
ar
X

iv
:1

70
3.

04
55

5v
2 

 [
m

at
h.

G
R

] 
 2

2 
M

ar
 2

01
7

COMPUTING KAZHDAN CONSTANTS BY SEMIDEFINITE

PROGRAMMING

KOJI FUJIWARA AND YUICHI KABAYA

Abstract. Kazhdan constants of discrete groups are hard to compute
and the actual constants are known only for several classes of groups.

By solving a semidefinite programming problem by a computer, we
obtain a lower bound of the Kazhdan constant of a discrete group. Pos-
itive lower bounds imply that the group has property (T).

We study lattices on Ã2-buildings in detail. For Ã2-groups, our nu-
merical bounds look identical to the known actual constants. That sug-
gests that our approach is effective.

For a family of groups, G1, · · · , G4, that are studied by Ronan, Tits
and others, we conjecture the spectral gap of the Laplacian is (

√

2− 1)2

based on our experimental results.
For SL(3,Z) and SL(4,Z) we obtain lower bounds of the Kazhdan

constants, 0.2155 and 0.3285, respectively, which are better than any
other known bounds. We also obtain 0.1710 as a lower bound of the
Kazhdan constant of the Steinberg group St3(Z).

1. Introduction

Property (T) of a group was introduced by Kazhdan and he proved that,
for example, SL(n,Z) have property (T) if n ≥ 3. We say a group is a Kazh-
dan group if the group has property (T). Property (T) plays an important
role in many areas of mathematics.

For a Kazhdan group, given a finite generating set, a positive constant
κ, called the Kazhdan constant is defined. Lower and upper bounds of the
Kazhdan constants are known for some examples of groups, but to compute
the value of the Kazhdan constant is usually hard.

Recently Ozawa [Oz] found a new characterization of a Kazhdan group
among finitely generated groups. A significance of his theorem is that it gives
a semidefinite algorithm to decide if a finitely generated group is a Kazhdan
group or not. To be precise, he gives a description of the spectral gap of the
Laplacian, which is closely related to the Kazhdan constant.

Netzer-Thom implemented it as a computer program using Semidefinite
programming. They obtain a lower bound, 0.1783, for the Kazhdan constant
of SL(3,Z) with respect to the set of elementary matrices, which is much
better than any other known bounds.

Building up on those ideas, we compute lower bounds of the spectral gaps
of the Laplacian and the Kazhdan constants in various examples. As far
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as we know, among infinite groups, the Kazhdan constants are known only
for the family of “Ã2-groups” (Theorem 3.2). Those are groups that act
on Ã2-buildings properly and cocompactly in a very special way. For those
groups, we obtain lower bounds of the Kazhdan constants, which are almost
identical to the actual values (Tables 1 and 2).

We regard this computation as an evidence that our method is effective
to compute a good lower bound.

We also point out that this class of groups is interesting in various ways, for
example, the equality holds in two basic inequalities regarding the spectral
gaps and the Kazhdan constants (see Corollary 3.3).

We then discuss another class of groups, G1, · · · , G4, which also act on
some Ã2-buildings. This family is found by Ronan [R], then studied from
various viewpoints, including by Tits [Ti] as “triangles of groups” (see Section
3.4). In particular they are Kazhdan groups, but the Kazhdan constants are
unknown. We obtain 0.239146... as a common (numerical) lower bound
of the Kazhdan constants (see Table 3), and also 0.171573 as a common
(numerical) lower bound of the spectral gaps. We predict that they are
(
√
2− 1)/

√
3 = 0.239146... and (

√
2− 1)2 = 0.1715728....

Also, we obtain 0.2155 as a lower bound of the Kazhdan constant of
SL(3,Z), which is slightly better(bigger) than the one by Netzer-Thom, and
also 0.3285 for SL(4,Z), which is much better than any other known bounds
(see Table 4).

We were not able to obtain a positive bound for SL(5,Z) because of the
lack of the power of the computer. Also, unfortunately, we did not find any
new examples of Kazhdan groups by our method.

The Steinberg group Stn(Z) is very closely related to SL(n,Z), which is
the quotient of Stn(Z) by Z/2Z. We obtain 0.1710 as a lower bound of the
Kazhdan constant of St3(Z) (see the inequality 4.1). As far as we know, no
concrete lower bounds of the Kazhdan constants of the Steinberg groups were
known. Also, our bound is obtained from a finite presentation of St3(Z). In
that sense, this is a new proof that St3(Z) is a Kazhdan group.

Then we turn our attention to finite groups. All of them are Kazhdan
groups, but again, there are a small number of cases that the Kazhdan
constants are known. One such example is the family of finite Coxeter groups.
We obtain bounds and they are very close to the known values (see Section
5.1). We also obtain lower bounds for complex Coxeter groups, for which the
actual values are not known (see Section 5.2). We believe that our bounds
are very close to the actual values.

At the end, we ask questions that arise naturally from our experimental
results.
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Valette. We benefit from Kawakami’s paper [Ka].

We are supported by Grant-in-Aid for Scientific Research (No. 15H05739).
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2. Kazhdan constants and spectral gaps

Let Γ be a finitely generated group with a finite generating set S. For a
Hilbert space H and a unitary representation π : Γ → H, set

κ(Γ, S, π) = inf
ξ∈H,
||ξ||=1

max
s∈S

||π(s)ξ − ξ||.

We define the (optimal) Kazhdan constant with respect to S by

κ(Γ, S) = inf{κ(Γ, S, π) | π has no non-zero invariant vector}.
If κ(Γ, S) > 0 for some (then any) finite generating set S, then the group Γ
is called a Kazhdan group.

From now on, we assume that a generating set S is symmetric. Let R[Γ] be
the group ring of Γ with coefficients in R. Define the unnormalized Laplacian
∆ by

∆ = |S| −
∑

s∈S
s =

1

2

∑

s∈S
(1− s)(1− s−1) ∈ R[Γ].

Define the ∗-operation on R[Γ] by (
∑

g∈Γ rgg)
∗ =

∑

g∈Γ rgg
−1 (rg ∈ R). By

definition, ∆∗ = ∆. For any unitary representation π : Γ → U(H), π(∆) is
an operator on H. We remark that the normalized Laplacian is defined as
∆/|S|, which is used in [Oz].

