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ON FUNCTIONAL GRAPHS OF QUADRATIC

POLYNOMIALS

BERNARD MANS, MIN SHA, IGOR E. SHPARLINSKI,
AND DANIEL SUTANTYO

Abstract. We study functional graphs generated by quadratic
polynomials over prime fields. We introduce efficient algorithms for
methodical computations and provide the values of various direct
and cumulative statistical parameters of interest. These include:
the number of connected functional graphs, the number of graphs
having a maximal cycle, the number of cycles of fixed size, the
number of components of fixed size, as well as the shape of trees
extracted from functional graphs. We particularly focus on con-
nected functional graphs, that is, the graphs which contain only
one component (and thus only one cycle). Based on the results
of our computations, we formulate several conjectures highlighting
the similarities and differences between these functional graphs and
random mappings.

1. Introduction

Let Fq be the finite field of q elements and of characteristic p, with
p ě 3. For a function f : Fq Ñ Fq , we define the functional graph of
f as a directed graph Gf on q nodes labelled by the elements of Fq

where there is an edge from u to v if and only if fpuq “ v . For any
integer n ě 1, let f pnq be the n-th iteration of f .
These graphs are particular as one can immediately observe that

each connected component of the graph Gf has a unique cycle (we
treat fixed points as cycles of length 1). An example for the functional
graph of x2 ` 12 pmod 31q is given in Figure 1.1.
Recently, there have been an increasing interest in studying, theo-

retically and experimentally, the graphs Gf generated by polynomials
f P FqrXs of small degree (such as quadratic polynomials), and how
they differ, or not, from random mappings [Flajolet and Odlyzko 1990].
We refer to [Bellah et al. 2016,Bridy and Garton 2016,Burnette and
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Figure 1.1. The functional graph of X2 ` 12 pmod 31q

Schmutz 2017, Flynn and Garton 2014, Konyagin et al. 2016, Ostafe
and Sha 2016] and the references therein.
In this paper, we concentrate on the case of quadratic polynomials

over prime fields. In fact, up to isomorphism we only need to consider
polynomials fapXq “ X2 ` a, a P Fp (see the proof of [Konyagin et
al. 2016, Theorem 2.1]). For simplicity, we use Ga “ Gfa to denote
the functional graph generated by fa . For this case, in [Konyagin et
al. 2016, Section 4] the authors have provided numerical data for the
number of distinct graphs Ga , the statistics of cyclic points, the number
of connected components, as well as the most popular component size.
Different from the aspects in [Konyagin et al. 2016], we consider

several questions related to distributions of cyclic points and sizes of
connected components of Ga when a runs through the elements in Fp .
In particular, we are interested in characterising connected functional
graphs Ga , that is, the graphs which contain only one component (and
thus only one cycle).
In this paper, we focus on characterising the functional graphs by

providing direct parameters such as the number of (connected) com-
ponents. We then characterise various cumulative parameters, such
as the number of cyclic points and the shape of trees extracted from
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functional graphs. We highlight similarities and differences between
functional graphs [Konyagin et al. 2016] and random mappings [Fla-
jolet and Odlyzko 1990], and we also pay much attention to features
of connected functional graphs. While obtaining theoretic results for
these questions remains a challenge, we introduce efficient algorithms
and present new interesting results of numerical experiments.
The rest of the paper is structured as follows. In Section 2, we de-

velop a fast algorithm that determines whether a functional graph is
connected, which is used to compute the number of connected func-
tional graphs. In Section 3, we compare the number of cyclic points
in connected graphs with those in all graphs modulo p. In Section 4
and Section 5 respectively, we consider the number of components with
small number of cyclic points and with small size. Finally, in Section 6
we illustrate the statistics of trees in functional graphs.
Throughout the paper, we use the Landau symbol O . Recall that

the assertion U “ OpV q is equivalent to the inequality |U | ď cV with
some absolute constant c ą 0. To emphasise the dependence of the
implied constant c on some parameter (or a list of parameters) ρ, we
write U “ OρpV q. We also use the asymptotic symbol „ .

2. Counting connected graphs

In this section, we introduce a new efficient algorithm that quickly
detects connected functional graphs, and formulate some conjectures
for the number of connected graphs based on our computations.

