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Abstract

In this paper we study an experimentally-observed connection between two seemingly un-
related processes, one from computational geometry and the other from differential geometry.
The first one (which we call grid peeling) is the convex-layer decomposition of subsets G ⊂ Z2

of the integer grid, previously studied for the particular case G = {1, . . . ,m}2 by Har-Peled
and Lidický (2013). The second one is the affine curve-shortening flow (ACSF), first studied by
Alvarez et al. (1993) and Sapiro and Tannenbaum (1993). We present empirical evidence that,
in a certain well-defined sense, grid peeling behaves at the limit like ACSF on convex curves.
We offer some theoretical arguments in favor of this conjecture.

We also pay closer attention to the simple case where G = N2 is a quarter-infinite grid. This
case corresponds to ACSF starting with an infinite L-shaped curve, which when transformed
using the ACSF becomes a hyperbola for all times t > 0. We prove that, in the grid peeling
of N2, (1) the number of grid points removed up to iteration n is Θ(n3/2 log n); and (2) the
boundary at iteration n is sandwiched between two hyperbolas that are separated from each
other by a constant factor.

1 Introduction

Let G be a planar point set. The convex-layer decomposition (or onion decomposition) of G [6, 8,
12, 14, 16] is a discrete algorithmic process in which points of G are iteratively removed, as follows:
Let G0 = G. Then, for each n ≥ 1 such that Gn−1 6= ∅, let Hn = CH (Gn−1) (the convex hull of
the current set), let Ln be the set of vertices of Hn, and remove Ln from the current set by setting
Gn = Gn−1 \ Ln.1 We call Hn the nth convex layer of G. This decomposition has applications in
range-searching data structures [9] and as a measure of depth in robust statistics [6, 14].

Motivated by the question of whether grid points behave similarly to random points, Har-Peled
and Lidický [16] studied the convex-layer decomposition of the m×m integer grid G = {1, . . . ,m}2.
They proved that this point set has Θ(m4/3) convex layers. They also briefly noted that the convex
layers of this point set appear to converge to circles as the process advances.

∗A preliminary version of this paper appeared in Proceedings of the Twentieth Workshop on Algorithm Engineering
and Experiments (ALENEX 2018), pp. 109–116, SIAM, 2018.
†Department of Computer Science, University of California, Irvine. Supported in part by the National Science
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sariel@illinois.edu; http://sarielhp.org/. Work on this paper was partially supported by a NSF AF awards
CCF-1421231 and CCF-1217462.
§Corresponding author. Department of Computer Science, Ariel University, Ariel, Israel. gabrieln@ariel.ac.il.
1Note that Gn−1 might contain points which lie on the boundary of Hn but are not vertices. These points will

still be present in Gn.
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Figure 1: Affine curve-shortening flow. The arrows indicate the instantaneous velocity of different
points along the curve at the shown time moment.

In this paper we explore an experimentally-observed connection between the convex-layer de-
composition of more general subsets G ⊂ Z2 of the integer grid (which we call grid peeling), and
a continuous process on smooth curves known as the affine curve-shortening flow (ACSF). Our
conjectural connection between these two processes, if true, would show that in the square case
studied by Har-Peled and Lidický, peeling indeed converges to a circular shape. More generally, it
would show that for any convex shape, in the limit as the grid density becomes arbitrarily fine, the
result of peeling the intersection of that shape with a grid converges to an ellipse.

1.1 The affine curve-shortening flow

In the affine curve-shortening flow, a smooth curve γ ⊂ R2 varies with time in the following way. At
each moment in time, each point of γ moves perpendicularly to the curve, towards its local center
of curvature, with instantaneous velocity r−1/3, where r is that point’s radius of curvature at that
time. Thus, for a smooth convex curve, all points move inwards, possibly at different velocities.
For non-convex curves, points of local non-convexity move outwards. See Figure 1.

The ACSF was first studied by Alvarez et al. [1] and Sapiro and Tannenbaum [24]. It differs from
the more usual curve-shortening flow (CSF) [7, 11], in which each point moves with instantaneous
velocity r−1. Unlike the CSF, the ACSF is invariant under affine transformations: Applying an
affine transformation to a curve, and then performing the ACSF, gives the same results (after
rescaling the time parameter appropriately) as performing the ACSF and then applying the affine
transformation to the shortened curves. Moreover, if the affine transformation preserves area, then
the time scale is unaffected. For more on the ACSF see [7, 10, 18] and references cited there.