Theorem 2.1 (Proposition 5.4.5 and Remark 5.4.7 of [BdlHV]). Let Γ be a
discrete group with finite symmetric generating set S. Suppose there exists
ε > 0 such that for any unitary representation π : Γ → H with no non-zero
invariant vector,

〈π(∆)ξ, ξ〉 ≥ ε〈ξ, ξ〉
for any ξ ∈ H. Then

(2.1)

√

2ε

|S| ≤ κ(Γ, S).

In particular, Γ is a Kazhdan group.

In some cases, the equality holds in the inequality 2.1 (see Corollary 3.3).
We remark [BdlHV] uses the normalized Laplacian, therefore the factor

1/|S| does not appear in their setting. We call ε a spectral gap and the
supremum of ε the spectral gap of ∆.

2.1. Ozawa’s criterion. We recall a theorem by Ozawa.

Theorem 2.2 (Ozawa [Oz, Main Theorem]). There exist b1, . . . , bn ∈ R[Γ]
and ε > 0 such that

(2.2) ∆2 − ε∆ =
n
∑

i=1

b∗i bi,

if and only if Γ is a Kazhdan group.
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Moreover, if Γ is a Kazhdan group then for any rational number ε′ ≤
ε, there exist positive rational numbers ri and b1, . . . , bn ∈ Q[Γ] such that
∆2 − ε′∆ =

∑n
i=1 rib

∗
i bi

By the spectral mapping theorem, the condition in Theorem 2.1 and the
condition in Theorem 2.2 are equivalent for a same constant ε ([Oz]).

Definition 2.3 (Spectral gap). We call ε and the supremum of ε, denoted
by ε(Γ, S), in Theorem 2.2 a spectral gap and the spectral gap (in the sense
of Ozawa), respectively. We sometimes write ε(Γ, S) as ε.

Notice that from the moreover part of the theorem, since Γ is countable, if
Γ is a Kazhdan group, we will be able to find a rational solution with ε > 0,
which implies that Γ is a Kazhdan group. This is the case even if a group
does not have a solvable word problem since we only claim the algorithm is
semidefinite (ie, stops only when there is a positive solution).

Also a number ε we obtain gives a lower bound of the spectral gap, which
will give a lower bound of the Kazhdan constant by the inequality (2.1).

2.2. Solving the equation. In view of this, we try to find a (rational)
solution, ε, bi, for the equation (2.2) using a computer to obtain a lower
bound of the Kazhdan constant. Netzer-Thom [NT] already carried out this
strategy and found a solution with positive ε for SL(3,Z). The lower bound
they obtain for the Kazhdan constant is much better than any known bounds
(see Section 4)

There is an issue in this strategy. A computer can find only a numerical
solution, so that even if we find a solution with some ε > 0, maybe the
equation does not have any “exact” solutions with ε > 0. Netzer-Thom
addressed this issue and found a way to certify the existence of an exact
solution, with an estimate of ε, once we have a “good” numerical solution as
the following lemmas show.

Lemma 2.4 (Netzer-Thom [NT]). Let Γ be a group with a finite generating
set S = S−1. Let c =

∑

g cgg be an element of R[Γ] satisfying
∑

g cg = 0

(i.e. c is in the augmentation ideal) and c∗ = c. Let D > 0 be an integer
such that if cg 6= 0, then g is a product of at most 2D elements from S. Then

c+ 22D−1||c||1 ·∆ ∈
{

n
∑

i=1

b∗i bi | b1, . . . , bn ∈ R[Γ]

}

,

where ||c||1 =
∑

g |cg|. Moreover, if S does not contain self-inverse elements,
then even

c+ 22D−2||c||1 ·∆ ∈
{

n
∑

i=1

b∗i bi | b1, . . . , bn ∈ R[Γ]

}

.

Using this lemma we explain how we possibly obtain an exact solution
from a numerical solution. The following lemma is implicit in [NT].
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Lemma 2.5. Suppose a constant ε > 0 and b1, · · · , bm ∈ R[Γ] are given.
Assume

∑m
i=1 b

∗
i bi is in the augmentation ideal. Set

c = ∆2 − ε∆−
m
∑

i=1

b∗i bi.

Suppose c =
∑

g cgg. Let D > 0 be an integer such that if cg 6= 0, then g is a

product of at most 2D elements from S. Assume ε− 22D−1||c||1 > 0. Then,
Γ is a Kazhdan group and ε− 22D−1||c||1 is a spectral gap.

Proof. Notice that c is in the augmentation ideal. Since c∗ = c, we can
apply Lemma 2.4 to c, and there must exist bm+1, . . . , bm+m′ such that c +

22D−1||c||1 ·∆ =
∑m′

i=m+1 b
∗
i bi. Plug in the definition of c to this, and get

∆2 − (ε− 22D−1||c||1)∆ =

m+m′

∑

i=1

b∗i bi.

This implies the conclusion. �

Now once we obtain a numerical solution ε, bi, then we apply Lemma 2.5to
the solution after we modify bi (usually, slightly) so that c is in the augmen-
tation ideal. Notice that we have a more chance to have ε− 22D−1||c||1 > 0
if ε is larger and D and ||c||1 are small. The moreover part of Lemma 2.4
could be used to improve the estimate, but it will not be so critical in our
experiments.

2.3. Semidefinite programming. Although we can apply Lemma 2.5 to
any tuples of ε, b1, · · · , bm, we have a better chance to succeed if we start
with a good numerical solution. We briefly explain how we find a solution
by a computer. Following [NT] we use Semidefinite programming (SDP) to
find a solution. We refer interested readers to their paper for details.

Here we explain only the point that is important for us. To set up and
solve an optimization problem by SDP, we first fix a positive integer d that
is an upper bound of the support range of solutions bi’s of the equation 2.2,
namely, the word length of the group elements in bi’s that have non-zero
coefficients is at most d. For each d > 0, we solve an optimization problem
to maximize ε ≥ 0 such that a solution in the support range ≤ d exists for
the equation 2.2.