2.1. Preliminaries and informal ideas of the algorithm. Let Ip be the
set a P Fp such that Ga is connected. We also denote by Ip “ #Ip the
number of connected graphs Ga with a P Fp . Clearly the graph G0 is
not connected, and also by [Vasiga and Shallit 2004, Corollary 18 (a)]
G´2 is also not connected if p ą 3, and so Ip Ď Fpzt0,´2u if p ą 3.
In fact, the functional graphs with values a “ 0 and a “ ´2 lead
to graphs with a particular group structure (and thus the structure of
these graphs deviates significantly from the other graphs, see [Vasiga
and Shallit 2004]).
Essentially in [Konyagin et al. 2016, Algorithm 3.1], a rigorous deter-

ministic algorithm using Floyd’s cycle detection algorithm and needing
Oppq function evaluations (that is, of complexity p1`op1q ) has been used
to test whether Ga is a connected graph. Instead of evaluating Ip via
this algorithm which would need Opp2q function evaluations, we intro-
duce a more efficient heuristic approach in practice, which is specifically
useful for computations of a family of graphs (not just a single graph).
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The main idea is to first check quickly whether Ga has more than
one small cycle (i.e., more than one component). A graph Ga has a

component with a cycle of size ℓ if and only if the equation f
pℓq
a puq “

u has a solution u which is not a solution to any of the equations

f
pkq
a puq “ u with 1 ď k ă ℓ . The roots of f

pℓq
a puq “ u are the cyclic

points in the graph. For this we need the dynatomic polynomials

F pℓq
a pXq “

ź

r|ℓ

`
f prq
a pXq ´ X

˘µpℓ{rq
,

where µpkq is the Möbius function, see [Silverman 2007, Section 4.1].
Moreover, we have

f pnq
a pXq ´ X “

ź

ℓ|n

F pℓq
a pXq, n “ 1, 2, . . . .

For example

F p1q
a pXq “ X2 ´ X ` a and F p2q

a pXq “ X2 ` X ` a ` 1

and

F p3q
a pXq “

`
f p3q
a pXq ´ X

˘
{
`
f p1q
a pXq ´ X

˘
.

Clearly, if Ga has a cycle of length ℓ , then any point in this cycle

is a root of the polynomial F
pℓq
a pXq. However, the roots of F

pℓq
a pXq

might be not all lying in cycles of length ℓ ; for instance see [Silverman

2007, Example 4.2]. Certainly, Ga is not connected if F
pℓq
a pXq has a

root for two distinct values of ℓ “ ℓ1, ℓ2 with ℓ1 ∤ ℓ2 and ℓ2 ∤ ℓ1 .

Alternatively, if F
pℓq
a pXq has more than ℓ distinct roots, this indicates

that Ga has at least two cycles, which again implies that Ga has more
than one connected component.
As we show later, it turns out that this occurs frequently and thus we

can rule out the connectivity of most of the graph Ga , a P Fp quickly.
A relatively small number of remaining suspects can be checked via the
rigorous deterministic algorithm from [Konyagin et al. 2016, Algorithm
3.1].

2.2. Algorithm. Algorithm 2.1 is to determine whether a graph is con-

nected or not, where we in fact use f
pℓq
a pXq instead of F

pℓq
a pXq.

The algorithm starts by checking if there is any cycle of size 1 in

the graph. Since Xp ´ X only contains simple roots and f
p1q
a pXq has

degree 2, if gcdpXp ´X, f
p1q
a pXqq ą 1, then there are two cycles of size

1 and thus two separate components in the graph. Otherwise, there is
at most one component with a cycle of size 1 in the graph Ga .
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Algorithm 2.1 Determine if Ga is a connected graph

Require: prime p, integer a pmod pq and integer L.
Ensure: returns true if X2 ` a pmod pq generates a connected func-

tional graph, and false otherwise
1: cycles Ð 0

2: g1 Ð gcdpXp ´ X, f
p1q
a pXq ´ Xq

3: if deg g1 ě 1 then

4: if deg g1 “ 2 then

5: return false
6: end if

7: cycles Ð cycles ` 1
8: end if

9: for i Ð 2 to L do

10: gi Ð gcdpXp ´ X, f
piq
a pXq ´ Xq

11: if deg gi ą i then

12: return false
13: else if deg gi “ i then

14: cycles Ð cycles ` 1
15: end if

16: if cycles ą 1 then

17: return false
18: end if

19: end for

20: for j Ð 0 to p ´ 1 do

21: start traversal from node j

22: if two cycles are detected then

23: return false
24: end if

25: end for

26: return true

Next, we compute gi “ gcdpXp ´ X, f
piq
a pXq ´ Xq from i “ 2 until

L while keeping track of the number of cycles that has been detected.
Here, we have several possibilities:

‚ if deg gi ă i, then there are no cycle of size i in the graph.
‚ if deg gi “ i, then there is exactly one cycle of size i.
‚ if deg gi ą i, then there are at least two different cycles in the
graph.

When deg gi ă i, there are no cycle of size i since there are not
enough roots to form one. Similarly, if deg gi ą i, then there are more
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than i cyclic points in the graph, of which at least i of them form one
cycle, and so there are more than one cycle in the graph.
Finally, if at this stage the algorithm detects deg gi “ i, then there

is exactly one cycle of size i. By contradiction, if there is no cycle of
size i, then there must be at least two cycles of size less than i, and so
we would have detected that cycles ą 1 at a previous iteration, thus
returning ‘false’.
Once we are done with the first loop, either we have found one cycle

with size at most L, or we have not found any small cycles at all. We
then proceed with a graph traversal until we find two cycles.