For the CSF, every smooth Jordan curve eventually becomes convex and then converges to
a circle as it collapses to a point, without ever crossing itself. Angenent et al. [3] proved that,
correspondingly, under the ACSF, every smooth Jordan curve becomes convex and then converges
to an ellipse as it collapses to a point, without self-crossings.

Even if the initial curve γ is not smooth (e.g. it has sharp corners), as long as it satisfies certain
natural conditions, there exists a unique time-dependent curve γ(t) which satisfies the ACSF (or
the CSF) condition for all t > 0, and which converges to γ as t→ 0+. See [7], Theorems 3.26 and
3.28.

The ACSF was originally applied in computer vision, as a way of smoothing object bound-
aries [7] and of computing shape descriptors that are insensitive to the distortions caused by changes
of viewpoint. Because peeling can be computed quickly and efficiently, by a purely combinatorial
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algorithm [8], our conjectural connection between peeling and the ACSF could potentially provide
an efficient way of performing these computations. However, to fully realize this potential applica-
tion, it would be helpful to prove rigorous bounds on the accuracy of approximation, and to find
a way to generalize the approximation so that it can handle non-convex curves as well. In the
other direction, our conjecture would allow us to apply results on the well-understood behavior of
the ACSF to the less well-understood algorithmic process of grid peeling. For instance, it would
explain the circular layer shapes observed by Har-Peled and Lidický.

1.2 Organization of this paper

This paper is organized as follows. In Section 2 we formalize our conjectured connection between
peeling and the ACSF as Conjecture 1, and provide a non-rigorous justification for the conjecture.
In Section 3 we describe our implementation details, and report on more detailed experiments that
quantify the similarity between peeling and the ACSF. In Section 4 we prove Theorem 2, which
shows that for bounded regions, the rates of peeling and the ACSF are within a constant factor of
each other, a weaker form of our conjecture. In Section 5 we examine more closely a special case
of our conjecture on a quarter-infinite grid, and prove more precise results for that case.

2 The connection

Empirical evidence points to a connection between grid peeling and the ACSF. For a curve γ, let
γ(t), t ≥ 0, be the result of applying ACSF on γ for time duration t. Given a positive integer n,
let (Z/n)2 be the uniform grid with spacing 1/n. Given a convex region R ⊂ R2, let G[n](R) =
R∩ (Z/n)2 be the set of grid points of (Z/n)2 contained in R. Informally, for a convex curve γ, we
have that peeling G[n](CH(γ)) appears to approximate the ACSF on γ as n→∞.

This connection is illustrated in Figure 2. Figure 2 (left) shows the ACSF evolution of a
sample convex curve γ, given by γ = {(x(a), y(a)) : 0 ≤ a < 2π} for x(a) = ((1 − sin a)/2)2 and
y(a) = ((1− sin (a+ 2))/2)1.3. Specifically, the figure shows γ(0.02t) for t = 0, 1, 2, . . . , 14. Figure 2
(center) shows every fifth layer of the convex-layer decomposition of G[30](R) for R = CH(γ). The
similarity to Figure 2 (left) is immediately evident. Finally, Figure 2 (right) shows every 2714th
layer of the convex-layer decomposition of G[5000](R). Figure 2 (left) and (right) are virtually
indistinguishable to the naked eye.

We can formalize this resemblance by the following conjecture.

Conjecture 1. There exists a constant c ≈ 1.6 such that the following is true: Let R ⊂ R2 be a
convex region, and let γ = ∂R be its boundary. Let t∗ be the time it takes for γ to collapse to a
point under the ACSF (or t∗ =∞ for unbounded sets that never collapse). Fix a time 0 ≤ t < t∗,
and let γ′ = γ(t) under the ACSF. For a fixed n, let G′ be the mth convex layer of G[n](R) for

m = ctn4/3. (1)

Then, as n→∞, the boundary of the convex hull of G′ converges pointwise to γ′.

In particular, the ACSF is known to converge to an ellipse for any closed initial boundary γ,
in the limit as t → t∗, when its shape is rescaled to have constant area. Correspondingly, by the
conjecture, the convex layers of G[n](R) should also converge to ellipses as t→ t∗ and n→∞. By
symmetry, the convex layers of a square grid should indeed converge to circles.
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Figure 2: Left: ACSF evolution of a convex curve. Center and right: Convex-layer decomposition
of the set of grid points inside the same convex curve, for different grid spacings.

2.1 Justification for Conjecture 1

One intuitive but somewhat vague justification for Conjecture 1 is that the ACSF is invariant
under affine transformations (in fact, it is the unique affine-invariant flow of least order [7]), and
grid peeling is also invariant under a subgroup of affine transformations, namely the ones that
preserve the unit grid.