There are three reasons why the algorithm for a given d does not stop: (i)
a group is not a Kazhdan group; (ii) it is a Kazhdan group but a solution
with the support range ≤ d does not exist with ε > 0; or (iii) a solution
exists in that support range but the computer does not have enough power
to find a solution. The bigger the support range d is, the more chance there
is that the computation will not be finished. Also, even if the algorithm
stops for some d and gives a positive ε, maybe there is a solution for bigger
d that gives a larger ε, so that our ε is smaller than the spectral gap. See
Section 6 for an example of the numerical result that shows different bounds
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for different d. Interestingly, it turns out that sometimes, the ε we obtain
for a small d is very close to the actual spectral gap (for example, Table 1).

We have a heuristic estimate on d. If the longest relators in a given
presentation of a group have the word length < 4ℓ, then our experiments
tend to work if we take d = ℓ. (Notice that the word length of the group
elements that appear in the equation 2.2 is at most 2d. We then identify two
such words as group elements using a relator of length at most 2d+2d = 4d.
So, d should be at least as big as ℓ, otherwise there are relators that are not
taken into account.) For example, in Section 3.2, the relators for the group
GT has length 3, and d = 1 works for the experiments.

Compared to [NT] there is one extra ingredient in our approach. To obtain
a lower bound of the Kazhdan constant of SL(3,Z), only integer matrices
and rational numbers appear in the algorithm to solve the equation 2.2. So,
a computation is done without dealing with a presentation of the group.
But we start with a finite presentation of a group (except for SL(n,Z) and
finite groups) then try to solve the equation 2.2 . For that, as a part of
the algorithm, we (have to) replace a product of generators with another
product in the right hand side of the equation properly using a relation of
the group. But we do not use/need the solution of the word problem of
the group. Notice that once we find a solution of the equation 2.2, even if
without completely solving the word problem on the way, the ε we get is
a lower bound for the group. Possibly this part of the algorithm (ie, how
much we do the replacement) may affect its efficiency. But mathematically
speaking, the idea is elementary and we skip details.

2.4. About tables. The rest of the paper is the result of our computer
experiments on various examples of groups. We make tables to present our
results. It is mostly about lower bounds of the Kazhdan constants, κ.

We first numerically find the maximal ε for which the equation (2.2) has
a solution {bi}. If ε > 0, then we plug it in to the left hand side of the
inequality (2.1). In this way we obtain the “numerical (lower) bound” of κ.

If the support range of {bi} is d, then we choose D such that 2d ≤ 2D.
Then we can apply Lemma 2.5 to the ε > 0 and the solutions {bi}, and
obtain a “certified” lower bound, ε − 22D−1||c||1, of the spectral gap. If this
is positive, it will give a “certified (lower) bound” of κ using the inequality
(2.1).

We occasionally mention known lower/upper bounds of κ, also the exact
values of ε,

√

2ε/|S|, κ to compare with our bounds. Also we sometimes
mention the support range d for which we find the numerical solution ε, bi,
as well as m that is the number of the elements bi’s.

3. Lattices on Ã2-buildings

The first examples of our experiment are uniform lattices on Ã2-buildings,
namely, finitely generated groups that act on Ã2-buildings by automor-
phisms, properly and cocompactly. A general reference is [BdlHV, S5.7].
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It is known that those groups are Kazhdan groups. Moreover, the Kazhdan
constants are known for a certain family of groups with certain generating
sets. As far as we know this is the only case where the Kazhdan constants
are known for infinite groups. We will compare them with our lower bounds.

3.1. Ã2-buildings. Let Π be a finite projective plane of order q ≥ 2 with a
set P of points, a set L of lines and an incidence relation between lines and
points. Each point (line) is incident with q + 1 lines (points, resp.). Also
|P | = |L| = q2 + q + 1.

The incident graph is a bipartite graph whose vertex set is P ∪L such that
there is an edge between p ∈ P and ℓ ∈ L if p, ℓ are incident.

An Ã2-building is a 2-dimensional, simply connected, connected simplicial
complex such that the link of any vertex is the incidence graph of a finite
projective plane.

The most familiar example of a projective plane is the projective plane
PG(2, F ) over a filed F (those are called Desarguesian plane) , namely,
form a 3-dimensional vector space over F , letting P,L be the sets of 1- and
2-dimensional subspaces with incidence being inclusion. If |F | = q, then
PG(2, F ) is also denoted by PG(2, q). (cf. [CMS]).

The easiest example is when F = F2. In this case, the order of PG(2, 2)
is 2, so that the incidence graph is a bipartite graph with 14 vertices and the
degree of each vertex is 3. The graph is called the Heawood graph.

We quote a theorem. The first assertion is known in various forms (Pansu
[Pan], Zuk [Zuk], Ballmann-Świątkowski [BŚ]). For the bound, see [BdlHV,
Theorem 5.7.7]. A finite symmetric generating set S is explicitly given (see
(Pvi) in [BdlHV, Section 5.4]).

Proposition 3.1. Let X be an Ã2-building and suppose a discrete group
G acts on X by automorphisms, property and co-compactly. Then G is a
Kazhdan group.

Moreover, if the links of the vertices of X are the incidence graphs of the
finite projective planes of order q, then there is a finite generating set S of

G such that

√

2(
√
q−1)2

(
√
q−1)2+

√
q

is a Kazhdan constant.

In some cases,

√

2(
√
q−1)2

(
√
q−1)2+

√
q

is the Kazhdan constant for S (see Corollary

3.3).

3.2. Ã2-groups and triangle presentation. We review one way to con-
struct uniform lattices of Ã2-buildings following [CMS]. Let Π = (P,L) be a
finite projective plane and λ : P → L be a bijection. A triangle presentation
compatible with λ is a set T of triples (x, y, z), x, y, z ∈ P such that

(A) given x, y ∈ P , then (x, y, z) ∈ T for some z ∈ P if and only if y, λ(x)
are incident;

(B) (x, y, z) ∈ T implies (y, z, x) ∈ T ;
(C) given x, y ∈ P , then (x, y, z) ∈ T for at most one z ∈ P .
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Given a triangle presentation T , we define a group GT , called an Ã2-group,
as follows:

GT = 〈{ax}x∈P | axayaz = 1 if (x, y, z) ∈ T 〉.
The set of ax and their inverses (which are labeled by L such that a−1

x

is by λ(x) ∈ L) is called the set of natural generators (from the triangle
presentation).

Then the Cayley graph of GT is (the 1-skeleton of) a (“thick”) Ã2-building
such that the link of every vertex is the incidence graph of (P,L). So, GT

acts on the building properly and cocompactly. Moreover, the set of natural
generators will be S in Proposition 3.1.