2.3. Statistics of the number of connected graphs. We implement Al-
gorithm 2.1 by using NTL [NTL 2016] and PARI/GP [Pari 2016],
choosing L “ 5 in our computations. We collect values of Ip for some
primes (as shown in Table 2.1) that lead us to the following conjecture:

Conjecture 2.1. Ip „ ?
2p as p Ñ 8.

Here, we also pose a weaker conjecture:

Conjecture 2.2. For any prime p, Ip ě 1.

Conjecture 2.2 predicts that there always exists a connected func-
tional graph generated by quadratic polynomials modulo p. Indeed,
according to our computations, Conjecture 2.2 is true for all primes
p ď 100000.
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p Ip
?
2p

500,009 1,038 1,000.009
500,029 1,002 1,000.029
500,041 956 1,000.041
500,057 1,026 1,000.057
500,069 995 1,000.069
500,083 987 1,000.083
500,107 994 1,000.107
500,111 1,010 1,000.111
500,113 1,019 1,000.113
500,119 920 1,000.119
500,153 1,033 1,000.153
500,167 1,005 1,000.167

1,000,003 1,369 1,414.296
2,000,003 1,909 2,000.001
3,000,017 2,478 2,449.497
4,000,037 2,838 2,828.440

Table 2.1. The number of connected graphs modulo p

We also investigate the existence of connected functional graphs hav-
ing (only) one cycle of size 1.
If the graph Ga is connected and has one cycle of size 1, then the

equation X2 ` a “ X has two identical roots (corresponding to fixed
points), and so a “ 1{4 and the root x “ 1{2. Thus, we only need to
check the graph generated by X2 ` 1{4 in Fp .
We have tested all the primes up to 100000 and we only have found

two such examples: one is X2 ` 1 in F3 , and the other is X2 ` 2 in
F7 . Furthermore, we have:

Proposition 2.3. For any prime p with p ” 5 or 11 pmod 12q, there
is no functional graph Ga having only one cycle of size 1.

Proof. Note that we only need to consider the graph G1{4 . Since 1{2
is a fixed point of G1{4 and there is an edge from ´1{2 to 1{2, we
consider the equation X2 ` 1{4 “ ´1{2 in Fp , that is, whether ´3 is
a square in Fp . However, if p ” 5 or 11 pmod 12q, ´3 is not a square
in Fp . Then, the in-degree of ´1{2 is zero, and so G1{4 must have more
than one cycle. This completes the proof. [\
So, we pose the following conjecture:

Conjecture 2.4. For any prime p ą 7, there is no functional graph Ga

having only one cycle of size 1.
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3. Counting cyclic points in functional graphs

We now assess the number of cyclic points in functional graphs mod-
ulo p. For the minimal and maximal numbers of cyclic points in graphs
Ga , we refer to [Konyagin et al. 2016, Table 4.1], where the cases
a “ 0,´2 are excluded. Roughly speaking, the reason why these two
cases are excluded is that the number of cyclic points is maximized on
the cases a “ 0,´2 quite often; see [Konyagin et al. 2016, Section 4.3]
for more details. In this section, we also follow this convention.
Let Ca be the total number of cyclic points of Ga , and let ca be the

largest number of cyclic points in a single component of Ga . Clearly
we have Ca ě ca for any a P Fp and Ca “ ca when a P Ip .
Furthermore, we define the average and largest values of these quan-

tities:

Cp “ 1

p ´ 2

ÿ

aPFpzt0,´2u

Ca, Cp “ max tCa : a P Fpzt0,´2uu ;

cp “ 1

p ´ 2

ÿ

aPFpzt0,´2u

ca, cp “ max tca : a P Fpzt0,´2uu ;

cp
˚ “ 1

Ip

ÿ

aPIp

ca, c
˚
p “ max tca : a P Ipu .

We remark again that Ip Ď Fpzt0,´2u if p ą 3.
Numerical experiments in [Konyagin et al. 2016, Section 4.3] suggest

that the average number of cyclic points modulo p, taken over all
graphs modulo p (excluding a “ 0,´2), is

a
πp{2, which is consistent

with the behaviour of random maps (see [Flajolet and Odlyzko 1990,
Theorem 2(ii)]). Here we show that this is not the case for connected
graphs (see Table 3.1). In that case, cp

˚ is smaller than Cp , i.e. there
are fewer cyclic points than those for non-connected graphs on average.
Notice that both cp