A more detailed justification is as follows. Balog and Bárány [5] proved that, if R is the
unit disk, then CH(G[n](R)) has Θ(n2/3) vertices. Equivalently, if R is a disk of radius r, then

C = CH(G[n](R)) has Θ((nr)2/3) vertices. Let us assume these vertices are uniformly distributed

along the boundary of C,2 so a portion of ∂C of length d contains Θ(dn2/3r−1/3) vertices.
Now, let R ⊂ R2 be an arbitrary convex region with smooth boundary γ = ∂R, and fix a

small portion δ of γ, of almost constant radius of curvature r. Let d be the length of δ. Let
C = CH(G[n](R)) for large n. Then the portion δ′ of ∂C that is close to δ contains Θ(dn2/3r−1/3)
vertices. Let ε > 0 be much smaller than d. In order for δ′ to advance inwards by distance ε, a total
of εdn2 grid points must be removed. This should take Θ(εn4/3r1/3) iterations. Therefore, δ′ should
move inwards at speed Θ(n−4/3r−1/3). This is Θ(n4/3) times slower than ACSF, independently of r.

3 Implementation and experiments

We first implemented a simple front-tracking ACSF approximation method that works as follows.
We sample a number m of points p1, . . . , pm along the given curve γ. For each point pi, we estimate
the normal vector and the radius of curvature at pi by the normal vector vi and radius ri of the
unique circle passing through points pi−1, pi, pi+1. We simultaneously let all points move at the
appropriate speeds for a short time interval t = c · (dmin)4/3, where dmin is the minimum distance
between two consecutive points, and c is a fixed parameter. Then we repeat the process. Hence, as
the sample points get closer and closer, we take smaller and smaller time steps. Here the exponent
4/3 was chosen in order for the simulation to be scale-independent.

A disadvantage of this method is that, as the curve becomes elliptical, the sample points tend to
bunch together at the sharp ends of the ellipse, causing the time step to decrease very drastically.

2This seems to be the case empirically.
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In order to overcome this problem, we then implemented a more sophisticated approach, in which
each point is also given a tangential velocity component wi (i.e. wi ⊥ vi). (Tangential velocities
should not affect the evolution of a flow, since they only cause curve points to move within the
curve.) We make the length of wi proportional to ‖vi‖ · log(‖pi− pi−1‖/‖pi− pi+1‖). Hence, if pi is
equidistant from pi−1 and pi+1, then ‖wi‖ = 0. Otherwise, if pi is closer to pi−1 than to pi+1, say,
then wi points in the direction of pi+1.

This simple approach was enough for our purposes. For more advanced flow simulation methods,
see e.g. [7, 15, 21] and references cited there.

Our ACSF C++ program may be found at ACSF.cpp, in the ancillary files of this paper.
For the grid peeling simulations, we represent the grid subset as a one-dimensional array that

stores, for each row, the x-coordinates of the leftmost and rightmost grid points in that row. We
compute the convex hull at each iteration using Andrew’s modification of Graham’s scan [2, 13].
Thus, to find the Θ(n4/3) layers of an n × n grid we take O(n) time per layer and O(n7/3) time
overall. Faster O(n2 log n)-time algorithms are possible [8, 22, 23] but were unnecessary for our
experiments. We implemented this peeling algorithm in two C++ programs, “peel N2.cpp” (for
peeling N2) and “peel shape.cpp” (for peeling general shapes).

3.1 Experiments on bounded regions

In order to test Conjecture 1, we ran both ACSF and grid peeling on several bounded convex
regions, and compared the results. The regions we used are: R1 = CH(γ) for the curve γ of
Figure 2; R2, a square of side 1; R3, a triangle with vertices (0, 0), (1, 3/4), (2/5, 1); R4, a half-disk
of diameter 1; and R5, a disk of diameter 1.

Figure 3 shows the results for R2, . . . , R5. Just as in Figure 2, here each left figure shows ACSF
with time steps of 0.02, and each right figure shows every 2714th convex layer, starting with a grid
of spacing 1/5000. Each left figure is barely distinguishable to the naked eye from the corresponding
right figure.

