the nearest neighbor spacing statistics.

Figure 4 is the empirical plot for the pair correlation function FT for the gasket Pp1.8
3
π, 3.7

3
πq,

with various T taken. It seems that these curves indeed stay close to each other.
We can also study the pair correlation function for centers restricted to some subset R of

C:

FT,Rpsq :“
1

2#CT,R

ÿ

p,qPCT,R
p‰q

1 tdpp, qqT ă su (1)

where CT,R “ CT XR.
By convention if R “ C, we can also omit R. Figure 5 is the plot for F1000,R for the

gasket Pp1.8
3
π, 3.7

3
πq, with R “ C, R “ tz P C|<z ą 0u and R “ tz P C|<z ą 0,=z ą 0u

respectively. The three obtained curves indeed seem close to each other.
In Figure 6 we also plot “F 1T psq”, the empirical derivative for FT psq, defined by F 1T psq “

FT ps`0.1q´FT psq
0.1

, for the gasket Pp1.8
3
π, 3.7

3
πq. Our plot suggests that the derivative of FT exists

and is continuous. The turbulent manner of the plot indicates that a rigorous proof of this
claim might be difficult.

Figure 7 is the plot for the pair correlation function FT for three different Apollonian gas-
kets Pp1.1

3
π, 3.5

3
πq, Pp2.5

3
π, 3.5

4.2
πq, Pp2.9

3
π, 3.2

3
πq. It appears that their limiting pair correlation

should be the same.

Figure 4. The plot for FT
with various T’s

Figure 5. Pair correlation for
the whole plane, half plane and
the first quadrant

Based on these findings, we make the following conjecture.

Conjecture 2.1. For any Apollonian gasket P, and any R Ă C with µpRq ą 0, there
exists a non-negative, monotone, continuously differentiable function F on r0,8q which is
supported away from 0 such that

lim
TÑ8

FT,Rpsq “ F psq
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Figure 6. The empirical de-
rivative F 1T psq, with different T
taken

Figure 7. Pair correlation
functions for different Apollo-
nian gaskets

for any s P r0,8q, where FT,Rpsq is defined in (1). Moreover, the function F is independent
of the chosen Apollonian gasket.

2.2. Electrostatic Energy. The electrostatic energy function GpT q is defined by

GpT q :“
1

T 2δ

ÿ

p,qPCT
p‰q

1

dpp, qq
. (2)

The definition (2) agrees with the definition of electrostatic energy for an array of electrons
in physics, with an extra normalizing factor 1{T 2δ.

Figure 8. The electrostatic energy function GpT q for Pp1.8
3
π, 3.7

3
πq

Our experiment suggests that GpT q converges to some positive constant when T gets large
(see Figure 8). We formulate this as a conjecture below.

Conjecture 2.2. There exists a constant b ą 0, such that

lim
TÑ8

GpT q “ b.

2.3. Nearest spacing. For the set CT and a point x P CT , we let gT pxq to be the distance
between x and a closest point in CT to x. The nearest spacing function HT psq for the set CT
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is then defined as

HT psq :“
1

#CT

ÿ

xPCT

1 tgT pxq ¨ T ă su (3)

Again, we need to normalize the distance by multiplying T , as we did earlier for the pair
correlation function. Figure 9 is the plot of the nearest spacing function for the gasket
Pp1.8

3
π, 3.7

3
πq for various T ’s, which also depicts some convergence behavior.

Figure 9. The nearest neighbor spacing function HT psq for various T ’s

Conjecture 2.3. There exists a non-negative, monotone, continuous function H on r0,8q
which is supported away from 0 such that

lim
TÑ8

HT psq “ Hpsq,

for any s P r0,8q, where HT psq is defined as in (3).

3. Conclusion

Our investigation shows that the spatial statistics of Apollonian gaskets exhibit quite
regular behavior, this is probably due to the fact that these gaskets are highly self-symmetric.
A possible approach to the proposed conjectures might be via homogeneous dynamics on
infinite volume hyperbolic spaces.

There are other natural problems on the fine structures of fractal sets. For instance, Figure
10 is the famous Grand Spiral Galaxy (NGC 1232), which can be simulated by a Mandelbrot
set constructed from complex dynamics (see Figure 11). Both pictures are from [10].

Figure 10. A spiral galaxy Figure 11. A Mandelbrot set

We pose the following question:
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Question 3.1. What can one say about the fine structures of stars distribution in a spiral
galaxy?
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