˚ and cp are both close to
a

2p{π (and although
close to each other, cp

˚ is slightly larger).
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p Cp

a
πp{2 cp cp

˚
a

2p{π
500,009 886.224 886.235 553.445 573.355 564.194
500,029 885.990 886.253 553.312 587.750 564.205
500,041 885.069 886.263 553.175 568.208 564.212
500,057 884.963 886.277 552.870 586.037 564.221
500,069 885.831 886.288 552.952 558.285 564.229
500,083 884.970 886.300 552.692 564.995 564.236
500,107 884.507 886.322 552.674 562.690 564.250
500,111 884.341 886.325 552.157 575.976 564.252
500,113 885.160 886.327 552.988 568.057 564.253
500,119 884.559 886.332 552.597 569.750 564.257
500,153 884.834 886.363 552.900 589.146 564.276
500,167 885.756 886.375 552.525 560.095 564.284
600,011 969.139 970.822 605.632 611.914 618.044
700,001 1,047.771 1,048.599 654.317 667.624 667.559
800,011 1,120.427 1,121.006 700.047 703.061 713.655
900,001 1,188.822 1,188.999 742.619 762.673 756.940

1,000,003 1,252.452 1,253.316 782.026 793.388 797.886
2,000,003 1,772.078 1,772.455 1,106.815 1,134.598 1,128.380

Table 3.1. Average number of cyclic points in graphs
modulo p (excluding a “ 0,´2)

In Table 3.2, one can see that the largest cycles usually do not ap-
pear in the connected graphs, which appears surprising and shows the
existence of components with a large cycle even when the graph is
disconnected. In addition, the difference cp ´ c

˚
p is large, while the

difference of Cp and cp is small.
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p Cp cp c
˚
p

500,009 3,578 3,164 2,319
500,029 3,620 3,291 2,327
500,041 3,798 3,118 2,333
500,057 3,468 3,319 2,423
500,069 3,556 3,129 2,089
500,083 3,596 3,050 2,131
500,107 3,527 3,232 2,643
500,111 3,732 3,237 2,244
500,113 3,805 3,232 2,335
500,119 3,873 3,142 2,275
500,153 3,472 3,380 2,754
500,167 3,644 3,159 2,770
600,011 3,847 3,488 3,265
700,001 4,350 3,670 2,950
800,011 4,600 4,242 3,208
900,001 4,997 4,274 3,245

1,000,003 5,101 4,639 3,117
2,000,003 7,637 6,848 4,309

Table 3.2. Maximum number of cyclic points in graphs
modulo p (excluding a “ 0,´2)

Let us also define the following three families of parameters a on
which the values Cp , cp and c

˚
p are achieved, that is

Ap “ ta P Fpzt0,´2u : Ca “ Cpu ,
Bp “ ta P Fpzt0,´2u : ca “ cpu ,
B

˚
p “

 
a P Ip : ca “ c

˚
p

(
.

It is certainly interesting to compare the sizes Ap “ #Ap , Bp “ #Bp

and B˚
p “ #B˚

p and also investigate the mutual intersections between
these families.
We find that typically these sets have one value of a in common, and

rarely more than two. As p increases, the frequency of the sets having
2 or more elements decreases, but does not disappear completely, as
can be seen in Table 3.3.
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Ap Bp B˚
p

range of p “ 1 “ 2 ě 3 “ 1 “ 2 ě 3 “ 1 “ 2 ě 3

r3, 104s 1,182 39 7 1,159 65 4 1,193 35 0
r104, 2 ¨ 104s 1,013 20 0 1,010 22 1 1,019 14 0
r2 ¨ 104, 3 ¨ 104s 967 14 2 970 13 0 976 7 0
r3 ¨ 104, 4 ¨ 104s 949 9 0 941 17 0 950 8 0
r4 ¨ 104, 5 ¨ 104s 921 8 1 921 9 0 926 4 0
r5 ¨ 104, 6 ¨ 104s 915 9 0 920 4 0 921 3 0
r6 ¨ 104, 7 ¨ 104s 868 10 0 872 6 0 868 9 1
r7 ¨ 104, 8 ¨ 104s 895 7 0 897 5 0 899 3 0
r8 ¨ 104, 9 ¨ 104s 869 7 0 869 7 0 866 10 0
r9 ¨ 104, 105s 874 5 0 878 1 0 876 3 0
r105, 105 ` 103s 81 0 0 79 2 0 81 0 0
r106, 106 ` 103s 74 1 0 75 0 0 74 1 0

Table 3.3. Values of Ap , Bp , and B˚
p

For the set intersections, we start with Ap X B˚
p . With Table 3.1,

we have observed that Cp ą cp
˚ , thus it is reasonable to expect that

Ap X B˚
p is empty. We remark that if Ap X B˚

p is not empty, then
Cp “ cp “ c

˚
p , and so for any a P Bp the graph Ga is connected,

and thus Bp “ B˚
p . Therefore, for any prime p, if cp ă Cp , then we

must have that Ap X B˚
p is empty. Our experiments with odd prime

p ă 105 counted only 20 occurrences of primes where the intersection is
non-empty and in fact contains only one value of a, shown in Table 3.4.

p value of a p value of a

3 2 271 147
5 1 2,647 1,445
7 3 3,613 2,653
11 6 6,131 3,555
13 1 6,719 107
17 3 17,921 8,370
19 13 18,077 15,557
29 4 36,229 2,229
157 141 53,611 23,630
191 97 64,667 60,638

Table 3.4. Values of p with non-empty Ap X B˚
p
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Since we have observed only one value of a for each prime p in the
above table, we conjecture that:

Conjecture 3.1. For any prime p ě 3, we have #
`
Ap X B˚

p

˘
ď 1.