In order to further test Conjecture 1, we took the same regions R1, . . . , R5, and measured
the Hausdorff distance between the results of the two processes, for increasing values of the grid
density n. For each Ri, we first ran our ACSF simulation with higher-precision parameters, until
the times t1, . . . , t5 at which the area enclosed by the curve decreased to 95%, 90%, . . . , 75% of
its original area.3 Then we ran grid peeling using a variety of grid spacings; specifically, 1/n for
n = 1000, 3000, 10000, 30000, 100000. In each case, we ran the process until the times m1, . . . ,m5

at which the number of grid points decreased to 95%, . . . , 75% of its original value.
For each case, we then computed the Hausdorff distance between the ACSF curve and the grid-

peeling curve, both represented as polygonal chains.4 (For comparison, we also computed the initial
Hausdorff distance, which reflects the inherent inaccuracy in approximating the given smooth curve
by grid points.) Figure 4 shows the results.

As we can see, the Hausdorff distance decreases with increasing n. Furthermore, for large values
of n, the length of time has no major effect on the Hausdorff distance.

3Actually, for R5 we did not simulate ACSF. We simply used the closed-form solution given by r(t) = (r(0)4/3 −
4t/3)3/4, where r(t) is the radius of the circle at time t.

4We computed the Hausdorff distances using a simple brute-force approach, using the fact that for convex polygonal
chains the maximum distance is attained by a vertex (Atallah [4]). (Atallah [4] also presents a more efficent Hausdorff-
distance algorithm for convex polygonal chains, which we did not use.)
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Figure 3: Comparison between ACSF (left) and grid peeling (right) on several test shapes.
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Figure 5: Approximations of the constant c given by the experiments. The left plot uses the data
for n = 100000 and various values of the final area. The right plot uses the data for a final area of
75% and various values of n.

Finally, we checked whether the ACSF times t1, . . . , t5 are related to the grid peeling times
m1, . . . ,m5 in the manner predicted by Conjecture 1. To do this, we solved for the constant c in
(1), and computed the approximations c ≈ mi/(tin

4/3). The results are shown in Figure 5. As can
be seen, in all cases we obtained values close to 1.6; furthermore, the approximations get closer to
each other as either n or t increases.

4 Number of convex layers for bounded regions

In this section we prove that for bounded regions R, Conjecture 1 is asymptotically correct as far
as the number of convex layers is concerned:

Theorem 2. Let R ⊂ R2 be a bounded convex region. Then the number of convex layers of G[n](R)

is Θ(n4/3), with a constant of proportionality that depends on R.

Correspondingly, in ACSF, if the given curve γ is dilated by a factor of k, then its evolution is
dilated in time by a factor of k4/3.

Theorem 2 follows from the result of [16] on the number of convex layers of square grids. First,
we note that the result of [16] can be readily generalized to rectangular grids using the same
argument:5

Lemma 3. Let m,n be integers satisfying
√
m ≤ n ≤ m2. Then the number of convex layers of

G = {1, . . . ,m} × {1, . . . , n} is Θ
(
m2/3n2/3

)
.

Now, let R ⊂ R2 be a given bounded convex region. By John’s ellipsoid theorem [20], there
exist two ellipses that satisfy E1 ⊆ R ⊆ E2, such that the ratio between their areas is at most 4.

Let n be an integer, and let G = G[n](R). Scale up all these sets by a factor of n, obtaining
R′, E′1, E

′
2, and G′ ⊂ Z2. The grid peeling process is clearly invariant to linear transformations.

5The techniques of [16] are also presented in Section 5 below.
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We now focus on grid-preserving linear transformations, that is, linear transformations that map
Z2 bijectively into Z2. A linear transformation f : R2 → R2 is grid-preserving if and only if it is of
the form f(p) = Mp, where M is a 2× 2 integer matrix with determinant ±1.

Lemma 4. Let v1, v2 ∈ Z2 be linearly independent vectors. Then there exists a grid-preserving
linear transformation f that maps v1 into the x-axis, and such that f(v2) has slope at least 2 in
absolute value.

Proof. We first apply a grid-preserving linear transformation f1 that maps v1 to the x-axis. Denote
f1(v2) = (x2, y2). Then we apply a horizontal shear f2 : (x, y) 7→ (x −my, y), for an appropriate
m ∈ Z. The appropriate m is either by2/x2c or dy2/x2e.

Now, the ellipse E′1 contains a rectangle T1 whose area is at least a constant fraction of the area
of E1. Applying Lemma 4, we turn T1 into a parallelogram T ′1 with two horizontal sides and two
shorter, close-to-vertical sides. Hence, T ′1 contains an axis-parallel rectangle T ′′1 whose area is at
least a constant fraction of the area of T ′1. If n is large enough, then the side lengths m1 and m2

of T ′′1 will satisfy
√
m1 ≤ m2 ≤ m2

1. Therefore, we can apply the lower bound of Lemma 3 on T ′′1 .
The upper bound proceeds similarly, using ellipse E′2. This completes the proof of Theorem 2.