In [CMSZ2], they found all triangle presentations (and λ) in the case that
(P,L) is the projective planes PG(2, q) for q = 2, 3.

In fact a converse holds, [CMSZ]: a group is an Ã2-group if it acts freely
and transitively on the vertices of an Ã2-building, and if it induces a cyclic
permutation of the “type” of the vertices (there are three types for vertices
of a Ã2-building).

[CMS] obtained the Kazhdan constant for a class of Ã2-groups with respect
to the natural generators.

Theorem 3.2. [CMS, Th 4.6] Let G be an Ã2-group obtained from Π =
PG(2, q). Let S be the set of natural generators. Then

κ(G,S) =
√

2εq,

where

εq = 1− q(
√
q +

√

q−1 + 1)

q2 + q + 1
.

The constant
√

2εq is equal to the constant in Proposition 3.1. Indeed
one can use the proposition to show

√

2εq ≤ κ(G,S) by checking S satisfies
the condition of the proposition, but the other inequality is hard.

We remark that for the above G and S, we have

ε(G,S))/|S| = εq,

where ε(G,S) is the spectral gap. Indeed, we have ε(G,S)/|S| ≤ εq from
Theorem 3.2 and Theorem 2.1. To see the other inequality we first define a
graph. Let G(S) be the graph whose vertex set is S such that we join s, t ∈ S
if there is u ∈ S with s = tu. Assume that G(S) is connected. Let λ be
the first positive eigenvalue of the Laplacian on G(S). Note that in our case,
G(S) is the link of a vertex of the building, which is the incidence graph of
Π. But it is the incidence graph of the finite projective plane of order q. So,
λ = 1−√

q/(q + 1), see [BdlHV, Proposition 5.7.6].
Now it is pointed out in [Oz, Example 5] (for the normalized Laplacian),

we have (for this we only need that G(S) is connected)

(2− λ−1)|S| ≤ ε(G,S).
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Indeed, he explicitly gives solutions bi, i ∈ S of the equation 2.2 for ε =
(2 − λ−1)|S|, so (2 − λ−1)|S| ≤ ε(G,S). Moreover, the support of bi is
contained in S. By computation, 2−λ−1 = εq, so we obtain εq|S| ≤ ε(G,S).
We are done. We have also shown that the equation 2.2 has a solution when
ε is equal to ε(G,S).

We record this discussion.

Corollary 3.3. Let G and S be as in Theorem 3.2, and ∆ the Laplacian.
Then the spectral gap, ε(G,S), (in the sense of Ozawa) is achieved, ie, there
is a solution bi, i ∈ S for the equation 2.2 for the ε(G,S). Moreover, the
support of bi is contained in S.

The set S satisfies the condition for S in Proposition 3.1, and the constant
in the proposition is actually the Kazhdan constant for S.

Also, for the S and ε(G,S), the equality holds in the inequality 2.1 in
Theorem 2.1.

Note that Theorem 3.2 is only for the natural generators from triangle
presentations. As far as we know, this is the only class of infinite groups
whose Kazhdan constants are known.

In view of Corollary 3.3, we are curious to know if the infimum in the
definition of κ(Γ, S, π), κ(Γ, S) is achieved for the groups in Theorem 3.2.

3.3. Computation of ε of Ã2-groups. As we mentioned, in the case that
q = 2, 3, there is a list of all Ã2-groups with the natural generators, [CMSZ2].

The case q = 2.
There are 9 presentations: A1, A

′
1, A2, A3, A4, B1, B2, B3, C1. From the pre-

sentations, we compute lower bounds of the spectral gaps. See Table 1. We
know κ = 0.465175... by letting q = 2 in Theorem 3.2. We observe that our
numerical bound is (almost) identical to the actual value, and the certified
bound is also very close. Also, in view of Corollary 3.3, we expect to find
solution with d = 1, ie, the support of bi is contained in {1} ∪ S, which
happens in our experiment.

The case q = 3.
This case contains more groups, and we compute our bounds only for the
first several ones: groups of 1.1 to 1.8 in their classification. See Table 2
for the result. We know κ = 0.687447... by letting q = 3 in Theorem 3.2.
Again, our numerical bound is (almost) identical to the actual value, and
the certified bound is also very close.

We see those results as a supporting evidence that if we obtain a lower
bound of the spectral gaps, maybe the bound is not so far from the actual
value.

For both q = 2, 3, we found our ε for the support range d = 1. Namely, in
the numerical solutions bi, the coefficients are non-zero only on the genera-
tors. We believe that our solutions, ε and bi’s, are good numerical approx-
imations of the ones mentioned in [Oz, Example 5]. For example, observe
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certified bound numerical solution κ by [CMS]
A1 0.465164... 0.465175... 0.465175...
A′

1 0.465166... 0.465175... 0.465175...
A2 0.465167... 0.465175... 0.465175...
A3 0.465167... 0.465175... 0.465175...
A4 0.465165... 0.465175... 0.465175...
B1 0.465164... 0.465175... 0.465175...
B2 0.465167... 0.465175... 0.465175...
B3 0.465167... 0.465175... 0.465175...
C1 0.465167... 0.465175... 0.465175...

Table 1. Lower bounds of
√

2ε/|S| (therefore κ) for the
groups on the list in [CMSZ2, p. 212] with q = 2. |S| = 14.
We set d = 1, then m = 7.

certified bound numerical bound κ by [CMS]
1.1 0.687430... 0.687447... 0.687447...
1.1′ 0.687430... 0.687447... 0.687447...
1.2 0.687431... 0.687447... 0.687447...
1.3 0.687430... 0.687447... 0.687447...
1.4 0.687429... 0.687447... 0.687447...
1.5 0.687431... 0.687447... 0.687447...
1.6 0.687433... 0.687447... 0.687447...
1.7 0.687432... 0.687447... 0.687447...
1.8 0.687432... 0.687447... 0.687447...

Table 2. Lower bounds of
√

2ε/|S| for some groups on the
list in [CMSZ2, pp. 213–222] with q = 3. |S| = 26. (d = 1,
m = 13. )

2m = |S| holds for our solution, which also holds for the solutions in [Oz,
Example 5]

We note that we obtain a positive lower bound for the Kazhdan constants
only using the group presentations. In this sense it is a new proof that those
groups are Kazhdan groups.