We also consider the intersection Bp X B
˚
p ; see Table 3.5. Clearly,

if Bp X B˚
p is not empty, then we have cp “ c

˚
p . One could expect

the number of primes with non-empty intersections to decrease as p

increases, however even if our experiments show some reduction overall,
it remains unclear.

range of p freq #primes %

r3, 104s 104 1,228 8.06%
r104, 2 ¨ 104s 35 1,033 3.19%
r2 ¨ 104, 3 ¨ 104s 32 983 3.26%
r3 ¨ 104, 4 ¨ 104s 20 958 1.98%
r4 ¨ 104, 5 ¨ 104s 19 930 2.04%
r5 ¨ 104, 6 ¨ 104s 16 924 1.73%
r6 ¨ 104, 7 ¨ 104s 20 878 2.28%
r7 ¨ 104, 8 ¨ 104s 15 902 1.66%
r8 ¨ 104, 9 ¨ 104s 15 876 1.71%
r9 ¨ 104, 105s 6 879 0.68%
r105, 105 ` 103s 0 81 0.00%
r106, 106 ` 103s 1 75 1.33%

Table 3.5. Primes with non-empty Bp X B˚
p

The most surprising result comes from the observation of the inter-
section ApXBp . As Table 3.6 shows, the event that this intersection is
not empty is rather common. For any a P Ap X Bp , the graph Ga not
only has the maximal number of cyclic points but also has a maximal
cycle.
Note that for the last two rows we only give primes in the ranges

r105, 105 ` 103s and r106, 106 ` 103s , respectively, due to the limits of
our current computational facilities.
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range of p freq #primes %

r3, 1 ¨ 104s 268 1,228 20.36%
r104, 2 ¨ 104s 197 1,033 18.87%
r2 ¨ 104, 3 ¨ 104s 153 983 15.16%
r3 ¨ 104, 4 ¨ 104s 148 958 15.24%
r4 ¨ 104, 5 ¨ 104s 126 930 13.55%
r5 ¨ 104, 6 ¨ 104s 167 924 17.97%
r6 ¨ 104, 7 ¨ 104s 143 878 16.17%
r7 ¨ 104, 8 ¨ 104s 143 902 15.74%
r8 ¨ 104, 9 ¨ 104s 144 876 16.44%
r9 ¨ 104, 105s 147 879 16.72%
r105, 105 ` 103s 13 81 16.05%
r106, 106 ` 103s 9 77 11.69%

Table 3.6. Primes with non-empty Ap X Bp

4. Statistics of small cycles

We now study components by analysing the distribution of the size
of their cycles. Let Ca,k be the number of cycles of length k in the
graph Ga . Let

Ck “
ÿ

aPFp

Ca,k

be the number of cycles of length k over all graphs modulo p. Clearly,
we have Ck “ 0 for any k ě p{2; see [Peinado et al. 2001, Theorems 1
and 2] for better bounds of k .

Proposition 4.1. For any integer k ě 1, there is a constant Dk de-

pending only on k such that for any prime p ą Dk we have

Ck “ p{k ` O
`
4kk´1p1{2

˘
.

Proof. We can assume that p ą k . For any fixed a, notice that any

point x contributing to Ca,k is a root of the polynomial F
pkq
a pXq. Con-

versely, any root x of F
pkq
a pXq contributes to Ca,d for some d | k

(possibly d ‰ k ). Thus, we have

kCk ď #tpa, xq P F2

p : F pkq
a pxq “ 0u.

Moreover, from [Morton and Patel 1994, Theorem 2.4 (c)] and noticing

p ∤ k , we know that if F
pdq
a pxq “ 0 and F

pkq
a pxq “ 0 with d ă k , where

x is a point lying in a cycle of length k , then pX ´ xq2 | F pkq
a pXq, that

is, the discriminant of F
pkq
a pXq is zero. Note that as a polynomial in
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X the degree of F
pkq
a pXq is at most 2k , and as a polynomial in a the

degree of F
pkq
a pXq is at most 2k´1 . Then, as a polynomial in a, the

degree of the discriminant of F
pkq
a pXq is at most 4k . Thus, except for

at most 4k values of a, we have that F
pkq
a pXq is a simple polynomial

in X . Hence, we have

(4.1) kCk “ #tpa, xq P F2

p : F pkq
a pxq “ 0u ` Op8kq.