5 Peeling a quarter-infinite grid

A simple test case for Conjecture 1 is the region R = {(x, y) : x ≥ 0, y ≥ 0} (the first quadrant
of the plane). In this case, the grid spacing n is irrelevant, so we can simply take G = N2 (where
N = {0, 1, 2, . . .}). The boundary of R is the L-shaped curve γL = {(x, 0) : x ≥ 0}∪{(0, y) : y ≥ 0}.

The time-dependent hyperbola

γL(t) = {(x, y) : y = (4/33/2)t3/2/x}. (2)

satisfies the ACSF condition for all t > 0 (as can be verified by a simple calculation), and it
converges to γL as t→ 0+. The hyperbola (2) is the only solution satisfying this property.6

Hence, by Conjecture 1, we would expect the convex layers of N2 to approach hyperbolas as the
process goes on. Indeed, this is what occurs experimentally. In the next subsections we present our
experimental and theoretical results regarding the convex layers of N2. But let us first introduce
some notation.

Notation. Throughout this section, we will define the sets Gn, Ln, Hn as in the Introduction for
our choice of G = N2. Hence, G0 = N2, Hn = CH (Gn−1), Ln is the set of vertices of Hn, and
Gn = Gn−1 \ Ln. Let Bn = ∂Hn. Let (Kn,Kn) be the point of intersection of Bn with the line
y = x, so the point (Kn,Kn) splits Bn into two congruent “arms”. Let s(n) = |L1| + · · · + |Ln|
be the number of grid points removed up to iteration n. Given integers x, n ∈ N, let ax(n) be
the number of points of the xth column of G that have been removed up to iteration n; i.e., let

6The existence of a unique solution was proven for doubly-differentiable curves, without the assumption of closed-
ness, by Angenent et al. [3, Section 6] and stated for closed curves without the assumption of smoothness in [7,
Theorem 3.28]. In the case here, the uniqueness of the solution can be proven by applying the result for closed curves
to the boundary of a large square: If the quarterplane had multiple solutions, they could be approximated arbitrarily
well by the solution near the corner of a large enough square, which would necessarily also have multiple solutions,
violating [7, Theorem 3.28].
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Figure 6: Left: Convex layers 5, 10, 15, . . . , 30 of N2. Right: 1000th convex layer of N2.

ax(n) =
∣∣{({x} × N) ∩ (L1 ∪ · · · ∪ Ln)

}∣∣. Note that in a fixed column, the points are removed in
increasing order of y-coordinate; furthermore, for every fixed n the sequence a0(n), a1(n), a2(n), . . .
is nonincreasing, with a0(n) = n, an−1(n) = 1, and an(n) = 0. See Figure 6.

5.1 Experiments

Given n, let B′n be the result of scaling down the nth layer boundary Bn by a factor of n3/4.
According to Conjecture 1, as n → ∞ we would expect B′n to converge to the hyperbola γL(1/c)
of (2). We would like to measure to what extent this happens. However, since we do not know the
constant c to high precision, we performed these measurements as follows:

Given n, let fn(x) = K2
n/x define the hyperbola that passes through the point (Kn,Kn).

Given a small real number 0 < α < 1, let xα(n) denote the smallest integer x > Kn for which
|ax(n) − f(x)| > αf(x). Hence, the portion of Bn that is between x-coordinates x = Kn and
x = xα(n) is within an α-fraction of the hyperbola f(x). By symmetry, the same can be said
about the portion of Bn that is between y-coordinates y = Kn and y = xα(n). The ratio xα(n)/Kn

provides a scale-independent measure of the extent to which Bn is α-close to a hyperbola.
Figure 7 illustrates the results of these measurements for increasing values of n and decreasing

values of α. Specifically, we took n = 10000, 30000, 100000, 300000 and α = 0.1, 0.03, 0.01, 0.003.
As can be seen, for each fixed α, the portion of the hyperbola that is within an α-fraction of Bn
grows as n increases.

Measuring the time relationship. Conjecture 1 predicts that Kn ≈ 2(n/(3c))3/4 for large n.
We tested this prediction by solving for c and seeing whether it approaches a constant close to 1.6.
The results are shown in Figure 8.