3.4. Triangles of groups. We now discuss another family of groups that
are lattices on Ã2-buildings. Here is a list:

G1 = 〈a, b, c | a3, b3, c3, (ab)2 = ba, (bc)2 = cb, (ca)2 = ac〉.
G2 = 〈a, b, c | a3, b3, c3, (ab)2 = ba, (bc)2 = cb, (ac)2 = ca〉.
G3 = 〈a, b, c | a3, b3, c3, (ab)2 = ba, (ac)2 = ca, (c−1b)2 = bc−1〉.
G4 = 〈a, b, c | a3, b3, c3, (ab)2 = ba, (ac)2 = ca, (bc−1)2 = c−1b〉.

(3.1)
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certified bound numerical bound
G1 0.239014... 0.239146...
G2 0.238700... 0.239146...
G3 0.238405... 0.239146...
G4 0.238605... 0.239146...

Table 3. Lower bounds of
√

2ε/|S|, where |S| = 6, of Ro-
nan’s groups (3.1). (d = 2.) We obtain the same numerical
bounds for d = 3. Theorem 3.2 does not apply to S, so κ is
unknown.

Each of the four groups acts on a Ã2-building such that the action on the
triangles is regular and the quotient is one triangle ([R]). So, it is a lattice,
so that a Kazhdan group. Since the quotient has three vertices, Theorem 3.2
does not apply to this action. Also, the generating set, S consisting a, b, c
and their inverses, does not satisfy the condition for S in Proposition 3.1.
(For example, G(S) is not connected, with three components).

Those four groups are interesting and studied from various viewpoints.
Here is a list of facts on the four groups:

(1) There is a geometric characterization of the four groups, [R, Theo-
rem 2.5]: if ∆ is a “trivalent triangle geometry” (ie, a 2-dimensional
complex of triangles such that the link of each vertex is the incidence
graph of PG(2, 2)), admitting a group G of automorphisms that is
regular on the set of triangles, then G is a quotient group of one of
Gi.

(2) This is the list of all fundamental groups of “triangles of groups” (see
[St]) such that the edge groups are Z/3Z, the vertex groups are the
Frobenius group of order 21, 〈a, b | a3, b7, aba−1 = b2〉, and the face
group is trivial.

Each Gi acts on a Ã2-building properly such that the quotient is
one triangle, [Ti, p118,119].

(3) They are automatic groups (S. M. Gersten and H. Short). They have
a common growth function: 1+46z+16z2

1−8z+16z2
, [FP, Example 5.1].

(4) They have property (T) since they are lattices of Ã2-buildings.
(5) G1 and G3 are linear, [KMW2]. G2 and G4 are not arithmetic, [Ti].
(6) G1 and G2 are perfect, [KMW, Prop 1].
(7) G3 and G4 have normal subgroups of index 3, which are Γ1 and Γ2,

resp., as follows:
Γ1 = 〈s, t, x | s7 = t7 = x7 = 1, st = x, s3t3 = x3〉, cf. [Es, S 5.3].
Γ2 = 〈s, t, x | s7 = t7 = x7 = 1, st = x3, s3t3 = x〉, which is not

linear, and a subgroup of index 3 in G4, [BCL]. So, G4 is not linear.

This family is interesting for us because of (4). Here are the numerical
results of our computation. We obtained positive numbers that are very
close to each other:
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Theorem 3.4. The spectral gap of Gi with respect to a, b, c and their inverses
is at least 0.238. More generally, if ∆ is a trivalent triangle geometry with
G acting as a regular automorphisms on the set of triangles of ∆, then the
spectral gap of G w.r.t. the natural three generators and their inverses is at
least 0.238.

Proof. The first assertion is clear from our computation. The second asser-
tion follows from the fact (1), since G is a quotient of one of Gi, and the
spectral gap, does not decrease. �

Again, our positive bound is obtained only from the presentations, so that
it is a new proof that those groups are Kazhdan groups.

Our numerical lower bound 0.239146... is obtained from a numerical
lower bound of ε, which is 0.171573. We suspect that 0.171573 (and maybe
0.239146... as well) is a good approximation of the spectral gaps (and maybe
the Kazhdan constants) for those four groups. In particular, it suggests that
those four groups have the same spectral gap (and Kazhdan constants) for
the natural generating sets, a, b, c and their inverses.

It seems there is no lower bound explicitly given for the Kazhdan constants
of those four groups w.r.t. S = {a±, b±, c±}. As we said S does not satisfy
the condition in Proposition 3.1. It is possible to obtain a generating set S′

using the proposition, for which we have κ(Gi, S
′) = 0.465175.... That would

give a lower bound of κ(Gi, S), by writing each element of S′ as a product
of elements of S, but it will be much smaller than 0.465175..., in particular
smaller than our lower bound.

We point out that our numerical bound for ε is almost identical to (
√
2−

1)2 = 0.17157287525..., and that the numerical bound for κ is almost iden-
tical to (

√
2− 1)/

√
3 = 0.23914631173.... We do not know any explanation.

Since our numerical bound is in fact a “solution”, so we believe

ε = (
√
2− 1)2

holds.

4. SL(3,Z), SL(4,Z) and St3(Z)

Next we deal with SL(n,Z). [NT] obtained a spectral gap for SL(3,Z).
Let En be the set of all n×n elementary matrices with ±1 off the diagonal.
This is a symmetric generating set of SL(n,Z).

An upper bound of κ(SL(n,Z), En) was given by Zuk (see [Sha, p. 149]),
and a lower bound by Shalom [Sha]. Kassabov improved the lower bound in
[Kas1].

Theorem 4.1 (Kassabov [Kas1], Zuk). For SL(n,Z) and the symmetric
generating set En, the (optimal) Kazhdan constant κ(SL(n,Z), En) satisfies

1

42
√
n+ 860

≤ κ(SL(n,Z), En) ≤
√

2

n
.
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For SL(3,Z), Netzer and Thom [NT] already obtained a lower bound that
is much better than the previous ones by solving a semidefinite programming
based on Theorem 2.2. We improve their bound. For SL(4,Z) we obtain a
new bound that is much better than any other known bounds. Our algorithm
could not find any bound for SL(5,Z). The results are summarized in Table
4.