In addition, combining [Morton 1996, Corollary 1 to Theorem B]
with [Morton and Vivaldi 1995, Proposition 3.2], if we view fApXq “
X2`A as an integer polynomial in variables A and X , then F

pkq
A pXq P

ZrA,Xs is an absolutely irreducible polynomial. Then, by Ostrowski’s
theorem, there exists a positive integer Dk depending only on k such

that for any p ą Dk the polynomial F
pkq
A pXq is absolutely irreducible

modulo p in variables A and X . It is also easy to see by induction on k

that f
pkq
A pXq is of total degree at most 2k as a bivariate polynomial in

A and X , and the same is true for F
pkq
A pXq. Thus, by the Hasse-Weil

bound (see [Lorenzini 1996, Section VIII.5.8]) we obtain

#tpa, xq P F2

p : F pkq
a pxq “ 0u “ p ` Op4kp1{2q, as p Ñ 8 ,

which, together with (4.1), implies the desired result (as we can always
assume that Dk ą 4k , so 4kp1{2 ą 8k ). [\
In particular, we see from Proposition 4.1 that for any fixed integer

k ě 1,

Ck „ p{k, as p Ñ 8.

Note that using [Gao and Rodrigues 2003, Theorem 1] or [Ruppert
1986, Satz B] or [Zannier 1997, Corollary], one can obtain an explicit
form for Dk . However, any such estimate has to depend on the size of

the coefficients of F
pkq
A pXq (considered as a bivariate polynomial in A

and X over Z) and is likely to be double exponential in k .
We can also compute the exact values of C1 and C2 .

Proposition 4.2. For any odd prime p, we have C1 “ p and C2 “
pp ´ 1q{2.
Proof. First, note that any point x contributing to C1 is a root of

F
p1q
a pXq for some a, and also

F p1q
a pXq “ X2 ´ X ` a “ pX ´ 1{2q2 ` a ´ 1{4 “ 0

is solvable if and only if 1{4 ´ a is a square. Since there are pp ´ 1q{2
squares in F˚

p , we have C1 “ p.
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Now, it is easy to see that

F p2q
a pXq “ X2 ` X ` a ` 1.

If a point x lies in a cycle of length 2 in Ga , then it is a root of F
p2q
a pXq

and also it is not a root of F
p1q
a pXq. However, if there exists a point x

such that
F p2q
a pxq “ F p1q

a pxq “ 0,

then we must have x “ ´1{2, a “ ´3{4. So, if a ‰ ´3{4, then any

root of F
p2q
a pXq lies in a cycle of length 2. Thus, noticing that

F p2q
a pXq “ pX ` 1{2q2 ` a ` 3{4 “ 0

is solvable if and only if ´a ´ 3{4 is a square, we have C2 “ pp ´ 1q{2
and conclude the proof. [\
Table 4.1 shows the Ck for some values of p (in these cases, we

also included the graphs X2 and X2 ´ 2). This is consistent with
Proposition 4.1.

k p “ 100, 003 p “ 500, 009 p “ 1, 000, 003
Ck tp{ku Ck tp{ku Ck tp{ku

1 100,003 100,003 500,009 500,009 1,000,003 1,000,003
2 50,001 50,001 250,004 250,004 500,001 500,001
3 33,333 33,334 166,669 166,669 333,333 333,334
4 24,890 25,000 125,000 125,002 249,890 250,000
5 20,061 20,000 99,353 100,001 199,310 200,000
6 16,775 16,667 83,664 83,334 165,852 166,667
7 14,179 14,286 71,582 71,429 143,109 142,857
8 12,474 12,500 62,541 62,501 125,266 125,000

Table 4.1. Number of cycles of length k

5. Distribution of components with size k

We now study the components of functional graphs by analysing the
distribution of their sizes. For the minimal and maximal numbers of
components in graphs Ga as well as the popular component size, we
refer to [Konyagin et al. 2016, Sections 4.4 and 4.5].
Let Np be the number of components taken over all Ga modulo p,

and let Np,k be the number of those components with size k ą 0 (that
is, there are k nodes in the component). Furthermore, let

NK
p,even “

ÿ

kďK
k even

Np,k and NK
p,odd “

ÿ

kďK
k odd

Np,k.
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Clearly,
Np “ N p

p,even ` N
p
p,odd.

We first have:

Proposition 5.1. For any odd prime p, Np,2 “ pp ´ 1q{2.
Proof. If C is a component of Ga of size 2, then it is easy to see that
C “ tx,´xu for some x P Fp such that x is a fixed point (that is,
x2 `a “ x) and the equation X2 `a “ ´x has no solution in Fp (that
is, ´x ´ a is not a square).
In other words, for any x P Fp , if we choose a “ ´x2 ` x, then x

is a fixed point in Ga and ´x ´ a “ x2 ´ 2x. So, it is equivalent to
count how many x P Fp such that x2 ´ 2x is not a square in Fp . Since
x2 ´ 2x “ px ´ 1q2 ´ 1, it is also equivalent to count how many x P Fp

such that x2 ´ 1 is not a square in Fp .
If x2 ´1 is a square in Fp , say x2 ´1 “ y2 , then we have px`yqpx´

yq “ 1. Let α “ x ` y , then x ´ y “ α´1 , and so

x “ α ` α´1

2
, y “ α ´ α´1

2
.