Layer sizes. The sequence {|Ln|} represents the number of vertices in successive layers of the
convex-layer decomposition of N2. This sequence is now cataloged in the Online Encyclopedia of
Integer Sequences as A293596. It starts as

1, 2, 2, 3, 4, 4, 3, 4, 6, 6, 5, 4, 6, 6, 8, 7, 6, 6, 6, 8, 9, 10, 10, 8, 8, 7, 8, 10, 10, 12, 13, 12, . . .

Figure 9 plots this sequence at different scales. As can be seen, this sequence has regular waves
that slowly increase in both length and amplitude. Nevertheless, the relative amplitude of the
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n = 10000:

within 10%

within 3%

within 1%

within 0.3%

n = 30000:

n = 100000: n = 300000:

Figure 7: Measurements indicating that as n increases, an increasingly long portion of Bn is close
to a hyperbola.
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Figure 8: Approximations of the constant c given by experimental measurements of the point
(Kn,Kn).
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Figure 9: Number of vertices of the nth convex layer of N2 as a function of n.

waves (the ratio between their amplitude and their height above the x-axis) seems to decrease,
perhaps tending to zero.

5.2 Rigorous results

We now obtain some rigorous results for the grid peeling of G = N2.

Theorem 5. The convex-layer decomposition of the quarter-infinite grid G = N2 satisfies the
following properties:

1. The number of grid points removed up to iteration n satisfies s(n) = Θ(n3/2 log n).

2. ax(n) = O(n3/2/x) for all n, and ax(n) = Ω(n3/2/x) for c1
√
n ≤ x ≤ c1n, where 0 < c1 < 1

is some constant.

3. Kn = Θ(n3/4).

4. |Ln| = O(n1/2 log n) and |Ln| = Ω(log n).

In other words, the boundary Bn is sandwiched between two hyperbolas that are separated
from each other by a constant factor, where the upper hyperbola bounds Bn for all x, while the
lower hyperbola bounds Bn only up to x = c1n (and symmetrically in the y-axis). Put differently,
the scaled boundary B′n is sandwiched between two hyperbolas y ≥ c1x and y ≤ c2x that are
independent of n, where the lower hyperbola bounds B′n only up to x = c1n

1/4 (and symmetrically
in the y-axis). See Figure 10.

Regarding |Ln|, we would expect it to behave like Θ(n1/2 log n), or even like c′n1/2 log n ±
o(n1/2 log n) for some constant c′. However, our rigorous lower bound for |Ln| is very weak.
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y = c'n3/2/x
y = c''n3/2/x

x = c1n

y = c1n

x = n

y = n

Figure 10: Schematic drawing of the upper and lower bounds for the nth convex layer of N2.

5.3 Proof of Theorem 5

The proof of Theorem 5 is mainly based on the techniques of [16].

Lemma 6 (Jarńık [19]). Let P ⊂ {1, . . . ,m} × {1, . . . , n} be in convex position. Then |P | =
O((mn)1/3).

Proof. Let p0, p1, p2 . . . , pk−1 be the points of P listed in circular order around the boundary of
CH (P ), and let vi = p(i+1) mod k − pi be the vectors corresponding to the edges of CH (P ). Note

that these vectors are pairwise distinct. Let xmax = m2/3n−1/3 and ymax = n2/3m−1/3. Classify the
vectors vi = (xi, yi) into three types as follows: (1) Those satisfying |xi| ≤ xmax and |yi| ≤ ymax;
(2) those satisfying |xi| > xmax; (3) the remaining ones (which satisfy |yi| > ymax). The number
of vectors of type (1) is at most 4xmaxymax = O((mn)1/3). The number of vectors of type (2) is
at most 2m/xmax = O((mn)1/3). And the number of vectors of type (3) is at most 2n/ymax =
O((mn)1/3).

A vector v = (x, y) ∈ Z2 is said to be primitive if x and y are relatively prime.

Lemma 7. Let M = {a + 1, . . . , a + m} × {b + 1, . . . , b + n} ⊆ {1, . . . , N}2. Then the number of
primitive vectors in M is (6/π2)mn±O(N logN).

Proof. We start with the following classical number-theoretical result.

Lemma 8. Let m,n be positive integers with m ≤ n. Let ρ(m,n) be the number of primitive vectors
(x, y) in {1, . . . ,m} × {1, . . . , n}. Then ρ(m,n) = (6/π2)mn±O(n log n).