Kassabov Netzer-Thom Certified bound Upper bound by Zuk
SL(3,Z) 0.001072... 0.1783... 0.2155... 0.8164...
SL(4,Z) 0.001059... 0.3285... 0.7071...

Table 4. Lower bounds of κ(SL(n,Z), En) for n = 3, 4. (d = 2)

Here we explain some details. As in [NT], we try to find solutions ε and
bi’s of the equation (2.2) by numerical calculation for the support range d = 2
(with respect to En). There are 121 group elements with the word length
≤ 2 in SL(3,Z) and 433 in SL(4,Z). For d = 2, the certified bound ε is
0.278648... for SL(3,Z) (0.1905 in [NT] . Our numerical bound is 0.2804...),
and 1.29562... for SL(4,Z) (the numerical bound is 1.313...). From the cer-
tified bounds for ε, we obtain our bounds for the Kazhdan constant.

We discuss the Steinberg groups, Stn(Z), which are defined as follows:

〈xij (i, j ∈ {1, 2, . . . , n}, i 6= j) | [xij , xjk] = xik(i 6= k), [xij , xkl] = 1(i 6= l, j 6= k)〉.

It is known that for n ≥ 3, Stn(Z) is an extension of SL(n,Z) by Z/2Z,
(see [Mil, Th 10.1]), therefore Stn(Z) is a Kazhdan group for n ≥ 3. In fact,
SL(n,Z) is obtained from Stn(Z) by adding one relation: (x12x

−1
21 x12)

4 = 1.
This element has order 2. The generators xij are mapped to the natural
generators, En, of SL(n,Z). So, κ(Stn(Z), {xij}) ≤ κ(SL(n,Z, En).

By our computation, we obtain a certified lower bound as follows:

(4.1) 0.171028... ≤ κ(St3(Z), {xij}).

We only use the presentation of the group, so this gives a new proof that
St3(Z) is a Kazhdan group. But the computation did not finish for St4(Z).

5. Finite reflection groups

Now we turn our attention to finite groups. All finite groups are Kazhdan
groups, (cf. [BdlHV]), but to find the Kazhdan constants or the spectral
gaps are not easy at all and they are known only for certain families, for
example, finite cyclic groups [BH], finite Coxeter groups [Kas2], with respect
to natural generating sets. In this section, we compare these results and
computer calculations. We also examine some finite groups whose Kazhdan
constants are unknown.
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5.1. Coxeter groups. It is a classical fact that finite irreducible Coxeter
groups are classified by Dynkin diagrams. For Dynkin diagrams An, Bn, · · · ,
we denote the corresponding Coxeter groups by the same symbols by abuse
of notation. We denote their Coxeter generators as SAn

, SBn
, · · · .

The Kazhdan constants are known.

Theorem 5.1 (Kassabov [Kas2, Remark 6.3], Theorem and Proposition 4
of [BH], Theorems 2.1, 2.2 of [Bag] for An, Bn and I2(n)).

κ(An, SAn
) =

√

24

(n+ 1)3 − (n+ 1)
,

κ(Bn, SBn
) =

√

12

n(4− 3
√
2 + 3(

√
2− 1)n + 2n2)

,

κ(Dn, SDn
) =

√

12

n(n− 1)(2n − 1)

κ(F4, SF4
) =

√

14− 9
√
2

34
, κ(E6, SE6

) =

√

1

39
, κ(E7, SE7

) =

√

4

399
,

κ(E8, SE8
) =

√

1

310
, κ(H3, SH3

) =

√

124− 48
√
5

241
, κ(H4, SH4

) =

√

83− 36
√
5

409

κ(I2(n), SI2(n)) = 2 sin
( π

2n

)

(n ≥ 3, dihedral group of order 2n)

Kassabov also computed the spectral gaps of finite Coxeter groups.

Theorem 5.2 (Kassabov [Kas2, Remark 6.3]). The spectral gap of the un-
normalized Laplacian ∆ is

ε = 4
(

1− cos
π

h

)

where h is the Coxeter number.

Here h = n + 1, 2n, 2(n − 1), 12, 18, 30, 12, 10, 30,m for An, Bn, Dn, E6,
E7, E8, F4, H3, H4, I2(m) respectively.

Notice that the left hand side of the inequality (2.1) is
√

4
n

(

1− cos π
h

)

,
which is not equal to the Kazhdan constant.

We compute lower bounds of the spectral gaps, then in our usual manner
give lower bounds of the Kazhdan constants. See Tables 5, 6, 7, 8, for
the results. Our numerical bounds for

√

2ε/|S| are identical to the actual
value (ie. our numerical bound for ε is identical to the actual constant by
Kassabov).

5.2. Complex reflection groups. Next we check (finite) complex reflec-
tion groups. The irreducible (ie, not a product) ones are classified into an
infinite families G(m, p, n) and 34 exceptional cases. We apply our algo-
rithms to some of them.
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certified bound numerical bound
√

2ε/|S| κ
A2 0.99985... 1.00000... 1 1.00000...
A3 0.62341... 0.62491... 0.62491... 0.63245...
A4 0.43661... 0.43701... 0.43701... 0.44721...
A5 0.32625... 0.32738... 0.32738... 0.33806...
A6 0.25601... 0.25694... 0.25694... 0.26726...
A7 0.20818... 0.20856... 0.20856... 0.21821...
A8 0.17334... 0.17364... 0.17364... 0.18257...
...
Table 5. Coxeter groups An. Lower bounds of

√

2ε/|S|,
and the known values by Kassabov. (d = 2)

certified expected
√

2ε/|S| κ
B2 0.76482... 0.76536... 0.76536... 0.76536...
B3 0.42163... 0.42264... 0.42264... 0.43147...
B4 0.27464... 0.27589... 0.27589... 0.28580...
B5 0.19718... 0.19787... 0.19787... 0.20707...
B6 0.14872... 0.15071... 0.15071... 0.15889...
B7 0.11558... 0.11969... 0.11969... 0.12689...
B8 0.09053... 0.09801... 0.09801... 0.10437...
...