So, for such pairs px, yq we obtain a one-to-one correspondence between
pairs px, yq and pairs pα, α´1q, α ‰ 0. It is easy to see that for any
α1, α2 P F˚

p ,

α1 ` α´1

1

2
“ α2 ` α´1

2

2
if and only if α1α2 “ 1.

So, by counting the pairs pα, α´1q, there are pp`1q{2 values of x such
that x2 ´ 1 is a square. Therefore, there are pp´ 1q{2 values of x such
that x2 ´ 1 is not a square. This completes the proof. [\
It has been predicted in [Flajolet and Odlyzko 1990, Theorem 2 (i)]

that

Np „ p log p

2
,

which has a small bias (about 9.5%) over the real value; see [Konyagin
et al. 2016, Table 4.2]. Here, we improve the precision of this estimate.
First, we note that each node in Ga has in-degree two or zero except
for the node a, since only 0 maps to a. Therefore, each component in
any graph Ga has an even number of nodes unless it is the component
containing 0 and a. So, each graph Ga has exactly one component of
odd size. It follows that

N
p
p,odd “ p,

and so
Np „ N p

p,even, as p Ñ 8.
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For even-sized components, the situation is not as straightforward.
In our experiments, we noticed that the number of even-sized compo-
nents with size k is very close to p{k as shown in Table 5.1 for k ď 20
and for k “ 1000 and 2000 (i.e., even for larger values of k ).

k p “ 100, 003 p “ 500, 009 p “ 1, 000, 003
Np,k tp{ku Np,k tp{ku Np,k tp{ku

2 50,001 50,001 250,004 250,004 500,001 500,001
4 24,951 25,000 125,160 125,002 250,171 250,000
6 16,156 16,667 83,185 83,334 166,660 166,667
8 12,509 12,500 62,652 62,501 124,727 125,000

10 10,083 10,000 50,422 50,000 99,975 100,000
12 8,389 8,333 41,542 41,667 82,577 83,333
14 7,192 7,143 35,661 35,714 71,611 71,428
16 6,292 6,250 31,186 31,350 62,220 62,500
18 5,503 5,555 27,941 27,778 55,923 55,555
20 5,009 5,000 24,662 25,000 50,135 50,000

1000 117 100 533 500 954 1,000
2000 48 50 243 250 489 500

Table 5.1. Number of components of size k

Now, using tp{ku as an approximation of the number of components
of size k for any even k ă p, we can get an approximation for N p

p,even .
First, when pp´ 1q{2 ă k ă p, we have tp{ku “ 1, and there are about
pp ´ 1q{4 values of such even k . In general, if pp ´ 1q{pn ` 1q ă k ď
pp ´ 1q{n, we have tp{ku “ n, and there are about p´1

2npn`1q
values of

such even k , which contributes to around p´1

2pn`1q
components of even

size.
Fixing a positive integer n, for k ą pp´ 1q{pn` 1q we use the above

estimate, while for k ď pp ´ 1q{pn ` 1q we use the estimate pp ´ 1q{k ,
and so the total number of components of even size is around

p ´ 1

2

ˆ
1 ` 1

2
` ¨ ¨ ¨ ` 1

pp ´ 1q{p2pn ` 1qq

˙

` p ´ 1

2

ˆ
1

2
` 1

3
` ¨ ¨ ¨ ` 1

n ` 1

˙
,
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which, together with the approximation of the harmonic series, is ap-
proximated by

p ´ 1

2

ˆ
log

p ´ 1

2pn ` 1q ` γ

˙
` p ´ 1

2
p´1 ` logpn ` 1q ` γq

“ p ´ 1

2
plogpp ´ 1q ` 2γ ´ 1 ´ log 2q,

where γ “ 0.5772156649 . . . is the Euler constant. So, we denote

rN p
p,even “ p ´ 1

2
plogpp ´ 1q ` 2γ ´ 1 ´ log 2q ,

which is an approximation of N p
p,even .

Table 5.2 shows the difference between the two values for several
large primes. We overestimate the actual value by about 2%.

p NK
p,even N

p
p,even Np

rN p
p,even

100,003 521,337 538,640 638,643 548,722
200,003 1,113,083 1,147,694 1,347,697 1,166,748
300,007 1,730,420 1,782,805 2,082,812 1,810,962
400,009 2,364,734 2,434,894 2,834,903 2,472,154
500,009 3,011,626 3,098,914 3,598,923 3,145,966
600,011 3,667,637 3,772,277 4,372,288 3,829,859
700,001 4,333,622 4,455,913 5,155,914 4,522,041
800,011 5,005,995 5,145,194 5,945,205 5,221,530
900,001 5,685,731 5,842,337 6,742,338 5,927,145