Proof. (Following Hardy and Wright [17], Theorem 332.) Let µ be the Möbius function, which sets
µ(x) = −1 if x is square-free and has an odd number of prime factors, µ(x) = 1 if x is square-free
and has an even number of prime factors, and µ(x) = 0 if x is not square-free. Let D(x, y) be the
set of all common divisors of x and y. Then

∑
d∈D(x,y) µ(d) equals 1 if x and y are relatively prime,

and 0 otherwise.
Clearly,

∑∞
x=1 µ(x)/x2 converges to some positive real number smaller than 1. In fact, it

converges to 6/π2 [17].
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Therefore,

ρ(m,n) =
m∑
x=1

n∑
y=1

∑
d∈D(x,y)

µ(d) =
mn∑
d=1

µ(d)
⌊m
d

⌋ ⌊n
d

⌋
=

mn∑
d=1

µ(d)
(mn
d2
−O

(n
d

))

= mn
mn∑
d=1

µ(d)

d2
±O(n log n) = mn

( ∞∑
d=1

µ(d)

d2
±O

(
1

mn

))
±O(n log n),

and the claim follows.

Now, consider M = {a + 1, . . . , a + m} × {b + 1, . . . , b + n} ⊆ {1, . . . , N}2. The number of
primitive vectors in M equals ρ(a+m, b+n)−ρ(a+m, b)−ρ(a, b+n)+ρ(a, b), so Lemma 7 follows
by Lemma 8.

5.3.1 Upper bounds

Lemma 9. We have ax(n) ≤ c0n3/2/x for some constant c0.

Proof. Given x, let y = ax(n). By iteration n, the entire corner subgrid G′ = {0, . . . , x − 1} ×
{0, . . . , y − 1} has been removed. By Lemma 6, each Li contains O((xy)1/3) points of G′. Hence,
we must have xy ≤ O(n(xy)1/3), which implies y = O(n3/2/x).

Corollary 10. We have s(n) = O(n3/2 log n).

Corollary 11. We have Kn ≤
√
c0n

3/4 for the constant c0 of Lemma 9.

Proof. Take x0 =
√
c0n

3/4, and note that ax0(n) ≤ x0.

By Corollary 11, each “arm” of Ln is contained in an O(n3/4)×n box. Hence, a hasty application
of Lemma 6 would yield |Ln| = O(n7/12). However, we can do better: We can cover each arm of
Ln by logarithmically many boxes of small area, and apply Lemma 6 on each box.

Lemma 12. We have |Ln| = O(n1/2 log n).

Proof. Let x0 =
√
c0n

3/4 for the constant c0 of Lemma 9, and recall that Kn ≤ x0. Define the
axis-parallel boxes Ti, 0 ≤ i ≤ dlog2(n/x0)e, by T0 = [0, x0]

2 and Ti = [2i−1x0, 2
ix0]× [0, x0/2

i] for
i ≥ 1. By Lemma 9, the right arm of Ln is contained in the union of these boxes. Furthermore,
the area of T0 is c0n

3/2, and the area of each Ti, i ≥ 1, is c0n
3/2/2. Hence, by Lemma 6, each Ti

contains O(
√
n) points of Ln. Finally, the number of boxes is O(log n).

5.3.2 Lower bounds

Let v = (xv,−yv) be a primitive vector with xv, yv > 0. Following [16], we say that v is active at
iteration n if the unique line `v parallel to v that is tangent to Hn contains an edge of Hn (and so
`v contains two points of Ln). Otherwise, if `v contains a single vertex of Hn (and a single point of
Ln), then we say that v is inactive at iteration n. See Figure 11.

Given such a vector v, let Lv be the set of lines parallel to v that pass through points of N2.
We say that a line ` ∈ Lv is alive at iteration n if ` intersects Hn; otherwise, we say that ` is dead
at iteration n. Note that, at a given iteration n, all the dead lines of Lv lie below all its live lines.

14



v1

v2

Figure 11: At the shown iteration, vector v1 = (2,−3) is inactive, while vector v2 = (2,−1) is
active.

Lemma 13. Let v = (xv,−yv) be a primitive vector with xv, yv > 0. Then the number of lines of
Lv that pass below the point (x, y) is at most xyv + yxv.

Proof. Each of the said lines passes through a grid point in {0, . . . , xv−1}×{0, . . . , y+dxyv/xve}.

Observation 14. If v is inactive at iteration n, then the number of dead lines of Lv strictly
increases from iteration n to iteration n+ 1; specifically, the tangent line `v dies.

Observation 15. The number of active vectors at iteration n equals |Ln| − 1.

Given n, let m = n1/2/(16c0) for the constant c0 in Lemma 9. Let V be the set of all prim-
itive vectors (xv,−yv) with xv, yv > 0 and xvyv ≤ m. By applying Lemma 7 on the rectangles
{2i−1

√
m, . . . , 2i

√
m} × {0, . . . , 2−i

√
m} for − log5m ≤ i ≤ log5m, we obtain |V| = Θ(m logm) =

Θ(n1/2 log n).