Table 6. Coxeter groups Bn. (d = 3)

certified bound numerical bound
√

2ε/|S| κ
D4 0.36556... 0.36602... 0.36602... 0.37796...
D5 0.24553... 0.24677... 0.24677... 0.25819...
D6 0.18044... 0.18063... 0.18063... 0.19069...
D7 0.13805... 0.13953... 0.13953... 0.14824...
D8 0.11146... 0.11196... 0.11196... 0.11952...
...

Table 7. Coxeter groups Dn. (d = 2)

Let Sn be the symmetric group of n elements. For σ ∈ Sn and a1, . . . , an ∈
C, we let [(a1, . . . , an), σ] be the n × n matrix whose (i.j)-entry is ai if
(i, j) = (i, σ(i)) and 0 otherwise. For m, p, n ∈ N with p|m, let

G(m, p, n) = { [(a1, . . . , an), σ] | σ ∈ Sn, ai ∈ C, ami = 1,

( n
∏

j=1

aj

)m/p

= 1},

which is a finite subgroup of U(n).
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certified bound numerical bound
√

2ε/|S| κ
E6 0.15032... 0.15071... 0.15071... 0.16012...
E7 0.09203... 0.09317... 0.09317... 0.10012...
E8 0.05164... 0.05233... 0.05233... 0.05679...
F4 0.18334... 0.18459... 0.18459... 0.19342...
H3 0.25520... 0.25545... 0.25545... 0.26299...
H4 0.07316... 0.07401... 0.07401... 0.07820...
Table 8. Coxeter groups of exceptional types. d = 2 for En

(simply laced) and d = 3 for the others.

By definition, G(m, 1, n) is isomorphic to the wreath product (Z/mZ)n ≀
Sn, and G(m, p, n) is an index p subgroup of it. Let ζm = exp

(

2π
√
−1

m

)

.

The following set generates G(m, p, n).

• G(m, 1, n):

[(ζm, 1, . . . , 1), id], [(1, . . . , 1), (i, i + 1)] (i = 1, . . . , n− 1)

• G(m,m,n):

[(ζ−1
m , ζm, 1, . . . , 1), (1, 2)], [(1, . . . , 1), (i, i + 1)] (i = 1, . . . , n− 1)

• G(m, p, n) (1 < p < m, p|m):

[(ζm/p, 1, . . . , 1), id], [(ζ−1
m , ζm, 1, . . . , 1), (1, 2)],

[(1, . . . , 1), (i, i + 1)] (i = 1, . . . , n− 1)

Moreover, a group presentation with respect to this generating system
has been obtained in [BMR, Proposition 3.2]. In this paper, we denote this
generating system by SG(m,p,n). As groups with generators, we have

(G(1, 1, n), SG(1,1,n) \ {1}) ∼= (An−1, SAn−1
), (G(2, 1, n), SG(2,1,n)) ∼= (Bn, SBn

),

(G(2, 2, n), SG(2,2,n)) ∼= (Dn, SDn
), (G(m,m, 2), SG(m,m,2)) ∼= (I2(m), SI2(m)).

It seems the Kazhdan constant is unknown for complex reflection groups,
but the Kazhdan constants, κ̂, for G(m, 1, n) for irreducible representations
(namely, in the definition we only look at irreducible representations) are
known. Define

κ̂(Γ, S) = inf{κ(Γ, S, π) | π is irreducible}.
From the definition, we have κ ≤ κ̂.

Theorem 5.3 ([Bag]).

κ̂(G(m, 1, n), SG(m,1,n)) =

√

√

√

√

√

√

|1− ζm|2
n
∑

j=1

(

1 +
|1− ζm|√

2
(j − 1)

)2
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Now, here is the result of our computation for G(m, 1, n), Table 9. For
G(m, 1, n) there is a gap between our certified/numerical bound and κ̂, so
that we suspect the equality does not hold in inequality 2.1, at least for those
families.

certified bound numerical bound κ̂ by Bagno
G(3, 1, 2) 0.68040... 0.68177... 0.71010...
G(3, 1, 3) 0.38644... 0.38753... 0.40997...
G(3, 1, 4) 0.25605... 0.25749... 0.27490...
G(3, 1, 5) 0.18544... 0.18685... 0.20067...
G(3, 1, 6) 0.14080... 0.14352... 0.15476...
G(3, 1, 7) 0.10850... 0.11469... 0.12405...

...
G(4, 1, 2) 0.62387... 0.62491... 0.63245...
G(4, 1, 3) 0.36392... 0.36602... 0.37796...
G(4, 1, 4) 0.24449... 0.24677... 0.25819...
G(4, 1, 5) 0.17895... 0.18063... 0.19069...

...
G(5, 1, 2) 0.55741... 0.56301... 0.56341...
G(5, 1, 3) 0.34022... 0.34078... 0.34752...
G(5, 1, 4) 0.23243... 0.23374... 0.24173...

...
G(6, 1, 2) 0.50135... 0.50462... 0.50544...
G(6, 1, 3) 0.31341... 0.31469... 0.32037...
G(6, 1, 4) 0.21875... 0.21964... 0.22654...

...
Table 9. Lower bounds for

√

2ε/|S| and κ̂ for G(m, 1, n).
(d = 3)

Next, we check G(m,m,n). To compare with our numerical results, we
give an upper bound of κ(G(m,m,n), SG(m,m,n)).

Proposition 5.4 (Upper bound of κ). For m ≥ 2 and n ≥ 2, we have

κ(G(m,m,n), SG(m,m,n)) ≤
√

2|1− ζ2m|2
2 +

∑n−2
j=1 |1 + |1− ζ2m|j|2

We remark that when n = 2, although (G(m,m, 2), SG(m,m,2)) ∼= (Dn, SDn
),

the bound does not coincide with κ(Dn, SDn
).

Proof. If we let

η = (1, ζ2m, ζ2m + ζ2m|1− ζ2m|, . . . , ζ2m + ζ2m|1− ζ2m|(n− 2)),

then ||η||2 = 2+
∑n−2

j=1 |1 + |1− ζ2m|j|2 and ||s · η− η||2 = 2|1− ζ2m|2 for all
s ∈ SG(m,m,n). So we obtain the desired upper bound. �
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Our numerical results for G(m,m,n) are in Table 10

certified bound numerical bound upper bound in Prop 5.4
G(3, 3, 2) 0.99999... 1.00000... 1.00000...
G(3, 3, 3) 0.55621... 0.55851... 0.70710...
G(3, 3, 4) 0.34256... 0.34350... 0.53452...
G(3, 3, 5) 0.23364... 0.23596... 0.42640...
G(3, 3, 6) 0.16757... 0.17445... 0.35355...