1,000,003 6,369,257 6,543,317 7,543,320 6,638,411

Table 5.2. Estimates for the number of components
with even size and K “ pp ´ 1q{2

6. Shape of trees in functional graphs

Finally, in order to reveal more detailed features of functional graphs,
we consider the trees attached to such graphs.
In the functional graph Ga corresponding to fa , each node in a cycle,

except for a (if a lies in a cycle), is connected to a unique node (say w )
which is not in the cycle. Naturally, we treat the node w as the root
of the binary tree attached to a cyclic point in the graph Ga . Thus,
we can say that each node in a cycle of Ga , expect for a, is associated
with a binary tree – in fact a full binary tree, unless 0 is a node in the
tree. For example, in Figure 1.1, there are 8 full binary trees attached
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to the cyclic points. Let tppa, kq be the number of such binary trees
with k nodes in Ga , and let

Tppkq “
ÿ

aPFp

tppa, kq and Tp “
p´1ÿ

k“1

Tppkq;

and for the connected graphs equivalents, let

T ˚
p pkq “

ÿ

aPIp

tppa, kq and T ˚
p “

p´1ÿ

k“1

T ˚
p pkq.

Note that Tp is the total number of trees attached to all such func-
tional graphs Ga , and T ˚

p has a similar meaning but with restriction
to connected functional graphs.
An interesting question is whether these trees behave similarly to

random full binary trees. First we observe that there is a significant
proportion of trees with just one node, as shown in Table 6.1 for the
general case and in Table 6.2 for connected graphs. This motivates us
to pose the following conjecture, which seems to be reasonable because
exactly half of elements in F˚

p are not square.

Conjecture 6.1. We have Tpp1q{Tp „ 1{2 as p Ñ 8.

p Tpp1q Tp %

50,111 7,090,084 14,091,820 50.31%
100,003 19,845,915 39,530,737 50.20%
200,003 56,210,936 112,088,213 50.15%
300,007 103,203,596 205,901,181 50.12%
400,009 158,746,944 317,089,081 50.06%
500,009 221,941,725 443,336,032 50.06%

1,000,003 627,460,216 1,253,326,817 50.06%

Table 6.1. Number of trees with one node
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p T ˚
p p1q T ˚

p %

50,111 27,877 55,668 50.08%
100,003 52,923 105,612 50.11%
200,003 115,746 231,583 49.98%
300,007 161,975 323,410 50.08%
400,009 222,865 445,931 49.98%
500,009 298,060 595,142 50.08%

1,000,003 542,592 1,086,147 49.96%

Table 6.2. Number of trees with one node in connected graphs

Second, for large trees, we check the average height of the trees in the
graphs. It has been shown in [Flajolet and Odlyzko 1982, Theorem B]
that the average height of full binary trees with n internal nodes is

Hn „ 2
?
πn as n Ñ 8 .

This means that for a random full binary tree, its height is asymptotic
to 2

?
πn when n goes to the infinity. In our situation, for each tree

with n internal nodes and height Hn , we compute the ratio Hn{2?
πn

and find the average of this ratio for all graphs modulo p. (Again, a
tree is not always guaranteed to be a full binary tree, since 0 might be
a node in the tree, but the impact of this happening is negligible, and
at any case, we collect trees of both sizes 2n and 2n ` 1.)
In Table 6.3, we compare the ratio of Hn{2?

πn (see [Flajolet and
Odlyzko 1982, Table II]) with the average ratio of Hn{2?

πn of the
trees in our graphs. One can see that they are close.

n Hn{2?
πn average of Hn{2?

πn

p “ 50111 p “ 100003 p “ 200003

50 0.797 0.837 0.837 0.837
100 0.846 0.875 0.873 0.872
500 0.920 0.952 0.925 0.941

1,000 0.940 0.925 0.948 0.942
2,000 0.956 0.981 0.944 0.960
5,000 0.970 0.927 0.916 0.977

Table 6.3. Average height of trees
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7. Future Directions

One of the most important directions in this area is developing an
adequate random model predicting the statistical characteristics of the
functional graphs of polynomials, see [Martin and Panario 2016] for
some initial, yet promising results in this direction.
Based on our computations, we pose several conjectures about the

functional graphs of quadratic polynomials. Investigating whether they
are true or not may help to characterise functional graphs generated by
quadratic polynomials and understand the similarities and differences
between these functional graphs and random mappings.
The other interesting problem is to count the number of functional

graphs modulo p generated by quadratic polynomials up to isomor-
phism; see [Konyagin et al. 2016, Theorem 2.8] for a lower bound.
In [Gilbert et al. 2001, Conjecture C] the authors conjectured that for
any odd prime p ‰ 17, there are p such functional graphs up to iso-
morphism, and they confirmed this for all the odd primes up to 1009
not equal to 17. Under our computations, we confirm this conjecture
for all the odd primes up to 100000 not equal to 17.
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