Lemma 16. Up to iteration n, each vector of V is active at least n/2 times.

Proof. Consider a vector v = (xv,−yv) ∈ V. Set x = c
1/2
0 n3/4

√
xv/yv and y = 1 + ax(n) ≤

1 + c
1/2
0 n3/4

√
yv/xv (by Lemma 9). Since the grid point (x, y) has not been removed by iteration

n, by Lemma 13 the number of dead lines parallel to v is at most

xyv + yxv = 2c
1/2
0 n3/4

√
xvyv ≤ 2c

1/2
0 n3/4

√
m = n/2.

Hence, the claim follows from Observation 14.

Hence, by Observation 15:

Corollary 17. We have s(n) = Ω(n3/2 log n).

Lemma 18. There exist constants c1, c2 > 0 such that, for every n and every x in the range
c1
√
n ≤ x ≤ c1n, we have ax(n) ≥ c2n3/2/x.

Proof. Given a slope µ in the range 1/m ≤ µ ≤ m, we will derive a lower bound for the distance
between the origin and Bn in the direction µ. (So for example, taking µ = 1 will yield a lower
bound for Kn.)
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Using Lemma 9, take a grid point (x, y) with y/x ≈ µ that has not been removed by iteration
n. Specifically, let x =

(√
c0/µ

)
n3/4 and y =

(√
µc0
)
n3/4. Define the rectangle T = {0, . . . , 3x −

1} × {0, . . . , 3y − 1}, so |T | = 9c0n
3/2. We claim that at least a constant fraction of the points of

T have been removed by iteration n.
Indeed, let V ′ ⊆ V be the set of all vectors v = (xv,−yv) ∈ V with µ/2 ≤ yv/xv ≤ 2µ. By

applying Lemma 7 on the rectangle whose opposite corners are q/2 and q for q = (
√
m/µ,

√
µm),

we have |V ′| = Θ(m) = Θ(
√
n).

Let v ∈ V ′, and let i ≤ n be an iteration in which v is active. Let ` ∈ Lv be the line tangent to
Hi. Line ` passes below point (x, y), so by the construction of T , all the grid points in ` belong to
T . Two of these grid points belong to Li. Let us charge the pair (v, i) to the leftmost of these two
points.

Doing this over all choices of v and i, we make a total of Θ(n3/2) charges to points of T .
Furthermore, each point of T is charged at most once. Therefore, at least a constant fraction (say,
a c′-fraction) of the points of T are deleted by iteration n.

Choose a constant 0 < c′′ < 1 −
√

1− c′. Let x′ = 3c′′x and y′ = 3c′′y (so y′/x′ = µ). We
claim that the grid point (x′, y′) has been removed by iteration n. Indeed, otherwise, all the points
behind (x′, y′) (i.e. all the points (x′′, y′′) ∈ T with x′′ ≥ x′ and y′′ > y′) would also be present,
and they constitute more than a (1− c′)-fraction of T (by the choice of c′′).

Rephrasing, given n and given x′ in the range 3c′′
√
c0
√
n ≤ x′ ≤ 3c′′

√
c0n, we have

ax′(n) ≥ y′ = 3c′′y = 3c′′c0n
3/2/x = 9(c′′)2c0n

3/2/x′.

Corollary 19. We have |Ln| = Ω(log n).

Proof. The idea is that, since Bn is confined between two hyperbolas for a long stretch, it must
make at least a certain number of turns. That number is Ω(log n), by the following calculation:

For simplicity, let us scale down Bn by a factor of n3/4, obtaining B′n. Let y = c1/x and
y = c2/x be the two bounding hyperbolas, where c1 < c2, and where the lower-hyperbola bound
applies up to x = c3n

1/4. The number of edges of B′n is minimized if each edge starts and ends at
the lower hyperbola and is tangent to the upper hyperbola. In such a case, an edge that starts at
x-coordinate x0 ends at x-coordinate kx0, for the constant k = (

√
c2 +
√
c2 − c1)/(

√
c2−
√
c2 − c1).

Hence, the number of edges is at least logk n
1/4 −O(1).

6 Concluding remarks

The main open problem is to prove Conjecture 1. Additionally, if the conjecture can be confirmed,
it would be of interest to generalize the approximation to the ACSF that it yields, from convex
curves to more general curves. Also, grid peeling for higher dimensions has not been studied at all,
as far as we know.
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useful conversations.
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