...
G(4, 4, 2) 0.76482... 0.76536... 0.76536...
G(4, 4, 3) 0.46141... 0.46538... 0.55780...
G(4, 4, 4) 0.30330... 0.30528... 0.43136...

...
G(5, 5, 2) 0.61594... 0.61803... 0.61803...
G(5, 5, 3) 0.38720... 0.38968... 0.45950...
G(5, 5, 4) 0.26542... 0.26714... 0.36124...

...
Table 10. Lower bounds of

√

2ε/|S| for G(3, 3, n);
G(4, 4, n).; and G(5, 5, n). (d = 3 for n = 2, d = 4 for
n = 3, 4 ).

We check a few more families for G(m, p, n), which is in Table 11.

certified bound numerical bound
G(4, 2, 2) 0.91909... 0.91940...
G(4, 2, 3) 0.49128... 0.49288...
G(4, 2, 4) 0.30769... 0.30883...
G(4, 2, 5) 0.21409... 0.21585...

...
G(6, 2, 2) 0.77478... 0.77740...
G(6, 2, 3) 0.42686... 0.43170...
G(6, 2, 4) 0.27576... 0.27775...

...
G(6, 3, 2) 0.81608... 0.81649...
G(6, 3, 3) 0.45887... 0.46055...
G(6, 3, 4) 0.29070... 0.29538...

...
Table 11. Lower bounds of

√

2ε/|S| for G(4, 2, n). (d = 3);
G(6, 2, n) (d = 3); G(6, 3, n) (d = 3 for n = 2, d = 4 for
n = 3, 4).
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6. SL(n,Fp)

Our last examples are SL(n,Fp). The Kazhdan constants are not known.
But the following is known.

Theorem 6.1 (Kassabov [Kas1, Theorem A”]). The Kazhdan constant for
SL(n,Fp) with respect to the set En of elementary matrices with ±1 off the
diagonal satisfies

(6.1) κ(SL(n,Fp), En) ≥
1

31
√
n+ 700

.

We compute lower bounds for SL(n,Fp) with respect to the set En with
n, p small. Using this example, we give an idea on how our bounds possibly
depend on the support range d. Table 12 is for the support range d = 2,
and Table 13 is for the support range d = 3. We may obtain a better (ie,
larger) bound for a larger d, but there is more chance that the computation
does not finish. For example, the bound for SL(2,F5) improves much if we
change d = 2 to d = 3.

p 3 5 7 κ0
SL(2,Fp) 0.7961... 0.2580... (∗1) 0.001344...
SL(3,Fp) 0.6716... 0.4981... 0.3508... 0.001326...
SL(4,Fp) 0.5974... 0.4812... 0.3284... 0.001312...

Table 12. Certified lower bounds of the Kazhdan constant
(d = 2), and Kassabov’s lower bound κ0, the right hand side
of the inequality (6.1). Our numerical bound for SL(2,F7) is
close to 0, so that we could not get a positive number as a
certified bound (∗1).

p 3 5 7 κ0
SL(2,Fp) 0.7958... 0.6145... 0.5387... 0.001344...
SL(3,Fp) 0.6683... 0.4410... (∗2) 0.001326...

Table 13. Certified lower bounds of the Kazhdan constant.
(d = 3.) The computation did not finish for SL(3,F7)

(∗2).

7. Problems suggested by the experimental results

We mention problems that naturally arise from our experiments.

(1) Is our bound, 0.239, for the Kazhdan constants of G1, G2, G3, G4

in Section 3.3 close to the actual values? Do the four groups have
same Kazhdan constants? Is the Kazhdan constant equal to (

√
2 −

1)/
√
3) = 0.23914631173... ?
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Similarly, is our bound 0.171573 close to the spectral gaps ε of the
four groups? Do they have the same spectral gaps? Is it (

√
2−1)2 =

0.17157287525...?
To answer the first question for Gi, we only need to find one rep-

resentation π and one vector ξ ∈ H such that maxs∈S ||π(s)ξ − ξ||
is close to 0.239, where S consists of a, b, c and the inverses. If one
finds such representation, it also implies that 0.171573 is close to ε.

The numerical solutions bi we find for the above spectral gap are
for d = 2, ie, the support of bi are contained in {1} ∪ S ∪ S2. Is
there any explanation for that? (cf. Corollary 3.3, where we find a
solution for d = 1.)

(2) Among SL(n,Z), n ≥ 3, is the spectral gap ε a monotone decreasing
function on n w.r.t. the generating sets of elementary matrices ?
How about the Kazhdan constants ? Our lower bound for SL(4,Z)
is larger than the one for SL(3,Z). If it is not monotone, for which n,
are the Kazhdan constant of SL(n,Z) largest? Combining our lower
bound for SL(4,Z) and Zuk’s upper bound, it must be at most 18.

(3) Does the equality hold in the inequality 2.1 for finite complex reflec-
tion groups ? In view of this problem, compute the spectral gaps
(maybe using the method by Kassabov, see [Kas2, Remark 6.5]).

We believe that our (in particular, numerical) bounds for the spec-
tral gap are very close to the actual values, and that our results
suggest that the equality does not hold.

(4) What is the behavior of the spectral gap (or the Kazhdan constant)
of SL(n,Fq) when q increases with n fixed ? Does it converge to
the spectral gap (or the Kazhdan constant) of SL(n,Z) as q → ∞?
Notice that the answer is negative for the Kazhdan constant for n =
2. This is because SL(2,Z) does not have property (T), so that κ = 0,
while there is a uniform positive lower bound for SL(2,Fp, E2) by
Kassabov (see the discussion around the end of the introduction in
[BdlHV]).

How about when n increases with q fixed ? Our experiments may
suggest that they are monotone on q with n fixed; and also on n with
q fixed.

(5) For a given ε < ε(G,S), the equation 2.2 has solutions bi ([Oz]). But
is there a solution for ε(G,S)? See Corollary 3.3.

Is it possible to estimate the support range d of the solutions in
advance? Is there a universal upper bound of d for all ε?
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